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1. Introduction.

Relative to some inertial coordinate system defined in Galilean space-time, we

assume that the quantum state of the physical system of interest satisfies the time-

dependent Schrödinger equation

i
d (t)

dt
= H (t) (1)

where the Hamiltonian H may itself be time-dependent. (Here, and throughout this

paper, units are chosen so that   h = 1.) Suppose we require that (1) be covariant under

some (possibly time-dependent) unitary transformation represented by
(t) → ′ ( ′ t ) = U (t) (t )  so that

i
d ′ ( ′ t )

d ′ t 
= ′ H ′ ( ′ t ) . (2)

When d d ′ t = d dt , it can easily be shown that covariance holds if and only if

′ H =UHU−1 + i
U

t
U −1. (3)

Recall that such covariance does not necessarily correspond to a symmetry of

the Schrödinger dynamics: covariance of this general kind is expected to hold, for

example, even for a wide class of non-linear coordinate transformations which are

unitarily implementable. In such cases, the transformed Hamiltonian in (3) will not

not 'take the same form' as does H in (1). In the case of a transformation to a

rectilinearly accelerating coordinate system, say, the scalar potential in H' will

contain a new term corresponding to the inertial force acting on the particle—so that

in particular a free particle no longer 'looks' free.

Something like the opposite of this familiar process can also occur. In very

special cases of background potentials, such as that of  a time-dependent simple
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harmonic potential, a quantum particle can exhibit free motion when described

relative to an appropriately accelerating coordinate system1. In transforming in this

case from an inertial coordinate system (with respect to which the potential is

defined) to such a contrived non-inertial coordinate system, the energy spectrum of

the particle goes from being purely discrete to purely continuous—a surprising state

of affairs perhaps but consistent with non-invariance of the Hamiltonian as seen in (3)

above. Even the existence of tunnelling in some cases turns out to be coordinate-

dependent.2

Does this mean that it is not always an objective state of affairs as to whether

a given particle is free, or whether tunnelling is taking place? This is similar to the

question as to whether the Newtonian forces acting on a  specific classical particle are

not objective, given the ability to transform to the rest frame of the particle—relative

to which obviously it 'moves freely'. The answer to both these questions is surely

negative. To me, at any rate, the 'freedom' of the above-mentioned quantum particle

when described relative to a contrived accelerating frame, for example, seems just as

much of an artifact as the background thermal radiation 'seen'—via the Unruh

effect—by a uniformly accelerating detector in the (inertially-defined) vacuum field

in Minkowski spacetime. There is no doubt more to be said about this issue, but it

will be skirted here. Questions of objectivity—in so far as they are concerned with the

issue of coordinate-independence in Galilean spacetime—will be restricted in the

paper to the context of differing inertial perspectives.

Section 2 contains a review of the covariance of the Schrödinger equation

under local gauge transformations and Galilean coordinate transformations. In the

subsection on gauge covariance, I include a brief discussion of the sense in which the

gauge principle can be said to 'generate' dynamical gauge fields (such as the Maxwell

field in the case of the U(1) symmetry). The motivation of this discussion is two-fold.

In part the discussion attempts to address the 'mystery' associated with the gauging

procedure, recently highlighted by Teller. It also touches on the connection between

gauge covariance in quantum theory and the requirement of general covariance in the

general theory of relativity.

Before summarising the content of the subsequent sections, a few more

introductory words are in order. Note that  even in the case of the symmetries

discussed below in Section 2, the second term on the RHS of (3) is generally of

importance. Equation (3) forces us to be wary in accepting the common claim that

under a unitary transformation U implementing a symmetry, a self-adjoint operator A

                                                
1 See Kuchar

∨
(1980), sections VII and VIII, and the independent work of Takagi

(1990).
2 See Takagi (1991).
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representing some physical magnitude itself transforms unitarily as A → ′ A = UAU −1 .

Such a transformation ensures of course that the mean value of ′ A  (or rather its

associated physical magnitude) defined with respect to the transformed state equals

that of A  defined with respect to the original state. But in the case, say, of a Galilean

coordinate transformation—where the associated unitary transformation of the state is

time-dependent—equation (3) is telling us that UHU−1 does not represent the same

magnitude relative to the 'moving' observer as H does relative to the 'stationary' one.

Indeed, one wouldn't expect the total energy to be invariant under a passive Galilean

boost, and it is far from being the only interesting magnitude for which the

corresponding operator fails to transform unitarily in such cases as coordinate and

gauge transformations.3

This state of affairs implies that a system undergoing Hamiltonian evolution

which describes a closed loop in ray space (projective Hilbert space) relative to a

given inertial coordinate system will generally fail to preserve this closure property

when viewed from a (spatially) translated coordinate system if the translation is time-

dependent, and in particular when viewed from a boosted coordinate system. (A

special case is the non-preservation of stationarity.) The ensuing issue of the Galilean

coordinate-dependence of the geometric phase defined on paths in ray space will be

taken up in Section 3 below. Some commentators have regarded such coordinate

dependence as a defect in the standard formulation of geometric phase, but I am not

so sure.

The existence of non-unitary, symmetry-related transformations of operators

also raises a question as to the objectivity of 'sharp values' which a number of related

interpretations of quantum mechanics attribute, qua elements of reality, to certain

magnitudes of a system under certain conditions. In particular, the question as to

whether sharpness imposed by the Eigenstate-Eigenvalue Link is invariant under

coordinate transformations and/or gauge transformations is briefly examined in

Section 4.

In the final section of the paper, attention is turned to the theory of quantum

reference frames, due primarily to Aharonov and Kauffher. It would seem that this

theory reformulates and reinforces the lesson urged in Section 4, namely that sharp

values of observable magnitudes in quantum mechanics must, in a rather special

(non-classical) sense, be given a relational, and not an absolute status. This, at least, is

the conclusion of Section 5.

                                                
3 For a discussion of the sense in which the 'common claim' above regarding the

transformation A → ′ A = UAU −1  is correct, see Brown and Holland (1998) and

particularly Brown, Suarez and Bacciagaluppi (1998).
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The overlapping issues of symmetry and objectivity in quantum mechanics

taken up in this paper—which is largely based on a number of recent collaborative

efforts—reflect prominent themes in the work of Michael Redhead. Michael's

influence on me over the last quarter-century as teacher, mentor, collaborator and

friend has been enormous. It's with pleasure and gratitude that I dedicate the paper to

him.

2. Covariance of the Schrödinger equation.

(a) Gauge transformations.

Consider the Schrödinger equation for a single, spinless particle evolving in the

presence of a vector potential A(x ,t) and scalar potential V(x ,t), which may or may

not be of electromagnetic origin4:

i
x,t( )
t

=
−1

2m
∇− iA x ,t( ){ }2

+ V x,t( ) 
 

 
 

x,t( ) .                              (4)

It is sometimes claimed that the form of the Hamiltonian in (4) is itself a direct

consequence of Galilean invariance (or rather Galilean kinematics), a claim we shall

briefly return to later5. In the meantime, let me repeat the well-known fact that (4) is

covariant under a local gauge transformation (x,t) → ′ (x ,t ) = exp[i (x,t)] (x ,t )

when the potentials transform as:

′ A ′ x , ′ t ( ) = A x,t( ) +∇ x,t( )

′ V ′ x , ′ t ( ) = V x,t( )− x,t( )
t

 

 
  

 
 
 

(5)

In the case of Maxwell fields (where both (4) and the transformation of the

wavefunction above hold in the case of a particle with unit charge), the

transformations (5) leave electric and magnetic field strengths unaltered—even in the

non-relativistic limit as we shall see in the next subsection.

                                                
4 An example of the appearance of a vector potential which is not related to an

external magnetic field is mentioned in Section 5 below.
5 See footnote 39 below.



5

It is well-known too that the geometric role of the vector potential A  is that of

determining a connection, associated with the 'covariant'  derivative D ≡ ∇ − iA(x).6

We can thus define the gauge-invariant quantity:

f kl ≡ i[Dk, Dl] =
Al

xk

−
Ak

x l

(6)

where k, l = 1, 2, 3, which can be called the curvature tensor associated with the
connection determined by A . In the case where A has electromagnetic origin, f kl  is

non-zero wherever there exists a magnetic field—and it is detectable in quantum

mechanics even when the particle is entirely excluded from the region where the

magnetic field is confined, as was famously shown by Aharonov and Bohm in 1959.

This result  demonstrated the importance of interpreting the electromagnetic field as a

gauge field corresponding to the local U(1) group (see below).

Perhaps it is worth noting here that the relationship between the gauge

principle and the introduction of a rule of parallel transport, and hence a connection,

has also been usefully exploited for fibre bundles where the base space is other than

physical space (or spacetime). In particular, it has been  known for some time that the

requirement of symmetrisation and antisymmetrisation of the states of collections of

identical particles in quantum mechanics is intimately linked with the global

topological structure of the reduced configuration space defined for N particles

                                                
6 This geometric view of the potential is usually discussed in relation to the 4-

potential in relativistic quantum mechanics, to which we turn shortly. In case it needs

stressing, the connection associated with this 4-potential, and the curvature it induces,

are defined relative to the U(1) fibre bundle whose base space is spacetime and whose

fibres are the 'internal spaces' related to the local phases of the complex

wavefunction. If one wants to say that such curvature is not a genuine curvature of

spacetime, unlike that defined in general relativity, the reason can only be that the

affine connection coefficients and the associated curvature tensor in the latter theory

are defined with respect to the tangent bundle of spacetime. (Note that strictly

speaking, in the case of the electromagnetic potential in quantum theory, both the

covariant derivative operator and the connection coefficients actually depend on the

charge of the particle as well as the 4-potential, so the connection depends on the type

of particle involved. But the curvature operator—see equation (8) below—is defined

to be charge-independent; see  Lawrie (1990), § 8.1, for a nice introductory treatment

of these issues.)
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moving in a three-dimensional physical space.7. (This reduced space is obtained by

identifying points in the standard 3N-dimensional configuration space which are

related by permutation of particle labels, and removing the singular points

corresponding to spatial coincidence of two or more particles.) Suppose one

introduces quadratically integrable wavefunctions subject to a local gauge symmetry

on the reduced configuration space, which itself turns out to be doubly connected.

Then it can be shown that the wavefunction must either change sign or remain

invariant under an exchange of the particles.8 Furthermore, the former fermionic case

is somewhat analogous to the force-free Aharonov-Bohm effect, but this time the

'gauge field' is confined to the off-limits singularities in the reduced configuration

space. Now it may be open to interpretation just how explanatory this topological

view of fermionic statistics is, but the overall approach seems to offer a deep insight

into the range of possible statistics the particles may in principle exhibit9. The point I

want to stress is that the local gauge principle on the reduced configuration space is

central to the argument.

Returning to the familiar gauge fields on spacetime, I wish finally to comment

on a claim sometimes made in the context of the relativistic quantum mechanics. This

is the claim is that the gauge field (electromagnetism) has to be introduced to ensure

covariance of the equation of motion under local U(1) gauge transformations10. Now

something almost magical seems to be occurring here, and one can sympathise with

the puzzlement recently expressed by Teller (1997) at the apparent fact that in gauge

theories generally, a change in  mere "conventions" (local gauge) can have "dramatic

repercussions in seeming to force the introduction of an otherwise neglected physical

field!". The remaining comments in this subsection are offered in the hope of finding

some alleviation of this puzzlement.

Let us consider then the case of a free spin-1/2 particle. As is well-known, the

Dirac equation  (in natural units wherein c =   h = 1)

                                                
7 See in particular Leinaas and Myrheim (1977). For a brief review of this approach,

and its particular naturalness in the context of de Broglie-Bohm pilot-wave theory,

see Brown, Sjöqvist and Bacciagaluppi (1998).
8 The restriction to these two options does not hold if physical space is less than

three-dimensional, allowing for the possibility of anyons in the two-dimensional case.
9 More recently, a derivation of the spin-statistics relation has resulted from the

construction, within the same approach, of an exchange operator for identical

particles with spin, with further topological significance in an enlarged Hilbert space;

see Berry and Robbins (1997).
10 See, for example, Ryder (1987), p. 99.
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(i − m) (x) = 0 (7)

'becomes' gauge covariant under (x) → ′ (x) = exp[i (x)] (x) if the ordinary
derivative  acting on the spinorial wavefunction  is replaced by the gauge-

coviariant derivative D = + i A (x)—resulting in a relativistic analogue of (4).

Here is a 'coupling' constant (ultimately related to the charge of the particle, but at
this point we can understand it merely as a factor such that A  need not have the

same units as ), and the 4-vector field A  determines a connection on the U(1)

fibre bundle whose base manifold is spacetime. This vector field transforms as
′ A (x) = A (x) − (x) . The very term 'minimal coupling' standardly associated with

this procedure reflects the fact that the resulting equation of motion for the Dirac

wavefunction is not the only conceivable gauge covariant equation which reduces to
the original equation (7) when A  = 0, but it is the simplest.

But why should we be interested in a gauge-covariant version of (7) in the

first place? Following Nakahara,  we might relate the gauge principle to the truism

that "physics should not depend on how we describe it", and compare it with the

requirement of general covariance in the general theory of relativity11. Yet is it a

priori obvious that the choice of local phase of the wavefunction is merely a choice of

description? Hardly. (I remain to be convinced even that the italicised claim above

constitutes the decisive justification of general covariance in general relativity, but

that's another story.) Surely it is hindsight, provided by the link with

electromagnetism, that makes it appear so12. An entirely different issue, however, is

the significance of introducing a connection, and hence a rule of parallel transport in

the U(1) bundle. It is this which tells us how to compare distant phases of the

wavefunction, a natural requirement which does not, in itself, beg the question of

gauge covariance.  

What has actually been done above in replacing the ordinary derivative in (7)

by the (gauge) covariant derivative is however analogous to the coordinate-general

reformulation, in a flat affine spacetime, of the geodesic equation—essentially the

equation of motion for a free classical particle—originally expressed in component

form relative to a global inertial coordinate system (i.e., one in which the connection

coefficients vanish everywhere). Again, this reformulation is carried out effectively

by replacing the ordinary partial derivative by the covariant derivative associated with

the affine connection defined on the tangent bundle. (For the sake of completeness,

the details are given in the appendix.)
                                                
11 Nakahara (1990), p. 10.
12 A related issue is why certain quantities in physics are gauged and not others

(recently raised by Teller (1997), p. 517).
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In this case, the generally covariant equation of free motion captures the effect

of 'inertial forces' acting on the particle from the perspective of a non-inertial

coordinate system. In the case of the gauge covariant version of the free Dirac
equation, one could perhaps say that the appearance of the 'potential' A  in the Dirac

Hamiltonian similarly captures the effect of 'pure-gauge forces' arising out of the

generalisation to arbitrary gauges. But in neither case  is the connection a bona fide

dynamical object yet, nor are the mentioned 'forces' of dynamical origin. This only

comes about when (i) the connection gives rise to curvature, and (ii) when the matter

field acts back on the connection.

Condition (i) is of course inconsistent with (7), in that there is no gauge in
which A  = 0 everywhere (just as there are no global inertial coordinates systems

when the curvature tensor in the spacetime tangent bundle is non-zero)13. The gauge-

invariant curvature is defined in terms of the commutator of the components of the

covariant derivative (a generalisation of (6)):

F ≡ −
i

[D ,D ] = A − A . (8)

Condition (ii) requires the introduction of an analogue of Einstein's field

equations, which would determine inter alia the effect of the Dirac particle on the
gauge potential A . Now if we view (7) as arising from an action principle, then a

gauge-invariant action is already obtained just by replacing the ordinary derivative in

the action associated with free motion by the gauge-covariant derivative. What is still

lacking is a further gauge-invariant contribution to the action responsible for the

back-action of the particle on the potential. The simplest Lorentz scalar that can be
constructed from the gauge-invariant curvature is F F , and if, as is well-known, a

term proportional to this scalar is added to the action, equations of motion for the

gauge field are obtained which take the same form as Maxwell's equations when the

electric current density j (x) is interpreted as proportional to (x) (x), and the
coupling constant λ is related to electric charge.14

                                                
13 Once one introduces curvature along with minimal coupling, a weaker claim than

Ryder's above can reasonably be made: "the electromagnetic properties of elementary

fermions can be deduced simply by demanding that the Lagrangian be invariant under

local phase transformations" (Collins et. al. (1989), p. 48). The argument here

requires identifying the gauge potential with the known electromagnetic potential, and
λ with the charge of the fermion; the energy of the electromagnetic field is taken as

given (op. cit. p. 49).
14 See, for example, Lawrie (1990), p. 143.
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It is striking that in this important and suggestive 'derivation' of (classical)

electrodynamics Nature seems to oblige in the sense of adhering both to the mimimal

coupling procedure15 and the choice of the simplest gauge- and Lorentz-covariant

contribution to the action that accounts for the dynamical properties of the gauge

field. But the point I wish to stress is a different one: neither conditions (i) or (ii)

above are consequences of the requirement of local gauge covariance. Condition (i)

is motivated by physical phenomena like that of Aharonov and Bohm, which indicate

that certain observable interference effects in quantum theory can be interpreted as

anholonomies associated with the curvature of the gauge connection16. But the

existence of such curvature—and hence of the electromagnetic field—is not strictly

required by the process of constructing a gauge-covariant reformulation of (7)17.

Condition (ii) is motivated by the action-reaction principle holding between matter

and the gauge field18. Its analogue in general relativity is the requirement of the non-

existence of 'absolute objects' defined on the spacetime manifold (which are taken to

act on the matter fields but are not acted upon), or what Wald19 has somewhat

misleadingly called the 'principle of general covariance'. This principle is far stronger

than the mere requirement that the field equations be written in general-covariant

form (i.e. expressed in the tensor calculus)20, which is the tangent bundle analogue of

gauge covariance.

These remarks should not be construed as disparaging the heuristic

importance of treating electromagnetism as a gauge theory, which is of course

                                                
15 For a discussion of the electromagnetic significance of minimal coupling, and some

subtleties in its definition that have been overlooked here, see Sakurai (1964), pp.

182-3.
16 Although the Aharonov-Bohm (AB) effect was instrumental in the recognition of

electromagnetism as a gauge field in quantum theory, the consideration here does not

depend on the gauge curvature being inaccessible to the quantum system as in the AB

effect.
17  Note that Rai Dastidar and Rai Dastidar (1994, 1995) have already argued that

local gauge invariance in quantum theory does not imply the existence of an external

electromagnetic field, but they do not (I think) make it clear that the gauge potentials

introduced into their gauge invariant formulation of the quantum dynamics in the case

of free particles correspond to a flat connection.
18 See Lawrie (1990), p. 161, and Anandan (1997), section 5.4.. For a wider

discussion of the role of the action-reaction principle in modern physics, see Anandan

and Brown (1995).
19 Wald (1984), p. 57.
20 For a fuller discussion of this point, see Brown and Sypel (1995), section 4.
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illustrated in the successful use of the gauge principle in the standard model of

particle physics. The postulation of physical gauge fields such as the gluon field in

chromodynamics was made possible by the earlier recognition of the gauge structure

of the electromagnetic field, and the pioneering investigation in 1954 of possible

gauge fields associated with the SU(2) group by Yang and Mills. But as before, direct

observable effects of the gauge potentials in question can in principle be expected

only under the assumption that the gauge fields—the generalisations of (8) for non-

Abelian gauge groups—are non-vanishing and satisfy the action-reaction principle.

We shall return to the issue of gauge invariance and some of its implications

in quantum mechanics in Section 4.

(b) Galilean covariance. 21 Let us consider a passive coordinate transformation

from the frame F (relative to which (4) holds) to the frame F'  moving at uniform

velocity v relative to F:

′ x = x − vt , ′ t = t .                                               (9)

Relative to F', the value of the wavefunction at an arbitrary space-time location is

related to that of at the same location by a phase factor

′ ( ′ x , ′ t ) = ei (x,t),               (10)

in order to ensure invariance of the probability density at that location. Textbook

treatments22 of the Galilean covariance of the Schrödinger equation invariably deal

with the special cases of a free particle or one with finite scalar potential V, where it is

shown that covariance is secured, assuming V transforms as a scalar field, when

= m v2t 2 − v.x( ) .           (11)

However, since we do not expect the phase in (10) to depend on the dynamics, we

expect it to be independent of the vector potential A , as well as V. Indeed, it can

                                                
21 This subsection contains a brief summary of the detailed review of the Galilean

covariance of quantum mechanics given in Brown and Holland (1998).
22 See, for example, Ballentine (1990, section 4.3)
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easily be shown23 that (4) is Galilean-covariant under (9), (10) and (11) when the

potentials transform as

′ A ′ x , ′ t ( ) = A x,t( )

′ V ′ x , ′ t ( ) = V x,t( )− v.A(x,t)

 

 
 

  
          (12)

(In fact (11) and (12) are necessary conditions for the covariance of (4), ignoring

irrelevant gauge transformations and arbitrary constants in the phase (11).) We see

that in the general case, the scalar potential V no longer transforms as a scalar field.

To see how  (11) involves a gauge transformation 24—although as is stressed at

the end of this subsection, a Galilean transformation is more than just a gauge

transformation—let us briefly consider what happens when we suppose that the

wavefunction transforms like a scalar field, which we write as

(x,t) → ′ ( ′ x , ′ t ) = (x ,t ). In this case, still using (12), one obtains

i
′ 
′ t 

=
−1

2m
′ ∇ − i( ′ A + mv){ }2 + ′ V − mv2 2 

 
 
 

′ .               (13)

Here we see that in relation to (4), the transformed Hamiltonian picks up a curl-

free—and hence uninteresting—vector potential mv  (itself a case of a flat

connection), as well as the extra constant term − mv2 2 . It is largely a matter of

convenience whether we absorb this latter term into V', but at any rate both terms can

now be eliminated by the appropriate gauge transformation of ′ :

′ ( ′ x , ′ t ) ≡ exp im(−v. ′ x − v2 ′ t 2)[ ] ′ ( ′ x , ′ t )

= exp im(−v.x + v2t 2)[ ] (x,t)

 

 
 

  
        (14)

thus recovering the phase in (11) and ensuring the covariant form of the wave-

equation for ′ ( ′ x , ′ t ).25

                                                
23 See Takagi (1991, p. 465) and Brown and Holland (1998). It is perhaps surprising

that the demonstration of covariance in the general case (involving the vector as well

as scalar potential) is so rare in the literature.
24  The following argument is taken from  Takagi (1991, p. 465), where the treatment

involves the more general case of a time-dependent v .
25 Note that (11) ensures the covariance of the fundamental de Broglie relation

between momentum and wavelength in the case of plane wave solutions of (4) when



12

It is worth noting that one can find a set of electromagnetic 'field' equations,

which can be considered the non-relativistic limit of Maxwell's equations in the case

where magnetic effects predominate over electric ones, which are strictly Galilean

covariant under (12).26 (The field equations are identical to Maxwell's except for the

absence of the displacement current: time-varying electric fields do not induce a

magnetic field. The result is a phenomenological theory of magnetostatics,

corresponding to the usual macroscopic situation where negative and positive charges

cancel.) The electric and magnetic fields are related to the scalar and vector potentials

in the usual way. Hence a fully Galilean-covariant quantum theory of the Schrödinger

field interacting with an external electromagnetic field is possible. It should however

be emphasised here that a necessary condition for the covariance of this theory is that

the Schrödinger current and charge density do not act as sources of the Maxwell field.

The results reviewed so far allow us to analyse the problem of covariance in

the de Broglie-Bohm (de B-B) pilot-wave interpretation of quantum mechanics.

Recall that the guidance equation for the de B-B corpuscle takes the following form

when the system is in the presence of a vector potential A27:

 m ˙ x =∇ S− A,                                                 (15)

where S is the phase of the 'guiding field': x ,t( ) = R x,t( )exp iS x,t( )[ ] . (Again, if A

is of electromagnetic origin, (15) holds when the particle has unit charge.) Here, as in

(4), the role of the vector potential can be seen as a compensating term: it renders the

velocity of the corpuscle invariant under local gauge transformations, as the reader

can easily check.

But is (15) consistent with Galilean kinematics? From (11) and (12) we see

that

                                                                                                                                          

the potentials are identically zero. The fact that wavelength, like momentum, does not

transform invariantly under a Galilean transformation indicates that the wavefunction

is quite different from a classical wave amplitude, a fact which is frequently forgotten

when appeal is made in quantum mechanics to the Bohrian complementarity between

the 'classical' pictures of wave and particle. For further details, see Lévy-Leblond

(1976).
26 These field equations correspond to the 'magnetic' (nonrelativistic) limit of

Maxwell's equations formulated in Le Bellac and Lévy-Leblond (1973). It is shown in

this work that there are two natural nonrelativistic limits, which makes it difficult to

say which electrodynamic effects are strictly relativistic in nature.
27 See Holland (1993).
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m ˙ ′ x = ′ ∇ ′ S − ′ A 

=∇ S− m v − A

= m ˙ x − mv,                                                (16)

so we recover the Galilean transformation of a momentum vector. Furthermore, it can

be shown from (12) that the classical Lorentz force acting on the de B-B corpuscle

when immersed in an electromagnetic field (which exists as well as the force due to

the Bohm quantum potential—itself also being affected by the external field)

transforms invariantly, as one expects of a classical force in Galilean space-time.

This state of affairs might appear comforting. But for those who regard the

true de B-B dynamics as captured in the first-order equation (15), the forces acting on

the corpuscle and generated by the guiding wave are Aristotelian, not Newtonian:

they produce velocities not accelerations. This entails that there is a natural state of

'motion', which is rest. Yet no privileged frame is picked out by the 'hidden' dynamics

of the corpuscle, and what may at first sight have looked like a sign of strength of the

theory is now seen as a possible source of embarrassment.28

We finish this brief review of Galilean covariance with a glance at the state of

affairs in the abstract formalism, since we will refer to some of the details later. Here

we replace (4) by

i
d t( )

dt
=

{P − A(Q)}2

2m
+ V Q,t( ) 

 
 
 

t( ) ,           (17)

where P is the operator representing the canonical momentum and Q  is again the

position operator. (We omit putting hats on symbols representing operators.) Equation

(17) is covariant under a passive Galilean boost implemented by a unitary
transformation, represented by t( ) → ′ ′ t ( ) = UG t( ) , when P  and Q transform

invariantly—note, not unitarily— and

′ A ( ′ Q , ′ t ) = UG A(Q,t)[ ]UG
−1

′ V ( ′ Q , ′ t ) = UG V (Q,t) − v.A(Q,t)[ ]UG
−1

 

 
 

  
           (18)

and when

                                                
28 For further discussion of this issue, see Brown et al. (1996) and Valentini (1997).
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UG = exp imv2t 2( )exp iv.P t( )exp − imv.Q( ).           (19)

The form of (19)29  should come as no surprise, given (13). The 'extra' factor in (18)

containing P  simply accounts for the fact that a passive Galilean transformation

involves a time-dependent translation of the coordinate axes (as well as a velocity

transformation). This is already taken into account in (9) where we are comparing the

values of the primed and unprimed wavefunctions at the same space-time location, or

in other words for different arguments (coordinates)—which also acounts for the

absence of the unitary factors in (11) when compared with (17). (It is this feature that

makes a passive boost something beyond a mere gauge transformation.) The unitary

operator implementing an active boost of the particle plus potentials is given by the

inverse of (17), and is of course consistent with the role of the canonical operators –P

and Q  as generators in quantum mechanics of active translations and (instantaneous)

boosts respectively.

3. The non-invariance of geometric phase.

Following the seminal work of Berry (1984) on systems undergoing cyclic adiabatic

evolution, it has come to be realised that there exists an important geometrical

structure in the quantum formalism related to the phase of a quantum system

undergoing Schrödinger evolution. Let us consider a system undergoing cyclic (not

necessarily adiabatic) evolution, so that during the temporal interval [0, T], the
system's final and initial states coincide up to a phase factor: (T ) = exp(i ) (0) ,

where  is an arbitrary real number. When projected onto ray space, i.e. the

projective Hilbert space ℘, this evolution defines a closed path. Now suppose we

have the idea of subtracting from the total phase  the accumulation of local phase

changes produced by the motion on this path. By 'a local phase change' is meant the
quantity ( t , t+ t) = −i (t) d dt (t) t . We are subtracting then from the total

phase the quantity

                                                
29 See also Fonda and Ghirardi (1970, §2.5). Note that (19) is independent of the

dynamics: the potentials in the Hamiltonian in (17) make no appearance. This is to be

expected given the properties of Galilean space-time. However, the same situation

will not hold for the analogue of (19) in relativistic quantum mechanics given the

relativity of simultaneity in Minkowski space-time.
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d ≡ −i (t) d dt (t)
0

T

∫ dt

= − (t) H ( t)
0

T

∫ dt

 

 

 
 

 

 
 

         (20)

where H is again the Hamiltonian responsible for the cyclic motion (still putting

  h = 1). Because it depends on H, the quantity d  is called the dynamical phase. Now

what we are left with after the subtraction, g = − d , is the 'geometric phase',

formulated by Aharonov and Anandan (1987). It is reparametrisation invariant (i.e.

independent of the speed at which the path in ℘ is traversed). Moreover, it takes the

same value for all the (infinity of) evolutions in the Hilbert space which project onto

the given closed path in ℘; it is a property only of that path. It is natural then to

interpret it as the anholonomy associated with 'parallel transport'—transport in which

there is no local phase change—around the closed curve in ℘. The existence of

geometric phase testifies to the existence of a non-flat connection on ℘.

I shall return at the end of this section to the significance of the discovery of

the curved geometry of the ray space in quantum mechanics. At this point I wish to

mention a recent result concerning the Galilean non-invariance of geometric phase.

A curve in space-time is a geometrical object; in particular whether it is closed

or not does not depend on the choice of coordinate system. Now imagine a perfectly

elastic ball bouncing on the hard floor of a laboratory; to an observer at rest relative to

the lab, the evolution of the ball defines a closed path in state (phase) space. Yet to an

observer in uniform motion relative to the lab, it doesn't: the ball does not return to

the same spatial location at each bounce.30 Note that it is not the speed per se of the

moving observer that counts here, but rather the fact that the new frame is spatially

translated in a time-dependent way relative to the lab frame. Analogously, we should

not expect in quantum mechanics that the closure property of curves in ℘ should be

invariant under time-dependent unitary transformations of the state. In particular, we

should expect, and indeed it is so, that closure is (inertial-) frame-dependent, given

the time-dependence of the second exponent in (19)—which, as noted above, has to

do with passive time-dependent translations and not (instantaneous) boosts per se.

The fact that the very condition for the definability of geometric phase

(closure of the path in ℘) is not generally preserved under time-dependent unitary

transformations (including gauge transformations) was recognised from the start.

Indeed, it was recognised that even in the special cases (which exclude unitary

                                                
30 I thank Jeeva Anandan for this argument.
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implementations of Galilean transformations) where closure is preserved, the

geometric phase is still not invariant31. However, an interesting

development—particularly from the point of view of Galilean transformations—had
to do with the formulation of a geometric phase factor g  for open paths in ℘ given

independently by Aitchison and Wanelik (1992) and Mukunda and Simon (1993), and

which is defined by

exp(i g ) =
(0) (T)

(T ) (0)

 

 
  

 
 

1 2

exp − (t) H ( t)
0

T

∫ dt
 

 
  

 
            (21)

for evolutions such that (T ) (0) ≠ 0. The new phase g  is also projective-

geometric and reduces to the Aharonov-Anandan phase g  in the case of cyclicity. In

the case of an arbitrary open curve in ℘,  g , when it is well-defined, is equal to g

defined on the geodesic closure of this curve—geodesics being defined of course

relative to the mentioned connection on  ℘.
We may now ask whether g  is Galilean-invariant. In particular, suppose

there is some gauge such that relative to the frame F the curve C in ℘ defined by the

Schrödinger evolution of the system in the interval [0, T] is closed. A passive

Galilean transformation to the frame F' implemented by (19) will transform C into an
open curve C'. Then is the geometric phase g = g  for C equal to g  for C' (or

equivalently g  for the geodesic closure of C')? The answer is no, and again the

guilty party is the time-dependent exponent containing the canonical momentum P  in

(19)32.

Intuitively, the non-invariance result is perhaps not surprising. A time-

dependent translation of the coordinate axes (and hence a pure Galilean

transformation) will, as we have seen, transform a closed curve in ℘ into an open

one, whose geodesic closure in turn is a different closed curve to the original one.

After all, curves in ℘ are geometric objects, but not in space-time. Given a rule for

parallel transport in ℘, why should we expect the anholonomy—the geometric

phase—to be the same on both of these distinct closed curves? It is the curvature of

℘ that is the relevant invariant entity, and this being the case we expect different

anholonomies produced by parallel transport on different closed curves in the space.

Note that some commentators appear to regard the non-invariance result as

representing a weakness in current formulations of geometric phase; indeed some

                                                
31 See Anandan (1989).
32  See Sjöqvist et al. (1997).
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attempts to remedy the situation have been undertaken33. However, the considerations

expressed in the last paragraph, together with the fact that geometric phase has been

experimentally 'observed'—even in cases not involving spin states which are Galilean

invariant34—tend in my opinion to cast doubt on the necessity of an invariant

reformulation of geometric phase. No doubt the issue deserves further analysis, but I

leave it here.

I return now to the question of the ultimate significance of the discovery of the

curved geometry of ℘. (I accept of course that Berry's original 1984 discovery was

genuinely surprising; it was generally assumed at the time that the total phase

acquired in cyclic adiabatic evolution is purely dynamical.35 The question I am now

raising is: given the existence of geometric phases in this case and in the general case

of Aharonov and Anandan, what is its significance?) The recognition that there is a

feature of Schrödinger evolution that is indifferent to the dynamical details specified

by the Hamiltonian—or at least the choice of Hamiltonian within an infinite relevant

class—, and that depends on only the fixed path in ℘ has led to a significant

geometrical reformulation of quantum mechanics. In particular, the symplectic

structure of ℘, and its role as a metric space have been clarified, leading inter alia to

a new insight into the energy-time uncertainty relations36. The situation here is

reminiscent of the discovery by Minkowski of the geometric formulation of special

relativity, and the structure of Minkowski space-time37. But in both cases, no new

predictions are involved . (The interference effects that are involved in actual

'measurements' of geometric phase are of course predictable on the basis of good, old

Schrödinger dynamics.) Indeed, the real significance of Minkowski's contributions to

relativity theory only came to be seen in the later success of Einstein's general theory,

where the space-time geometry itself became a dynamical player. Analogously, the

                                                
33 A Galilean- (but not gauge-) invariant formulation of geometric phase was given in

García de Polavieja (1997), and subsequently Bacciagaluppi (1997) has produced a

formulation which is both Galilean- and gauge-invariant, defined on a bundle

incorporating time and the ray space. An unsettling feature of the latter formulation is

that the connection now depends on the scalar potential V in the Hamiltonian.
34 For more details, see Sjöqvist et al. (1997).
35 Even after Berry's discovery, it continued to be widely supposed that the

geometrical phase associated with non-cyclic abiabatic motion could be ignored

('gauged away'), but this has been shown to be erroneous; see García de Polavieja and

Sjöqvist (1998).
36 See Anandan (1991).
37 I have compared the 'causal' properties, or rather the lack thereof, of both

Minkowski space-time and the projective Hilbert space in Brown (1996).
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full significance of geometric phase may prove to be in its heuristic power in a future

reformulation of quantum principles38.

4. Objectivity of sharp values?

A variety of interpretations of quantum mechanics seek to augment the

standard state description of a quantum system (be the state pure or mixed) by

specifying state-dependent rules for assigning sharp values to some of the self-adjoint

operators representing magnitudes (or equivalently for assigning bivalent truth values

to some propositions describing properties of the system). In what sense do these

values (or truth-values) represent or reflect the existence of objective elements of

reality? In this section, I shall briefly summarise some of the considerations contained

in a recent attempt to answer this question39.

Let us consider those interpretations whose value-assignment rules coincide

with the Eigenstate-Eigenvalue Link (EEL) for systems which for some suitable

period of time may be regarded as unentangled with the environment. (This includes

some prominent versions of the so-called 'modal' interpretation.) To fix our ideas, let

us imagine the free particle p in the original 1935 Einstein-Podolsky-Rosen argument,

whose separated twin particle—originally entangled with p—has just undergone a

measurement of the x-component of momentum Px. (Recall that the initial EPR state

of the two particles is an eigenstate of total momentum in a direction we associate

with the x-axis.) Using either the EPR criterion of reality, or the stronger EEL (since

we may effectively consider p to be in a pure (improper) eigenstate of momentum as

a result of the distant measurement), Px is assigned a sharp value for p. Classically,

momentum is of course frame-dependent; classical momentum is a relational property

involving the body in question and a given inertial coordinate system (or a family

thereof adapted to a given inertial frame) and under a passive Galilean transformation

it changes its sharp value as in (16) above. In quantum mechanics, the canonical

operators P  and Q  can be taken to transform invariantly under a Galilean

transformation (as was mentioned in Section 2b above) and it transpires,

unsurprisingly, that if Px  is sharp for p relative to the EPR lab frame, it is also sharp

for p relative to a moving frame—the value having undergone the usual Galilean

transformation for momentum. An exactly analogous situation holds for the position

operator Q , as well as for the velocity operator Q
•

i ≡ i H,Qi[ ] , i = x, y, z, where H is

again the Hamiltonian; indeed it is so even when the system is not free (and hence

                                                
38 See the concluding remarks in Anandan (1991; 1992).
39 See Brown, Suárez and Bacciagaluppi (1998).



19

when the velocity operator is not proportional to the corresponding component of

canonical momentum, failing thereby to transform invariantly40).

 In all these cases, 'sharp values', when they obtain under EEL, are coordinate-

dependent, and hence if construed as objective elements of reality, should presumably

be regarded not as intrinsic properties of the quantum system but relational properties,

analogously to their classical counterparts. (So far we are treating the properties as

defined relative to inertial coordinate systems, but as is emphasised in the next

section, this is arguably somewhat unrealistic from an operational point of view. For

the moment, however, let's stick to this viewpoint.) Note however that when the

particle is being acted upon by an external field that contributes  a vector potential to

the Hamiltonian, the canonical momentum is gauge-dependent. Classically, its value

changes under a gauge transformation; but in quantum mechanics, the very sharpness

of a given component of momentum is generally not preserved under a gauge

transformation. Sharpness itself is not gauge-independent in quantum mechanics, a

state of affairs that  can also occur for the total energy when the gauge transformation

is time-dependent.

This non-invariance of sharpness is exhibited in quantum mechanics also in

the case of Galilean transformations, one example being that of orbital angular

momentum (whose corresponding operator has a discrete spectrum and is therefore a

more satisfactory object for the application of EEL than the magnitudes being

discussed so far.) A sharp component of angular momentum will lose its sharpness

even when the spatial direction along which it is defined is orthogonal to the direction

of the boost, and even at the instant when the systems of spatial axes associated with
                                                
40  Given the Hamiltonian in (4) and (16), the velocity operator transforms invariantly

(i.e. Q
•

i ' = Q
•

i) normally only at the initial instant when the two coordinate systems

associated with a Galilean transformation coincide. It is worth noting here that a

derivation of this generic Hamiltonian based on Galilean kinematics was provided by

Jauch (1964), and has since repeated on a number of occasions in the literature.

Jauch's theorem rests on inter alia the very assumption that Q
•

i ' = Q
•

i  at t = t' = 0.

Doubts about the a priori  validity of this assumption, as well as about further details

of the Jauch theorem, are found in Brown and Holland (1998). On a more general

note, it can be argued that Jauch's approach, which uses the fundamental properties of

space and time to constrain the form of the Hamiltonian, is pointing in the wrong

direction. Space-time structure itself may be seen as a consequence of the symmetries

of the dynamics of quantum systems, and not as fundamental. This view is consistent

with the profound analysis of the role of geometry in physical theories given in

Anandan (1980); its implications in the case of quantum theory are further explored

in Anandan (1997, particularly chapter 5).
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the two frames coincide. Note incidentally that it is not just boosts that produce this

kind of situation; passive spatial translations of the coordinate system can cause some

sharp, discrete observables (such as angular momentum again, or coarse-grained

position) to become unsharp.

There seems, in short, to be even more reason in quantum mechanics than in

classical mechanics generally to regard sharp values of properties as relational, as

opposed to intrinsic attributes of the system. This is not the end of the story, but in the

meantime it is worth emphasising that the ways in which operators associated with

distinct magnitudes transform under gauge or coordinate transformations can be quite

different—ways which depend on the physical meaning of the magnitudes, and on

their role within the quantum dynamics.  The symmetry of the Hilbert space can look

decidedly misleading when the implications of the symmetries of space and time are

taken into account in quantum mechanics.

5. Quantum frame bodies and relational realism .

In the previous section we were considering magnitudes, such as position, momentum

and angular momentum, defined relative to inertial coordinate systems. In practice,

measurements of such magnitudes does not occur (except occasionally in an

approximate sense). Actual measurements establish relations between bodies.

Consider a rigid, impenetrable box located somewhere in space; in non-

relativistic quantum mechanics it is a gauge- and coordinate-independent issue as to

whether a quantum particle is wholly inside the box at any instant. The projection

operator whose bivalent values  correspond to the two possibilities (1 = 'wholly in', 0

= 'otherwise', say) must transform unitarily, so that if the 'in?' observable has a sharp

value according to EEL relative to one gauge or frame, it has the same sharp value

under the relevant transformation.

All this seems straightforward, but note that the role of the box is that of a

classical body. What if we treat it quantum mechanically? Indeed, what are the

implications for our present discussion if we treat the entire laboratory (even when

construed as moving inertially) as a quantum mechanical system?

Let us imagine then an entire closed laboratory, denoted by L, replete with

rulers and clocks rigidly fastened to its walls, along with other equipment. Inside the

lab an investigation is taking place of the behaviour of some microsystem p; we
denote the system comprising the laboratory minus the particle by L− p . Let us further

suppose that with respect to some 'external' inertial reference frame F, the state of the

laboratory L—which is assumed for simplicity to move freely—is at some instant of

time an eigenstate of the x-component of total momentum relative to some Cartesian

coordinate system adapted to F. (It might be imagined that this state is the result of an

external measurement of the momentum of L completed at that instant.) Indeed we
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might have it that L is at rest relative to F. Given the additive nature of linear

momentum, it can easily be shown41 that the (reduced) density matrix associated with

the subsystem p  at the instant in question describes a mixture of eigenstates of the

operator (defined in the p factor Hilbert space) corresponding to the x-component of

momentum. The particle is therefore wholly unlocalised relative to the x-axis of F.

Hence it might seem that for an observer enclosed within the laboratory there is no

possibility of 'seeing', or preparing, the particle as a localised wavepacket,

concentrated in any specific region in the laboratory.42

But note that at the instant in question L is also wholly unlocalised, and it does
not follow that relative to the rigid walls of  L− p  the particle p cannot be considered

strictly localised. Thus, the observer enclosed within L can resort to a variable
representing the momentum of p relative to the much more massive system L− p

(which acts as a momentum 'reservoir' in the apt terminology of Lubkin43); such a

variable is, unlike the total momentum of L relative to F, not strictly a conserved

quantity. States associated with coherent superpositions of this 'relative momentum'

can be effectively attributed to the particle p, which now represent localised

wavepackets in the representation associated with the Fourier inverse of the relative

momentum—the relative coordinate of the particle.

The upshot is that when the large system L–p  is treated as a quantum frame

body, meaningful localisation of the particle is possible even when L is sharp in

momentum relative to the external frame F. Observe that the 'laboratory frame'
defined by L− p  must be considered quite distinct from F, even when L is at rest

relative to F. Indeed, we might think of F itself as being associated with, or modelled

                                                
41 See Lubkin (1970).
42 This thought-experiment is of course highly idealised. No actual external

measurement can determine the momentum of L with absolute accuracy, and even if

the intervention were to lead to significant, macroscopic indeterminacy in the position

of the centre of mass of L, decoherence brought about by interaction of the system

with the environment (if only the cosmological background radiation) would occur

with extreme rapidity, resulting in a mixture of sufficiently localised states of the lab

relative to F.  But we are dealing here with a question of principle, and we may

restrict out attention to the precise instant at which supposed de-localisation of L

occurs. Furthermore, if desired we could imagine an external measurement of the

position of the laboratory, in which case it is the ability to create plane waves

(momentum eigenstates) for the subsystem p that would now be open to question.
43  See Lubkin (1970), where the analogous and more familiar problem of accounting

for the localisability of the electron within a hydrogen atom is considered, when the

atom as a whole is in a state of sharp momentum.
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by some separate, even larger quantum system (a momentum reservoir of

astronomical proportions?) so that the 'conserved' total momentum of L is now

analogously considered a relative momentum defined with respect to this larger

system.

The theory of 'quantum reference frames' has been developed further by

Aharonov and Kauffher (1984), who posed a paradox (in one spatial dimension)

based on our intuitions concerning the relativity principle. Ever since Galileo, we

have come to expect that what transpires inside the inertial laboratory should not

depend on its collective state of motion. In the context of quantum mechanics, an

extension to this relativity (or 'equivalence') principle strongly suggests itself—one

arguably implicit also in Lubkin's 1970 analysis: No observable processes occurring

purely within L should demonstrate whether or not the state of L itself, relative to an

external frame, is an eigenstate of centre-of-mass (c.o.m.) velocity or c.o.m. position.
And yet the coordinate of the particle p defined relative to L− p  apparently fails to

commute with the c.o.m. velocity of L relative to the external frame F, as does the
velocity of the particle p relative to L− p  with the c.o.m position of L, when the mass

of L− p  is finite.

The failure of these commutation relations rests, as Aharonov and Kauffher

note, on the seemingly natural assumption that the relevant velocities of the free
bodies p, L− p , etc. are proportional to their respective canonical momenta. The

authors further demonstrate that the difficulty is resolved if, for example, the particle

p feels the presence of a vector potential which, in their words, represents the 'kick-
back' of the finite mass reference frame. The particle's velocity relative to L− p  is now

proportional to its 'mechanical momentum' which of course depends on the mentioned

vector potential as well as the canonical momentum. The vector potential is inversely
proportional to the mass of L− p  and depends also on the momentum of the external

frame F (itself also treated quantum mechanically) relative to L− p . Although the

vector potential in this case gives rise to no forces (as one would expect), when it is

taken into account—as well as the analogous vector potential felt by F—the desired

commutation relations are restored, and the 'paradox of the quantum reference frame'

is resolved.

The 1984 study of quantum reference frames by Aharanov and Kauffher goes

considerably further than is indicated here, and certainly deserves more critical

attention by philosophers of physics than it has received to date44. But the study is

consistent with the present theme that direct measurements of observables like

position, velocity and momentum involve establishing relations  between the object

                                                
44  I am unaware of any analysis of this suggestive, but not wholly transparent study

in the philosophical literature.
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system p and some other material 'frame' body (such as L− p ), rather than an abstract

coordinate system. This is not to say that inertial coordinate systems are not essential

within the theoretical analysis; no accessible frame bodies with their attached

physical clocks can strictly replace, or stand in for them, either in classical or

quantum mechanics, except in an approximate sense45. Yet it is more realistic in

relation to actual experiments to consider the observables under consideration as

operationally defined in relation to such frame bodies. One lesson we may take from

the Lubkin and Aharonov-Kauffher studies is that in standard quantum mechanics the
particle p may in principle have a sharp location, for instance, relative to L− p , but no

sharp location relative to an inertial coordinate system or (more to the point

operationally) to an external frame body, at the same instant.

I think this point serves to provide more operational grounds for the view that

emerged in the last section. If, in the hope of providing an ontological interpretation

of quantum mechanics, we introduce state-dependent rules for assigning sharp values

to magnitudes associated with a specific quantum system, we should recognise that

the objective status of such sharp values is relational, not absolute. The full

implications of this state of affairs for the standard formulation of the measurement

problem in quantum mechanics (in which the sharp positions of the generic 'pointer'

of the apparatus are normally required to be observer-independent elements of reality)

are, perhaps, still not widely appreciated.46
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45 Indeed, it is not clear to me that due recognition of the irreducible role of inertial

coordinate systems in exactly defining the dynamics of quantum systems is given in

Aharonov and Kauffher's 1984 analysis. (For further discussion of this role in the

context of classical mechanics, see Barbour (1989, chapter 12) and Brown (1997,

section 2).) It might for this reason be better to refer to the theory of quantum frame

bodies, rather than quantum reference frames.
46  It may well be that the theory of quantum frame bodies is largely compatible with

the interpretation of quantum mechanics defended recently in Mermin (1998),

although I do not follow Mermin in his dismissal of both the measurement problem

and the many-worlds interpretation on the basis of the wholly ineffable nature of

consciousness from point of view of physics (op. cit. section VIII).
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Appendix

Consider a spacetime manifold equipped with a flat affine connection, and a curve
x i( ) associated with the affine parameter λ. Relative to an inertial coordinate

system, the geodesic equation for this curve (i.e. the equation of motion of a free

particle) takes the form of Newton's first law:

d2 x i

d 2 = 0. (A1)

In analogy with the first part of the minimal coupling procedure outlined in Section

2a, we wish to obtain the familiar generally covariant form of this equation,

d2 x i

d 2 + Γkj
i dxk

d

dx j

d
= 0 , (A2)

explicitly by way of replacing the ordinary partial derivative j = x j  by the

covariant derivative associated with the connection coefficients Γkj
i , which may or

may not be symmetric. Now let us write the vector field dx i d  defined on the curve

in question as V i ; so (A1) becomes

dV i

d
= V j

jV
i = 0 . (A3)

Now replace the partial derivative j  in (A3) by the covariant derivative D j , which

acts as D jV
i = jV

i +Γ kj
i Vk . We then obtain

V j( jV
i +Γ kj

i V k) = 0, (A4)

which is equivalent to (A2).
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