
How Is Perception Tractable?

Abstract: Perception solves computationally demanding problems at lightning fast speed. It recovers
sophisticated representations of the world from degraded inputs, often in a matter of milliseconds. Any theory
of perception must be able to explain how this is possible; in other words, it must be able to explain perception's
computational tractability. One of the few attempts to move toward such an explanation has been the
information encapsulation hypothesis, which posits that perception can be fast because it keeps computational
costs low by forgoing access to information stored in cognition. I argue that we have no compelling reason to
believe that encapsulation explains (or even contributes to an explanation of) perceptual tractability, and much
reason to doubt it. This is because there exist much deeper computational challenges for perception than
information access, and these threaten to make the costs of access irrelevant. If this is right, it undermines a core
computational motivation for encapsulation and sends us back to the drawing board for explanations of
perceptual tractability.1

I. Introduction

Perception is hard. It is so hard that one of the main challenges of philosophy of cognitive science is to

account for how perception, of the kind seen in people, is possible at all. But why is it so di�cult? One reason is

that perception solves problems with staggering computational requirements. It delivers reasonable solutions to

these problems most of the time. And it does this all with very little of the resources central to computation: very

little time, very little energy, very little data. No method in contemporary AI approaches these capabilities.2 We

can call this dramatic e�ciency the computational tractability of human perception.

A theory of perception should explain how perception is computationally tractable. (Previous work in

multiple traditions have defended tractability as a general constraint on mental processes and such arguments

form the basis for research programs such as bounded rationality (Simon 1997), ecological rationality

(Gigerenzer 2011), the tractable cognition thesis (Van Rooij 2008, Kwisthout 2011, 2018, Szymanik &

Verbrugge 2018), and Bayesian resource rationality (Gri�ths et al. 2015, Gershman et al. 2015, Icard 2018)). To

date, however, few potential explanations have been o�ered. One notable exception is Information

Encapsulation Hypothesis, which holds that perception is barred from accessing information stored in

cognition. Proponents of the information encapsulation hypothesis often o�er a computational motivation,

suggesting that encapsulation helps account for the tractability of perception (Fodor 1983, Pylyshyn 1999,

2 For comparisons between human abilities and those of contemporary AI systems, see Lake et al. 2017, Kim, Ricci & Serre
2018, Marcus 2020, Firestone 2020, Jacob et al. 2021.

1 I am indebted to many people for help developing the ideas in this paper. For comments on (sometimes multiple) earlier
drafts of this paper, I’d like to thank EJ Green, Jack Spencer, Alex Byrne, Laurie Paul, Ned Block, Agustín Rayo, Josh
Tenenbaum, Bob Stalnaker, Kevin Dorst, and three anonymous referees for this journal. For help editing, I’d like to thank
Madeline Medeiros Pereira. For discussions of these and related ideas, I’d like to thank Luke Hewitt, Jon Gauthier, Eric
Mandelbaum, Johan Kwisthout, Scott Aaronson, and many others.
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Mandelbaum 2017, Quilty-Dunn 2019).3 Encapsulation, it is thought, explains (or partially explains)

tractability by ensuring that perceptual processing does not incur the computational costs of search through

large stores of information in cognition, as it would if perception were unencapsulated. Call this the

Encapsulation Explanation of Tractability (EET).

In this paper, I argue that we have no positive reason to believe the EET, and many reasons to doubt it.

Given what we know about the science of computational costs, information encapsulation seems to be the

wrong kind of thing to explain the computational tractability of perception. In particular, encapsulation is

ill-equipped to account for computational tractability because there exists a vastly larger problem for perceptual

tractability than the cost of information access. I argue that, in light of the true landscape of computational costs

inherent in perception, encapsulation can be neither necessary nor su�cient for tractability and is unlikely to

even be a di�erence maker.4

If this is right, the implications are threefold. First, while it is still an open empirical question whether

perception is informationally encapsulated from cognition, a core motivation for the thesis is cut adrift. This

leaves the thesis more dependent on the weight of the psychophysical and neuroscienti�c evidence, bereft of a

computational raison d’être. Since the empirical question is hotly debated (Macpherson 2011, Firestone &

Scholl 2016, Lupyan 2017, Quilty-Dunn 2019, Green 2020), the loss of computational motivation matters a

great deal to how we view the thesis. At stake in the encapsulation debate more broadly are issues of central

importance to epistemology, such as whether perception can be treated as justi�catory bedrock (Siegel 2012,

2017, Silins 2016, Jenkin 2020), and to philosophy more broadly, such as whether any distinction can be drawn

between perception and cognition at all (Clark 2013) and how that distinction is to be spelled out if so (Phillips

2019, Green 2020).5

Second, our discussion places a strong constraint on future theories of perception. At the end of the

day, we do not know how perception is computationally tractable, but a deeper understanding of the problem

provides a better understanding of what a future solution must look like. I discuss constraints on a future theory

of perceptual tractability in Section (VI).

5 Information encapsulation is one way in which perception might be modular, but there are others.

4 I’ll consider that if encapsulation is any of these (necessary, su�cient, or a di�erence maker) then it is an explanation of
perceptual tractability.

3 Tractability is not the only motivation for information encapsulation – encapsulation has also been o�ered as an
explanation for striking psychophysical data, such as persistent illusions (see Muller-Lyer illusion).
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Finally, revisiting tractability arguments for information encapsulation has rami�cations for theories of

cognition more generally. If systems that are unencapsulated are thereby computationally intractable, then the

traditional view of a uni�ed mind post-perception is incompatible with the computational theory of mind; the

view that mental processes are computational processes.6 It would follow that either central cognition too must

break down into parts that are encapsulated from one another (Tooby & Cosmides 1992, Pinker 1997,

Carruthers 2004) or that the computational theory of mind must be abandoned (Fodor 2000). A re-evaluation

of the connection between encapsulation and tractability will shed light on what is right, and what is wrong,

with such arguments.

The paper proceeds as follows. Section (II) motivates the problem of computational tractability as it

pertains to perception. Section (III) presents the solution o�ered by information encapsulation and the classical

arguments for it. A formal de�nition of computational tractability as it is relevant to debates in the science of

mind is developed in Section (IV). Sections (V) and (VI) argue that there exists a vastly larger problem of

computational tractability than the one encapsulation was designed to solve, while Section (VII) argues that, in

light of this, encapsulation can be neither necessary nor su�cient for tractability, and is unlikely to even be a

di�erence maker. Some implications of this for the future of tractability arguments are presented in Section

(VIII). Section (IX) concludes.

II. Why There is a Problem of Tractability

A venerable tradition in philosophy and psychology holds that perception is computationally tractable

because it is informationally encapsulated from cognition (Fodor 1983, Tooby and Cosmides 1992, Pinker

1997, Pylyshyn 1999, Fodor 2000, Mandelbaum 2017, Quilty-Dunn 2019). In a moment we’ll look at what

information encapsulation is and how it is meant to address issues of tractability, but before evaluating potential

answers, we should get clear on the question. Why should we think that perception has a computational

tractability problem in the �rst place?

For the purposes of this paper, perception is the set of mental processes dedicated to gathering

information by way of the sensory surfaces (such as the retina for vision or the cochlea for audition). This

6 I.e. processes characterized by an abstract causal organization that mirrors the stages of a formal computational process
(Chalmers 2011), in tandem with whatever relations to the environment are necessary to make some of those states
representations (Fodor 1975).
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includes the �nal stages of these processes, the perceptual outputs.7 A good part of what perception does is solve

inverse inference problems, in which latent causes are recovered or ‘inferred’ from their proximal e�ects. In the

case of human perception, the latent causes are distal objects and their properties, and their proximal e�ects are

their e�ects on the sensory surfaces, such as the retina, skin, or cochlea. In the particular case of vision, a set of

properties including the shape, orientation, color, and distance of an object must be inferred from their joint

e�ect – an image of colored light projected onto the retina. In nearly all real world cases of inverse inference, the

proximal e�ects underdetermine the distal causes.

Inverse inference shows up everywhere in the mind, not just in vision. Audition performs inverse

inference when it separates out particular voices or other auditory objects from an undi�erentiated stream of

vibrations, as when listening to someone talk in a crowded room. It is not limited to individual senses either.

Perceptual inferences that recover the events associated with sounds take inputs from both audition and vision (a

fact responsible for the ventriloquism e�ect, see Alais and Burr 2004), while the inferences that recover the

shapes of objects take inputs from both vision and touch (Ernst and Banks 2002). Nor is it unique to

perception. Cognition, by which I mean the set of mental processes of which reasoning and planning are

paradigmatic examples, solves similar problems. When we infer that it rained from the fact that the ground is wet

(when it could have been the sprinklers), that the neighbor is home from the fact that their car is outside (when

they could have left on foot or bike), or the identity of a criminal from the evidence at a crime scene (which is

consistent with any number of identities and scenarios), we are solving inverse inference problems. Other

examples are less obviously causal, but are formally homologous, such as learning concepts from a �nite set of

examples, consistent with multiple hypotheses about their content (Feldman 2000, Xu and Tenenbaum 2007,

Goodman 2008) or learning the theoretical relations that govern a novel domain (Gopnik et al. 2004,

Tenenbaum et al. 2011, Ullman et al. 2012).

The fact that perception and cognition solve inverse inference problems is interesting because these

problems are hard. They’re hard enough that current methods for solving real-world inference problems either

take a very, very long time to run (Sokal 1997, Park & Haran 2018) or huge amounts of time, energy, and data to

7 For many authors, these outputs are synonymous with perceptual experience, see e.g. Firestone & Scholl 2016, p.1: ‘There
is a deep sense in which we all know what perception is because of our direct phenomenological acquaintance with percepts
– the colors, shapes, and sizes (etc.) of the objects and surfaces that populate our visual experiences. Just imagine looking at
an apple in a supermarket and appreciating its redness (as opposed, say, to its price). That is perception… Throughout this
paper, we refer to visual processing simply as the mental activity that creates such sensations; we refer to percepts as the
experiences themselves, and we use perception (and, less formally, seeing) to encompass both (typically unconscious) visual
processing and the (conscious) percepts that result.’
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train (Marcus 2020).  The most recent work in AI illustrates these challenges. Training state-of-the-art language

models (which infer likely completions from portions of sentences, for example, requires data sets on the orders

of trillions of words (Brown et al. 2020) and days or weeks of computing time on hundreds or thousands of

machines (Narayanan et al. 2021, Chowdhery et al. 2022). Contemporary vision models, which infer 3D-scene

properties from images, are similarly compute intensive (e.g. Karpathy 2021).

In contrast, people solve inference problems quickly, cheaply, and with little training data (Lake et al.

2017, Marcus 2020). Why is the human mind so startlingly e�cient? How is inference in the mind possible on

the timescales that human-beings solve them? This is the �rst question of the tractability of the human mind.

Call it the question of absolute tractability. Answering this question should tell us how computational systems

could operate to solve inference problems in roughly the neighborhood of how long people take on those

problems. Things that people solve in milliseconds should not take days of compute time. Things that take

humans hours to learn should not take months. The question of absolute tractability applies equally well to

both perception and cognition.

There is also a second question of tractability which is unique to perception. Even against the backdrop

of the computational e�ciency of cognition, perception stands out. While cognitive inference problems, such as

concept learning, take many trials, encompassing seconds or minutes in the lab (Kemp et al. 2012) or hours or

days in classroom and developmental settings (Carey 2009, Ullman 2012), perception solves its inference

problems in record speed. For example, perceptual categorization of natural scenes on the basis of category (in

this case, ‘animal present’ or ‘animal absent’) can be made within 150 milliseconds, as detected by EEG (a

measure of the brain’s electrical activity; Thorpe et al. 1996), while rapid eye movements or ‘saccades,’ which

require motor planning as well as perceptual processing, can be made on the basis of similar categories in a few

hundred milliseconds (Kirchener & Thorpe 2006). Changes in the neural decodability of stimulus information

shows that by 350 milliseconds processing in visual areas has largely run its course, with perceptual outputs

passed on to frontal, cognitive areas (Marti & Dehaene 2017).

Of course, speed alone is not impressive. It’s easy to answer a problem quickly if one is willing to

sacri�ce performance. In the limit, problems can be answered randomly as quickly as one can roll an internal die.

What is remarkable is perception’s combination of speed and performance. Findings that support the optimality

of perception (performance that reaches theoretical limits) are common in the �eld (e.g. Kording & Wolpert

2004, Ernst & Banks 2002, Weiss et al 2002, see Ma 2010 for a review). Other authors push back (see e.g.

Rahnev and Denison 2016). Far less controversial is that perception’s accomplishments are both impressive and
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unparalleled.  It represents the world accurately enough that we get by in the myriad tasks we undertake and the

diverse and open-ended environments in which we do them. Human beings rarely look at familiar objects and

wonder what they are. We can pick out objects from a crowded visual �eld, recognize their distances and

navigate to them, avoiding obstacles in the process. And we do this in all manner of circumstances: in various

weather and lighting conditions, when viewed from di�erent angles, and in novel surroundings. While

contemporary machine learning systems can often beat human beings by a few percentage points in speeded

classi�cation tasks (Dodge and Karam 2017, Geirhos et al. 2018), human beings are unparalleled in their ability

to recover 3D-scene geometry (Spelke and Kinzler 2007), object parthood (Green 2017), physical and relational

properties (Wu et al. 2015, Hafri et al. 2013, Little & Firestone 2021), and the consequences of these for

high-level features such as stability (Battaglia et al. 2013, Ullman et al. 2017, Hafri & Firestone 2021).

Reproducing such accomplishments is the holy grail of computer vision.

There are then two distinct problems of the tractability of perception. The �rst, the problem of absolute

tractability, is common to both perception and cognition. This is the problem of how either system is able to

accomplish inverse inference on human-like timescales despite theoretical costs and engineered systems that

suggest compute times well beyond this (much more on this to come). The other is the question of how

perception manages to be so much more e�cient (more tractable) than cognition, clocking in at speeds orders of

magnitude faster than comparable processes in cognition. We can call this the relative tractability of perception

(relative to cognition). Theories of perception must explain both the absolute and relative tractability of

perception. This is a demanding requirement, but pursuing it vigorously is likely to be productive. Insofar as

most theoretical frameworks for perception fail to account for tractability, insisting that a theory does so will

help us cull the space of hypotheses as to how perception works.

III. The Encapsulation Explanation of Tractability

An architecture of perception must explain perception’s impressive combination of speed and

performance, both absolute and relative to cognition. Proponents of information encapsulation endorse the

following explanation:

Encapsulation Explanation of Tractability (EET): The computational tractability of perception is

explained by the information encapsulation of perception from cognition.
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The EET invokes the key concept of information encapsulation, but what exactly is this? Proponents of the

thesis write:

Looked at this way, the claim that input systems are informationally encapsulated is equivalent to the

claim that the data that can bear on the con�rmation of perceptual hypotheses includes, in the general

case, considerably less than the organism may know. (Fodor 1983, p. 69)

This target article ... defends the position that an important part of visual perception ... is prohibited

from accessing relevant expectations, knowledge, and utilities in determining the function it computes

– in other words, it is cognitively impenetrable. (Pylyshyn 1999, p.1)

[This article focuses on]... traditional questions of whether visual perception is modular, encapsulated

from the rest of cognition, and “cognitively (im)penetrable.” At issue is the extent to which what and

how we see is functionally independent from what and how we think, know, desire, act, and so forth.

(Firestone & Scholl 2016, p. 2)

With all this in the background, we can give a more precise characterization of encapsulation: System A

is encapsulated from System B when A has a proprietary store of information that excludes information

stored in B. (Quilty-Dunn 2019, p.3)

Each of these quotes seem to turn on some common idea, but there is also signi�cant ambiguity. Fodor writes

only that the information available to perception is ‘considerably less’ than is available to the entire organism.

Pylyshyn prohibits access of the ‘relevant’ expectations, knowledge, and utilities, although it seems unlikely that

he thought the irrelevant varieties of these could be accessed. Firestone and Scholl are interested in the ‘extent’ to

which what and how we see is independent from what and how we think, know, and desire, while Quilty-Dunn

endorses the generic, that ‘system A’s information store excludes information (Some of it? All of it?) stored in

B.’8

While the speci�cs might be hazy, the gist is clear – the encapsulation of perception means that

information in cognition is verboten for perception. Fodor thinks that the information available to perception is

8   In context, it’s clear that the Quilty-Dunn quote should receive the universal reading.
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considerably less than the organism may know because none of the information in cognition is available to it.

Pylyshyn points out that the relevant expectations, knowledge, and utilities are prohibited because all of the

expectations, knowledge, and utilities are prohibited.9 Firestone and Scholl are interested in the extent to which

what and how we see is independent from what and how we think, know, and desire because they want to

defend the view that perceptual processing is not in�uenced by any of these. Information encapsulation then is a

relational property. One system is informationally encapsulated from another when the �rst is barred from

accessing the information in the second. In this case, the relevant kind of information encapsulation is the

encapsulation of perception relative to cognition.

The strongest version of the thesis is that none of the information in cognition is accessible to

perception. This universal reading is reasonably natural and satis�es the conditions given by each of the quotes.

It is further motivated by the content of the papers and chapters from which these quotes are drawn.10 It is also

possible that the universal reading is too strong. Perhaps it is enough if most of the information in cognition is

barred from access by perception. If this were an empirical paper, with the aim of providing a counterexample to

encapsulation, a lot would turn on whether encapsulation theorists are committed to the universal thesis. As it

stands, the project of this paper is to show that information encapsulation makes at best a negligible

contribution to an explanation of the computational tractability of perception. For this, the strongest version of

the thesis will do just �ne. If a prohibition on all of the information in cognition is not enough to meaningfully

impact tractability, a weaker version of the constraint is unlikely to fare better.

The next question is, how is information encapsulation meant to explain tractability? Proponents of the EET

write:

… speed is purchased for input systems by permitting them to ignore lots of the facts. (Fodor 1983, p.

70)

10 In each case, what follows are arguments challenging a swath of psychological results that have been taken to evince the
the accessibility of information in cognition on perceptual processing, either because such e�ects are consistent with an
explanation citing only information available in perception (Fodor 1983, Pylyshyn 1999), because the e�ects can be
reproduced where the theory of cognitive penetration predicts they should not be (Firestone and Scholl 2016), or because
e�ects that might look like cognitive penetration are in fact mediated by attention, rather than access (Quilty-Dunn 2019).

9 At least for early vision.
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One of the reasons theorists have been drawn to modularity theory is its evolutionary rationale....

Roughly, the intuition is that during panther identi�cation what really matters is accomplishing such

identi�cation quickly... Searching through everything we know about panthers in order to make an

identi�cation would be extremely time consuming. (Mandelbaum 2017, p. 10)

How are perceptual processes computationally tractable? ... If the processes that solved these problems

had to sift through all information stored in central cognition, they would face an unwieldy

computational burden... If instead perceptual processes are encapsulated, then they need only check

input against their proprietary stores of information ... Encapsulation can therefore provide a uni�ed

account of perceptual processes as computationally tractable operations that occur outside of central

cognition. (Quilty-Dunn 2019, p. 5)

The thought seems to be that retrieving information takes time, retrieving information from larger stores takes

longer, and retrieving the relevant information from a store of information as large as cognition would take too

long. By foregoing this expense, however, perception can be accomplished tractably.

We can call this basic idea the Haystack Idea. Finding a needle in a haystack is a hard problem (hard

enough that it has become an idiom for di�culty) and �nding relevant information in a huge store of

information poses a similar problem. Moreover, needle-in-a-haystack problems get harder as the haystack gets

larger.

If we run with this idea for just a moment, we can also get a sense for how the problem ‘scales,’ or gets

harder, as the number of inputs changes. Intuitively, every additional entry makes the problem a little bit harder

in expectation. For concreteness, we can think of the set of possibly relevant entries as a list. Entries on this list

are information in whatever format one thinks that the mind represents it – this could be a list of beliefs written

in the language of thought (Fodor 1975, Goodman et al. 2015), natural constraints (Marr 1982), or parameter

values of graphical models (Danks 2014), to name just a few possibilities. Under the pessimistic assumption that

this list is unordered – that is, that we do not know in advance where relevant information is to be found (Fodor

1983, 2000) – the expected number of steps needed to �nd relevant information grows linearly with the number
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of entries.11 If the haystack is large enough, search will take too long. Under these conditions, an arti�cial limit in

the size of the haystack, the encapsulation of perception relative to cognition, could explain the tractability of

perception. This then is the key idea motivating the EET. The EET holds that the tractability of perception can

be explained by avoiding the linear costs of search through the information stored in cognition.12

A few clari�cations about the EET are in order before we continue. These concern the kind of

tractability (relative or absolute) that the EET is meant to explain, the kind of explanation the EET is meant to

o�er (whether a su�cient condition for tractability, a necessary condition, or a di�erence maker), and the

empirical assumptions the EET requires to get o� the ground. I’ll look at each of these in turn.

First there is the question of the target of explanation. We noted above that there are two questions of

tractability. One asks how perception could be tractable relative to cognition – that is, why perception is orders

of magnitude faster than cognition, despite solving mathematically similar problems. The other wonders how

perception could be tractable in absolute terms, which is to say, how perceptual processing can happen on

roughly human timescales. From what we’ve seen so far, it might seem that the EET is best suited as an

explanation of the relative tractability of perception. This is a modest version of the thesis. On this

interpretation, the EET is silent on the question of how cognition and perception are accomplished with merely

human levels of compute.13 Instead it merely aims to explain the speed of perception relative to cognition (the

di�erence between, say, minutes for thought and milliseconds for seeing).

Some proponents of EET likely understand the thesis in its modest version. This is just as well, as the

immodest version of the thesis leads to some strange consequences. For example, if the price of absolute

tractability is forgoing access to information stores on the scale of those that exist in cognition, then it follows

that cognition itself must be divided into parts, none of which exceeds that critical threshold, or that cognition

must be computationally intractable. Interestingly, both of these consequences have been endorsed by theorists

working in this tradition. Massive modularists, such as Tooby and Cosmides (1992), Pinker (1997), and

13 Rather than the industrial levels of compute required by today's AI (see Section II) or the astronomical levels of compute
suggested by theoretical analyses (more on this in a moment).

12 Other operations, other than search, scale non-linearly, either in the number of entries or in other parameters. We’ll do a
deep dive into such costs in the sections to come. For our purposes now, the essential takeaway is that the costs of search
scale at worst linearly, even under strong pessimistic assumptions about the e�ciency of that search.

11 If sampling randomly over the unordered list, the growth in expectation of a geometric distribution with probability of
success i/n, where n is the number of entries where the information can be found and i is a constant. Deterministic search
over an unordered list (i.e. a list where order is independent of relevance) is equivalent to sampling randomly without
replacement, an unnamed distribution which also scales linearly in expectation as n grows. The costs are also linear in the
worst case, when all the information must be accessed, in which case the costs increase at a rate of exactly N steps per entry,
where N is the number of steps required for access.
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Carruthers (2007), give up on the idea of a uni�ed central cognition, citing tractability arguments, among

others.14 These theorists prefer a view of cognition on which the mind is really a bundle of independent

cognitive entities, each working on certain ecologically salient problems. Opting for the other horn, Fodor

himself held that the integrated nature of central cognitive processing is undeniable and argued on these grounds

that a computational theory of mind could never include central cognition!1516

How should we understand the EET then? As an explanation of relative or of absolute tractability? For

the purposes of this paper, we won’t ask the proponent of the EET to commit one way or the other. The

argument developed below will show that information encapsulation is not the right place to look for an

explanation of either kind of tractability.

Next, there is the question of what kind of explanation the EET is meant to o�er. There are a few

options here. One could hold that encapsulation is su�cient for tractability: that is, that perception must be

tractable if it is encapsulated. Or that encapsulation is necessary for tractability: that perception could not be

tractable unless encapsulated. Finally, a weaker version of the EET might grant that encapsulation is neither

su�cient nor necessary for tractability, but maintain that encapsulation is nevertheless a di�erence-maker: that

is, that perception would not be tractable were it not encapsulated. (This is di�erent from either necessity or

su�ciency. For example, striking a match is not su�cient for lighting a match, since there must be oxygen and

the room. Nor is it necessary, since a match can be lit by other means. It is, nevertheless, a di�erence maker –

holding �xed all else about the system, the match would not have been lit but for the striking.) If encapsulation

explains tractability, then absent systematic overdetermination, it must at least be a di�erence maker. Here again,

I won’t try to pin down exactly which of these versions of the EET proponents have in mind. Instead, I'll argue

against all three versions of the thesis. That is, I will argue that encapsulation is neither su�cient nor necessary

for tractability, and that there is no positive reason to believe it is even a di�erence-maker.

16 Examples like these illustrate that some theorists clearly have an immodest version of the EET in mind, but not all
versions of the EET lead to this dilemma. If the EET is meant to explain only the relative tractability of perception, then no
such conclusions about cognition follow.

15 Fodor writes, “Indeed, I am inclined to think that, sooner or later, we will all have to give up on the Turing story [of
computation] as a general account of how the mind works...” (p. 47). Why? Because “…the computational theory of mental
processes doesn’t work for abductive inferences” (p. 41). This means that “... a cognitive science that provides some insight
into the part of the mind that isn’t modular may well have to be di�erent, root and branch, from the kind of syntactical
account that Turing’s insights inspired.” (2000, p. 99)

14 Carruthers (2007, p. 44-52) o�ers the clearest defense of massive modularity on tractability grounds. See also Tooby &
Cosmides (1992, p. 106).
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Finally, a few words about the empirical assumptions that the EET requires in order to get o� the

ground, which I’ll be granting for the sake of argument. These assumptions fall into two categories. One set of

empirical assumptions has to do with the distribution of information between perception and cognition. If the

encapsulation of perception from cognition is meant to explain the tractability of perception in any of the senses

discussed above, then such an explanation turns on contingent facts about just how much information is stored

in each. If there is too much information stored in perception, for example, then perception will be intractable

regardless of whether it is encapsulated (and so encapsulation cannot be su�cient for tractability). Conversely, if

there is too little information in cognition, then eschewing access to such information will be neither necessary

for tractability, nor a di�erence maker. The interest of the thesis therefore depends on facts about the relative

amount of information in perception and cognition.

In what follows, I’ll grant the encapsulation theorist the empirical facts that they seem to believe: that

perception’s proprietary store of information is small enough to be tractably searched in the time it takes for

perceptual processing to unfold, and that cognition’s store is meaningfully larger, such that searching cognition

would represent a signi�cant multiplier on the work involved in searching perception alone. (My main interest

in this paper will not be in challenging any of these facts, but rather in taking issue with the underlying view of

tractability that makes such facts relevant.)

The other set of empirical assumptions required to warrant interest in the EET has to do with the

connection between information access and information search. Encapsulation bars information access, and the

EET holds that foregoing such access explains tractability by keeping computational costs low. Strictly speaking

however, information access costs hardly anything at all – all the relevant costs are the costs of search. To put the

idea bluntly: �nding a needle in a haystack can be challenging, but if someone gives you a needle from a

haystack, receiving it is not di�cult. Why couldn’t cognition simply send the relevant information for

perceptual processing to prime perception in the next moment, obviating the need for an expensive search on

perception’s part? Cognition could, for example, send a relevant color memory (Hansen et al. 2006, Machperson

2012) or expectation about some other low-level feature (Kok et al. 2012). While this would be a violation of

encapsulation, it wouldn't require anything like a perception-initiated, real-time, or full-scale search through

cognition, and wouldn’t require anything that any party to the debate currently believes to be intractable (no

one denies that people can recall the approximate colors of objects from long-term memory or notice a pattern in

the features of serially presented stimuli!). In such a case, the computational costs of a violation of encapsulation

would be near-zero.
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To connect the negligible costs of access to the more considerable costs of search requires some

argument. Maybe evolution opted to prevent all cognitive in�uences, including ones that are obviously cheap, in

order to avoid the costly ones? Such a scenario would be plausible if we assumed that evolution faced the choice

between either barring all cognitive in�uences or barring none, but this idea rests on a strangely dichotomous

view of the computational options available. After all, there are many ways in which access could be consistent

with non-exhaustive search (some of which are discussed in Section VII) and no a priori reason to think such

intermediate solutions are inaccessible to evolution. Be that as it may, we will assume that there is some argument

of this type available to the proponent of the EET, as we can make sense of the view only if information access

can be wedded to the computational costs of search.

We now have a sense of the breadth of versions of the EET and the empirical assumptions on which the

plausibility of the EET depends. In the next section, we’ll analyze the concept of computational tractability at

work in the EET.

IV. Tractability as an Empirical Bound

We can begin with some points of agreement between all parties. If the mind is computational, then it

has some basic operations for manipulating information.17 These operations could be manipulations of explicit

symbols according to rules, as in traditional computers, or the transformation of large vectors of inputs by

matrix multiplication, as in contemporary neural networks, or something else besides. Because these operations

are implemented in a physical substrate, each instance of an operation takes up some �xed, �nite amount of

time. It follows that doing too many such operations will take too long; i.e. will render a computation

intractable. This line of reasoning gives us a simple account of computational tractability as it applies to the

mind, which is common to proponents of EET and their detractors.

Tractability: A computational procedure is tractable when it can be completed in fewer than K steps.

A few clari�cations are in order. A computational procedure is a �nite set of instructions and basic

computational operations which de�ne a series of applications of those operations for each instance of a given

class of inputs, delivering an output. Crucially, computational procedures must function without recourse to

anything but their inputs, instructions, and basic operations (see Turing 1936). A computational procedure

17 See Section I, p. 5 and footnote 6, for discussion of the computational theory of mind.
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may be branching in the sense that it doesn’t have to execute the same series of operations every time. It can treat

di�erent inputs di�erently (say, running a distinct series of operations for odd numbered inputs as for even), and

could even be stochastic, making random choices at prede�ned points in its execution.

Computational procedures are the only way we know of to solve computational problems. A

computational problem is a set of inputs, a set of outputs, a set of ordinal or metric structures over those

outputs, and a mapping from inputs to a given structure over outputs. The metric or ordinal structure over the

set of outputs re�ects the fact that answers to computational problems are not always right or wrong, but are

often better or worse than one another. Better procedures are those that deliver better performance on a

problem.

A computational problem can also be tractable or intractable. A computational problem is intractable,

relative to a performance criterion, when no procedure can tractably solve that problem to that performance

speci�cation. This bit of relativism is necessary for a meaningful notion of tractability, as there are few limits on

how quickly an answer can be computed in the absence of non-trivial criteria for how good an answer it has to

be (see Section II). Criteria may include how close one is to the right answer, how often one gives the right

answer, the class or proportion of problem instances for which one gives the right answer, or any combination of

these.18 The performance criterion relevant for our purposes is that of human-level performance. To explain

how, say, visual inference is tractable, is to explain how it could be computed to human-level performance in

fewer than K steps.

Finally, we might wonder, what is K? For our purposes we can imagine that, for a particular problem

and performance criterion, K is some �xed number, determined by how long it takes a human being to solve that

problem to that performance criterion. For a given problem and performance criterion, there are many things

that might a�ect how big K is. One is the speed of the relevant basic operations in the human brain. Faster

operations permit a higher K. Another is parallelization. Some problems have parts that can be solved by parallel

trains of operations, increasing the number of operations that can be packed into a unit time. The speed of basic

operations in the brain and the extent to which parallelization is employed are both questions outside the scope

of this paper. In light of substantial uncertainty about these values we should err on the side of liberality when

setting K, so as not to prematurely eliminate hypotheses about the mind that we can’t be sure are intractable. In

18 An acceptable criterion for performance for visual estimation of distance for example, could be that the visual system
delivers an answer within 20% of the true value, 90% of the time, when presented with an object in good light.
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other words, we should allow that K for many human perceptual processes may be quite large. It will not,

however, be astronomically large.

What counts as astronomically large? We can gain something of a foothold on this concept by starting

with the capacities of today’s supercomputers. Today’s fastest supercomputers perform on the order of 10^17

operations per second. To do this, they run thousands of processors, occupy whole complexes, and consume vast

amounts of power. For the purposes of this paper, we’ll say that anything that would take one billion

supercomputers one billion seconds (~115 days) to compute (that is, >10^30 operations) is ‘astronomical.’

Trivial as it sounds, we will see that the requirement that perceptual processing not require astronomically many

steps will turn out to be a constraint with some teeth.

Taken together, an explanation of the tractability of perception is an explanation of how perception is

accomplished without astronomical costs. Over the next two sections, however, we’ll see that plausible

assumptions about the costs of perceptual inference actually do entail astronomical costs. To explain the

tractability of perception then, a theory must explain how these assumptions can be denied and these costs

avoided. This will give us a positive framework for thinking about tractability. Finally, we’ll see in Section (VII)

that information encapsulation is ill-equipped to contribute meaningfully to an explanation of tractability in

light of all this.

V. Inference & Scaling Behavior

A theory of perceptual tractability must explain how perception is accomplished, relative to

human-level performance, by some computational procedure that takes less than astronomically many steps. If

we call the number of steps needed to solve a problem to the relevant performance criterion M, then a perceptual

inference is tractable when M < K. But what properties of a problem contribute the most to M for the

computational procedures that solve it? And, in particular, what properties put us at risk of astronomically large

M?

Theoretical computer science can be a source of insight here. One branch of theoretical computer

science, Computational Complexity Theory (CCT), reasons about computational costs through the lens of

how M grows, or ‘scales,’ with di�erent properties of a computational problem, including most famously the

number of inputs to a problem, but with theoretical extensions to include considerations of performance

criteria and distributions over inputs. Co-opting some of the core concepts of this �eld will help us better
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understand our own notion of tractability. (For more detailed introductions to CCT then I can provide here,

see Sipser 2012, Arora and Barak 2007, or Goldreich 2008.)

CCT and Scaling Behavior

CCT taxonomizes computational problems according to the functional form of the ‘scaling behavior’

of a problem on the number of inputs. The scaling behavior of a computational procedure is the relationship

between the number of inputs and the number of steps the procedure goes through for those inputs, while the

scaling behavior of a problem is the behavior of the most e�cient procedure for solving it. To get a feel for how

scaling behaviors di�er between problems, imagine attempting to plan a wedding given a guest list. If you want

to know whether you’ll need chairs or not, all you have to do is check whether the list is non-empty. This is a

constant time operation; and this takes equally many steps no matter how long the list is. If you want to know

how many chairs you’ll need, by contrast, then you need to count the number of names on the list. This is a

linear time operation; it requires a number of steps that is a linear function of the length of the list. Finally, if

you want to know what seating arrangement will maximize the well-being of your guests, allowing old friends to

catch up, kindling new romances, and avoiding explosive ti�s, you’ll need to consider every way your seating

chart could be arranged. This is an exponential time operation. Such operations tend to be sticking points in our

lives, as in the lives of computers. No one complains about having to count the number of guests on a list, but

planning the seating can be a nightmare.

CCT treats this di�erence between exponential and sub-exponential scaling as a di�erence in kind

rather than degree. It does this because, for moderately sized inputs and beyond, the contrast between

exponential and sub-exponential scaling often separates operations that can be feasibly computed, even at

signi�cant cost, from those that cannot. For example, in the wedding case above, if your guest list contains 90

people, then checking whether you’ll need seating takes 1 step, while counting how many chairs takes 90. If you

can set up at most 10 tables of variable size for your guests, then �nding the optimal seating arrangement

requires on the order of 10^90 steps, at least one for each of the unique possibilities that must be considered.

10^90 is a big number; it’s more than the number of atoms in the known universe. For the purposes of practical

computation, it might as well be in�nite. That’s why CCT treats this di�erence in degree as an e�ective

di�erence in kind.
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A few clari�cations. First o�, not all inputs to a computational problem contribute equally to the cost

of solving it.19 We’ll discuss this at length in the case of perceptual inference in the next section. Second, CCT

makes strong assumptions about the performance criteria relative to which costs are assessed – most famously

requiring guaranteed performance on all (and therefore the most di�cult) problem instances — and this limits

its relevance to our project.20 Relatedly, CCT doesn’t model aspects of problem structure that might make

certain problem instances easier or harder. Where particular classes of problem instances have additional

structure, that structure can sometimes be exploited to make a problem in that class easier than the complexity

of its super-class would suggest.21 When it comes to the project of understanding computational complexity as it

applies to theories of the mind, we’ll take what we can use from CCT and leave what we can’t.

The key thing we will keep is CCT’s focus on scaling behavior. This simple idea is both deep in what it

reveals about the nature of computational problems and crucial for the task at hand. To be �t for our purposes,

however, the concept of scaling behavior drawn from CCT will have to be both broadened (to include more

diverse performance criteria) and re�ned (so as to be applied to classes of instances that have exploitable

structure). Our CCT-inspired examination of scaling behavior will give us a place to start in examining what

properties of perceptual inference problems entail which computational costs.

The argument will proceed as follows. We’ll begin by establishing some general facts about the way that

the hypothesis space of an inference problem grows as a function of the dimensionality of that problem. What we

mean by these words will be made clear in due course. We’ll �nd that the hypothesis space grows exponentially as

a function of dimensionality. Under some simple starting assumptions, this exponential growth translates into

exponential growth in the costs of computing inference. We’ll then see that these assumptions can be

substantially weakened, leaving the main result intact. In the following section, I’ll argue that this exponential

growth in the costs of perceptual inference, combined with the actual dimensionality of real life perceptual

inference problems, suggest astronomical costs for perceptual inference. These costs dominate anything else in

21 Backtracking Satis�ability (or ‘SAT’) solvers (e.g. Davis & Putnam 1960, Davis et al 1962) are a classic example of a
strategy that exploits local problem structure to �nd a solution more quickly. Since a minority of SAT cases exhibit global
structure that frustrates such strategies, SAT exhibits a disconnect between theoretical intractability and computational
procedures that are tractable for most purposes.

20 Other branches of CCT look at average performance assuming simple distributions over inputs. This too is unlikely to be
the kind of performance criterion most relevant to a computational theory of the mind, since ecologically realistic
distributions over inputs are often not simple and generally lack closed form expression.

19 For example, the computational costs of determining whether a formula in propositional logic is satis�able is exponential
in the number of literals that appear in the formula, but not exponential in the length of the formula. More detail on this
area of research, known as Parameterized Computational Complexity Theory, can be found in Downey & Fellows (2013)
and Flum & Grohe (2006). See Kwisthout (2011; 2018) for an overview of key results related to cognitive science.
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perceptual processing. One consequence of this is that explaining the tractability of perception requires

explaining how some of these assumptions can be credibly rejected so as to avoid astronomical costs. Another is

that the massive computational costs intrinsic to perceptual processing undermine any intimate explanatory

connection between information encapsulation and perceptual tractability.

Scaling Behavior of Inference

The �rst concepts we’ll need are those of a hypothesis space and the dimensions that de�ne it. Solving an

inference problem requires �nding one or more good hypotheses about how the world might be from the set of

all the ways the world could be, at least by the lights of that inference problem. In the wedding planning

example, ‘all the ways the world could be’ includes all the ways that people at your wedding could be seated.

(The problem is ‘blind’ to many other ways the world could be, such as how the astronauts in the International

Space Station might be seated.) Hypotheses, or candidate solutions to the inference problem, di�er from one

another in their assignments of values to variables, such as people to tables. These variables can be thought of as

the ‘dimensions’ of a space (the ‘hypothesis space’), the values as coordinates along those dimensions, and

hypotheses as unique points in the space.22 In the wedding planning example, each attendee is a ‘dimension’

which must be assigned a value, in other words, a table. In the case of visual, perceptual inference, which we’ll

get to shortly, the hypothesis space is given by all the ways the objects in a scene could be – their colors, shapes,

locations, etc.

One thing to notice is that the dimensionality of an inference problem (which dictates what hypotheses

can be represented) comes apart from the information we bring to bear in solving that problem (what is known

about those hypotheses). Adding a new dimension – say, kind of chair – allows the system to formulate new

hypotheses (should I seat Veronica and Ezra in bean bags?), while information changes the assessment of quality

of various hypotheses (I might know that Matthias would not like being sat at the kids’ table). The distinction

here is not idle. While being able to represent a dimension o�ers a natural way to represent information about

22 Here I am eliding the question of whether to think of the hypothesis space as a semantic feature of the problem (ways the
world could be) or as a syntactic feature of the representation of the problem (ways the world could be from the perspective
of a procedure). In the absence of meaningless or synonymous expressions and assuming that all relevant hypotheses are
expressible, there will be a 1-to-1 correspondence between hypotheses in the syntactic sense and in the semantic sense.
Assuming that a problem can be fully represented then, deviation from this 1-to-1 correspondence comes when there are
more syntactic hypotheses than there are genuine possibilities. Since a computational procedure can only operate over
syntactic hypotheses, such deviations create additional costs. On the assumption that all semantic di�erences can be
represented then, we can treat the semantic dimensionality of a problem as a lower bound on the cost-driving, syntactic
dimensionality of a computational procedure for solving it.
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that dimension, a system can also represent a dimension without having any information about it.23 Similarly, a

system can make use of information that is encoded in dimensions it does not represent. An example of the �rst

would be if the visual system could represent colors and object categories, but was encapsulated from relevant

information in cognition about the colors of known objects. In this case, vision possesses the dimension of color,

but lacks information about it. An example of the second would be if the visual system could represent color and

face identities, but not party a�liation. Cognition, for its part, might know that a particular person is a

republican and that republicans are likely to wear red ties. We can imagine that cognition sends a visual

expectation down to vision about the color of a tie in response to a perceptual output recognizing the face. In

this case, vision would possess information about the dependency between identity and tie color, while lacking

the dimension of party a�liation that introduces the connection. This distinction, between information and

dimensions, will be critical in what’s to come since the costs of inference are sensitive to the two in very di�erent

ways.

How exactly are the costs of inference related to dimensionality? To ease into this, think �rst about how

the set of hypotheses grows as new dimensions are added to the space. When we add a new dimension, each

possible value of the new dimension combines with every previously complete hypothesis to deliver a new set of

unique hypotheses. So, for example, if we add ‘kind of chair’ to our wedding planning problem, then where we

previously had a single complete hypothesis (a total assignment of people to tables), we now have a set of

hypotheses; every possible combination of assignments of people to types of chairs, consistent with a table

assignment. Just like adding a new dimension to a real coordinate space, this produces exponential growth in the

set of hypotheses.

So our set of hypotheses grows exponentially as the dimensions of the problem are increased. But how is

this tied to the actual costs of performing inference? Some simple assumptions will deliver the result that

exponential growth in the hypothesis space produces exponential growth in the costs of inference.24 I’ll �rst

present these assumptions and then look at ways they might be weakened.

24 The thought here is that the costs of inference are an exponential function of the dimensionality of the problem (I’ll show
later that this, combined with the (possibly �xed) dimensionality of perceptual inference problems is su�cient to put the
costs of inference in astronomical territory). The talk of exponential ‘growth’ in costs is merely meant to bring out this
functional relationship. It will not be important to my argument whether the dimensions of perceptual inference can
continue to be increased (in fact, they may be architecturally barred from doing so for just this reason; See Section VIII).

23 If some information is necessary for concept possession, then read this as ‘without any further information than is
necessary for representing the dimension’.
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First, consider performance criteria. We saw that computing inference requires �nding ‘good’

hypotheses from within an exponentially growing hypothesis space, where the goodness of a hypothesis consists

in its probability, plausibility, or explanatory import. For the moment, take �nding a ‘good’ hypothesis to mean

�nding the ‘best’ hypothesis. Next, assume that it costs at least one computational step to evaluate a hypothesis

and only one hypothesis can be evaluated at a time.25 Finally, assume that nothing is known beforehand about

the relative or absolute distribution of good hypotheses throughout the space. That is, the only way to �nd out

whether a hypothesis is any good is to evaluate its plausibility relative to a prior and the data.

When these assumptions are met, the computational costs of doing inference grow linearly with the

number of hypotheses and therefore exponentially with the number of dimensions de�ning the hypothesis

space. This is because hypotheses must be evaluated in order to determine their performance, and must be

evaluated in some order that is independent of the performance of the hypotheses (since having access to an

order that privileges better hypotheses would violate the assumption that nothing about hypothesis performance

is known beforehand). This entails that the number of hypotheses that must be evaluated grows linearly in

expectation with the number of hypotheses in the space, and therefore exponentially in the dimensionality. Note

that this holds whether we are sampling randomly (with or without replacement26) or evaluating hypotheses in a

predetermined order (which, since it cannot be relied on to privilege the best hypotheses in the general case,

might as well be a random order). Finally, since the number of hypotheses that must be evaluated in expectation

grows exponentially as a function of the dimensionality, and since the costs of evaluating a hypothesis are

constant, the costs of evaluation grow exponentially as well.

This line of reasoning establishes exponential growth under these assumptions, but some may �nd the

assumptions troubling. The performance criterion is a particular sticking point. While many have argued that

human perception is optimal, in the sense of �nding the best solutions to its inference problems (Ernst & Banks

2002, Weiss et al. 2002, see Ma et al. 2010 for a review), others have argued against this perspective (e.g. Rahnev

26 Assuming, for simplicity, a uniform distribution over hypotheses, the expected number of hypotheses sampled before
�nding the best corresponds to the Geometric distribution with exponentially decreasing probability of success as
dimensions are added. Sampling without replacement yields another distribution that also grows linearly in expectation as
the number of non-best hypotheses grows, and therefore exponentially in dimensionality.

25 We can actually get by with a much weaker assumption, i.e. the assumption that there are no exponential speed-ups in the
number of hypotheses that can be evaluated at a time (either as a function of the amount of time spent reasoning or the
number of dimensions in the hypothesis space). That is, we can get by with the assumption that there can be no �nite
equivalent of super-tasking: evaluating one hypothesis in c steps, the next in ½c steps, the next in ¼c steps, and so on. I use
the stronger assumption that evaluating a hypothesis costs one computational step because it will considerably simplify the
presentation of the argument in the following section.
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& Dennison 2018). We can, however, weaken the performance criterion in reasonable ways while maintaining

the main result. Imagine, for example, that instead of �nding the best hypothesis for a given problem, human

perception �nds hypotheses that are merely ‘good enough’, in the sense that they are close enough in value to the

best hypothesis along each of the dimensions of the problem. In this case, we might count as a satisfactory

answer any hypothesis within 3% of the value of the best hypothesis along each of the relevant dimensions. This

has the e�ect of turning a solution set from a point to a contiguous region in the hypothesis space. Such

relaxations would certainly make these problems easier to solve, but they do not resolve the more fundamental

issue of exponential scaling. To see this, imagine solving an inference problem to this ‘good enough’ standard of

performance. Even in this case, the proportion of hypotheses meeting this criterion shrinks exponentially as the

dimensionality of the space increases. For one dimension, 3% of samples will meet this criterion. But for 3

dimensions, that proportion is 0.0027%, for 6 it’s 7.3 x 10^-8 %, and so on.27 Here, as above, the proportion of

good hypotheses becomes vanishingly small, and reasonable assumptions about the costs of evaluation will entail

astronomical costs for �nding those hypotheses. (This example also illustrates how exponential scaling

generalizes to continuous hypothesis spaces, where in the continuous case, as in the discrete case, the proportion

of the measures of the solution set and the problem set shrinks exponentially.28)29

There are, of course, many ways to weaken the performance criteria, and we’ve only looked at one. It

may be that some of these ways avoid exponential growth in the costs of inference while still delivering

human-level performance. This is, however, not where I’d put my money. Human performance on perceptual

inference tasks is excellent (see Section II). It seems for this reason that weakening the performance criteria to

such an extent that hypotheses that meet those criteria will be easy to come by, even in astronomically large

hypothesis spaces, is a non-starter. Instead, we’ll have to ask which of our other assumptions can be given up, in

particular the assumption that nothing is known in advance about the distribution of promising hypotheses.

This will be a focus of a later section (Section VII). For the time being, we need to show that this theoretical

29 Note that the astronomical costs of inference hold even if, as is believed, the brain is massively parallel (see Section III, p.
30). Since parallelization can deliver at best a factor of N speed-up, where N is the number of parallel processes, the
exponential increase of costs is maintained regardless. Unless the number of parallel processes is itself astronomical (much
greater than the estimated 10^7 neurons in the brain), parallelization won’t make a di�erence in the analyzes to come.

28 The challenges of exponential scaling are also robust to reparameterization. While in either discrete or continuous cases
one could always map the hypotheses from N dimensions onto a single dimension, such a trick would change neither the
relative cardinalities of the solution set to the problem set in the discrete case nor the proportion of the measures in the
continuous case. (In general, a syntactic representation of the problem that di�ers from the problem’s intrinsic
dimensionality can make the solving the problem more di�cult, but it cannot reliably make it easier. See footnote 22.)

27 That proportion is given by the equation (3/100)^n.
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result of exponential scaling actually is su�cient to push the costs of perceptual inference into astronomical

territory when certain empirical facts about the dimensionality of perceptual inference are considered.

VI. Dimensionality of Perceptual Inference

I’ve argued that, under reasonable assumptions, the costs of inference scale exponentially in the

dimensionality of the problem. But what does all this mean for the tractability of real world perceptual

inference? To know what conclusions we should draw requires developing a rough idea of the dimensionality of

perceptual inference and the proportion of perceptual hypotheses that satisfy human-like performance. I’ll argue

that conservative assumptions about dimensionality, and liberal assumptions about the proportion of

hypotheses that satisfy human-like performance, combined with our assumptions so far, entail astronomical

costs for perceptual inference. I’ll make this case by presenting a toy visual inference problem, involving just a

few of the many dimensions that vision represents.

A Toy Inference Problem

Consider a scenario in which I open my eyes to see a simple scene of static objects. Each object has a

color, a lighting condition, a location in three dimensions, and a shape. We can set some numbers to these

possibilities. Perhaps there are a million (10^6) colors we can see,30 another million (10^6) ways the lighting

could be (Tokunaga and Logvinenko 2010), perhaps a billion possible locations (10^9), and another billion

(10^9) possible shapes.

These are conservative �gures. Stipulating a billion possible locations amounts to assuming that there

are a mere 1000 just noticeable di�erences in location across each of 3 dimensions – a modest estimate of human

spatial acuity.31 In the case of shapes, a mere billion discriminable possibilities across all the con�gurations of

shapes and sizes perceptible to human beings is a gross underestimate. Even with such conservative numbers,

however, the di�erent combinations deliver 10^30 ways an object could be. If there are 3 objects in a scene, the

31 Just Noticeable Di�erences (JNDs) are the smallest di�erences that provoke above chance discrimination. Here I’m
assuming for the sake of simplicity that there are an equal number of JNDs across each dimension. Distortions in visual
space may mean that this is not quite right (Green & Rabin 2019). Note that the connection between perceptual
hypotheses (distinct internal representations) and discrimination is not direct – distinct representational states are the
competence to discrimination’s performance. Discrimination is accomplished by mapping equivalence classes of stimuli to
distinct representational states. Distinct representational states can, however, exist without showing up in discrimination,
say if insu�cient light, damage to the retina, or other peripheral constraints impair performance. Discrimination then
places a lower bound on the number of distinct representational states; the value relevant for inference.

30 Estimates range from 1-10 million.
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number of possible scenes is 10^90. Here again, this number is greater than the number of atoms in the known

universe. For practical purposes, it may as well be in�nite.

We saw earlier that loosening up the performance criteria within reason does not change the

exponential decrease in the proportion of viable solutions. But where do these considerations get us in the case

of perceptual inference? We already assumed that the divisions were coarse-grained (with just 1,000 JNDs in

location along each spatial dimension). But we can go further. Let’s say that any hypothesis is acceptable so long

as it falls within a range of 3% of the best hypothesis, along each dimension in the hypothesis space. Assuming

that color, lighting color, location, and shape each involve three dimensions, the proportion of hypotheses

satisfying this condition for a scene with three objects would be on the order of 1 in 10^54 – still well within

astronomical territory.32

In setting this up I have said nothing of numerous other dimensions represented in vision, including

low-level dimensions such as edges, as well as many high-level contents, such as motion (Weiss et al. 2002),33

object identity (Quilty-Dunn 2019), causality and animacy (Scholl & Tremoulet 2000), or hierarchical part

structure (Green 2017). I have also neglected dimensions from other modalities which participate in inference in

cross-modal perception (Green 2021) and cue integration (e.g. Ernst and Banks 2002). Each additional

dimension should be expected to make an exponential contribution to the problem size.

Individuating Inferences

One thing we haven’t discussed yet is how to individuate inference problems. As it turns out, this

question matters a great deal. This is because inference problems are much more than the sum of their parts. So

far we’ve been assuming that if perception represents the dimensions of color, lighting condition, shape, and

location, then it must recover these in a single inference problem. But recovering them in a set of smaller

inference problems is exponentially less costly.34 Imagine, for example, that perception were to solve two

inference problems, one to recover the color and lighting condition of an object and another to recover its shape

and location. Using the same �gures we used above, but recovering the surface color and lighting color for three

objects and, separately, three object’s shapes and locations, would deliver a hypothesis space of approximately

34 Based on our assumptions so far.

33 Which is not just successive location (see the waterfall illusion).

32 Here I am calculating (3/100)^36 – or 12 dimensions over 3 objects. This assumes that shape representations are
parameterized along 3 natural, continuous dimensions. This is almost certainly not the case. The actual dimensionality will
be higher, and the resulting proportion of acceptable hypotheses will be smaller. We are considering ‘astronomical’ anything
> 10^30, see Section IV.
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10^51 hypotheses; about a million trillion times fewer than the 10^90 that results if we jointly solve for all of

these dimensions.35 These savings only get more dramatic as the overall dimensionality grows.

One might wonder whether perception could limit the costs of inference by adopting a divide and

conquer strategy of this kind, in e�ect holding that perception is composed of many distinct modules

responsible for each of the di�erent sets of properties discussed above. This broad outlook on vision was made

famous by Marr’s foundational work on vision (Marr 1982) and has many contemporary adherents.

The problem with such an architecture is what is lost when larger inference problems are broken up

into smaller problems in this way. In such cases, the sum of inference problems is no longer sensitive to the

dependencies between the dimensions housed in separate problems (more on this in a moment). The loss of

sensitivity to these dependencies matters because human-level performance requires this sensitivity (otherwise,

color, shape, and location cannot be accurately recovered), and, unsurprisingly, human vision empirically

exhibits it (as will become clear shortly). The rest of this subsection will spell out this reasoning more carefully.

Dependencies, as may be clear from the above, are the relationships between dimensions such that

information about one dimension bears on the probable values of another. Sensitivity to dependencies is

necessary if inference is to arrive at an internally consistent percept. For example, if one large object stands

between another object and a scene’s source of illumination, then the second object is likely to be cast in the

�rst’s shadow. This in turn in�uences how the intensity (and spectral pro�le) of the light re�ected o� the second

object is interpreted, as object color or lighting condition. Conversely, if the light bouncing o� an object of

unknown location is re�ecting light that is darker than expected, this could be evidence that the object is in

shadow, providing information about its location. Such dependencies between dimensions (in this case location

and lighting condition) are invisible when inference problems are broken up into their component parts. In such

cases, assignments of probable values of color must be made independently of assignments about location,

leading to inconsistency.

If such inconsistency is kept to modest levels, it might be a reasonable price to pay for tractable

inference, but it does not seem to be the strategy that human perception takes. This is because perception is, in

fact, sensitive to a great many dependencies between perceptible dimensions, including dependencies between all

of the dimensions used in the toy example above. Sensitivity to these particular dependencies can be seen

through a series of established psychophysical results. (Such results will naturally not show that perception is

35 For color and lighting color, that’s ((100)^6)^3 = (10^11)^3 = 10^33. For shape and location, ((1000)^6)^3 = (10^17)^3
= 10^51. 10^33 + 10^51 ≈ 10^51.
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sensitive to the dependencies between all of the dimensions it represents, but will show that a divide and

conquer strategy is insu�cient for tractability, as the dependencies which are represented are su�cient to

establish astronomical costs given our other assumptions.)

Start with color constancy – Objects in the world are seen as having a stable color, despite changes in

lighting condition between indoors and out, across changes in weather and time of day. This fact is quite

surprising when one considers just how much the light hitting your eye di�ers under these conditions. A lump

of coal in bright sunlight re�ects about as much light as white chalk indoors, but the chalk appears bright white

and the coal jet black. This phenomenon, known as color constancy, is accomplished by jointly inferring color

and lighting condition so as to �nd a consistent assignment of values to those dimensions (Tokunaga &

Logvinenko 2010). If a lot of light is hitting the retina, for example, this could be because the object re�ects most

light (as in the case of chalk) or because it is intensely lit (as in the case of coal in bright outdoor light). By doing

joint inference over these dimensions, perception can ensure that it is not double counting the properties of the

proximal stimulus – which might result in seeing the coal outside as bright white. Color constancy then, is

perceptual sensitivity to the dependency between color and lighting condition.36

Just as with color and lighting condition, all four of the dimensions we’ve discussed so far are jointly

confounded in the retinal stimulus and so conditionally dependent on one another. For example, di�erent

shapes in di�erent lighting conditions give rise to di�erent patterns of coloration across an object. If information

about probable lighting sources is present, either from a prior or from further cues in a scene, then the pattern of

coloration can be used to infer the object’s shape. In a phenomenon known as ‘Shape from Shading,’ the visual

system does just this. A classic study showed participants 2D shaded circles, either darker on the bottom and

lighter on top or vice versa. Participants saw the light-on-top circles as convex 3D reliefs while seeing the

dark-on-top circles as concave recesses, demonstrating both a visual prior that light comes from above and a

sensitivity to the dependency between lighting condition and shape (Ramachandran 1988, see Figure 1 for

illustration). Sensitivity to the dependencies between color, lighting condition, and shape extends to the location

dimension and to the properties of other objects as well. When multiple shaded objects provide further cues to

lighting direction, participants can be induced to assign di�erent locations to an unobserved lighting source

(Morgenstern et al. 2011). Similarly, scenes with cues suggestive of multiple lighting sources induce global

percepts of objects with shape properties consistent with those lighting sources (Wilder et al. 2019).

36 Really, the conditional dependency between color and lighting condition, conditional on a given retinal input.
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Collectively, these e�ects illustrate perceptual sensitivity to the dependencies that exist between color,

lighting condition, shape, and location. Insofar as color and lighting condition are jointly dependent on one

another (by color constancy), lighting condition is dependent on shape and location (by light source, shadow,

and mutual illumination), and the locations of objects and light sources are dependent on the shape and color of

objects (by the �exibility of the illuminant prior), there cannot be any consistent independent recovery of these

attributes. Rather, they must be recovered jointly.

A vivid illustration of this joint inference can be found in the bistable chromatic Mach card (Bloj et al.

1999, Harding et al. 2012). In this e�ect, a folded card with two colored sides is shown to participants. One side

is painted white and the other magenta. The card is folded in a concave fashion, with the edges of the paper

protruding, and presented to the viewer head-on. Viewed at this angle, the card can be seen as either concave or

convex. Because the card is actually concave, the two sides mutually illuminate, with light from the magenta side

casting a pink glow on the white side. When participants see the card as concave, all of this is perceived veridically

– the card looks concave, the sides white and magenta, and the white side cast in pinkish light. When

participants see the card as convex however, one side is perceived as magenta and the other side as light pink (i.e.

having a light pink surface color). In this case, the pinkish coloring that vision had originally attributed to

mutual illumination between two facing sides is now seen as the much darker surface color of a second painted

side. The bistability of the chromatic Mach card vividly illustrates human visual sensitivity to the dependencies

between color, lighting condition, shape, and location (mediated by mutual illumination).
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Figure 1: Typical shape from shading stimuli – Shape (either convex or concave) is assigned to multiple objects under the

assumption of a single illuminant governing them all. This assumption is defeasible, as discussed in (Morgenstern et al.

2011, Wilder et al. 2019).

Sensitivity to these dependencies shows that human perception cannot be using a simple divide and

conquer strategy to head o� exponential costs. But what about a modular strategy followed by a recombination

stage? There are lots of ways that such a strategy could work, but they all fall into two broad categories –

independent computation of dimensions followed by principled combination of those values into a coherent

hypothesis, and independent computation followed by heuristic combination. We’ll look at each of these in turn.

Take the �rst case, of independent recovery followed by principled recombination. When this strategy is

deployed, the problem is �rst broken up into small subsets of dimensions which are jointly inferred, with

exponential savings for breaking up the larger inference problem. The outputs of these sub-inferences are then

recombined into a full hypothesis in some principled fashion, such that the end result is the same as if inference

had originally been computed over the full set of dimensions. Illustrative examples of this approach come from

the literature on ‘Bayesian cue combination.’ In a typical Bayesian cue combination study a model is proposed

on which independent measurements of some perceptual dimension are combined in a way that is sensitive to

the uncertainties in each measurement. These independent measurements are then combined analytically, often
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by multiplying gaussians. In one famous study, due to Ernst and Banks (2002), subjects were asked to assess the

height of an object presented to them both visually and haptically. This was accomplished by allowing subjects

to simultaneously touch an object with their hands while viewing it through a window of varying opacity,

blurring the image of the object beyond. The authors showed that subjects’ judgements of size re�ected

information from both vision and touch. Intriguingly, subjects’ �nal judgements were also sensitive to the

uncertainty in each of the input modalities, with the more certain (lower variance) channel having a greater

‘weight’ in the �nal judgment. Vision was relied on more by default, but subjects' judgements re�ected greater

weight placed on haptic information as visual inputs were made noisier (by increasing opacity of the viewing

window). Finally, the uncertainty of subjects’ �nal judgements was always less than the uncertainty of the

measurement from the more reliable modality, suggesting that information from both channels was in fact being

integrated, rather than information from the less reliable modality being thrown away.

What’s interesting about this work for our purposes is the way in which information is integrated. In

these models, inference (the process of considering and evaluating hypotheses discussed above) is entirely

eschewed. Rather, information is combined analytically – in this case by multiplying two normal distributions

representing independent visual and haptic measurements of the relevant value.37 When measurements are

combined analytically in this way, the full costs of inference are avoided, leaving only the costs of inference over

the subsets of dimensions combined together and the trivial cost of multiplying gaussians.

Despite the promising start, approaches of this kind face several problems that severely limit their

generality, and hence their viability as models of perceptual inference.38 Here I’ll focus on just one such problem.

In cases of Bayesian cue integration, an analytic solution to integrating the outputs of partial inferences is

available only when integration is mandatory. So, in the case of Ernst and Banks above, subjects’ perceptual

systems were able to recognize that the haptic and visual input came from the same object, and so it made sense

to integrate information from both senses. But we often �nd ourselves touching and viewing distinct objects,

38 It’s unclear if the authors of studies of this kind ever intend their models to be understood in this realist way, as models of
the actual computational processes by which the brian solves these inference problems, rather than as demonstrations of the
optimal use of information by whatever process the brain actually implements (that is, whether the models are ever
intended as Marr algorithmic level models). The concerns I’ll o�er here give us reason to doubt that the brain actually
computes inference in the way described by these models, but not to doubt that the brain is sensitive to dependencies in the
ways the model describes.

37 Indeed, Bayesian cue combination is typically framed as independent measurements of a single dimension, rather than
inference over multiple dimensions. What it mimics is true inference over low level haptic and low level visual dimensions in
order to recover the height of an object. Cue combination and inference output the same value if the relevant uncertainties
over size actually are independent and gaussian in the full model.
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and in these cases we do not integrate information from haptic and visual channels (Kording et al. 2007). The

question then is, how does perception know which case it is in (whether the objects are distinct or identical) and

therefore whether it should integrate? Models of this integration-decision require nothing less than full

inference over the relevant dimensions to determine whether a single cause of haptic and visual inputs, or

distinct causes, is more likely (see Kording et al. 2007, Beierhold et al. 2007). In this case, the exponential costs of

inference cannot be avoided by analytic integration.

The challenge for the approach above is that delivering the outputs of inference in the general case

seems to require inference. A natural thought at this point is that there might be some heuristic method for

integrating disparate sub-inferences – here a heuristic method is de�ned as one that integrates sub-inferences

well enough to meet the needs of human vision, but is not guaranteed to work in all cases. Delivering such a

heuristic is easier said than done. To get a sense for the di�culty, consider what heuristic means of integration

would give rise to behavior exempli�ed by the Mach Card described above. What general heuristic tells us when

colored light should be seen as part of the lighting condition, rather than object color? Or could tell the visual

system how to update its assessment of an object’s shape as a function of those assignments? Or recover the

number and location of lighting sources based on the shadows cast on objects of disparate shape? The sheer

number of ways that the dimensions of shape, color, location, and lighting condition might depend on one

another makes the prospect of a heuristic method of integration adequate to human vision itself an

exponentially vanishing prospect. At a minimum here, we can note that no such general heuristic method of

integration has been proposed in the litterature.

Our assessment of the viability of these proposals is, of course, subject to change. Perhaps a heuristic

approach to the problem of inferential integration will come along, and one should be taken seriously if and

when it does appear. For the moment, however, there does not seem to be an alternative to doing inference,

which minimally must respect the dependencies described in our toy inference problem and illustrated by the

bistability of the Mach Card. If this is right, then the assumptions we’ve explored so far are su�cient to land the

costs of perceptual inference in astronomical territory. Any would-be explanation of the tractability of

perception must then account for how those assumptions can be challenged, allowing such costs to be avoided.

In the following section, we look at what it would take to provide an explanation of the tractability of

perception along these lines.
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VII. How (And How Not) To Explain Tractability

How to Explain Tractability

It would seem then that we’ve reached an impasse. By our lights the intrinsic costs of perceptual

inference scale exponentially in dimensionality and a mere subset of the dimensions involved in perceptual

inference run those costs into astronomical territory. For perception to be tractable, however, the costs of

performing inference must not be astronomical. At this point we need to stop and take stock of the assumptions

that got us here and ask ourselves if any of them can reasonably be denied.

As a reminder, these assumptions were threefold: (1) that good hypotheses are found, relative to a

reasonable performance criterion. (2) that the costs of evaluating hypotheses are relatively �xed. And (3), that

nothing is known about the distribution of good hypotheses in the hypothesis space. We discussed (1) and (2) at

length in Section V.39 That leaves (3). For (3) to be false would mean that perception has information, in advance

of inference, about the distribution of plausible hypotheses in the hypothesis space. If perception were to have

such prior information, this information could be used as a guide when exploring the hypothesis space. While

drawing hypotheses randomly entails exponential growth in the expected number of hypotheses sampled before

�nding a good one, guided exploration of the space does not – in the guided case, the costs would depend

straightforwardly on the quality of the information used as a guide.40 To deliver tractability, this information

must be good enough to �nd criterion-meeting hypotheses from among astronomical numbers of options in

fewer than K steps.

Take ‘sampling’ to describe the choice that any inference algorithm must make as to where to look for

good hypotheses in the hypothesis space.41 We can call the outcomes of these decisions an algorithm’s ‘sampling

dispositions.’ When these dispositions are informed by information about the distribution of good hypotheses

in the space, we’ll call them intelligent sampling dispositions (ISDs). With this concept in hand, we can now o�er

a precise statement of the problem of the tractability of inference:

41 In this case, we’re using the term to describe something broader than sampling in the technical sense that is relevant to the
Monte Carlo inference methods that might be familiar to some readers. Sampling in our sense includes any way that an
inference algorithm might go about selecting promising portions of the hypothesis space, including those in
non-Monte-Carlo inference algorithms, such as variational methods.

40 See Chatterjee & Diaconis (2018).

39 P. 30�
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The Challenge of Tractable Inference: The challenge of explaining how perceptual inference is

tractable by accounting for the intelligent sampling dispositions at work in perceptual processing.

For the rest of this paper, I will defend the claim that the challenge of explaining the tractability of perception is

the challenge of explaining how perception comes to have intelligent sampling dispositions (ISDs) su�cient to

avoid astronomical costs when performing inference in an astronomical space of options.42 While candidate

ISDs abound, delivering on such an explanation that is up to the task of perceptual inference is far easier said

than done.43 What makes it di�cult is that the location of plausible hypotheses is not �xed, but is rather sensitive

to the speci�cs of the problem instance at hand. We see very di�erent scenes in the course of our lives, and which

scene we’re looking at on any particular occasion dictates where the plausible hypotheses are to be found.

To see why delivering such intelligent sampling dispositions is di�cult, it is helpful to see why one

popular idea, that the perceptual system embodies ‘natural constraints’ on perceptual scenes, is not a solution.44

The idea of natural constraints is the idea that the perceptual system has access to (implicitly or explicitly

represented) information about how the world typically is. The canonical example here is the visual system’s

sensitivity to the fact that light typically comes from above (see discussion of shape from shading in Section VI

above). That the visual system possesses such a prior may be true as far as it goes. But such a prior, even if it’s

used to inform sampling, is unlikely to address the issues of computational tractability discussed here. This is for

the simple reason that human vision in fact recovers any number of di�erent lighting sources and lighting

directions, and recognizes �ne-grained local di�erences in lighting condition, such as shadow and mutual

illumination (all while respecting the dependencies between these dimensions and many others, see Section VI).

The mere starting assumption that lighting is singular and comes from above does not save vision from the

requirement to be sensitive to a vast number of other ways that lighting could be, including more �ne-grained

44 Or at least not a solution on its own. Note that many of the proponents of information encapsulation are also
proponents of natural constraints (the information in perception has to come from somewhere, after all) and so already
accept that perception has prior information about its domain. I expect for this reason that many will be broadly
sympathetic to the idea that more information is present in the form of ISDs.

43 Any inference algorithm that delivers a speed advantage over exhaustive search or uniform sampling will have some ISDs
that are responsible for its speedup. This includes algorithms making use of the idea that good hypotheses tend to be near
one another (e.g. local MCMC), that good assignments of values to variables will be high probability conditional on good
assignments to other variables (e.g. Gibbs sampling), that the posterior landscape is smooth (e.g. Hamiltonian MCMC,
Variational Methods), etc.

42 See Schulz (2012) for a similar thought in the case of cognitive inference in children.
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ways consistent with light coming from above,  and it is this requirement that entails astronomical

computational costs.

While natural constraints are not themselves enough to deliver computational tractability, they are the

right kind of thing. That is, they are sources of information, prior to inference, about which perceptual

hypotheses are likely to be good. What’s needed to account for tractability is much stronger sources of this kind

of information. In contrast to natural constraints, which embody information about which hypotheses are

plausible in general, what is needed for tractability is more �ne-grained information about the distribution of

plausible hypotheses for the problem instance at hand.45

Why Information Encapsulation Does Not Explain Tractability

Now that we better understand the sources of intractability in perceptual processing and what is needed

to avoid astronomical computational costs, we’re also better able to see why information encapsulation is not an

explanation of tractability. The main idea here is that the costs intrinsic to perceptual processing are vastly larger

than those associated with information access, and this di�erence in size undermines any intimate explanatory

connection between encapsulation and perceptual tractability. This is the main idea, but I don’t expect the

reader to be convinced just yet. As always, the devil is in the details. In what follows, we’ll go through a series of

things it might mean for information encapsulation to explain tractability – including the possibility that

information encapsulation is su�cient for tractability, that it is necessary, or that it is a di�erence maker. We’ll

see how our new appreciation of the challenge of accounting for perceptual tractability allows us to de�nitively

rule out versions of the EET on which encapsulation is necessary or su�cient for tractability, while leaving us

with strong reasons to be skeptical that it might be di�erence maker.

Start with su�ciency. Could avoiding the costs of information access by way of encapsulation be

sufficient for the computational tractability of perception? Based on what we’ve said so far, the answer to this is

clearly no. This is because ISDs are necessary for computational tractability, and a perceptual system could be

encapsulated from a cognitive system without also possessing ISDs. For example, a simple model aimed at doing

the inference described in Section VI might receive no inputs from any external computational system (and so be

encapsulated) and yet lack any ISDs. In the simplest case, it could perform inference by sampling randomly from

the space of possibilities. Such a model would be encapsulated, but inference in it would be straightforwardly

45 That is, not merely a good prior, but a good estimate of the posterior. For the recurring distinction between dimensions
and information, see p. 38.
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intractable, running up against the astronomical costs of inference. So encapsulation is clearly not su�cient for

computational tractability.

How about necessity? Could information encapsulation be necessary for computational tractability?

Here too I think the answer is no, but before arguing for this, it’s worth �rst seeing why this idea commands so

much appeal. There is a ton of information in cognition, from random facts about people, such as names and

political persuasions, to the habitats of animals, to memories of your grandmother’s garden. Perception, for its

part, has to operate very fast, on the order of tens or hundreds of milliseconds, as we saw before. What’s more,

some kinds of very demanding search are certainly intractable. Take, for example, what we might call ‘full

relevance search.’ By full relevance search, I mean sorting a list of information into those entries that are relevant

to an inference problem and those that are not. In the limit, this requires performing the full inference problem

once with each subset of the entries on the list and comparing the results to see which entries make a di�erence

(in di�erent combinations) to the outcome of the inference, in order to determine which entries are relevant to

the task at hand. Such an operation is likely to scale super-exponentially, since it involves inference (which scales

exponentially with dimensionality) being performed as a subroutine exponentially many times (as a function of

the size of the list). Search of this kind would of course be intractable. If perception were required to do an

exhaustive relevance search through cognition in the course of each perceptual inference, then there can be little

question that it would be intractable.46

This is all true as far as it goes. But it is also very far from establishing that encapsulation is necessary for

tractability. This is for three reasons. First, search does not have to be exhaustive, going through the entire mind

to guarantee that it has returned all of the relevant information, in order to violate encapsulation. Search

methods might search some portion of the database that merely sometimes has relevant information (say, ‘search

only memories from the past 24 hours’), or might search in a way that could access the entire database, but with

a limited amount of time in which to do so (‘search everything but stop after 100 milliseconds’). Other ways of

limiting search exist as well. Instead of circumscribing search on the basis of the store or the duration of the

search process, search could be limited by properties of the information being accessed, say returning values

based on their place in the full list of entries (even very simple organizations of lists keep search costs sub-linear)

46 Full relevance search of this kind seems to be what Fodor (1983) has in mind when he writes, “the point of the
informational encapsulation of input processes is not—or not solely—to reduce the memory space that must be searched to
�nd information that is perceptually relevant. The primary point is to restrict the number of con�rmation relations that
need to be estimated as to make perceptual identi�cations fast” (p.71). See Fodor (2000) for similar arguments about the
intractability of relevance search.
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or on the basis of their syntactic features (say, ‘return only those memories that explicitly encode the color of this

object’). If perception does in fact search through cognition, it could limit its search in any of these ways, making

the costs of exhaustive relevance search irrelevant.47

Second, not all kinds of search that return some relevant information require sorting that information

into relevant and irrelevant entries, and it is often better not to do so. Consider an over eager search strategy that

returns some relevant information and much that is irrelevant. If we do inference with this information, the

outcome is the same as if we’d done inference without the irrelevant information (that’s what it is for the

information to be irrelevant!). As for computational costs, the costs are no more than if we’d �rst sorted the list

into relevant and irrelevant entries and accessed only the relevant ones (since the information has to be accessed

in both cases – either to be fed directly into inference or to be sorted) and are often much less (since the

super-exponential costs of sorting are neatly avoided in the over eager case). Inference itself is not more expensive

with the irrelevant information, since the costs there are dictated by dimensionality, not information.48 So search

for relevant information need not be the super-exponentially scaling relevance search of the kind envisaged

above.

Finally, search strategies that reliably return relevant information without exhaustive relevance search

are not an idle theoretical possibility. Rather, search strategies of this kind are a �xture of the modern era,

making searching through even extraordinarily large databases fast and e�cient. A typical Google search, for

example, searches Google’s copy of the internet, an enormous body of information, and returns general relevant

results at an average latency of 500 milliseconds.

With all of this in mind, we can now see why encapsulation cannot be necessary for perceptual

tractability. Consider a perceptual system with the following property: after coming up with an initial guess as to

the identity of an object, it runs a Google search to �nd the typical color of that object, and uses this as an

additional input into color and identity processing. This system would be unencapsulated, in the vein of

anti-encapsulation interpretations of color processing e�ects in people (MacPherson 2012). More importantly

for our purposes, if inference in this system was tractable before adding the search, then it will be tractable

48 See Section V, p. 37 for the distinction between information and dimensions.

47 Note that in Section III we assumed for the sake of argument that information access could be tied to the costs of search,
despite the possibility of search without access (say, if cognition does search and sends information to perception as an
expectation prior to inference, see Kok et al. 2012). I am not reneging on this deal – the costs of search are still at issue – but
rather pointing out that search does not entail exhaustive search.
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afterward. The possibility of such a case shows that, at least based on our current evidence, encapsulation can’t

be necessary for tractability.

Here I want to be clear about what I am saying and what I am not. The point is not that search in the

mind might work just like Google search – very likely this is an unrealistic model. The point is rather that

Google search gives us a proof of concept that some searches over very large databases are nevertheless very

cheap. In a few short decades of computer science, human ingenuity has already hit upon cheap ways of doing

large scale search. In light of that, we would need a very strong argument to convince us that cheap ways of doing

search were out of reach for evolution. And without such an argument, we should not believe that avoiding the

costs of search is necessary for tractability (cp. Clark 2002 for a similar point).

If encapsulation is neither necessary nor su�cient for tractability, then in order for the EET to be true

encapsulation must at least be a di�erence maker. To be a di�erence maker it must be the case that, given all the

facts on the ground, if perception were unencapsulated, then it would be intractable.49 Here the thought would

be that engaging in information access is a discretionary line item in the brain’s computational budget for

perception, and one that pushes perception over budget after all the essential line items are paid for. The

question then is, what reasons could we have for believing that information access is such a decisive line item?

These reasons break down into two categories. First, we could have reason to believe that those costs are a large

part of the �nal budget for tractability, once all the strategies that evolution has employed to keep costs low in

search, inference, etc. have been taken into account. (This would mean that the costs of information access

would also be a big part of the �nal budget of K once a much tighter bound had been set on K). Second, even if

the costs of information access are not a big part of the budget, we might nevertheless have reason to believe that

they are a small, but critical part of the budget – the �nal line item that just tips the balance and pushes us over

budget. Here, as above, I’ll argue that the vast di�erence in scale between the problems of inference and access

undermines either case for believing that avoiding the costs of access will be a di�erence maker.

Take the �rst possibility. Do we have any reason to believe that the costs of access will be a large part of

the �nal budget, once we’ve �gured out all of the optimizations evolution has employed to keep the costs of both

access and inference down? In evaluating this admittedly very challenging question, start with a sociological fact:

When computer scientists evaluate the complexity of a program which is the sum of a non-exponential term and

an exponential term, they tend to ignore the non-exponential term. They don’t do this out of a sense of wanton

49 That is, for a natural analysis of what it is to be a di�erence maker, which is to be a necessary condition holding everything
else about the system �xed. See p. 21 for a brief discussion of what it is to be a di�erence maker and how this di�ers from
both necessity and su�ciency.
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violence toward an accurate representation of the complexity of the program, but rather because, empirically,

when computational costs are the sum of a non-exponential and an exponential or greater term, the

contribution from the non-exponential term tends to be negligible. That is, if the costs of running a program are

n^x + 5x, this is typically very well approximated by n^x.50

New insights into how full inference and exhaustive search might be approximated could, of course,

change this. If evolution has been tremendously successful at keeping the would-be exponential costs of

inference low, while �nding few or no strategies to lower the would-be linear costs of search, then this could

change the relative proportions of the budget that go to each term, leaving search and access the larger chunk of

the �nal budget. There is no doubt that this is possible. But it does not seem particularly likely. For one, the

starting costs are so di�erent that the successes in lowering costs would have to be remarkably one-sided. For

another, as we saw just above, the current state of a�airs paints just the opposite picture – we currently know of

many methods for making theoretically cheap search even cheaper, while we have very few insights into how

theoretically expensive inference could be made much less expensive. At the very least then, we have no positive

reason to believe that encapsulation will turn out to be a di�erence maker for perceptual tractability by way of

being a large portion of the �nal budget for perceptual processing.

If the costs of information access are not a large part of the budget, we could still have reason to believe

they are a di�erence maker if we have reason to believe that they are a small but critical part of the budget – the

�nal expense that pushes us over budget once all essential operating costs have been paid. In evaluating this

possibility, consider one �nal time the di�erence in size between our exponential and our linear terms in the

theoretical costs of unencapsulated perceptual processing. If our thinking so far in this paper is on the right track

at all, then the �nal costs of information access are likely to be a drop in the bucket compared to the �nal costs of

inference. The theoretical result (based on the di�erence in theoretical costs) is clear cut, and the convergent

empirical evidence (based on the current ease of search, discussed above, and current di�culty of inference,

brie�y surveyed in Section II) is at least suggestive of a signi�cant di�erence in the computational costs

associated with these two problems. Given our current evidence then, believing that the costs of information

access are a small but still critical portion of perception’s computational budget would require believing that

50 The exception to this is when x is small, in which case the linear term will dominate. That does not arise in this case, since
the variables are distinct (the exponential term is exponential in dimensionality, while the linear term is linear in the number
of entries that must be searched) and the exponential term is �xed empirically by the dimensionality of the inference
problem (see Section VI).
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these costs are going to be the proverbial drop that makes the bucket over�ow. This is certainly possible, but we

have no positive reason to believe it!

We’ve seen that the di�erence in size between the problem of inference and the problem of access rule

out certain versions of the EET (that avoiding the costs of access is necessary or that it is su�cient) and give us

considerable reason for skepticism about others (that avoiding the costs of access is a di�erence maker). Thus

we’ve seen that the original motivation for the EET, what we earlier called the Haystack Idea, can be safely laid to

rest. There is, however, one �nal di�erence making role for encapsulation that should be examined. This is the

possibility that encapsulation might be a di�erence maker, not by allowing perception to avoid costly search, but

rather by being a crucial part of the ISDs which are themselves critical to the tractability of perceptual inference.

In this case, proponents of encapsulation would acknowledge that the costs of search are likely insigni�cant in

explaining tractability, but would turn to seeing encapsulation as a plausible contributor to limiting the actual

costs of inference. I’ll brie�y argue that even this revitalized version of the EET lacks su�cient motivation.

As a way of easing into it, start with a simpler thesis, that information encapsulation is necessary for

ISDs. Based on what we’ve established so far in this paper, we know that this can’t be the case. This is because

having an amazing perceptual prior, one with strong expectations about what you’re likely to see when,51 is

su�cient for ISDs. And it’s possible to have an amazing prior while not being encapsulated from cognition. If a

perceptual system came equipped with such a prior (by way of evolution or perceptual learning), but were

unencapsulated (accessing select information from cognition, say, just color memories), then this system would

exhibit strong ISDs despite being unencapsulated. At least based on what we know right now then,

encapsulation can’t be necessary for ISDs.52

Now consider the possibility that encapsulation might be a di�erence maker – making some critical

contribution to perceptual ISDs holding all other facts about the system �xed. To evaluate whether this is

plausible, start with how it is that ISDs provide for tractability. They do so by helping to locate plausible

hypotheses from among an astronomically large expanse of random possibilities. At �rst pass then, any

information that might help the system locate plausible hypotheses is likely to result in computational savings.

In the next section, I’ll argue on these grounds that there are likely to be many cases where information from

cognition could signi�cantly reduce the costs of perceptual processing. (The gist of those examples is that

cognition can sometimes propose reasonable solutions to perceptual inference problems, in virtue of sometimes

52 There is also no question that it’s not su�cient for ISDs, since it’s categorically the wrong kind of thing to deliver ISDs –
not a source of information, but merely a prohibition on one.

51 And therefore a good approximate posterior.
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possessing veridical information about what we are likely to be seeing.) For the moment, however, let’s limit our

attention to what it would take for information from cognition to signi�cantly increase the costs of perceptual

processing by way of in�uencing ISDs. To do so, cognition would have to contribute information that is not just

sometimes wrong about what you are seeing, but rather systematically and relentlessly misleading about what

you might be seeing.

To wrap our minds around this point, start with a related downside to cognitive in�uence on

perception that has been discussed in this literature. Some authors have argued that human perception is

susceptible to cases of ‘wishful seeing’ in which someone’s idea of what they would like to see in�uences their

perceptual interpretation of ambiguous stimuli. So, if I am looking for the mustard in my fridge, I might brie�y

misperceive a lemon in the fridge as mustard (Siegel 2017). Wishful seeing, if it happens, in�uences the outcome

of perceptual inference – the lemon looks to me (perhaps brie�y) as if it were mustard. When the outcome of

perceptual inference is less accurate then it would have otherwise been, wishful seeing has an obvious epistemic

cost. What we’re imagining here is slightly di�erent. We’re imagining a case where cognitive in�uences have a

meaningful computational cost.53 What we should have in mind then is a case like wishful seeing but which holds

�xed the �nal outcome of perceptual processing. In this case, cognition would �rst o�er the mustard hypothesis,

and perception would check it against the data, perhaps rejecting it because the mustard hypothesis sits poorly

with the absence of any noticeable label or cap on the yellowish �gure. Finally, perception settles on the lemon

hypothesis, as it would have if there had been no e�ect of cognition.

Here, even though perception avoids any epistemic cost by ultimately settling on the same output

hypothesis, the proposal of the mustard hypothesis creates an unnecessary computational cost – that of

evaluating and rejecting the false hypothesis. It stands to reason then that, if there were a su�cient number of

such unnecessary hypotheses proposed by cognition, they could run up the costs of perceptual inference.

Encapsulating perception from cognition’s misleading proposals could then be an important part of how the

ISDs deliver tractability.

The problem with this line of reasoning is that, if the implausible hypotheses proposed by cognition are

just one or a few, then the costs they impose are negligible relative to the size of the perceptual inference

53 Of course, both epistemic and computational costs are relevant to tractability, since tractability is relative to both a
budget, K, and a performance criterion (see Section III). If cognitive penetration would impair performance to a su�cient
degree by way of e�ects like wishful seeing, then technically such penetration could make perception intractable by way of
decreasing performance beneath human levels, rather than increasing costs above human levels. I take it that the core idea
behind the EET as it has been defended is that cognitive in�uences would make perception more expensive, not less
accurate, so I won’t consider this back route to the thesis here.
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problem. Since we should believe that, even with great default ISDs, perception is likely to have to evaluate many

hypotheses, the addition of a handful from cognition seems unlikely to be di�erence making. And if the

hypotheses are not implausible, then evaluating them may contribute to veridical perceptual inference. For

cognitive in�uences to pose a threat to tractability by this route then, the proposals from cognition must be both

very numerous and systematically misleading. While it may be easy to imagine that cognition, were it allowed to,

might occasionally send perception an implausible proposal, the idea that it might be a source of implausible

proposals on the scale needed to threaten perceptual tractability, where the default requirement is to navigate an

exponentially large hypothesis space, is a heavy lift. Here again, at least absent some positive argument in its

favor, we should not believe that this is the case.

I’ll say more about the relationship between encapsulation and ISDs in the following section. At this

point however, we should take stock of where we’ve gotten. We’ve seen that encapsulation is neither necessary

nor su�cient for computational tractability. It is not su�cient because ISDs are necessary and a system can be

encapsulated without exhibiting any ISDs. And it is not necessary because the kinds of information that allow

for tractability can exist in perception even if it is unencapsulated. We’ve also seen that the costs of information

encapsulation are unlikely to even be a di�erence maker to perceptual tractability due to the massive di�erence

in size between the costs of information access and the costs of inference itself. After establishing that the costs

of information access are unlikely to motivate encapsulation, we �nally asked if encapsulation might be critical

to tractability by way of being critical to ISDs. And we found that defending such a view requires believing that

the proposals in�uenced by cognition are not merely sometimes false, but both very numerous and

systematically implausible. The idea then that tractability considerations motivate encapsulation should be laid

to rest. Many questions remain, however. In the next section, I use some of the tools we’ve laid out in this paper

to explore the future of tractability arguments.

VIII. The Future of Tractability Arguments

The Dimensionality Restriction Hypothesis

At the end of the day, we don’t know how perception is tractable, and this limits what we can say with

con�dence about the bearing that various cognitive e�ects might have on tractability. But we are not totally in

the dark either. For example, we have an understanding of the sources of computational costs and the factors

that in�uence them. Any cognitive e�ect that threatens to make those prima facie costs exponentially worse
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should be regarded with suspicion. Similarly, we know the form that a solution to intractability must take – it

must o�er a theory of the intelligent sampling dispositions that allow perception to navigate its vast hypothesis

space. Such dispositions are built on information. Any potential source of this kind of information, up to and

including cognition, should be regarded as potentially part of the solution.

Start with an example of the �rst kind. The unfortunate truth of computational costs is that, while it

can be di�cult or even impossible to make a problem easier, it is always possible to make it harder. Certain kinds

of cognitive e�ects could make perception’s problem much harder. Take for example the ‘enrichment’ of

perception by cognition. Some authors have suggested that cognition might enrich perception, in the sense of

expanding perception’s representational capacity to include dimensions previously represented only in

cognition, for example in the process of developing expert perception (Siegel 2010). Others argue on empirical

grounds that perception is dimensionality restricted, operating over an (at least synchronously) limited set of

dimensions, in contrast with cognition, which is dimensionality non-restricted (Green 2020). The ideas laid out

in this paper suggest that there may be more a priori considerations relevant to this debate as well. Since the

prima facie costs of inference scale exponentially with dimensionality, adding dimensions, whether from

cognition, perceptual learning, or by any other mechanism, could dramatically increase the costs of perception.

Such an e�ect could form the basis for a tractability argument against cognitive enrichment e�ects and in favor

of the dimension restriction hypothesis. Making this case rigorously would require careful treatment, but the

possibility of such an argument follows naturally from the framework developed here.

Veridical Information From Cognition

Another species of future tractability arguments could put information encapsulation on the defensive.

As we saw above, what’s needed to account for the tractability of perception are sources of information which

help steer perceptual inference toward promising hypotheses. A natural question to ask, then, is whether

information from cognition could support tractability.

Consider the following case. You are wandering around in a jungle and see an ambiguous form in the

branches. Naturally, there are virtually countless possible visual interpretations of the visual scene. Now imagine

that you know that you’re in panther territory. This key bit of information from cognition could be used to

guide sampling, allowing vision to arrive at an interpretation of the visual scene much more quickly. A tip of this

kind could easily be the di�erence between visually detecting and missing something that was really there.
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How, exactly, could the abstract belief that one is in panther territory be used to guide visual inference?

The technical proposals are too much to get into here. But the underlying process is not that di�erent from

what you would naturally do if I were to ask you to close your eyes and imagine a panther in that tree. Then to

reset and imagine another, distinct scene meeting the same constraint. And then another. In each of these cases,

you are sampling from a space of possible scenes, under the constraint that they feature a panther in the tree.

This cognitively constrained distribution is far more peaked than an unconstrained prior distribution over all

possible scenes, with or without panthers, thereby guiding visual inference toward the hypotheses that meet the

constraint.54

Accounts of roughly this kind have been o�ered as explanations for the phenomenon of stably resolving

ambiguous images (Lupyan 2017, Block 2022). These are images which appear one way at �rst, say, as an

unremarkable brick wall or set of black splotches, but resolve another way when people are given a clue

semantically related to the alternative interpretation. Once their more surprising interpretation has been seen, it

is often di�cult to unsee; a fact which may re�ect the visual systems assessment that the new hypothesis o�ers a

better solution to that particular visual inference problem (see Figure 2).

These are not knock down demonstrations of cognition-fed sampling dispositions. Many who have

discussed these e�ects have argued that they are due to attention (Firestone & Scholl 2016, Lupyan 2017, Block

2022 signals openness to this interpretation). Whether attention o�ers a competing explanation or is merely the

mechanism of cognitive penetration is itself an open question (Quilty-Dunn 2019, see Green 2020).

Cognitively-driven samples are a computational process while attention is a folk psychological and

neuroscienti�c concept and the relationship between the two is unclear. This is murky territory. My aim in

bringing these issues up is not to try to lay them to rest, but merely to illustrate that the tractability

considerations that were once taken to require the encapsulation of perception from cognition, may in fact

support just the opposite conclusion once the true challenge of perceptual tractability is appreciated. This

reversal holds even if, as is likely to be the case, most of the information in the intelligent sampling dispositions is

internal to perception.

54 Note that a procedure like this can work even if the visual system doesn’t explicitly represent high-level contents such as
‘panther’, since the relevant distribution could be a distribution entirely spelled out in terms of low-level properties; those
that would trigger recognition of panthers.
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Figure 2: Visual inference can be a�ected by information about what one is looking at. Look at the image aboves and

search for anything out of the ordinary before reading this footnote for a hint.55

IX. Conclusion

A theory of the architecture of perception must explain how perception is computationally tractable.

This paper has argued that information encapsulation, even if true of perception, does not provide such an

explanation. This is because of the signi�cantly greater costs of perceptual inference, as compared to information

access, which threaten to make the costs of access a negligible proportion of perception’s computational budget.

After all this, it remains an open empirical question whether perception is encapsulated from cognition, but the

encapsulation thesis has lost its computational raison d’etre. As a consequence, we should be more willing to

accept some of the psychophysical e�ects reported in the literature as genuine violations of encapsulation. We are

at the very least not bound on computational grounds to �nd ways in which these e�ects are not genuine e�ects

of cognition on perception. This is, of course, not to advocate for laxity in our psychophysics or analysis, and

alternative interpretations of putative cognitive e�ects should be carefully proposed and ruled out, but it is an

argument for a more even prior between encapsulation and cognitive in�uence as we approach these debates.

The framework for thinking about computational tractability laid out in this paper also has

implications beyond the question of encapsulation. For one, we now have an understanding of the sources of

computational costs and the factors that in�uence them. The things that matter to tractability are things like the

55 On �rst encounter with this image, most people see an small, bluish rock wedged in a stone wall. Given a hint, such as the
quip that ‘Sometimes a cigar is just a cigar’, people see the image di�erently. (If that is not enough of a hint, try seeing the
bluish rock and brown space next to it as a single object, protruding outwards from the wall, with the blue tip farthest from
the surrounding rock.)
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dimensions, dependencies, and sampling dispositions involved in inference. Information is a resource for

limiting computational costs, rather than a liability. With these factors in mind, novel proposals about the

architecture of perception can be evaluated for how they are likely to a�ect tractability. Proposals to the e�ect

that cognition might expand the range of dimensions perception computes over, thereby increasing the

dimensionality of perceptual inference problems and threatening to increase the costs of inference exponentially,

have an a priori strike against them, while the alternative, dimensionality restriction, has an a priori

consideration in its favor. Going forward, we should be more skeptical of, and more careful to explore alternative

explanations for, psychological e�ects which purport to evince such dimensionality non-restriction (in e�ect,

saving for dimensionality non-restriction and other exponentially costly architectural theses the jaundiced eye we

have hitherto reserved for purported failures of encapsulation.)

We should also look to develop positive accounts of perceptual tractability. Proponents of information

encapsulation were right to think that perception faces a threat of intractability and that re�ecting on how such

a threat is avoided can be a tool in uncovering the architecture of perception. If anything, this is even more true

now; with a vastly larger problem of intractability that is integral to perception’s essential function, the demand

that an architecture allow for tractable inference becomes a powerful constraint, shaping perceptual architecture

throughout.

Deciphering what architectures allow for perceptual tractability is a di�cult problem, but we’ve already

made a start – spelling out the general form that such a solution must take. Any account must o�er a theory of

the intelligent sampling dispositions that allow perception to e�ciently navigate the vast hypothesis spaces

involved in perceptual inference. Such dispositions are built on veridical information about the distribution of

plausible hypotheses throughout the space. In order to deliver human-like perceptual competence, including

critically the ability to recover a large number of perceptible properties across a vast diversity of scenes, this

information must be opinionated (strongly focusing computational work in narrow regions of the hypothesis

space), particular (sensitive to the directly measurable properties of the scene, rather than rigid constraints

expected to apply across the board), and veridical (concentrating probability mass around genuinely plausible

hypotheses). A theory must tell us where this information comes from and what kind of architecture can gather

and deploy it. Any source of information of this kind (up to and including cognition) should be regarded as

potentially part of this solution, but the key answers are likely to come from a theory of perceptual learning.

Mechanisms of such learning, hitherto treated as something of a black box, are likely to be a critical part of the

theory.
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