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Abstract.Neutrosophic set is a generalization of classical set,
fuzzy set, and intuitionistic fuzzy set by employing a degree of
truth (T), a degree of indeterminacy (I), and a degree of
falsehood (F) associated with an element of the dataset. One of
the most essential problems is studying set-theoretic operators in
order to be applied to practical applications. Developing Matlab
toolboxes for computing the operational matrices in neutrosophic
essential to gain more widely-used of
neutrosophic algorithms. In this paper, we propose some
computing procedures in Matlab for neutrosophic operational

environments is

matrices, especially i) computing the single-valued neutrosophic

matrix; ii) determining complement of a single-valued
neutrosophic matrix; iii) computing max-min-min and min-max-
max of two single-valued neutrosophic matrices; v) computing
power of a single-valued neutrosophic matrix; vi) computing
additional operation and subtraction of two single-valued
neutrosophic matrices; and ix) computing transpose of a single-
valued neutrosophic matrix. Numerical examples are given to

illustrate their applicability.
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1 Introduction

There are many evidences in complex systems that an
event or phenomenon cannot be modeled by a classical set
[11,18]. For instance, the Schrodinger’s Cat Theory says
that the quantum state of a photoncan basically be in more
than one place in the same time, which means that an
element (quantum state) belongs and does not belong to a
set (one place) inthe same time; or an element (quantum
state) belongs to two different sets (two different places)in
the same time [24]. Again, it is hard to judge the truth-
value of a metaphor, or of an ambiguous statement, or of a
social phenomenon which is positive from a standpoint and
negative from another standpoint [24]. The classical
mathematics does not practice any kind ofuncertainty in its
tools, excluding possibly the case of probability, where it
can handle a particular kind of uncertainty called
randomness [11]. Therefore techniques  and
modification of classical tools arerequired to model such
uncertain phenomena [9]. Neutrosophic set (NS) [33] is a
generalization of classical set, fuzzy set, and intuitionistic

new

fuzzy set by employing a degree of truth (T), a degree of

indeterminacy (I), and a degree of falsehood (F) associated
with an element of the dataset proposed in 1998 by
Smarandache. It has been successfully applied to many
fields such as control theory[1], databases [4,5], medical
diagnosis [7], decision making [23],topology [27]and
graph theory [12-21].

NS has many advantages over other preceding sets.
Specifically, triangular fuzzy numbers (TFNs) and
neutrosophic numbers (NNs) are both generalizations of
fuzzy numbers that are each characterized by three
components [33]. TFNs and NNs have been widely used to
represent uncertain and vague information in various areas
such as engineering, medicine, communication science and
decision science. However, NNs are far more accurate and
convenient to be used to represent the uncertainty and
hesitancy that exists in information, as compared to TFNs.
NNs are characterized by three components, each of which
clearly represents the degree of truth membership,
indeterminacy membership and falsity membership of a
NN with respect to an attribute. Therefore, we are able to
tell the belongingness of the NN to the set of attributes that
are being studied, by just looking at its structure. This
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provides a clear, concise and comprehensive method of
representation of the different components of the
membership of the number. This is in contrast to the
structure of the TFN which only provides us with the
maximum, minimum and initial values of the TFN, all of
which can only tell us the path of the TFN, but does not
tell us anything about the degree of non-belongingness of
the TFN with respect to the set of attributes that are being
studied. Furthermore, the structure of the TFN is not able
to capture the hesitancy that naturally exists within the user
in the process of assigning membership values. These
reasons clearly show the advantages of NNs compared to
TFNs.

One of the most essential problems in NS is studying set-
theoretic operators (or operational matrices) in order to be
applied to practical applications. Smarandache [33] and
Wang et al.[41]proposed the concept of single-valued
neutrosophic set and provided its set-theoretic operations
and properties. Broumi and Smarandache [10] proposed
some operations on interval neutrosophic sets (INSs) and
studied their properties. Ye [43] defined the similarity
measures between INSs on the basis of the hamming and
Euclidean distances. Some set theoretic operations such as
union, intersection and complement have also been
proposed by Wang et al. [42].Broumi and Smarandache [8]
also defined the correlation coefficient of interval
neutrosophic set.Liu and Tang [26] presented some new
operational laws for interval neutrosophic sets and studied
their properties. More recent works on operational law and

applications can be retrieved in [9, 24-26, 34, 44-45,47-50].

In practical point of view, developing Matlab toolboxes for
computing the operational matrices in neutrosophic
environments is essential to gain more widely-used of
neutrosophic algorithms and methods. Zahariev [46]
presented a new software package for fuzzy calculus in
MATLAB environment whose main feature is solving
fuzzy linear systems of equations and inequalities in fuzzy
algebra. Peeva and Kyosev[30] developed a library for
fuzzy relational calculus over the fuzzy algebra([0,1],
max,min). The library includes various operations and
compositions with fuzzy relation and intuitionistic fuzzy
solving direct and inverse problem. Recently, Mumtaz et al.
[3] implemented some functions in MATLAB for
computing algebraic neutrosophic measures in medical
diagnosis. Ashbacher [6] analyzed and developed some
computing procedures for neutrosophic operations. Albeanu
[2] described some neutrosophic computational models in
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order to identify a set of requirement for software
implementation. Salama et al. [32] developed an Excel
package for calculating neutrosophic data and analyzed
them. Karunambigai and Kalaivani [22] developed a
MATLAB program for computing power of an
intuitionistic fuzzy matrix, strength of connectedness and
index matrix of intuitionistic fuzzy graphs with suitable
examples.

However, the existing Fuzzy Toolboxes in MATLAB does
not propose options to evaluate the operations in
neutrosophic environments. Thus, in this paper, we
propose some computing procedures in Matlab for
neutrosophic operational matrices, especially i) computing
the single-valued neutrosophic matrix; ii) determining
complement of a single-valued neutrosophic matrix; iii)
computing  max-min-min  of single-valued
neutrosophic matrices; iv) computing min-max-max of two

two

single-valued neutrosophic matrices; v) computing power
of a single-valued neutrosophic matrix; vi) computing
additional operation of two single-valued neutrosophic
matrices; vii) computing subtraction of two single-valued
neutrosophic matrices; and viii) computing transpose of a
single-valued neutrosophic matrix. In order to illustrate
their applicability, numerical examples are given and
discussed.

The rest of this paper is organized as follows. Section 2
recalls some basic concepts of Neutrosophic Set. Section 3
presents the computing procedures in Matlab. Section 4
describes the numerical examples. Section 5 delineates
conclusions and further studies of this research.

2 Fundamental and Basic Concepts
Definition 1[31]. Neutrosophic Set(NS)

Let X be a space of points and let x€X . A

neutrosophic set S in X is characterized by a truth
membership function TE , an indeterminacy membership

function [E’ and a falsehood membership function FE L.,
IE and FE are real standard or non-standard subsets of

]0_ . 1+|: . The neutrosophic set can be represented as

Sz{(x,TE(x),IE (x),Fg(x)):xeX}
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The sum of T§ (x),lg (x) and Fg (x) is
0 <T; (x)+1§ (x)-i—Fg (x) <3,
To wuse neutrosophic set in the real life

applications such as engineering and scientific problems, it

is necessary to consider the interval [0,1] instead of

:IO_ 7 [ for technical applications.

Definition 2 [31].Let 4 =(T;,1,,F) and 4, =(T5,1,,F,)

betwo single-valued neutrosophicnumbers. Then, the

operations for NNs are defined as below:

() 4 ® 4, =(T, +T, -1y, L1, §F,)

(i) 4 ® 4 =TT, 1+ 1L, =11, F+F-FF)

(iii) A4 =(1-(1-T)"),I{, )

(iv) 4 =T 1-(1-1)*1-(1-F)") where 1> 0

Definition3[31]. Let 4 =(7,.1,F) be a single-valued
neutrosophic number. Then, the score function s(z;il) , the
accuracy function a(zil) and the certainty function c(;éi] ) of
SVNN are defined as follows:

. ~ 24+T -1, — K
() s(4) = =A==

(i) a(4) =T, F,
(iii) a(4)=1;

Definition 4[31].Let 121 =(1.1,F) and 212 =(1,.1,,E)
betwo single-valued neutrosophic numbers then

(i) A < Ayifs(4) < s(4)

(i) 4 = Ay ifs(4) > s(4)

(iii) 4, = Ayif s(4) = s(4,)

Definition 5 [31]. The unit 0, is defined by one of the
four types:

(0,) Type 1.0, ={<x,(0,0,1) > x e X}

(0,) Type 2.0, = {<x,(0,1,1) > x e X}

(0;) Type 3.0, ={< x,(0,1,0) > x € X}

(04) Type 4.0, = {<x,(0,0,0) > x € X}

Definition 6 [31]. The unit 1, is defined by one of the four

types:
1) Type 1.1, = {<x,(1,0,0) > x € X}

(1,) Type 2.1, ={< x,(1,0,1) > x € X}
(1;) Type 3.1, ={<x,(1,1,0) > x e X}
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(1,) Type 4.1, ={<x,(1,1,]) > x e X}
lll. Computing procedures for set-theoretic opera-
tions

For the sake of brevity, we use the following
notations to denote the following types of matrices:

° a.m: Membership matrix.
° a.i: Indeterminacy membership matrix.
° a.n: Non-membership matrix.

3.1.Computing the single-valued neutrosophic matrix

The procedure is described as follows.

Function nm out=nm(varargin); S%single
valued neutrosophic matrix class con-
structor.

%A = nm(Am,Ai,An) creates a single val-
ued neutrosophic matrix

% with membership degrees from matrix
Am

% indeterminate membership degrees from
matrix Ai

o

% and non-membership degrees from Ma-
trix An.

% If the new matrix is not neutrosophic

i.e. Am(i,J)+Ai(i,j+An(i,5)>3

o)

% appears warning message,
object will be constructed.

but the new

If

length (varargin) ==

Am = varargin{l}; % Cell array indexing
Al = varargin{2};

An = varargin{3};

end

nm .m=Am;
nm .i=Ai;

nm .n=An;

nm out=class(nm , 'im');

if ~checknm(nm_ out)
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disp('Warning! The created new object
is NOT a Single valued neutrosophic ma-
trix"')

end

3.2. Determining complement of a single-valued
neutrosophic matrix

In the literature, there are two definitions of complement of
neutrosophic sets. They are implemented in this extended
software package. To obtain the complement of a type 1
and type 2 of a single-valued neutrosophic matrix, simple
call of the function named “complement]l.m” or “comple-
ment2.m”.

% maxminmin of two single valued neu-
trosophic matrix A and B

% "A" have to be single valued neutro-
sophic matrix - "nm" object:

%$"B" have to be single valued neutro-
sophic matrix - "nm" object:

a.m=max (A.m,B.m) ;
a.i=min(A.i,B.1i);
a.n=min(A.n,B.n);

At=nm(a.m,a.i,a.n);

Function At=complementl (A) ;

[

% complement of typel single valued
neutrosophic matrix A

% "A" have to be single valued neutro-
sophic matrix - "nm" object:

a.m=A.n;
a.i=A.1i;
a.n=A.m;

At=nm(a.m,a.i,a.n);

3.4. Computing min-max-max of two single-valued neu-
trosophic matrices

To obtain the min-max max of two single-valued neutro-
sophic matrices, simple call of the following function

named “minmaxmax.m” is needed:

Function At=complement2 (A);

o)

% complement of type2 single valued
neutrosophic matrix A

% "A" have to be single valued neutro-
sophic matrix - "nm" object:

a.m=1-A.m;
a.i=1-A.1i;
a.n=1-A.n;

At=nm(a.m,a.i,a.n);

Function At=minmaxmax (A,B) ;

% minmaxmax of two single valued neu-
trosophic matrix A and B

% "A" have to be single valued neutro-
sophic matrix - "nm" object:

%$"B" have to be single valued neutro-
sophic matrix - "nm" object:

a.m=min(A.m,B.m);
a.i=max(A.i,B.1i);

a.n=max (A.n,B.n);

At=nm(a.m,a.i,a.n);

3.3. Computing max-min-min of two single-valued neu-
trosophic matrices

To obtain the max-min min of two single-valued neutro-
sophic matrices, simple call of the following function

named “maxminmin.m” is needed:

3.5. Computing power of a single-valued neutrosophic
matrix

To obtain the power of single-valued neutrosophic matrix,
simple call of the following function named “power.m” is

needed:

Function At=power (A, k);

Function At=maxminmin (A,B);
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$power of single valued neutrosophic
matrix A

[

% "A" have to be single valued neutro-
sophic matrix - "nm" object:

for 1 =2 :k

a.m=(A.m)."k;
a.i=(A.1).%k;
a.m=(A.m)."k;

At=nm(a.m,a.i,a.m);

end

o)

% "A" have to be single valued neutro-
sophic matrix - "nm" object:

a.m=min(A.m,B.n);
a.i=(A.1+B.1)/2;
a.n=max(A.n,B.m);

At=nm(a.m,a.i,a.n);

3.6. Computing additional operation of two single-
valued neutrosophic matrices

To obtain the additional operation of two single-valued
neutrosophic soft matrices, simple call of the following

function named “softadd.m” is needed:

3.8. Computing transpose of a single-valued neutro-
sophic matrix

To obtain the power of single-valued neutrosophic matrix,
simple call of the following function named “transpose.m”

is needed:

Function At=softadd(A,B);

[

% addition operations of two single
valued neutrosophic soft matrix A and
B

o)

% "A" have to be single valued neutro-
sophic matrix - "nm" object:

a.m=max (A.m,B.m);
a.i=(A.1+B.1)/2;
a.n=min(A.n,B.n);

At=nm(a.m,a.i,a.n);

Function At=transpose (A);

[

% transpose Single valued neutrosophic
matrix A

o

% "A" have to be single valued neutro-
sophic matrix - "nm" object:

a.m=(A.m)"';
a.i=(A.1)"';
a.n=(A.n)"';

At=nm(a.m,a.i,a.n);

3.7. Computing subtraction of two single-valued neu-
trosophic matrices

To obtain the subtraction operation of two single-valued
neutrosophic soft matrices, simple call of the following

function named “softsub.m” is needed:

VI. NUMERICAL EXAMPLES

In this section, we give several examples to illustrate solv-
ing some operations of the single-valued neutrosophic ma-
trices.

Example 1. Input a neutrosophic matrix by a given struc-
ture in the toolbox.

%Enter the degree of membership of A in the variable a.m

>>am=[0.5.5;30.1;3.10;.1.2.1];

Function At=softsub (A,B);

o)

% function st=disp intui (A);

[o)

% substraction operations of two single
valued neutrosophic soft matrix A and
B

%Enter the degree of indterminate-membership of A in
the variable a.i

>>ai=[1.3.2;314;.1.51;1.5.7];

%Enter the degree of non-membership of A in the variable
a.n
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>>an=[0.2.3;40.5;6.10;.3.5.5];
%Enter the degree of membership of Bin the variable b.m
>bm=[0.4.2;40.1;3.20;.3.3.1];

%Enter the degree of indterminate-membership of Bin the
variable b.i

>>bi=[0.5.4:30.5;8.10;.3.2.4];

%Enter the degree of non-membership of Bin the variable
b.n

>>bn=[0.54;30.5;8.10;.3.2.4];
>>A=nm(a.m,a.i,a.n)

%This command returns a matrix A with degree of mem-
bership a.m,degree of indeterminate-membership a.i and
degree of non-membership a.n%

A=

<0.00, 1.00, 0.00><0.50, 0.30, 0.20><0.50, 0.20, 0.30>
<0.30, 0.30, 0.40><0.00, 1.00, 0.00><0.10, 0.40, 0.50>
<0.30, 0.10, 0.60><0.10, 0.50, 0.10><0.00, 1.00, 0.00>
<0.10, 0.10, 0.30><0.20, 0.50, 0.50><0.10, 0.70, 0.50>
>>B=nm(b.m,b.i,b.n)

%This command returns a N matrix B with degree of
membership b.m, degree of indeterminate-membership b.i
and degree of non- membership b.n %

B=

<0.00, 0.00, 0.10><0.40, 0.50, 0.40><0.20, 0.40, 0.30>
<0.40, 0.30, 0.30><0.00, 0.00, 1.00><0.10, 0.50, 0.40>
<0.30, 0.80, 0.10><0.20, 0.10, 0.60><0.00, 0.00, 1.00>

<0.30, 0.30, 0.10><0.30, 0.20, 0.30><0.10, 0.40, 0.60>
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>>complement1(A)

% This command returns the complementlof N matrices A

ans =

<0.00, 1.00, 0.00><0.20, 0.30, 0.50><0.30, 0.20, 0.50>
<0.40, 0.30, 0.30><0.00, 1.00, 0.00><0.50, 0.40, 0.10>
<0.60, 0.10, 0.30><0.10, 0.50, 0.10><0.00, 1.00, 0.00>

<0.30, 0.10, 0.10><0.50, 0.50, 0.20><0.50, 0.70, 0.10>

Example 3. Evaluate the complement type 2 of matrix
above

>>complement2(A)

% This command returns the complement2

ans =

<1.00, 0.00, 1.00><0.50, 0.70, 0.80><0.50, 0.80, 0.70>
<0.70, 0.70, 0.60><1.00, 0.00, 1.00><0.90, 0.60, 0.50>
<0.70, 0.90, 0.40><0.90, 0.50, 0.90><1.00, 0.00, 1.00>

<0.90, 0.90, 0.70><0.80, 0.50, 0.50><0.90, 0.30, 0.50>

Example 2. Evaluate the complement type 1 of the follow-

ing matrix:

A=

< 0.00,1.00,0.00 >
< 0.40,0.30,0.30 >
< 0.60,0.10,0.30 >
< 0.30,0.10,0.10 >

< 0.20,0.30,0.50 >
< 0.00,1.00,0.00 >
< 0.10,0.50,0.10 >
< 0.50,0.50,0.20 >

< 0.30,0.20,0.50 >
< 0.50,0.40,0.10 >
< 0.00,1.00,0.00 >
< 0.50,0.70,0.10 >

Example 4. Evaluate the min-max-max and max-min-min
of these matrices:

A=
< 0.00,1.00,0.00 >
< 0.40,0.30,0.30 >
< 0.60,0.10,0.30 >
< 0.30,0.10,0.10 >

< 0.20,0.30,0.50 >
< 0.00,1.00,0.00 >
< 0.10,0.50,0.10 >
< 0.50,0.50,0.20 >

< 0.30,0.20,0.50 >
< 0.50,0.40,0.10 >
< 0.00,1.00,0.00 >
< 0.50,0.70,0.10 >

< 0.00,0.00,0.10 >
< 0.40,0.30,0.30 >
< 0.30,0.80,0.10 >
< 0.30,0.30,0.10 >

< 0.40,0.50,0.40 >
< 0.00,0.00,1.00 >
< 0.20,0.10,0.60 >
< 0.30,0.20,0.30 >

< 0.20,0.40,0.30 >
< 0.10,0.50,0.40 >
< 0.00,0.00,1.00 >
< 0.10,0.40,0.60 >

>>minmaxmax(A,B)
% This command returns the min-max-max

ans =
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<0.00, 1.00, 0.10><0.40, 0.50, 0.40><0.20, 0.40, 0.30>
<0.30, 0.30, 0.40><0.00, 1.00, 1.00><0.10, 0.50, 0.50>
<0.30, 0.80, 0.60><0.10, 0.50, 0.60><0.00, 1.00, 1.00>

<0.10, 0.30, 0.30><0.20, 0.50, 0.50><0.10, 0.70, 0.60>

>>maxminmin(A,B)

% This command returns the max-min-min

ans =

<0.00, 0.00, 0.00><0.50, 0.30, 0.20><0.50, 0.20, 0.30>
<0.40, 0.30, 0.30><0.00, 0.00, 0.00><0.10, 0.40, 0.40>
<0.30, 0.10, 0.10><0.20, 0.10, 0.10><0.00, 0.00, 0.00>

<0.30, 0.10, 0.10><0.30, 0.20, 0.30><0.10, 0.40, 0.50>

<0.10, 0.45, 0.60><0.10, 0.30, 0.20><0.00, 0.50, 0.00>

<0.10, 0.20, 0.30><0.20, 0.35, 0.50><0.10, 0.55, 0.50>

Example 6. Return the transpose of the matrix below:
A=

< 0.00,1.00,0.00 >
< 0.40,0.30,0.30 >
< 0.60,0.10,0.30 >
< 0.30,0.10,0.10 >

< 0.20,0.30,0.50 >
< 0.00,1.00,0.00 >
< 0.10,0.50,0.10 >
< 0.50,0.50,0.20 >

< 0.30,0.20,0.50 >
< 0.50,0.40,0.10 >
< 0.00,1.00,0.00 >
< 0.50,0.70,0.10 >

Example 5. Evaluate the additional and subtraction opera-
tions of the matrices in Example

>>transpose(A)

% This command returns the power of matrix A .

ans =

<0.00, 1.00, 0.00><0.30, 0.30, 0.40><0.30, 0.10, 0.60><0.10, 0.10, 0.30>

<0.50, 0.30, 0.20><0.00, 1.00, 0.00><0.10, 0.50, 0.10><0.20, 0.50, 0.50>

<0.50, 0.20, 0.30><0.10, 0.40, 0.50><0.00, 1.00, 0.00><0.10, 0.70, 0.50

>>softadd(A,B)

% This command returns the addition of two neutrosophic
matrices A and B

ans =

<0.00, 0.50, 0.00><0.50, 0.40, 0.20><0.50, 0.30, 0.30>
<0.40, 0.30, 0.30><0.00, 0.50, 0.00><0.10, 0.45, 0.40>
<0.30, 0.45, 0.10><0.20, 0.30, 0.10><0.00, 0.50, 0.00>

<0.30, 0.20, 0.10><0.30, 0.35, 0.30><0.10, 0.55, 0.50>

>>softsub(A,B)

% This command returns the substraction of two neutro-
sophic matrices A and B

ans =
<0.00, 0.50, 0.00><0.40, 0.40, 0.40><0.30, 0.30, 0.30>

<0.30, 0.30, 0.40><0.00, 0.50, 0.00><0.10, 0.45, 0.50>

Note: The functions described above enables us to com-
pute the operations on fuzzy matrices and intuitionistic
fuzzy matrices

Fuzzy matrix:

<05,0,0> <0200> <040,0>
Aom <0.3,0,0> <0.3,0,0> <0.8,0,0>
1 <04,00> <0600> <1,0,0>

<0.6,0,0 >

Intuitionisticfuzzy matrix:

<050,0> <0.200>

Aps=
<0.5,0,02> <0.2001> <04,00.4 >
<0.3,0,02> <03,0,04> <0.8,003>
<04,003> <0.6,008> <0.3,00.5>
<0.6,0,05> <0.5,009> <0.200.2>
CONCLUSION

This paper aimed to propose some new computing
procedures in Matlab forset-theoretic operations in the
neutrosophic set. The toolbox consists of 8 operations
including forming the single-valued neutrosophic matrix,
computing complement, power and transpose of a single-
valued neutrosophic matrix, calculating the max-min-min,
min-max-max, additional and subtraction operations of two
single-valued neutrosophic matrices.The neutrosophic
software package gives the ability for easy calculation of
operations in associated problems.The high level of user-
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friendliness of the programs and functions also makes it
very convenient to be used, and gives it a higher level of
computational efficiency compared to the existing software
packages for fuzzy calculus. We hope that they will
support researches who are working in the field of
neutrosophic decision making and neutrosophic graph
theory.
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