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Abstract: In this paper, we firstly review the neutrosophic set, 

and then construct two new concepts called neutrosophic 

implication of type 1 and of type 2 for neutrosophic sets. 

 Furthermore, some of their basic properties and some 

results associated with the two neutrosophic 

implications are proven.  
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1 Introduction 

Neutrosophic set (NS) was introduced by Florentin 

Smarandache in 1995 [1], as a generalization of the fuzzy 

set proposed by Zadeh [2], interval-valued fuzzy set [3], 

intuitionistic fuzzy set [4], interval-valued intuitionistic 

fuzzy set  [5], and so on. This concept represents 

uncertain, imprecise, incomplete and inconsistent 

information existing in the real world.  A NS is a set 

where each element of the universe has a degree of truth, 

indeterminacy and falsity respectively and with lies in] 0
-
 , 

1
+
  [, the non-standard unit interval.  

NS has been studied and applied in different fields 

including decision making problems [6, 7, 8], Databases 

[10], Medical diagnosis problem [11], topology [12], 

control theory [13], image processing [14, 15, 16] and so 

on. 

In this paper, motivated by fuzzy implication [17] and 

intutionistic fuzzy implication [18], we will introduce the 

definitions of two new concepts called neutrosophic 

implication for neutrosophic set. 

This paper is organized as follow: In section 2 some basic 

definitions of neutrosophic sets are presented. In section 3, 

we propose some sets operations on neutrosophic sets. 

Then, two kind of neutrosophic implication are proposed. 

Finally, we conclude the paper. 

2 Preliminaries 

This section gives a brief overview of concepts of 

neutrosophic sets, single valued neutrosophic sets, 

neutrosophic norm and neutrosophic conorm which will 

be utilized in the rest of the paper. 

Definition 1 (Neutrosophic set) [1] 

Let X be a universe of discourse then, the neutrosophic set 

A is an object having the form:  

A = {< x: , , >,x  X}, where the 

functions T, I, F : X→ ]−0, 1+[  define respectively the 

degree of membership (or Truth), the degree of 

indeterminacy, and the degree of non-membership 

(or Falsehood) of the element x  X to the set A 

with the condition.  

                     −
0 ≤  + + ≤ 3

+
.       (1)                              

From philosophical point of view, the 

neutrosophic set takes the value from real 

standard or non-standard subsets of ]
−
0, 1

+
[. So 

instead of ]
−
0, 1

+
[, we need to take the interval [0, 

1] for technical applications, because ]
−
0, 1

+
[will 

be difficult to apply in the real applications  such 

as in scientific and engineering problems.  

 

Definition 2 (Single-valued Neutrosophic sets) [20] 

Let X be an universe of discourse with generic 

elements in X denoted by x. An SVNS A in X is 

characterized by a truth-membership function 

, an indeterminacy-membership function 

, and a falsity-membership function ,  

for each point x in X, , , , [0, 

1].  

When X is continuous, an SVNS A can be written 

as                                                     

A=          (2)      

When X is discrete, an SVNS A can be written as 

 A=         (3)            

Definition 3 (Neutrosophic norm, n-norm) [19] 

Mapping : (]-0,1+[ × ]-0,1+[ × ]-0,1+[)
2
→ ]-

0,1+[  × ]-0,1+[ × ]-0,1+[  

 (x( , , ), y( , , )  ) = ( T(x,y), 

I(x,y), F(x,y), where 

 T(.,.), I(.,.), F(.,.)  

are the truth/membership, indeterminacy, and 

respectively falsehood/ nonmembership 

components. 
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 have to satisfy, for any x, y, z in the neutrosophic 

logic/set M of the universe of discourse X, the following 

axioms 

a) Boundary Conditions:  (x, 0) = 0,  (x, 1) = x.  

b) Commutativity:  (x, y) =  (y, x).  

c) Monotonicity: If x ≤y, then  (x, z) ≤  (y, z).  

d) Associativity:  (  (x, y), z) =  (x,  (y, z)). 

 represents the intersection operator in neutrosophic set 

theory. 

Let J {T, I, F} be a component. 

Most known N-norms, as in fuzzy logic and set the T-

norms, are:  

• The Algebraic Product N-norm: J(x, y) = x · y  

• The Bounded N-Norm: J(x, y) = max{0, x + 

y −1}  

• The Default (min) N-norm:  (x, y) = min{x, y}. 

A general example of N-norm would be this.  

Let  x( , , ) and  y ( , , )  be in the neutrosophic 

set M. Then:  

 (x, y) = ( ,  , )                         (4) 

where the “ ” operator is a N-norm (verifying the above 

N-norms axioms); while the “ ” operator, is a N-conorm.  

For example,  can be the Algebraic Product T-norm/N-

norm, so = ·   and  can be the Algebraic 

Product T-conorm/N-conorm, so = + - ·  

Or  can be any T-norm/N-norm, and  any T-conorm/N-

conorm from the above. 

 

Definition 4 (Neutrosophic conorm, N-conorm) [19] 

Mapping : ( ]-0,1+[ × ]-0,1+[ × ]-0,1+[ )2→]-0,1+[ × ]-

0,1+[ × ]-0,1+[  

 (x( , , ), y( , , )) = ( T(x,y), I(x,y), 

F(x,y)),  

where T(.,.), I(.,.), F(.,.) are the truth/membership, 

indeterminacy, and respectively falsehood/non mem-

bership components.  

 have to satisfy, for any x, y, z in the neutrosophic 

logic/set M of universe of discourse X, the following 

axioms:  

a) Boundary Conditions:  (x, 1) = 1,  (x, 0) = x.  

b) Commutativity:  (x, y) =  (y, x).  

c) Monotonicity: if x ≤y, then  (x, z) ≤  (y, z).  

d) Associativity:  (  (x, y), z) =  (x,  (y, z)) 

 represents respectively the union operator in 

neutrosophic set theory.  

Let J {T, I, F} be a component. Most known N-

conorms, as in fuzzy logic and set the T-conorms, are:  

• The Algebraic Product N-conorm:  J(x, y) = 

x + y −x · y  

• The Bounded N-conorm:  J(x, y) = min{1, x 

+ y}  

• The Default (max) N-conorm:  J(x, y) = max{x, 

y}. 

A general example of N-conorm would be this.  

Let x( , , ) and y( , , ) be in the neutrosophic 

set/logic M. Then:  

 (x, y) = (T1 T2, I1 I2, F1 F2)     (5) 

where the “ ” operator is a N-norm (verifying the 

above N-conorms axioms); while the “ ” 

operator, is a N-norm.  

For example,  can be the Algebraic Product T-

norm/N-norm, so T1 T2= T1·T2 and  can be the 

Algebraic Product T-conorm/N-conorm, so 

T1 T2= T1+T2-T1·T2. 

Or  can be any T-norm/N-norm, and  any T-

conorm/N-conorm from the above. 

In 2013, A. Salama [21] introduced beside the 

intersection and union operations between two 

neutrosophic set A and B, another operations 

defined as follows: 

Definition 5  

Let A, B two neutrosophic sets 
A  = min (   ,  ) ,max (  ,   ) , max(   , )  

A  B = (max (  , ) , max (  , ) ,min(  , )) 

A  B={ min (  ,  ), min (  ,  ), max (  , )}   

A  B = (max (  , ) , min (  , ) ,min(  , ))                                                                         

= (  ,   ,  ). 

 

Remark 

For the sake of simplicity we have denoted: 

 = min min max,  = max min min 

 = min max max,  = max max min. 

Where  ,  represent the intersection set and 

the union set proposed by Florentin Smarandache 

and  ,  represent the intersection set and the 

union set proposed by A.Salama. 

3 Neutrosophic Implications 

In this subsection, we introduce the set operations 

on neutrosophic set, which we will work with. 

Then, two neutrosophic implication  are 

constructed on the basis of  single valued 

neutrosophic set .The two neutrosophic 

implications  are denoted by   and . Also, 

important properties of  and  are 

demonstrated and proved. 

Definition 6 (Set Operations on Neutrosophic sets) 

Let  and  two neutrosophic sets , we propose 

the following operations on NSs as follows: 

  @   = (  ,  ,  )  where 

 < , ,    ,< , ,     

     = ( ,  , ) ,where  

< , ,    ,< , ,     

  #   = ( ,  ,  ) , where 

   < , ,    ,< , ,     

 B=(  + -   ,  ,  ) ,where  

   < , ,    ,< , ,     

 B= (   , + -  ,  + -  ), where 

 < , ,    ,< , ,     
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Obviously, for every two  and , (  @ ),  ( ), 

( ) ,  B and  B are also NSs. 

Based on definition of standard implication denoted by “A 

 B”, which is equivalent to “non A or B”. We extended 

it for neutrosophic set as follows: 

 

Definition 7  

Let A(x) ={<x,  ,  , > | x  X}     and 

B(x) ={<x,  ,  , > | x  X} ,  A, B   

NS(X).  So, depending on how we handle the 

indeterminacy, we can defined two types of neutrosophic 

implication, then  is the neutrosophic type1 defined as  

A  B ={< x,     ,     ,  

  > | x  X}                              (6) 

And  

  is the neutrosophic type 2 defined as 

 A  B =={< x,     ,    ,  

  > | x  X}                (7) 

by  and   we denote a neutrosophic norm (N-norm) and 

neutrosophic conorm (N-conorm). 

 

Note: The neutrosophic implications are not unique, as 

this depends on the type of functions used in N-norm and 

N-conorm. 

Throughout this paper, we used the function (dual) min/ 

max.  

Theorem 1    

For A, B and C   NS(X), 

i. A  B  C  =( A  C  )  ( B  C  ) 

ii. A   B  =( A  B  )  ( A  C  ) 

iii. A   C = ( A  C  )  ( B  C  ) 

iv. A   B  =( A  B  )  ( A  C) 

Proof 

 (i)  From definition in (5) ,we have 

A  B  C  ={<x ,Max(min(  , ), ) , Min(max 

( , ),  ) , Min(max (  , ), ) >| x  X}            (8)                     

and 

(A  C)  (B  C)= {<x, Min( max(  , ), 

max( , )) , Max (min (  , ), min (  , )),  Max(min 

(  , ), min (  , )) >| x  X}            (9)                                        

Comparing the result of (8) and (9), we get 

Max(min(  , ), )= Min( max(  , ), max(  , )) 

Min(max (  , ),  )= Max (min (  , ), min (  , )) 

Min(max (  , ), )= Max(min (  , ), min (  , )) 

Hence, A  B  C  = (A  C )  (B  C) 

(ii) From definition in (5), we have 

A   B ={Max( , min(  , )) , Min(  ,max 

( , ) ) , Min( ,  max (  , ) >| x  X}                  (10)                

and  ( A  B  )  ( A  C  ) = {<x, Min (max (  

, ), max(  , )) , Max (min (  , ), min (  , )), 

Max(min (  , ), min (  , ) >| x  X}                               

(11)                                                                                          

Comparing the result of (10) and (11), we get                                                                                     

Max( , min(  , ))= Min( max(  , ), 

max(  , )) 

Min(  ,max (  , ) )= Max (min (  , ), min 

(  , )) 

Min( ,  max (  , )= Max(min (  , ), min 

(  , )) 

Hence,   A   C = (A  C)  (B  C) 

 

(iii) From definition in (5), we have 

A   C ={< x , Max(max(  , ), ) , 

Min(min(  , ),  ) , Min(min (  , ), ) >| x 

 X}               (12)                                 

and 

(A  C)  (B  C) = {<x, Max( max(  , ), 

max(  , )) , Max (min (  , ), min (  , )), 

Min(min (  , ), min (  , )) >| x  X}         

(13)                                                                                        

Comparing the result of (12) and (13), we get                                                                                     

Max(max(  , ), )= Max( max(  , ), 

max(  , )) 

Min(min(  , ),  )= Max (min (  , ), min 

( , )) 

Min(min (  , ), )= Min(min (  , ), min 

(  , )), 

Hence,   A   C = ( A  C  )  (B  C) 

(iv) From definition in (5), we have 

A   B  ={<x, Max (  ,Max (   ,  )),  

Min (  , Max (  ,  )),  Min( , Min(   , )) 

>| x  X}  (14)            

and 

(A  B  )  (A  C ) = {<x, Max(max 

( , ), max(  , )) , Max (min (  , ), min 

(  , )), Min(min (  , ), min (  , )) >| x  

X}                              (15)                                                                                                                  

Comparing the result of (14) and (15), we get                                                                                     

Max (  , Max (   ,  )) = Max( max(  , ), 

max(  , )) 

Min (  , Max (  ,  )) = Max (min (  , ), min 

(  , )) 

Min ( , Min(   ,   )) = Min(min (  , ), min 

(  , )) 

hence, A   B  = ( A  B  )  ( A  C ) 

In the following theorem, we use the 

operators:  = min min max     ,  = max min 

min. 

Theorem 2 For A, B and C    NS(X), 

i. A  B  C  =( A  C  )  ( B  

C  ) 
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ii. A   B  =( A  B  )  ( A  C  ) 

iii. A   C = ( A  C  )  ( B  C  ) 

iv. A   B  =( A  B  )  ( A  C  ) 

Proof  

The proof is straightforward. 

In view of A  B ={< x,    ,    ,    >| x 

 X} , we have the following theorem: 

Theorem 3  

For A, B and C   NS(X), 

i. A  B  C  =( A  C  )  ( B  C  ) 

ii. A   B  =( A  B  )  ( A  C  ) 

iii. A   C = ( A  C  )  ( B  C  ) 

iv. A   B  =( A  B  )  ( A  C  ) 

Proof  

(i) From definition in (5), we have 

A  B  C  ={<x, Max(min(  , ), ), Max(max 

( , ),  ) , Min(max (  , ), ) >| x  X}          (16)                   

and 

( A  C  )  ( B  C  )= {<x, Min( max(  , ), 

max(  , )) , Max (max (  , ), max (  , )), 

Max(min (  , ), min (  , )) >| x  X}                (17)                                                                                                                                                      

Comparing the result of (16) and (17), we get   

Max(min(  , ), )= Min( max(  , ), max(  , )) 

Max(max (  , ),  )= Max (max(  , ), max (  , )) 

Min(max (  , ), )= Max(min (  , ), min (  , )) 

hence, A  B  C  = ( A  C  )  ( B  C  ) 

(ii) From definition in (5) ,we have 

A   B ={<x ,Max( , min(  , )) , Max(  , max 

(  , ) ) , Min( ,  max (  , ) >| x  X}            (18)           

and                    

 ( A  B  )  ( A  C  ) = {<x,Min( max(  , ), 

max(  , )) , Max (max (  , ),max (  , )), Max(min 

(  , ), min (  , )) >| x  X}                          (19)                                                                                                                 

Comparing the result of (18) and (19), we get   

Max( , min(  , ))= Min( max(  , ), max(  , )) 

Max(  ,max (  , ) )= Max (max(  , ), max (  , )) 

Min( ,  max (  , )= Max(min (  , ), min (  , )) 

Hence , A   B  =( A  B  )  ( A  C  ) 

(iii) From definition in (5), we have 

A   C ={<x, Max(max(  , ), ) , Max(max 

( , ),  ) , Min(min (  , ), ) >| x  X}           (20)                      

and 

( A  C  )  ( B  C  ) = {Max( max(  , ), 

max( , )) , Max (max (  , ), max (  , )), Min(min 

(  , ), min (  , )) }                                               (21)                                                                 

Comparing the result of (20) and (21), we get   

Max(max(  , ), )= Max( max(  , ), max(  , )) 

Max(max(  , ),  )= Max (max (  , ), max (  , )) 

Min(min (  , ), )= Min(min (  , ), min (  , )), 

hence, A   C = ( A  C  )  ( B  C ) 

(iv) From definition in (5) ,we have 

A   B  ={<x, Max (  , Max (   ,  )),  

Max (  , Max (  ,  )) ,  Min ( , Min(   ,   

))> | x   (22)           

and 

( A  B  )  ( A  C  )= Max( max(  , ), 

max(  , )) , Max (max (  , ), max (  , )), 

Min(min (  , ), min (  , ))    (23).                                                                                                             

Comparing the result of (22) and (23), we get   

Max (  , Max (   ,  )) = Max( max(  , ), 

max(  , )) 

Max (  , Max (  ,  )) = Max (max (  , ), 

max (  , )) 

Min ( , Min(   ,   )) = Min(min (  , ), min 

(  , )) 

hence , A   B  =( A  B  )  ( A  C ) 

Using the two operators  = min min max     , 

 = max min min, we have 

 

Theorem 4   

For A, B and C  NS(X), 

i. A  B  C  =( A  C  )  ( B  

C  ) 

ii. A   B  =( A  B  )  ( A  

C  ) 

iii. A   C = ( A  C  )  (B  C) 

iv. A   B  =( A  B  )  (A  C) 

Proof  
The proof is straightforward. 

Theorem 5  

For A, B    NS(X), 

i. A     =       

ii.   =  = A  

B 

iii.  = A  B 

iv.  B =       

v.   =  

Proof  

(i) From definition in (5) ,we have 

A    ={<x, max (  , ) ,min (  ,  ) , min 

(  ,  ) | x                     (24) 

and 
     ={ max (  , ) ,min (  ,  ) , min ( , 

 )}      (25) 
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From (24) and (25), we get     A    =       

(ii) From definition in (5), we have 

    ={<x, max (  , ) ,min (  ,  ) , min 

( , ) > | x                 (26) 

and 

= {<x, min (  ,  ),min (  ,  ) ,max 

(  , ) > | x                                                            

(27)              

From (26) and (27), we get       

= = A  B 

(iii) From definition in (5) ,we have 

 ={ <x, min (  ,  ), min (  ,  ), max 

( , ) > | x                                                         (28)   

and        

A  B={ min (  ,  ), min (  ,  ), max (  , )}      

                                                                                (29)                                                                         

From (28) and (29), we get      = A  B 

(iv) 

   B =      ={ <x, max (  , ) , min (  ,  ), 

min (  ,  ) > | x  

(v) 

  ={<x, max (  ,  ),min (  ,  ) , max (  , ) 

> | x                                                                 (30) 

and 

 ={<x,  max (  ,  ),min (  ,  ) , max 

( , ) > | x                                                       (31)                                           

From (30) and (31), we get    =  

Theorem 6  

For A, B    NS(X), 

i. =

 =  

ii.  =

=  

iii.  =

=  

iv.  =

=  

v.  =

 =  

vi.  =

 =  

 

Proof  

Let us recall following simple fact for any two real 

numbers a and b. 

Max(a, b) +Min(a, b) = a +b. 

Max(a, b) x Min(a, b) = a x b. 

(i) From definition  in (6), we have 

 = {<x,Max(  + -  

, ) ,Min(  , ) ,Min(  ) 

> | x                                              = (  + -

 ,  ,   

 =               (32)                       

and 

 = (  ,  , )  

(  + -   ,  ,  )  

= {<x, Max( ,  + -  ) ,Min( ,  

) ,Min(  ) > | x       (33) 

  =(  + -  ,  ,  )   

=                                                                         

From (32) and (33 ), we get the result ( i) 

 (ii) From definition in (6), we have 

= ( ,

, ) 

 = 

  = ( , , ) (  

,  ,  )   

 ={<x, Max ( ,  ) ,Min(

,  ,Min( , ) > | x 

 

    =  ,  , ) =         (34)                     

and 

= 

=  ,  , ) (  ,   + -  

,  + -  ) 

={< x, Max( ,  , Min (  ,  + -  

), Min (  ,  + -  ) | x } 

=  ,  , ) =    (35)                                                                                                                                                                                                                                  

From (34)  and (35 ), we get the result ( ii) 

(iii) From definition  in (6) ,we have 

=(

, , )  

( , ,  )  

= {<x , Max (  , ) ,Min( , 

), Min( , ) > | x  

 =(  ,  , ) 

 =                     (36)                                                                                                                                   

and 

=( ,  , ) 

 (    , + -  ,  + -   ) 

={<x, Max (  ,  ) ,Min( , + -  

), Min( ,  + -  ) > | x  
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= (  ,  ,   )=                   (37)                                        

From ( 36)  and (37), we get the result (iii). 

(iv) From definition in (6), we have 

= (  ,  ,  ,  + -  ) 

( ,  , ) 

  = {<x, Max (  + -   , ), Min(  , 

,), Min(  , ) > | x  

 = (  ,  , ) 

  =                                                                 (38)                                                                                    

and 

= (  ,  , ) ( 

 + -   ,  ,  ) 

 ={< x, Max (  ,  + -  ) ,Min( ,   

), Min( ,  ) > | x  

  = (  ,  , ) 

  =           (39)                                                         

From (38)  and (39), we get the result (iv). 

(v) From definition in (6), we have 

 = ( ,

, ) (  ,  , ) 

 ={<x, Max (  , ) ,Min( , 

), Min( , ) > | x  

 =  ,  , ) 

  =     (40)                                                      

and 

=(  ,  

, ) (    , + -  ,  + -   ) 

={<x, Max ( ,  ) ,Min(  

), Min( , ) > | x  

=  ,  , ) 

=                                                                    (41)                                                     

From (40)  and (41), we get the result (v). 

(vi)  From definition in (6), we have 

 =  

=  

 = ( ,

, ) (  + -   ,  ,  ) 

 ={<x, Max ( ,  + -   ) ,Min(  

 ), Min( ,  ) > | x  

 = (  + -   ,  ,  ) 

=                                                                  (42) 

 and 

 =(  ,  ,  + -  

(    , + -  ,  + -   ) 

={<x,  Max (  + -  ,   ) , Min ( + -  

), Min(  ,  + -  ) > | x  

 = (  + -   ,  ,  ) 

=                                                                (43)                                                                                      

From (42) and (43), we get the result (vi). 

The following theorem is not valid. 

 

Theorem 7 

For A, B    NS(X), 

i. =

  

=  

ii.  =

 

=  

iii.  =

 

=  

iv.  =

=  

v.  =

=  

vi.  =

=  

 

Proof 

The proof is straightforward. 

 

Theorem 8  

For A, B    NS(X), 

i. =

 =  

ii.  =

=  

iii.  =

=  

iv.  =

=  

v.  =

=  

vi.  =

=  

 Proof 
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(i) From definition  in (6), we have 

 = (  + -    ,   ,  

) (  ,  ,  )   

={<x ,  > | 

x  

=  

=( , ,  

=                                                                    (44)                                                                                                                               

and 

 

=

 

=

 

=  

=(  ,  , ) 

=                                                                   (45)                                                                                                                 

From ( 44)  and (45), we get the result (i). 

 

(ii) From definition  in (6) ,we have 

= 

 

=  

=(  ,  , ) 

=                                                               (46)                                                                                        

and 

={<x,(  ,  , ) 

( , , ) > | x  
= 

 

=  

=( ,  , ) 

=                                                                (47)                                                                                         

From (46)  and (47), we get the result (ii). 

(iii)From definition in (6), we have 

=  

=

 

=  

=  

=                 (48)                                                                                                     

and 

 =

  (  ,  ,  ,  + -  ) 

=

 

=  

=  

=       (49)                                                                                            

From (48) and (49), we get the result (iii). 

(iv) From definition in (6), we have 

 = 

=

  

=  

=  

=           (50)                                                                                                               

and 

= 

=

 

=  

=  

=               (51)                                                                                                      

From (50)  and (51), we get the result (iv). 

(v) From definition in (6), we have 

 = 

=  

=  

=  ,  , ) 

=     (52)                                                                                                                        

and 

Said Broumi and Florentin Smarandache, On Neutrosophic Implication 



16                                                                                                                                                                        Neutrosophic Sets and Systems, Vol. 2, 2014 

 

16 
 

= 

=  

=  

=  ,  , ) 

=                     (53)                                                                                                        

From (52)  and (53), we get the result (v). 

(vi) From definition in (2), we have 

  

=

 

=  

=  

=                                                                (54)                                                                                                                                     

and  

= 

=  

=  

=  

=                                                                 (55)                                                                                           

From (54)  and (55), we get the result (v). 

The following are not valid. 

 

Theorem 9  

1- =  

=  

2-  = 

=  

3-  = 

=  

4-  = 

=  

5-  =

=  

6-  =

 =  

8-  =

 =  

9-  =

 =  

Example  

We prove  only the (i) 

1-  = 

   (  ,  

,  ) 

={<x, max  (  ,  ) 

,max( , ) ,min (  , ) > | x  

={<x,   ,  ,  > | x 

  

The same thing, for  

 Then, 

=

 . 

 

Remark 

We remark that if  the indeterminacy values are 

restricted to 0, and the membership /non-

membership are restricted to  0 and 1. The results 

of the two neutrosophic implications and 

collapse to the fuzzy /intuitionistic fuzzy 

implications defined (V(A  ) in [17]  

 

Table  

Comparison of three kind of implications 

From the table, we conclude that fuzzy 

/intuitionistic fuzzy implications are special case 

of neutrosophic implication. 

Conclusion 

In this paper, the neutrosophic implication is 

studied. The basic knowledge of the neutrosophic 

set is firstly reviewed, a two kind of neutrosophic 

implications are constructed, and its properties. 

These implications may be the subject of further 

research, both in terms of their properties or 

comparison with other neutrosophic implication, 

and possible applications. 

 

<  

, > 

<  

, > 

A B A B V(A

 

< 0 ,1> < 0 ,1> < 1 ,0> < 1 ,0> < 1 ,0> 

< 0 ,1> < 1 ,0> < 1 ,0> < 1 ,0> < 1 ,0> 

< 1 ,0> < 0 ,1> < 0 ,1> < 0 ,1> < 0 ,1> 

< 1 ,0> < 1 ,0> < 1 ,0> < 1 ,0> < 1 ,0> 
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