On Communication and Computation

PAUL BOHAN BRODERICK
Department of Philosophy, 320 Bowman Hall, Kent State University, Kent, OH 44240, USA;
E-mail: pbohanbr@kent.edu

Abstract. Comparing technical notions of communication and computation leads to a surprising
result, these notions are often not conceptually distinguishable. This paper will show how the two
notions may fail to be clearly distinguished from each other. The most famous models of computation
and communication, Turing Machines and (Shannon-style) information sources, are considered. The
most significant difference lies in the types of state-transitions allowed in each sort of model. This
difference does not correspond to the difference that would be expected after considering the ordinary
usage of these terms. However, the natural usage of these terms are surprisingly difficult to distinguish
from each other. The two notions may be kept distinct if computation is limited to actions within a
system and communications is an interaction between a system and its environment. Unfortunately,
this decision requires giving up much of the nuance associated with natural language versions of
these important terms.

1. Introduction

The following paper is an initial report on my investigations into the impact of
probabilistic models on philosophical problems. If there is any specific message it
is that philosophers should not take Turing Machines quite as seriously as we do.
The argument though does not attack any particular failing of Turing Machines.
Instead it places this venerable model in a wider context with a richer set of mod-
eling tools available to do philosophical work. Overemphasis on Turing Machines
has lead philosophers to miss out on a number of other important phenomena that
do the same work in different ways. When considering the appropriate models of
algorithmic complexity, Donald Knuth argues against consist use of Turing Ma-
chine models, not because of any intrinsic failing, but because they just don’t stand
up to claims one might have about the veracity of Turing Machines as a model.
According to Knuth, “Relevance is more important than realism.” (Knuth, 1997,
p. 464)

This paper examines the sorts of models that are used to discuss communic-
ation and computation. These models, if they are successful, presumably capture
something important about the two phenomena in question. The types of models
that will receive the most attention below are Turing Machines and Markov Pro-
cesses. Neither of these make anything more than analogical references to physical
structures and the properties embodied by the models are different in important
respects from the systems they model. If Turing Machines only really told us about
radically unskilled clerks working on ling pieces of paper, it would be less than a
joke. Rather both models capture what could be called the informational structures

MM Minds and Machines 14: 1-19, 2004.
"“ © 2004 Kluwer Academic Publishers. Printed in the Netherlands.

2 PAUL BOHAN BRODERICK

that define success of communication or computation. These two processes are
similar because they are fundamentally informational in ways that combustion or
digestion are not. I will be arguing that communication and computation are not
as different as one might expect. In this sense, its a contribution to the philosophy
of information, both because the discussion is carried on an information level, but
also because it explores the models, that is the vocabulary, most commonly used in
discussions of information. In other words, it is and elaboration of information and
computational methodologies (Floridi, 2001, p.14), where model building is taken
as a genus of methodology.

Nancy Cartwright has demonstrated that scientist and engineers with practical
concerns on their mind often utilized various, and occasionally incompatible math-
ematical models, without giving up a commitment to reality of the phenomena they
are studying.! The models themselves need to be evaluated primarily in terms of
their utility.

The utility and beauty of the models we will be considering have inspired their
wide use in the sciences and engineering disciplines. The first two specific models
are generally also understood to give us some insight into ordinary experience in
so far as computation and communication are ordinary experiences. The objects
that each of these models are supposed to capture are not exactly equivalent to
the aspects of day-to-day experience that we discuss using similar words. The
Shannon model of communication has often been looked down upon because it
does not capture all of what is ordinarily meant by communication. However, the
lack of nuance in the model does not diminish the model’s usefulness. The paper
will close with a discussion of how the models under consideration, and their sim-
ilarities are successful at capturing one little noticed ambiguity in how the phrases
communication and computation are often used in nontechnical discussion.

2. Two Models and Unifying Framework

In this section I will review the most famous models of computation and commu-
nication. Turing Machines and Communication Channels respectively. I will then
show, that at least in practical contexts, these two model’s aren’t so different after
all. In the next section, I'll try to show that a similar situation holds in natural
language.

2.1. TURING MACHINES

According to standard presentation,? a Turing Machine is a 8-tuple M = (Q, X, T, §,
90, B, F,T)

Q - the states of the machine

Y. - the input symbols recognised by the machine

I' - the complete set of tape symbols

ON COMMUNICATION AND COMPUTATION 3

8 - the transition function
qo - the initial state

B - the blank symbol

F - the set of final states
T - a time index

The Turning Machine (TM) has been a staple among philosophers for a half century
now. Nonetheless, I’ll review the basic notion. The procedures necessary to carry-
out a computational process can be modeled in terms of what could be accom-
plished by a manipulating a pencil and an arbitrarily long piece of paper according
to a small set of rules. The list above is meant to specify the limitations on those
sets of rules. The states of the machine, O, identify what rules are operative at time
T, Those rules include which symbols can be written to the paper and what to do
when a particular state is read off the tape. The response to any symbol is limited
to moving the tape, writing/erasing a symbol on the tape and/or moving into a new
state.

There have been simpler descriptions than this one. Many presentations make
use of fewer components. The time index, for instance, is generally not included,
the input symbols must be subset of the complete set of subset symbols, etc. T,
the time index coordinates the actions of the Turing Machine. The other members
of the tuple define what occurs at each tick of the clock. Because gy and B both
belong to o and F is a sub-set of Q, these three items are sometimes left off of the
specification of a TM and only explained under their relevant items. Likewise the
distinction between ¥ and I" is often made explicitly.

One feature that has often been specified is the length of the tape in which
the various marks are recorded. The length of this tape is arbitrary and can grow
depending on the needs of the particular Turing Machine under consideration.

Even though we haven’t yet discussed the features of Markov processes, it might
be useful to take a moment to see how these two models might not fit together.
First, since a Markov process has a specific relation to prior states, which we
will discuss below, it is not exactly possible to model a fully universal Turing
Machine as a Markov Process. The second significant difference is that the § of
a Turing Machine is a deterministic function while a Markov process may have
probabilistic transition function (including those with a probability of unity). This
is equivalent to a Nondeterministic Turing Machine (NTM). NTMs have some
interesting properties.® In particular they can compute some functions faster than
the corresponding deterministic TM. However, this is not directly relevant to our
current goal which is to find a vocabulary in which to discuss the similarities and
differences of two important phenomena. Finally, with Turing Machines the time
index is generally left assumed as the amount of action per unit of time is taken
to be fixed. However, for Markov processes, the amount of action per unit of time
may vary. Thus, a TM is, in Markovian language, a homogeneous chain.

4 PAUL BOHAN BRODERICK

2.2. CHANNELS OF COMMUNICATION

The Shannon model of communication (Shannon and Weaver, 1949) and coding
is usually associated with a simple schema of Source-Channel-Distinction, where
the channel is taken as a source of noise. Obviously this model does not take into
account many of the facets of communication that are typically taken as critical for
even the most basic exchanges. What makes the model interesting is the fact that
such a powerful and useful theorem as Shannon’s Fundemental Theory arises from
these considerations.

Although Shannon does not explicitly use the formalism, ergodic information
sources are also tuples. S = (Q, I', §, P, C) where

Q - the states, Sy, ..., S,, of the machine (Shannon and Weaver, 1949, p. 38).

I' - aset of symbols that can be transmitted by the channel (Shannon and Weaver,
1949, p. 45). This is analogous to I" in TM structure given above* Shannon
does not make a distinction between what I am calling Q and what I am calling
S, he does however note the difference in passage I cite. The difference resides
in how each can be used in a graphical representation of a communication
procedure. The same letter can be associated with different nodes on a graph,
but the node is important because it limits what future states a system can
evolve into.

§ - the transition function. This is an important difference from the TM formal-
ism.

P - a set of sets of probabilities p;(j), such for each state i (that is each g € Q),
the probability that the machine will enter state j (Shannon and Weaver, 1949,
p. 41).5

C - the capacity of the channel (Shannon and Weaver, 1949, pp. 36-37).

The Shannon-model of an ergodic source is closely related to the Nondeterministic
Turing Machine (Hopcroft et al., 2001, pp. 340-341).

Shannon’s is explicitly developed as a Markov process. For this reason I will
not devote any time in the next section arguing that a Communication Channel,
as modeled by Shannon, can be meaningfully interpreted as a Markov process.
The problem for Shannon’s model is to determine whether or not these particular
Markov processes provide an appropriate model of communication. If the appro-
priateness of a model is measured in terms of unique fit, or of structural similarity
to the modeled phenomena, the this picture of communication is, quite rightly,
doomed. On the other hand, if the utility of the model is fundamental, than the
various instances of communication in which this model has been deployed to good
effect, notably in telephone communication and theoretical cryptography.®

2.3. MARKOV PROCESS

Markov models unite the two different sorts of models just described. This will
be shown (or at least suggested) later in this section. The fact that both Turing

ON COMMUNICATION AND COMPUTATION 5

machines and Communication Channels are, for practical purposes, both instances
of another type of model is quite suggestive.

2.3.1. Example

Markov processes are usually illustrated with examples such as the following. As-
sume for a moment that random motion is the overriding influence on the positions
of the oxygen molecules in whatever room you now occupy. Furthermore, assume
that the state of the room, the state of the oxygen molecules in the room, can
be measured and recorded. I will use this example to illustrate how the Markov
processes are defined and will use it again below. Finally, in each moment, each
molecules can move at most some finite distance. Thus, according to this model,
the correct positions of the molecules in this room depend only the positions at the
previous moment, adjusted by their speeds and potentially by many collisions.

2.3.2. Specifications of a Markov Process

A Markov process can be represented by specifying each of the states through
which the process could evolve, symbolized by X; = (Q, p) where

n - a finite list of variables that will take particular values (enter states) as the
process evolves. One way to model the example given would be to provide each
molecule with a separate variable to track its position. This value, often known
as the time index, can be discrete or continuous, finite ro infinite, though the
treatment of each of these cases differs.” The subscript i in the equation above
varies over the set ot n’s. The important point to notice is that this number is
fixed by the specification of the process.

Q - the states that the variables may enter, in the example, a large collection of
positions distributed over each of the variables. The possibilities would corres-
pond to the possible positions in the room. Depending on how finely grained
our measurements are, some of the values may be reused (that is, two or more
molecules may be in the same position, assuming the values are widely space).

P - the collection of transition probabilities P; ; from one state, i to another
state j. We will represent the complete probabilities that each variable in a
particular collection will evolve in a certain way as a matrix, §; ; where each
row [represents a particular variable and each column j represent the states
into which those variables may evolve. The value associated each position in
this matrix indicates the chance that the variable in state Q; will evolve into
state 0».

In general, I have been and will be referring to Markov processes. In those cases
where the index takes discrete values, as with Turing Machines, the term Markov
chain is also appropriate.

The evolution of the processes over time is modeled by the successive multiplic-
ation of the transition matrix. In some cases, this converges on a final matrix.® The
analogy between these steps and the various internal states of a Turing Machine

6 PAUL BOHAN BRODERICK

should be fairly clear. The various Q introduced in the section on Communication
Channels above were specifically introduced as instances of a Markov process.

In addition to the above components, the Markov process is also limited by the
Markov (Completeness) Condition. For our purposes, this means that the transition
matrix expressed a complete set of probabilities (each row sums to 1) and that only
the transition matrix is used to compute new states (thus only the previous state is
used to compute new states, there is no “memory” beyond the most recent state.
As we shall see, Turing Machines violate the second part of the Markov Condition,
but acceptable approximation is possible.

In the notation I have been discussing, the Markov condition would be formu-
lated as follows:

Markov Condition: Given a chain of events in a process, X; — X, — X3, Then
the following two conditions hold:

L. P(X3|X2) = P(X3]X> - Xy1)

2. P(X53]7X,) = P(X31—X, - X1)
The idea behind the condition is that the probability of the current state is determ-
ined only by the immediately prior state and whatever path the machine might have
taken to get to that state does not effect this probability. If we’re choosing to look at
Turing Machines we have two relevant states that we might want to model, either
the internal state of the machine (Q above) or the total state of the machine) that
is Q plus the current contents of the external memory, whatever has been written
on the tape. The problem is that the tape has a potentially infinite number of states
while Markov chains have only a finite number of states. If we don’t include the
chain somehow in our model of TMs, then the Markov conditions will be violeted
since the prior states of the machine will have and effective way of altering the
probability of future states.

Generally, philosopher’s have made use of Markov chains to analyse casual
relations.” Here the point is to develop a general framework for discussing com-
putation and communication. The use of the Markovian framework suggests some
ways of loosening the Turing Machine structures to build non-deterministic models
of these phenomena. We will now explore the necessary loosening to make Turing
Machines into Markov processes. (Again, this is not to ignore the large literature
on non-deterministic TMs, but an attempt to see how the pieces fit together.)

2.4. MEMORY

Thus, the Markov process presents a very general and flexible way of talking about
how a system can evolve over time. Turing Machines are also an evolution of
a sort of states over time. The problem is that the Markov representation does
not include any formal way of discussing external memory. A TM effectively has
two types of memory, the external or explicit memory stored on the tape and the
implicit memory resulting from the finite number of methods of state-evolutions

ON COMMUNICATION AND COMPUTATION 7

that the machine could have passed through to achieve its current state. Finite
State Machines (FSMs), the less capable cousin of the Turing Machines, utilise
only this second sort of memory when computing tasks that require memory. So,
for instance a FSM that recognises strings consisting of two characters grouped
in sub-strings of equal length. No tape is required to keep track of how many of
one symbol has been considered in a particular sub-string. A Markov process has
an even more limited form of implicit memory than a Finite State Machine. As
presented, in some processes, not every set of previous evolutions can be preceded
by a particular current terminal state to the chain.

Consider again the placement of oxygen molecules in this room. They are
spread out in a roughly even pattern. Random fluctuations keep this relatively even
distribution, since each state have a close resemblance to the immediately prior
state. If the movement is really random, what is to prevent the oxygen from being
compressed into one corner of the room? There are very few possible states that
could, in a single step evolve into this state. Likewise, this state could only evolve
into a limited number of successor states. This special state then has a somewhat
vague memory since we can draw some conclusion about the prior steps in the
chain. For instance, the steps prior to the oxygen gathering in the corner of the
room are all steps in which the oxygen is relatively closer to that state than it is to
its almost homogenous distribution across the room. Most terminal states would, of
course, allow for a much greater range of immediately prior states. In any particular
TM, of the other hand, if the initial state of the machine is given, it should be
possible to recreate the path that the machine took to get to its current state. If the
input is not given, then the path may not be unique, so a collection of paths may
the best that could be hoped for.!?

The true Universal Turing Machine requires a sort of memory that violates the
Markov condition. The unlimited nature of the “tape” or explicit memory makes
the nth step in the machine’s evolution dependent upon the steps before the imme-
diately preceding (n—1) step. However, we aren’t interested just in the ideal Turing
Machine but in the systems that can be appropriately modeled by them. That is we
need a Markov process that is good enough to model any real world computation
that a TM is capable of modeling. To do this, allow as many empty variables as the
largest practical) real life machine might need and allow for each to take a value
of 0 or 1. In practical terms, each could be understood as a box on the machine’s
tape or as a memory location. So long as we don’t need to model the action of a
computer with an infinitely large hard drive, this approximation should be good
enough.

The preceding sections have assumed that computation and communication
can both be adequately modeled by Markov processes or Markov processes plus
explicit memory. This assumption is shared by most attempts to build models
of “information”. Even attempts at semantic-information models (as opposed to
Shannon’s “syntactic” or engineering model) may be recast on the insights shared
by the above (Markovian) formulations. Carnap and Bar-Hillel (1964) consider

8 PAUL BOHAN BRODERICK

the information of a particular sentence rather than a stream of information or
the informative value of some time dependent process. The communication meas-
ure suggested by Carnap and bar-Hillel maintains the Markovian character of the
Shannon model.

2.5. MARKOV PROCESSES AND THE MODELS OF COMPUTATION AND
COMMUNICATION

In order to draw out the similarities between TMs and relevant models of commu-
nication, I am going to treat both of them as if they were special sorts of Markov
process. !

The most famous Markovian model of communication was developed by Claude
Shannon (Shannon and Weaver, 1949). It is more unusual to consider Turing Ma-
chines as Markov process. There are good reasons to avoid this treatment. First, and
most importantly, Markov processes have no external memory. No tape to which
one can write intermediate steps in a computation. Thus, is would seem, Markov
processes should be useful for modeling Finite State Machines (FSMs), and they
can be so used. Unfortunately, there’s a world of difference between FSM and an
TM. Further, a Markov representation adds unnecessary complexity to an elegant
construction. Also, TM define deterministic procedures while the theory of Markov
processes are designed to account for probabilistic processes.

A TM, on my reading, is a Markov process with deterministic state-transitions
and no variation in either step duration or probability distribution'? that is supple-
mented with appropriate types of memory. The transition probabilities of a Turing
Machine are all set to 1. One way of putting this is that the transition matrix §;; is
simply a transition vector §;. On each possible input, there is only one possible state
into which the machine transitions. There is no need for the other columns of the
transition matrix of a more complex Markov Process. Since 1 is a valid probability,
this move does not do too much damage to the to the Markov formalism. Also,
since each row of the vector sums to 1 (is 1), the Markov completeness is not
violated.

3. Our Computation

In the previous section, I commented on how Turing Machine’s can be placed
next to Shannon’s Communication streams as applications of a broadly Markovian
framework. These models for computation and communication turned out to be
more similar than they might have at first seemed. If the models are similar, does
this imply that perhaps the phenomena to be modeled might have similar analogies.
In this section, I will attempt to show that what we typically mean by computation
and communication do share some affinities. To evade difficulties involved with

ON COMMUNICATION AND COMPUTATION 9

the appropriate definition of computation over symbols.'* I will start by trying to
define computation broadly as “whatever it is that a computer does”.

3.1. DEFINITION OF COMPUTER

The suitability of Turing Machines as models of cognitive processes has long been
in doubt. Turing Machines are traditionally the most popular models for electronic
computers. Writers, such as Donald Knuth who address modeling of saved program
computers have often preferred to avoid TMs in favour of less “comparatively real-
istic” (Knuth, 1997, p. 464) models. The differences between these are generally
taken to be negligible. It is exactly these differences, that I have been attempting
to exploit in this paper by considering these three different types of models. The
success of the various models can only be evaluated if one has some ideas about
what the models are supposed to model. We will now address this problem by
attempting to figure out what we mean by computer without reference to particular
electronic consumer goods.

DEFINITION 1. A computer is any member of that class of machines that are
capable of effectively computing a recursive function.

Each component of this definition shall be discussed in turn.'* An effective proced-
ure, in this case, an effective computation, is one that may be performed with per-
fect success. Although this notion may have interesting theoretical consequences,'”
it is possible to read too much into it. Effective procedures are extremely common,
since anything that does not allow for degrees of success (such as walking through a
door, passing a test, or living to 30) is an effective procedure. Limiting our attention
to effective procedure suppresses the possibility of borderline cases. Thus, this sort
of description breaks up the range of possible completions of the described pro-
cedure into a set of distinct, mutually exclusive possibilities. Hence, this definition
has a certain prejudice for digital machines over analog machines as the proper
exemplars of “computer”. Some notion of effectiveness is necessary to rule out
cases that arbitrarily compute functions,'® that is, that don’t compute anything in a
meaningful way, but may be described as computing any functions at all because of
the lack of conditions on what should count as a computations. Effectiveness does
rule this out, or least sets up the possibility of measuring a successful computation
once the specifics of the system have been determined.

The definition is not equivalent to the closely related notion of an instantiation
of a Universal Turing Machine (which has often been used as a definition of a
computer) since there aren’t any such things. Turing Machine perhaps, but not
universal ones. True universality depends on the allowance of an arbitrary amount
of time and memory for the execution of programs. Not only are these circum-
stances not available in the real world, but all systems that might be modeled
in interesting ways by finite state machines have been optimized, by either their

10 PAUL BOHAN BRODERICK

designers or natural selection, to execute particular functions efficiently with a
corresponding loss of efficiency in other realms. This loss of efficiency is strong
enough to prevent the execution of some tasks. Hence, a system optimized for
survival and reproduction is not doubt so inefficient in running spreadsheets that
they are arguable beyond that systems capacity. The same can be applied to the
spread-sheet optimized system’s capacity to find prey. I’ve already made use of
this unrealistic aspect of TM’s models in the argument above.

3.1.1. Recursion

The notion of recursive function possesses a deceptive simplicity. In computer
science,!” the notion of recursion is often applied in a broad fashion as the com-
plement of iteration. In this sense, recursion is a procedure which must be called
as part of itself, while an iterative procedure is performed multiple times as part of
a larger procedure, but never calls itself as part of itself. For instance, a recursive
procedure for finding the factorial of a number may be “multiply that number by
the factorial of the number which is one less than it”. The factorial of that number
is computed in the same fashion. The computation at any particular application of
the procedure cannot be completed until the number one is reached and then the
recursively defined procedure can begin working its way “back out”. An iterative
process for finding factorials is also possible. The iterative process is more complex
in that it requires two variables (one to keep track of the stage of the computation,
the other holds a value that approaches the final value of the factorial) while the
recursive definition only requires one. On the other hand, each step in the iterative
process requires the same amount of memory, so long as the number is within the
bounds that the machine can deal with, while the recursive definition requires an
amount of memory proportional to the size of the number to be computed. In this
broad sense, a recursive procedure is one which can be defined form a kernel of
basic scheme and a limited set of procedures to be performed on them. The results
of any application of the procedures to either the kernel or to previously defined
procedures counts as a procedure. The number of times that these procedures can
be carried out to define new procedures is limited only by practical concerns.
Turing Machines are commonly used to study recursion, especially in the con-
text of computation. Other methods are, of course, available. The varieties of recur-
sion were given their canonical formulation by Stephen Kleene (1964),'3 following
the work of Godel and others. At the base of the hierarchy are six schema (five
presented at the beginning of the paper, one derived). Any function is primitively
recursive if it is strictly equivalent to a binary function whose definition is ex-
pressible in one of these schemes. General recursive functions involve a set of
recursively defined equations returning a single numeric value (not necessarily 0
or 1 as in primitive recursion). Partial recursion refers to functions that may not
be defined over the entire range of possible arguments or are equivalent to sets of
equations that may not return any numeric value under certain circumstances. Sets

ON COMMUNICATION AND COMPUTATION 11

and predicates can also be recursive. Each of these sorts of recursion are actually
special cases of the general sort of recursion informally outlined just above. They
are recursions working from a kernel constituted by Kleene’s schema.!®. Note that
this relationship implies that the definition of computer currently under discussion
would not be endangered by a potential disproof of the Church-Turing Thesis.
That thesis states, in essence, that any possible set of basic procedures can, at most,
define the complete set of procedures defined using Kleene’s (or any equivalent)
method. Should Church-Turing fail, the definition would be held to work in the
more general, less formal sense glossed above. In practice, the more formal sense
is assumed as a propaedeutic to design (of software, machines and algorithms).
Nonetheless, the potential disproof of Church-Turing would raise some questions
about what it would mean for an artifact to implement such things. The guides to
the practice of Computer Science, such as Abelson et al. (1996), do not seem to
recognize any problem of that sort.

This sense of recursion was originally developed to address specific questions
that had developed in mathematical logic. It entered into this discussion because it
forms the central element of a common, perhaps the most common, definition of
computer. Somehow, this notion must be able to bridge the gap from the abstract
realm of decision problems to the more rough and tumble one where physical
machinery is designed and constructed from material components. Design prin-
ciples make this connection possible and those principles can be formulated most
effectively using some form of the analog-digital distinction.

Von Neumann Architecture. Within the category of computational artifacts, the
case of von Neumann architecture conformant machines deserve special attention.
In ordinary speech, we can avoid linguistic contortions by using von Neumann ma-
chines as a rough plan for what we mean by ‘computer’. The problem is that even
though most commercially available computers are von Neumann compliant, it
would not be too difficult to replace one with a similar beige box that carries out the
same functions but fails to meet the specifics of the von Neumann specifications.
Most, though not all, modern computers are examples of the von Neumann
architecture.’® The von Neumann Architecture could be considered a definition of
this class of computers. The von Neumann Architecture definition contrasts with
definition 1 in that it defines a variety of computer rather than trying to provide
a unifying notion of the entire class of computers. Von Neumann Architecture
only describes design features of computers, such as the use of registers rather
than accumulators in local memory,?! the explicit presence of at least two sorts
of memory?? and, most importantly, a central processor that performs all manip-
ulations. In short, the von Neumann Architecture is a blueprint for instantiating
a computer according to the definition given above under constraints of available
technology since about 1950.2* Production technology has changed a great deal
since that time, making other possible architectures feasible by economies of scale
and institutional momentum have prevented the alternatives from being as widely

12 PAUL BOHAN BRODERICK

accepted as the von Neumann Architecture. There is no powerful indication that
the von Neumann architecture is broken, so there is little chance that any suggested
fixes to this architecture will be adopted.

3.1.2. The Strengths of the Proposed Definition of Computer

One strength of this definition is that it gives no clue about the actual construction
of such a machine.?* The sort of agnosticism is appropriate because it includes both
analog and digital computers in all of their variety, including machines that con-
form to the von Neumann Architecture, as well as those that don’t; connectionist
machines, massively parallel machines, Alan Turing’s Automatic Computing En-
gines and the various information appliances that have come to inhabit our world.
The definition does admit of some borderline conditions. The humble steel coil
thermostat has often been called upon as an example of a machine that has some
interesting properties. As it ‘computes’ a function from the position if its input
device (either and analog dial or digital keypad) to the room temperature, usually
by implicity varying quantities hidden from view in the furnace. The problem with
the definition of a computer is also that it does not give any hint about how such a
machine could be constructed, the machine has been characterize at too high a level
of abstraction for that purpose. When components have been established as having
either analog or digital character, constraints have been placed upon the design
problem, the sorts of constraints necessary for planning a physical construction.

3.1.3. Problems with this Definition of Computer

Since the definition makes reference to the abstract features by which computers
are most frequently defined, it is in danger of lapsing into the unfortunate position
that either everything identifiable is a computer or that there are no computers. I
will refer to this as the “vacuity objection”. The vacuity objection has been raised
against most attempts to develop a working definition of what a computer is.

Many attacks® on the relevance of computational/informational pictures of
real-world phenomena accuse them of vacuity. This seems a non-vicious vacuity,
so long as we are capable of learning something from the picture. There is a real
danger if the phenomena may only be identified through these descriptions. That
shouldn’t be a problem in the definition of computers, since there are other ways of
identifying computers, specifically by identifying them as computers of a certain
type. Since the various types of computers are generally tied to some sort of phys-
ical description there should,’t be a problem with the use of more abstract pictures
of how these systems operate. One way around the vacuity objection would be to
limit the reference of ‘computer’ to those that clearly conform to an architecture
such as the von Neumann Architecture.

In Representation and Reality (Putman, 1998), Hilary Putman develops a set
of arguments that are meant to refute the position commonly known as function-
alism. The technical strength of this argument speaks directly to the distinction

ON COMMUNICATION AND COMPUTATION 13

between the practical construction and theoretical description of procedures. On
one reading of this argument, Putnam would be showing that not only is any thing
a computer, but everything is every computer. Philosophical discussions of compu-
tation become almost inevitably entangled with issues that more properly concern
cognition. Putnam observes, succinctly though perhaps with the wistfulness of one
who has gone down a path that in retrospect they might rather no have taken,
With the use of computer science, and entirely new paradigm of what a sci-
entific realist account of intentionality might look like presented. (Putman,
1998, p.108)
The point of Representation and Reality is that the development of symbol-based
computation does not, in fact, herald the development of a final-theory of human
psychology. I agree with this assessment, the rise of computer science does not
constitute a revolution in psychology. This implies that either computer science
does not raise any issues of philosophic importance,?® or that problems raised are
more novel than a rehash of traditional philosophical problems concerning human
cognition, such as the mind-body problem. Computers have interesting features,
grounded in their symbol manipulating capabilities, that are not shared by, say, a
rock.?’” Putnam presents a major challenge to this assertion when he suggests that
every finite automata is implemented by every open system, including rocks.
Putnam’s argument opposes not only the possibility of an ideal psychology, or
even a theory of intentionality, being constructed from a theory of computation but
of any sort of useful theory of computation. According to Putnam, theories of com-
putation deal in radically under-determined phenomena. That is, any computational
description may be, with the appropriate interpretation, applied to any physical sys-
tem. The appendix to Representation and Reality contains a proof based around the
construction of just such an interpretation for an arbitrary system (or open section
of space-time). In Putnam’s words, “Every ordinary open system is a realization of
every abstract finite automata” (Putnam, 1998, p. 122). Assuming that traditional
theories of computation are appropriate tools to study the operation of computers
(in the sense of electronic artifacts), these theories must work because people have
chosen, for whatever reason, the appropriate interpretation to connect operation
with physical construction.?® This is somewhat counter-intuitive proposal. The ar-
gument in Putnam’s appendix runs as follows. Take any system, arbitrarily defined
so long as it is open to the rest of the universe (that contains objects operating as
clocks) and operating according to something like Newtonian physics. The exterior
clocks may be used to divide the evaluation of the system into a requisite number
of time periods (1 for every state through which the system is supposed to evolve)
and the states of the system in each period are assigned a state name that can be
identified with the state name in the automata that is supposed to be described. Note
that in the system, time marks and primitive states of the system ar all arbitrary. In
fact, the system states are really names for whatever condition the system is in at
time ¢, rather than descriptions of those states. Presumably, this should be unprob-
lematic, since theories of computation describe the transition between states, and

14 PAUL BOHAN BRODERICK

not only any “content” or internal constitution of these states. Putnam’s models
of computations are, strictly speaking, Markov rather than Turning type models of
computation, as discussed in the first half of this paper.

In order to be successfully described using the vocabulary of computation the-
ory, a system must possess the characteristic of effectiveness. To be effective, a
system must have procedures that can be carried out with perfect success (positiv-
ity) and repeatability (reliability).>” This may seem to beg the question of arbitrary
description since any physical process might, under appropriate interpretation, be
described as effective. That is false. Some systems show relevant details at all levels
of resolution. Arbitrary systems make very poor computers, no matter what sort of
interpretation is used. Other systems, however, may be described using another sort
of description since details relevant to their macro-level description and behaviour
are manifest on the whole range of possible resolutions.

Putnam’s arguments speak to a central issue: computational theories are not
literal theories of the physical world, they are under-determined by physical real-
ity. In some trivial cases, this would be unavoidable since, for instance, vacuous
components can be added to a description in order to make a new theory that
also describes the same system.?° There is a stronger problem though in that any
computational description can be taken to describe any physical system.

David Chalmers (1996) offers a response to Putnam. Chalmers notes, correctly,
that the sorts of casual relations between states implicit to Putnam’s arguments are
not reliable.?! Because Putnam discusses systems that are open to arbitrary envir-
onmental influences (this is one of his assumptions) they will exhibit a sensitivity to
initial conditions, the hallmark of an analog system in the physical state. Chalmers
also argues that Putnam’s proof ignores the requirement that a physical system
implement the unrealized states that are explicitly modeled by a computational
representation. That is, computational models make counter-factual assertions that
are not captured by Putnam’s open physical system. Of course, this leads quickly
into a consideration of Putnam’s metaphysics that would fail outside the scope
of this dissertation. Chalmers seeks to reformulate the traditional computational
models (specifically Turing Machines) in terms of vectors that capture the sorts
of casual relations that would cause a physical system to properly instantiate a
computational system in a way that does not fail prey to Putnam’s proof. These
CSA (Casual State Automata) are theoretically interesting, in that they do provide
an answer to Putnam. Practically speaking, they make automatas more complicated
and there seems to be little need for more complexity. An understanding of the
bridging principles between computational and physical systems should be suffi-
cient. The conditions under which a particular machine can be held to implement
a particular model are pretty clear. Chalmer’s models captures a few of them, for
instance a machine might be held to realize a particular automata equivalent to an
algorithm for addition, say, rather than a different automata which implements the
same process because the casual relations within the machine more closely follow
the steps in the first automata’s model.

ON COMMUNICATION AND COMPUTATION 15

4. On Communication

The standard models used to describe the actions of computers apply as well to
to other sorts of devices, especially those used for communication. Under some
interpretations, the definition of computer collapses into that of communication
device® since the machine’s reality is seen as a social construct that enhances
human communication, and nothing else. While a telephone (at least of the ‘analog’
variety) is not a computer, it is an information processing device and is usefully
subject to all of the same descriptive models as the computer. Since any commu-
nication system with more than two nodes will have to incorporate some variety of
switching mechanism, telephones can even be described as Turing Machines.

DEFINITION 2. A communication device is a machine designed with the explicit
intention of delivering information between a source and a destination.

Communication devices need to be carefully distinguished from computers be-
cause they are easily distinguished only in theory and not so easily in practice.
There are computers in modern communication devices and most modern com-
puters have internal communication devices. Examples could probably be found
between any possible combination and permutation of these two sorts of devices.
Nonetheless, the sorts or arguments put forth in this chapter have depended on
features of computers no present in communication devices, so it will be necessary
to distinguish the two when looking at illustrative examples. Along with the ther-
mostat and the von Neumann architecture conformant computer, the telephone is a
test case used to illustrate the various differences. I have allowed an extra degree
of abstraction in the definition of these devices because there is simply no other of
making sense of them. Thus, while a computer may happen to be a communication
device and a communication device could be a computer, they are very different
sorts of things. The most important being that a communication device exists only
as part of a larger system, that includes identifiable sources and destinations, while
a computer is a system to itself.

4.1. COMPARISON

In everyday life, the distinction between computers and communication devices is,
at best, vague.

Either sort of device can be a partial constituent of a device of the other sort.
Most computers have devices that communicate among their various parts and most
modern system of communication contain many computers.

Both communication devices and computers depend on the same sorts of tech-
nology. These technologies may be grouped into at least two categories; those
that depend on a direct analogy between media (of transition) and phenomena
(or single source) and those that use some sort of heteronomous glossary to cir-
cumvent the need for such an analogy. Those are, respectively, analog and digital

16 PAUL BOHAN BRODERICK

technologies. Although both sorts of groundings can be used in both computers and
communication devices, their final purposes are quite different. A communication
device performs the miraculous task of reliably recreating a single at another point.
A computer on the other hand, performs tasks with inferential import. Now the
signals require some sort of interpretation to be understood, they require a sort
of semiotics. It is not a coincidence that Shannon’s monograph was titled The
Mathematical Theory of Communication and not the theory of computation. The
distinction between the communication devices and computers also corresponds
to the point at which communication theory leaves off and algorithmic theory
begins to be useful. When the added requirements of computers are considered,
there is a need for a brand of representation that relies on the physical properties of
representing tokens.

5. Conclusions

The analysis of terms in natural language is at best suspect. Without some serious
work recording usage in various contexts and without the knowledge of the speak-
ers, there’s no way to know if my observations about how these words are used
is correct for even a small group of English speakers. Even if it is correct, there’s
no guarantee that the usage of ordinary words corresponds to the natural structure
of the world. Communication and computation may be inexact concepts that don’t
really reflect operations in the world anymore than the sun actually rises in the
morning. Continued uses of these figures of speech maybe harmless, but there’s
philosophical moral to be drawn, at least not without some support from another
source.

Perhaps the most immediate is that without some discussion about the ordinary
use of these concepts, the similarities and differences between the associated mod-
els is not nearly as surprising. Given what is ordinarily taken as computation and
communication it is quite surprising that the most obvious difference between the
two is that one has deterministic state transitions and the other does not. This sur-
prise may very well accompany a “gee-whiz” moment. These moments are among
philosophy’s appeals. At worst, its a sort of philosophical joke. Jokes have their
place.

Hopefully, there is a deeper point. The concepts of ordinary language may not
be the only ones with questionable connections to any underlying reality. The
Turing and Shannon models aren’t necessarily completely accurate pictures of the
processes that are ordinarily referred to as computation and communication. The
Shannon-measure of information, in particular, has received considerable criticism.
May critics hold that while Shannon’s ordinarily talk about information. Ordinary
speech is a check to theoretical musings.

ON COMMUNICATION AND COMPUTATION 17

Notes

1Cartwright (1981). More recently, Cartwright (1999) has expressed a strong skepticism about ex-
actly the sort of models that I will be discussing. Her claim in this recent paper is that models using
the sort of screening conditions I will discuss are not universally valid. I do not intend to make any
claims to universal validity. If anything, this paper aims to deflate some claims of universal validity
2Notation here is a slight variation of the standard presentation of Hopcroft et al. (2001, p. 309).
3For example, see Hopcroft (2001, pp. 340-342).

4The analogs of g, B and F would all be members of this set, but they do not play any special role
in the proofs of the theory, so they are generally not given separate entries. S does include spaces and
other potentially spacial characters. See especially pp. 39—44.

SThis is equivalent to the 6 above in that it is not one to one, but one to many. The state that the
machine enters after entering a transition is determined by a probability measure.

6A good starting point to examine the relation of information theory and cryptography is Bruce
(1996, pp. 233-237).

7See Isaacson (1976) for details. Shannon makes use of all four cases at various times in his
presentation.

8Much of this discussion is based on Isaacson (1976) but especially pp. 12-23 for a discussion of
how this matrix is found (or not found).

9Though not always successfully, see Salmon (1998) for a discussion of a few of the more important
cases and some suggestions for future applications in probabilistic casuality

10Consider a TM for computing the residue of a number modulo 2, or the remainder of some number
after being divided by 2. The output of the computation will be either 1 or 0, but the sequence of states
that the machine had to go through to get there will be different depending upon the initial input of
the computation. If we don’t have the initial input, we can exclude most, but not all, sequences as
being the path taken.

1A Markov process or chain is not the same thing as a Markov algorithm. A Markov Algorithm
is a sort of automata that is equivalent to Turing Machines in building a model of computation.
For instance, see Curry (1977, p. 70). It does not help that the A.A. Markov (1903-1979) who
developed the theory of Markov algorithms is not the A.A. Markov (1856-1922) behind the Markov
processes.

12These last property means that it is a homogeneous Markov Process.

13 See, for instance, Fetzer (1994).

14Something like this is in wide use. Under most common definitions of algorithm, it reduces to “ A
computer is a machine that carries out an algorithm”.

158ee, for instance, Haugeland (1998).

16pytnam plays on a similar point, the potential ambiguity of what should count as computational
processes is a real hurdle to beginning a discussion of computation.

175ee the discussion at Abelson (1996, pp. 31-50)

18Hence, the Kleene Hierarchy.

19Alternatively, one could use a different set of basic functions, for example; the zero function, the
successor function and various identity functions. See Boolos (1980, p. 73)

20This concept is frequently confused with the idea of a von Neumann machine, or self-replicating
automata. The two are almost, but not entirely, unrelated.

20p register holds values while an accumulator adds a new value to its previous content.

22TMs also have two sorts of memory, but the von Neumann Architecture types are distinguished by
their access speed not by any sort of theoretical demands.

23Though it was not the only solution to the problem. For example Turing’s ACE (Turing, 1945) was
not von Neumann architecture compliant since it utilised accumulators.

18 PAUL BOHAN BRODERICK

24This definition should seem rather strange, almost as if an automobile has been defined as a
machine of a particular scale capable of effectively executing surface based navigation and trans-
portation of cargo. It’s pretty clear that this sort of definition is better than one depending on the
number of wheels or the use of an internal combustion engine. The most appropriate definitions for
artifacts refer to capacities to execute rather abstract processes.

25Searle (1980) and Putnam (1988) are commonly invoked in this regard.

26Although Putnam does not make this claim explicitly, his arguments do point in this direction. The
places where he seems to argue that computer science may not raise any philosophical questions are
in Chapters 5 and 6, where he develops his attack on functionalism

27 All references to terrestrial rocks follow Chalmers (1996).

28 contrast, I would argue that the theories are important because they are provide appropriate
design principles to build the computers. The physical system is constructed to fulfill the interpreta-
tion. This would make little sense if any physical system realizes every automata. The difference may
only be in how far along the spectrum between pure convention and ‘independent’ fact the principles
of information theory fall.

298ee Haugeland (1998, pp. 76-78).

30Such a move can be illustrated by adding extra states to a TM that the machine will never reach
because there are no defined transitions leading to those states.

31This is one of the two primary characteristics of digital phenomena, according to Haugeland.
32For instance, this would be a consequence of the position developed in Winograd and Flores
(1986).

References

Abelson, H., Sussman, G. and Sussman, J. (1996), Structure and Interpretation of Computer
Programs, Second Edition, Cambridge, MA: MIT Press.

Boolos, G. and Jeffrey, R. (1980), Computability and Logic, Second Edition, Cambridge: Cambridge
University Press.

Bruce, S. (1996), Applied Crytography, New York: Wiley.

Carnap, R. and Bar-Hillel, Y. (1964), ‘An Outline of Semantic Information’, in Language and
Information, Reading, MA: Addison-Wesley, pp. 221-274.

Cartwright, N. (1981), ‘The Reality of Causes in a World of Instrumental Laws’, PSA 2, pp. 38-48.

Cartwright, N. (1999), ‘Causal Diversity and the Markov Condition’, Synthese 121, pp. 3-27.

Chalmers, D. (1996), ‘Does A Rock Inplement Every Finite-State Automation?’ Synthese 108, pp.
309-333.

Curry, H. (1977), Foundations of Mathematical Logic, Dover.

Fetzer, J. (1994), ‘Mental Algorithms Are Minds Computational Systems?’ Pragmatics & Cognition
2(2), pp. 1-29.

Floridi, L. (2001), “What Is the Philosophy of Information?’ Metaphilosophy 33(1/2), pp. 123-45.
Also available at http://www.wolfson.ox.ac.uk/~floridi/index.html

Haugeland, J. (1998), ‘Analog and Analog’, in Having Thought: Essays in the Metaphysics of Mind,
Cambridge, MA: Harvard University Press.

Hopcroft, J., Motwani, R. and Ullman, J. (2001), Introduction to Automata Theory, Languages, and
computation, Second Edition, Boston, MA: Addison-Wesley.

Isaacson, E. and Madsen, R. (1976) Markov Chains: Theoory and Application, John Wiley & Sons.

Kleene, S. (1964), ‘General Recursive Functions of Natural Numbers’, in M. Davis, ed., The
Undecidable, New York: Raven Press, pp. 237-252.

Knuth, D. (1997), The Art of Computer Programming, 3rd Editon, Volume 1, Reading MA: Addison-
Wesley.

ON COMMUNICATION AND COMPUTATION 19

Putnam, H. (1988), Representation and Reality, Cambridge, MA: MIT Press.

Salmon, W. (1998), ‘Probablistic Causation’, in Causality and Explanation, Oxford: Oxford
University Press, pp. 208-232.

Searle, J. (1980), ‘Minds, Brains and Programs’, Behavorial and Brain Sciences 3, pp. 417-457.

Shannon, C. and Weaver, W. (1949), The Mathematical Theory of Communication, Urbana: The
University of Illinois Press.

Turing, A. (1945), ‘Proposals for Development in the Mathematics Department of an Automatic
Computing Engine’, in Mechanical Intelligence, Amsterdam: North Holland.

Winograd, T., and Flores, F. (1986), Understanding Computers and Cognition, Reading, MA:
Addison-Wesley.

