Skip to main content
Log in

Indestructibility of Vopěnka’s Principle

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Vopěnka’s Principle is a natural large cardinal axiom that has recently found applications in category theory and algebraic topology. We show that Vopěnka’s Principle and Vopěnka cardinals are relatively consistent with a broad range of other principles known to be independent of standard (ZFC) set theory, such as the Generalised Continuum Hypothesis, and the existence of a definable well-order on the universe of all sets. We achieve this by showing that they are indestructible under a broad class of forcing constructions, specifically, reverse Easton iterations of increasingly directed closed partial orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. London Mathematical Society Lecture Note Series, vol. 189. Cambridge University Press, Cambridge (1994)

  2. Apter A.W.: Strong cardinals can be fully Laver indestructible. Math. Logic Quart. 48(4), 499–507 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Apter A.W., Hamkins J.D.: Universal indestructibility. Kobe J. Math. 16, 119–130 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Apter A.W., Sargsyan G.: An equiconsistency for universal indestructibility. J. Symb. Log. 75(1), 314–322 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Asperó D., Friedman S.-D.: Large cardinals and locally defined well-orders of the universe. Ann. Pure Appl. Log. 157(1), 1–15 (2009)

    Article  MATH  Google Scholar 

  6. Bagaria, J.: C (n) cardinals, (in preparation)

  7. Baumgartner, J.E.: Iterated Forcing, Surveys in Set Theory. London Mathematical Society Lecture Note Series, vol. 87, pp. 1–59. Cambridge University Press, Cambridge (1983)

  8. Brooke-Taylor A.D.: Large cardinals and definable well-orders on the universe. J. Symb. Log. 74(2), 641–654 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brooke-Taylor A.D., Friedman S.D.: Large cardinals and gap-1 morasses. Ann. Pure Appl. Log. 159(1–2), 71–99 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Casacuberta C., Scevenels D., Smith J.H.: Implications of large-cardinal principles in homotopical localization. Adv. Math. 197(1), 120–139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cummings J.: Iterated forcing and elementary embeddings. In: Foreman, M., Kanamori, A. (eds) The Handbook of Set Theory, vol. 2, pp. 775–884. Springer, Berlin (2010)

    Chapter  Google Scholar 

  12. Cummings J., Foreman M., Magidor M.: Squares, scales and stationary reflection. J. Math. Log. 1(1), 35–98 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cummings J., Schimmerling E.: Indexed squares. Israel J. Math. 131(1), 61–99 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedman S.D.: Fine Structure and Class Forcing, de Gruyter Series in Logic and Its Applications, vol. 3. de Gruyter, Berlin (2000)

    Google Scholar 

  15. Friedman, S.D.: Large cardinals and L-like universes. In: Andretta, A. (ed.) Set Theory: Recent Trends and Applications, Quaderni di Matematica, vol. 17, pp. 93–110. Seconda Università di Napoli (2005)

  16. Gitik M., Shelah S.: On certain indestructibility of strong cardinals and a question of Hajnal. Arch. Math. Log. 28(1), 35–42 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hamkins J.D.: The lottery preparation. Ann. Pure Appl. Log. 101(2–3), 103–146 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hamkins J.D., Johnstone T.A.: Indestructible strong unfoldability. Notre Dame J. Form. Log. 51(3), 291–321 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jech T.: Set Theory. The Third Millennium Edition, Revised and Expanded. Springer, Berlin (2003)

    MATH  Google Scholar 

  20. Jensen, R.B.: Measurable cardinals and the GCH. In: Jech, T.J. (ed.) Axiomatic Set Theory, Proceedings of Symposia in Pure Mathematics, vol. 13 part II, pp. 175–178. American Mathematical Society (1974)

  21. Johnstone T.: Strongly unfoldable cardinals made indestructible. J. Symb. Log. 73(4), 1215–1248 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kanamori, A.: On Vopěnka’s and related principles. In: Macintyre, A., Pacholski, L., Paris, J. (eds.) Logic Colloquium ’77, Studies in Logic and the Foundations of Mathematics, vol. 96, pp. 145–153. North-Holland (1978)

  23. Kanamori A.: The Higher Infinite. Springer, Berlin (2003)

    MATH  Google Scholar 

  24. Kunen K.: Set theory. North-Holland, Amsterdam (1980)

    MATH  Google Scholar 

  25. Laver R.: Making the supercompactness of κ indestructible under κ-directed closed forcing. Israel J. Math. 29(4), 385–388 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lévy A., Solovay R. M.: Measurable cardinals and the continuum hypothesis. Israel J. Math. 5(4), 234–248 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lévy, A.: A Hierarchy of Formulas in Set Theory. Memoirs of the American Mathematical Society, vol. 57 (1965)

  28. Powell, W.C.: Almost huge cardinals and Vopenka’s principle. Notices Am. Math. Soc., 19(5), A–616, abstract (1972)

  29. Pultr A., Trnková V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North-Holland Mathematical Library, vol. 22. North-Holland (1980)

    MATH  Google Scholar 

  30. Sato K.: Double helix in large large cardinals and iteration of elementary embeddings. Ann. Pure Appl. Log. 146(2–3), 199–236 (2007)

    Article  MATH  Google Scholar 

  31. Scott D.S.: Measurable cardinals and constructible sets. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. IX(7), 521–524 (1961)

    Google Scholar 

  32. Solovay R.M., Reinhardt W.N., Kanamori A.: Strong axioms of infinity and elementary embeddings. Ann. Math. Log. 13(1), 73–116 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Velleman D.J.: Morasses, diamond, and forcing. Ann. Math. Log. 23(2–3), 199–281 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  34. Velleman D.J.: Simplified morasses. J. Symb. Log. 49(1), 257–271 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vopěnka P., Pultr A., Hedrlín Z.: A rigid relation exists on any set. Commentationes Mathematicae Universitatis Carolinae 6(2), 149–155 (1965)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Brooke-Taylor.

Additional information

This research was conducted at the University of Bristol with support from the Heilbronn Institute for Mathematical Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooke-Taylor, A.D. Indestructibility of Vopěnka’s Principle. Arch. Math. Logic 50, 515–529 (2011). https://doi.org/10.1007/s00153-011-0228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-011-0228-9

Keywords

Mathematics Subject Classification (2010)

Navigation