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Professor Ingalls — in an article called "The comparison of Indian and Western 

philosophy" — made the following interesting observation (1954: 4): "In philosophizing 

the Greeks made as much use as possible of mathematics. The Indians, curiously, failed to 

do this, curiously because they were good mathematicians. Instead, they made as much use 

as possible of grammatical theory and argument." This observation should not — as goes 

without saying in our day and age — be read as a description of the Indian “genius” as 

opposed to that of the Greeks (at least not in some absolute sense), but as a reminder of the 

important roles that mathematics and linguistics have played as methodical guidelines in 

the development of philosophy in Greece and in India respectively. Ingalls appears to have 

been the first to draw attention to this important distinction. 

 He was not the last. Ingalls's observation has been further elaborated by J. F. (= 

Frits) Staal in a few articles (1960; 1963; 1965).1 Staal focuses the discussion on two 

historical persons in particular, Euclid and Påˆini, both of whom — as he maintains — 

have exerted an important, even formative, influence on developments in their respective 

cultures. Staal also broadens the horizon by drawing other areas than only philosophy into 

the picture. To cite his own words (1965: 114 = 1988: 158): 

 
"Historically speaking, Påˆini's method has occupied a place comparable to that 
held by Euclid's method in Western thought. Scientific developments have therefore 
taken different directions in India and in the West. Påˆini's system produced at an 
early date such logical distinctions as those between language and metalanguage, 
theorem and metatheorem, use and mention, which were discovered much later in 
Europe. In other Indian sciences, e.g., in mathematics and astronomy, as well as in 
later grammatical systems of Sanskrit, Prakrit, and Tamil, systematic abbreviations 

                                                
* This article has been inspired by the recent thesis of Agathe Keller (2000). I have further profited from 
comments on an earlier version by Pascale Hugon,  David Pingree and Kim Plofker. The responsibility for the 
opinions expressed and for mistakes remains mine. 
1 Cp. further note 9, below. Filliozat (1995: 40) observes: "Obviously in the mind of the Indian learned men 
the study of language held the place which mathematics held in the mind of the ancient Greek philosophers." 
See also Ruegg, 1978. 
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are used which not only are ingenuous but also constitute new adaptations of the 
same method." 

 

The statement “Scientific developments have therefore taken different directions in India 

and in the West” is of particular interest. It suggests that there are methodical differences 

between Euclid’s Elements and Påˆini’s grammar. Staal does not tell us what they are. On 

the contrary, he emphasizes their common features, as in the following passage (1965: 113 

= 1988: 157) 

[44] 
"When comparing Påˆini's system with Euclid's Elements, a characteristic of the 
latter, i.e., deduction, appears absent from the former. It is true that there is a kind of 
deduction in Påˆini's grammar: dadhyatra is deduced from dadhi atra, and other 
forms are similarly deduced with the help of rules. But such deductions do not seem 
to attain the same degree of generality as Euclid's proofs. However, the difference 
reflects a distinction of objects, not of structure. In Euclid's geometry, propositions 
are derived from axioms with the help of logical rules which are accepted as true. In 
Påˆini's grammar, linguistic forms are derived from grammatical elements with the 
help of rules which were framed ad hoc (i.e., sËtras). Both systems exhibit a 
structure of logical deduction with the help of rules, and both scholars attempted to 
arrive at a structural description of facts. In both systems, contradictions and 
unnecessary complications are avoided. In both cases, the aim is adequate and 
simple description." 

 

In the immediately following paragraph Staal does mention that there are differences 

(“More detailed investigations into the methods of Euclid and Påˆini would throw light on 

points of difference as well”), but he does not say which ones. Instead he mentions one 

more common feature: “Another common characteristic is the above-mentioned desire to 

shorten principles (where Euclid pays attention to minimum number, Påˆini to minimum 

length), while disregarding the length of derivations.” One looks in vain for a specification 

of the methodical differences between Euclid and Påˆini which might explain that 

"therefore" scientific developments have taken different directions in India and in the West. 

 Thirty years later Staal still emphasizes the importance of Euclid and Påˆini, and 

invokes them as typical examples of the scientific developments in their respective cultures. 

About Euclid he says (1993: 7): "The ancient Greeks developed logic and a notion of 

rationality as deduction best exhibited by Euclid's geometry. These discoveries contributed 

substantially to the development of Western science." About India he observes (1993: 22): 

"Ancient Indian civilization was an oral tradition and the oral transmission of the tradition 

became the first object of scientific inquiry. Thus arose two human sciences, closely related 

to each other in their formal structure: the sciences of ritual and language." The science of 

ritual, he points out, formulated ordered rules which express the regularities of Vedic ritual. 
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He then continues (p. 23-24): "The Sanskrit grammarians used rules of precisely this form 

and demonstrated in a similar manner why many of them have to be ordered. In 

consequence of metarules, rule-order and other formal properties of rules, Påˆini developed 

Sanskrit grammar as a derivational system in some respects more sophisticated than the 

deductive system of Euclid ..." But when one searches in this later publication for a 

specification of the methodical differences between Påˆini and Euclid, one is once again 

disappointed. Here, too, one finds rather an [45] emphatic statement to the effect that the 

two are essentially similar (1993: 24): 

 
"Science is universal and its main branches developed in all the great civilizations. 
... The great traditions of Eurasia are basically similar but there are differences 
between them in character and emphasis. West Eurasian science is characterized by 
an emphasis on nature and punctuated increases and decreases in theoretical and 
empirical sophistication; ... Indian science by formal analysis and an emphasis on 
human theory." 

 

The "therefore" of “Scientific developments have therefore taken different directions in 

India and in the West” still remains shrouded in mystery. 

 

The first question that has to be addressed at this point is the following: Is it true that 

scientific developments have taken different directions in India and in the West? Recall that 

Ingalls, in the passage cited above, observed that "the Indians, curiously, failed to [make as 

much use as possible of mathematics in philosophizing], curiously because they were good 

mathematicians." Indeed, the mathematical literature preserved in India is extensive, though 

little studied;2 M.D. Srinivas gives the following estimate (1990: 30): "The recently 

published ‘Source Book of Indian Astronomy’3 lists about 285 works published in 

mathematics and mathematical astronomy, of which about 50 are works written prior to the 

12th century A.D., about 75 are works written during 12-15 centuries and about 165 are 

works written during 16-19th centuries." A calculation on the basis of all the volumes of 

David Pingree's Census of the Exact Sciences in Sanskrit (including the one that was not 

yet accessible to the authors of the ‘Source Book of Indian Astronomy’) might reveal even 

larger numbers of works than this.4 Mathematics, astronomy and medicine5 were clearly not 

                                                
2 Cp. Pingree, 1981: 2: "classical astronomy and mathematics had virtually ceased to be studied or taught by 
the end of the nineteenth century. A new group of Indian and foreign scholars has, however, begun to work in 
these areas since World War II". 
3 The reference is to B.V. Subbarayappa and K.V. Sarma, Indian Astronomy: A Source Book, Bombay 1985. 
4 Note further that "[a]ccording to Pingree's estimation ... there still exist today some 100,000 Sanskrit 
manuscripts in the single field of jyoti˙ßåstra (astronomy, astrology, and mathematics)" (Yano, 1987: 50). 
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neglected in classical India. We shall see below that geometry, in any case, was not 

neglected in Vedic India either. 

 Should we then drop the thesis of the relative importance of geometry and grammar 

in Greece and India respectively? Did Påˆini not exert the influence that Ingalls and Staal 

attribute to him? Rather than drawing any such abrupt conclusion at his point, I would 

suggest that the thesis of Ingalls and Staal remains interesting, even though it needs, and 

deserves, closer attention, and may have to be tested against more evidence than it has been 

exposed to so far. It is an undeniable fact that many, if not all, classical Sanskrit authors had 

studied Sanskrit grammar and therefore undergone the influence of Påˆini and his early 

commentators. The extent to which this omnipresent influence affected philosophy and the 

sciences remains to be determined, but there is no [46] dispute over the fact that such an 

influence could have taken place, if for no other reason than that the authors concerned had 

spent time studying grammar. 

 One rather obvious question has rarely been asked, certainly not by Ingalls and 

Staal, viz. to what extent grammatical influence is noticeable in Indian mathematical 

literature, and the extent to which Påˆini's work may have provided a methodical guideline 

for the authors of mathematical texts.6 This question will gain in importance if we 

concentrate on the portions on geometry in Indian mathematical texts, because here we will 

be able to make a direct comparison with Euclid. If we find obvious differences in method 

between Euclid and classical Indian geometry, we may then ask whether and to what extent 

these differences are due to the influence of Påˆini.7 The fact that the geometry of Indian 

mathematical astronomy may ultimately derive from Euclidean geometry will make this 

question all the more poignant.8 

 Let me cite a second time the following passage from Staal's article "Euclid and 

Påˆini": "When comparing Påˆini's system with Euclid's Elements, a characteristic of the 

latter, i.e., deduction, appears absent from the former. It is true that there is a kind of 

deduction in Påˆini's grammar: dadhyatra is deduced from dadhi atra, and other forms are 

similarly deduced with the help of rules. But such deductions do not seem to attain the same 

degree of generality as Euclid's proofs. However, the difference reflects a distinction of 

                                                                                                                                               
5 On Indian medical literature see, in particular, Meulenbeld, 1999 f. 
6 I am aware of two exceptions. One is Singh, 1990, which tries to show, not very convincingly, "that 
algebraic inclination of ancient Indian mathematics was strongly related to foundational attitude developed by 
linguistic tradition" (p. 246). The other exception is Filliozat, 1995. 
7 For some reflections on the limited influence exerted by Påˆini's grammar on philosophy in India, see 
Bronkhorst, forthcoming. 
8 On the Greek influence on Indian astronomy, see Pingree, 1971; 1993. On the extent to which Greek 
geometry influenced Indian geometry, see also Shukla's remark cited in note 47, below. 
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objects, not of structure."9 This statement claims that the fact that deductions of a certain 

type are present in Euclid and absent in Påˆini is due to the distinction between the objects 

which these two sciences are dealing with. It strongly suggests that a competent Indian 

dealing with geometry rather than with grammar would use the same kind of deductions as 

Euclid. 

 This, of course, is a testable suggestion, and the remainder of this article is meant to 

test it against the evidence provided by Bhåskara's commentary on Óryabha†a's 

Óryabha†¥ya, one of the earliest texts that provides us first-hand information about classical 

Indian geometry in practice. Before however doing so, it will be useful to specify somewhat 

more precisely what the methodical influence of Påˆini's would look like. What are the 

principal characteristics of Påˆini's grammar? 

 This question was already raised in the Mahåbhå∑ya of Patañjali, a grammatical 

work dating from the second century B.C.E. whose study accompanied that of Påˆini's 

grammar throughout most of the classical period. That is to say, students who had to 

acquaint themselves with Påˆini's grammar also had to learn the analysis of its method that 

is [47] presented in the Mahåbhå∑ya. This analysis occurs in the introductory chapter of the 

Mahåbhå∑ya (the Paspaßåhnika), no doubt the best known portion of this work. Starting 

from the position that grammar should teach words, Patañjali then raises the question as to 

how this is to be done. There are far too many of them to be enumerated one by one. 

Patañjali then continues:10 Words must be learned by means of general principles and 

specific features, laid down in general rules and exceptions. This is indeed how Påˆini's 

grammar works: rules are formulated that are as general as is possible; where necessary 

exceptions are added to make sure that the general rule will not be applied where this is not 

desired. The greatest possible generality, in combination with extreme concision of 

expression, constitute the two most important characteristics of Påˆini's grammar. 

                                                
9 Cp. Joseph, 1991: 217-219: “An indirect consequence of Panini’s efforts to increase the linguistic facility of 
Sanskrit soon became apparent in the character of scientific and mathematical literature. This may be brought 
out by comparing the grammar of Sanskrit with the geometry of Euclid — a particularly apposite comparison 
since, whereas mathematics grew out of philosophy in ancient Greece, it was, as we shall see, partly an 
outcome of linguistic developments in India. The geometry of Euclid's Elements starts with a few definitions, 
axioms and postulates and then proceeds to build up an imposing structure of closely interlinked theorems, 
each of which is in itself logically coherent and complete. In a similar fashion, Panini began his study of 
Sanskrit by taking about 1700 basic building blocks — some general concepts, vowels and consonants, nouns, 
pronouns and verbs, and so on — and proceeded to group them into various classes. With these roots and 
some appropriate suffixes and prefixes, he constructed compound words by a process not dissimilar to the 
way in which one specifies a function in modern mathematics. Consequently, the linguistic facility of the 
language came to be reflected in the character of mathematical literature and reasoning in India.” 
10 Mahå-bh I p. 6 l. 3-7: katham tarh¥me ßabdå˙ pratipattavyå˙/ kiµcit såmånyaviße∑avat lak∑aˆaµ 
pravartyaµ yenålpena yatnena mahato mahata˙ ßabdaughån pratipadyeran/ kiµ punas tat/ utsargåpavådau/ 
kaßcid utsarga˙ kartavya˙ kaßcid apavåda˙/ kathaµjåt¥yaka˙ punar utsarga˙ kartavya˙ kathaµjåt¥yako 
'pavåda˙/ såmånyenotsarga˙ kartavya˙/ 
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 With this in mind we can turn to the mathematical texts. The Óryabha†¥ya of 

Óryabha†a (= Óryabha†a I) dates from 499 (Pingree) or 510 (Billard) C.E., and contains a 

chapter on mathematics entitled Gaˆitapåda which is "the earliest text of this genre that we 

have" (Pingree, 1981: 56).11 The Óryabha†¥ya is written in åryå verses which mainly 

contain rules formulated in a highly condensed form. The rules of the Gaˆitapåda in part 

concern arithmetic, in part geometry. Indeed, the commentator Bhåskara (to be introduced 

below) clearly states that mathematics (gaˆita) is twofold: arithmetic and geometry, or 

perhaps more precisely: arithmetic of quantities and arithmetic of geometrical figures.12  

 From among Óryabha†a's rules, let us concentrate on the probably best known 

theorem of Euclidean geometry, viz. the Pythagorean theorem. This theorem finds 

expression in the first half of verse 17 of the Gaˆitapåda, which reads:13 "The square of the 

base [of a right-angled trilateral] and the square of [its] upright side is the square of the 

hypotenuse." No more is said about it: no proof is given, no examples and no diagrams.  

We have seen that Staal looks upon the concision of Indian mathematical texts as an 

adaptation of Påˆini's method. Others maintain that this conciseness is a sign of the 

scientific character of Óryabha†a's text, as does Pierre-Sylvain Filliozat in the following 

passage:14 

 
"Cette forme littéraire, en particulier le recours à l'ellipse de l'expression et de la 
pensée, a une autre raison d'être, en plus de l'obéissance à la convention culturelle 
d'un pays et d'une époque. Elle a une utilité de caractère scientifique, en ce qu'elle 
relève de la formalisation. Les intellectuels indiens ont reconnu très tôt l'aide 
apportée à la pensée par l'économie de l'expression, l'outil efficace qu'est un langage 
technique abrégé. Le premier exemple de formalisation scientifique dans l'histoire 
universelle des sciences semble bien être le formulaire de linguistique qu'est le sËtra 

                                                
11 Cp. Prakash Sarasvati, 1986: 157: "for the first time we find Óryabha†a ... in his Óryabha†¥ya describing 
[mathematics] as a special section (Gaˆitapåda). Brahmagupta ... also followed Óryabha†a in this respect and 
gave the science of calculation (gaˆita) a special place in his treatise on astronomy. The Siddhånta treatises 
earlier than those of Óryabha†a and Brahmagupta do not contain a chapter exclusively devoted to gaˆita (the 
SËrya-Siddhånta and the Siddhåntas of Vasi∑†ha, Pitåmaha and Romaka are thus without gaˆita chapters)." 
Also Hayashi, 1995: 148: "Bhåskara (A.D. 629) tells us that Maskar¥, PËraˆa, Mudgala and other ‘åcåryas’ 
(teachers) composed mathematical treatises, but none of them is extant now. We can only have a glimpse of 
Indian mathematics of those early times through the extant astronomical works of Óryabha†a, Bhåskara, and 
Brahmagupta, only a few chapters of which are devoted to mathematics proper." It should of course not be 
forgotten that much geometry is to be found in texts dealing with mathematical astronomy. 
12 Óryabha†¥ya Bhå∑ya p. 44 l. 18: gaˆitaµ dviprakåram: råßigaˆitaµ k∑etragaˆitam. Cp. Hayashi, 1995: 62. 
13 Óryabha†¥ya 2.17ab: yaß caiva bhujåvarga˙ ko†¥vargaß ca karˆavarga˙ sa˙. 
14 Filliozat, 1988: 255-256. Another way of looking at the same characteristic is expressed in Pingree, 1978: 
533, which speaks about the corrupt tradition of the earliest surviving Sanskrit texts: "The cause of this 
corruption is usually that the texts had become unintelligible; and this unintelligibility is not unrelated to the 
style developed by Indian astronomers. The texts proper were composed in verse in order to facilitate 
memorization, with various conventions for rendering numbers into metrical syllables. The exigencies of the 
meter often necessitated the omission of important parts of mathematical formulas, or contributed to the 
imprecision of the technical terminology by forcing the poet to substitute one term for another. ..." 
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de Påˆini et qui se caractérise par l'emploi d'une métalangue et le passage obligé au 
niveau de [48] la plus grande généralité afin de permettre l'application d'une formule 
unique au plus grand nombre possible de cas particuliers. Óryabha†a n'a pas poussé 
la formalisation aussi loin que le grammairien. Mais il ne l'a pas ignorée. Il n'a pas 
de métalangue à proprement parler, mais il a son vocabulaire technique et surtout il 
vise le plus haut degré de généralité dans ses propositions. Ceci est une des valeurs 
scientifiques de son oeuvre." 

 

Filliozat is right in that the Pythagorean theorem is presented in its most general form. 

Instead of enumerating a number of values valid for specific rectangular triangles (3 : 4 : 5; 

5 : 12 : 13; etc.) Óryabha†a formulates this rule for all possible rectangular triangles, and for 

all possible values of its sides. One might consider the possibility that the very (re-

)discovery of, and interest for, the Pythagorean theorem (and of other theorems) by Indian 

mathematicians is due to the obligation to formulate their knowledge in as concise, and 

therefore as general, a form as possible.15 But it must be added that the Gaˆitapåda, perhaps 

because of this same "Påˆinian" conciseness, presents the Pythagorean theorem (and many 

other theorems, as we will see) without a proof, and therefore without a hint as to why we 

should accept it. One might be tempted to conclude from this that the search for brevity, 

which turned out to be such a great advantage for grammar, was a mixed blessing for 

mathematics. We will see below that such a conclusion would not do full justice to all the 

available evidence. 

 [The part of Brahmagupta's Bråhmasphu†asiddhånta (628) dedicated to geometry 

(12.21-47) is as concise as Óryabha†a's text, and much the same could be said about it. The 

Pythagorean theorem is formulated as follows:16 "Subtracting the square of the upright from 

the square of the diagonal, the square-root of the remainder is the side; or subtracting the 

square of the side, the root of the remainder is the upright: the root of the sum of the 

squares of the upright and side is the diagonal." Here too, no proof, no examples, no 

diagrams. 

                                                
15 Filliozat, 1995: 46 mentions the "high degree of generality" — which includes a general formulation of the 
Pythagorean theorem, "the first theorem enunciated in the history of Sanskrit mathematics" (p. 48) — as "a 
quality which [a Íulba-sËtra] shares only with Påˆini's model". 
16 Sharma, 1966, vol. III p. 829 (= Bråhmasphu†asiddhånta 12.24): karˆak®te˙ ko†ik®tiµ vißodhya mËlaµ 
bhujo bhujasya k®tim/ prohya padaµ ko†i˙ ko†ibåhuk®tiyutipadaµ karˆa˙//. Tr. Colebrooke, 1817: 298. As a 
matter of fact, the Pythagorean theorem occurs several times, in several guises, in this portion of the text; e.g. 
12.22cd: svåvådhåvargonåd bhujavargån mËlam avalamba˙ (tr. Colebrooke: "The square-root, extracted from 
the difference of the square of the side and square of its corresponding segment of the base, is the 
perpendicular"); 12.23cd: karˆak®tir bhËmukhayutidalavargonå padaµ lamba˙ (tr. Colebrooke: "[In any 
tetragon but a trapezium,] subtracting from the square of the diagonal the square of half the sum of the base 
and summit, the square-root of the remainder is the perpendicular"); 12.42ab: jyåvyåsak®tiviße∑ån 
mËlavyåsåntarårdham i∑ur alpa˙ (tr. Colebrooke: "Half the difference of the diameter and the root extracted 
from the difference of the squares of the diameter and the chord is the smaller arrow"). 
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 A third text on mathematics which may perhaps date from a period close to 

Brahmagupta (Hayashi, 1995: 149), the Bakhshål¥ Manuscript, contains in its preserved 

portions little about geometry (see Hayashi, 1995: 97): essentially only the sËtra which 

Hayashi calls N14 (p. 401; Sanskrit p. 221 f.; English translation p. 322 f.). This sËtra, 

which prescribes a way to calculate the volume of a particular solid, is accompanied by an 

example. The fragmentary state of this text does not allow us to draw far-reaching 

conclusions.] 

 It is not altogether fair to judge highly condensed fundamental texts from classical 

India without taking into consideration that such texts were always accompanied by one or 

more commentaries, whether oral or written. This is true for Påˆini's A∑†ådhyåy¥, which 

was the [49] starting point for an extensive commentatorial tradition, and which must have 

been accompanied by some kind of commentary from the very beginning. Patañjali's 

Mahåbhå∑ya — which is a commentary on the A∑†ådhyåy¥, even though a special kind of 

commentary — was composed well before the beginning of the common era. More 

straightforward commentaries on the A∑†ådhyåy¥ no doubt existed from an early time 

onward, and even if the oldest surviving commentary of this nature — the Kåßikå V®tti — 

is a relatively late text (around 700 C.E.), it is known that earlier such commentaries 

existed.17 Óryabha†a's text, too, may initially have been studied under the guidance of a 

teacher, who would orally provide many of the elements that are lacking in the verses. 

Written commentaries were subsequently composed, the earliest ones of which have not 

survived. The earliest mathematical commentary that has survived18 is the Óryabha†¥ya 

Bhå∑ya19 of Bhåskara (= Bhåskara I), which dates from 629 C.E.20, i.e. almost exactly from 

the same year as Brahmagupta's Bråhmasphu†asiddhånta. By contrast, the earliest surviving 

commentary on Brahmagupta's Bråhmasphu†asiddhånta — P®thËdakasvåmin's Vivaraˆa — 

dates from 864, and belongs to the later period of Ír¥dhara and others which will not be 

considered here. 

 It is in Bhåskara's Óryabha†¥ya Bhå∑ya, then, that we will look for the elements that 

are so obviously missing from Óryabha†a's Gaˆitapåda — assuming, for the sake of 

                                                
17 Bronkhorst, forthcoming2: § 2. 
18 An exception may have to be made for the examples accompanying the sËtras of the Bakhshål¥ 
Manuscript. 
19 This is the name here adopted for the combined text consisting of the Daßag¥tikåsËtra-vyåkhyå and the 
Óryabha†a-tantra-bhå∑ya, expressions apparently used by Bhåskara himself to designate the two parts of his 
commentary (on chapter 1 and on the remaining chapters respectively); see Shukla, 1976: xlix. 
20 The Gaˆitapåda of Bhåskara's Óryabha†¥ya Bhå∑ya has recently been studied and translated by Agathe 
Keller (2000). Reading her thesis has inspired me to write this article and helped me in the interpretation of 
many passages. 



Påˆini and Euclid   9 
 
 
argument, that Staal's assessment of Indian geometry is correct.21  Three of these elements 

have already been mentioned. What is primarily missing in the fundamental text are a proof 

of the theorem concerned, examples of how and where it can be applied, and where 

necessary one or more geometrical diagrams that facilitate visualizing the theorem and its 

proof; in view of the Indian commentatorial customs in other areas we may also expect to 

find explanations and (re-)interpretations of the exact formulation of the basic text, where 

necessary. 

 With this fourfold expectation in mind we turn to the Óryabha†¥ya Bhå∑ya on 

Gaˆitapåda 17ab. We do indeed find here an explanation of the words of the basic text 

(which in this case is very short, given the unproblematic formulation of the theorem)22, 

followed by examples (tasks with solutions, all of which concern triangles the lengths of 

whose sides relate to each other as 3 : 4 : 5) and diagrams. The only thing that is lacking is 

a proof of the theorem! 

 For a reader schooled in Euclidean geometry this is very surprising. An important, 

nay fundamental, theorem of geometry is presented, explained and illustrated by Bhåskara 

without proof!23 This absence [50] of proof does not stop Bhåskara from frequently using 

this theorem elsewhere in his commentary. He cites it — in the form given to it by 

Óryabha†a in verse 17ab — in his comments on Gaˆitapåda 6ab (p. 56 l. 5), 6cd (p. 58 l. 

14-15), 17cd (p. 103 l. 12-13), and uses it implicitly at many other occasions. The theorem 

is already implied in the explanation-cum-etymology which Bhåskara gives of the difficult 

term karaˆ¥ "surd" in his introductory remarks to verse 1:24 "The karaˆ¥ is [so called] 

because it makes (karoti) the equation of the diagonal (c) and the sides (a and b) [of a 

rectangle] (a2 + b2 = c2)."  

 It goes without saying that the absence of a proof in the case of the Pythagorean 

theorem raises the question whether any proofs are presented in connection with other 

theorems. This question has been investigated by Takao Hayashi in the Introduction of his 

                                                
21 It is known that a number of classical commentaries imitated the style of the Mahåbhå∑ya, sometimes 
calling themselves "Vårttika" (Bronkhorst, 1990). Bhåskara's Bhå∑ya does not adopt this so-called "Vårttika-
style". 
22 Óryabha†¥ya Bhå∑ya p. 96 l. 15: yaß ca bhujåvarga˙ yaß ca ko†ivarga˙ etau vargau ekatra karˆavargo 
bhavati. 
23 In order to avoid misunderstanding it must here be emphasized that I am aware of the fact that proof 
(Euclidean or other) does not appear to be essential to geometry in many cultures; see below. The present 
discussion on the absence of proof in Bhåskara and elsewhere finds its justification in the comparative 
approach adopted in this article, inspired by the remarks of Ingalls and Staal cited in its first pages. 
24 Óryabha†¥ya Bhå∑ya p. 44 l. 17: karˆabhujayo˙ samatvaµ karoti yasmåt tata˙ karaˆ¥; tr. Hayashi, 1995: 
62. The dual is strange, and one wonders whether the original reading may not have been: bhujayo˙ 
karˆasamatvaµ karoti yasmåt tata˙ karaˆ¥. For a discussion of the term karaˆ¥ in various mathematical texts, 
see Hayashi, 1995: 60-64. 
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book The Bakhshål¥ Manuscript (1995), where he studies in particular the use of the terms 

pratyaya(-karaˆa) and upapatti. We will consider some of the passages concerned below, 

but note here already that Hayashi arrives at the following conclusion (p. 76): "As a matter 

of fact ... we can hardly find proofs or derivations of mathematical rules in Bhåskara's 

commentary on the Óryabha†¥ya."  

 To illustrate this point, we shall consider a passage which might at first sight create 

the impression that it does provide — or rather: hint at — a proof of a rule; we will see that 

it doesn't. The rule concerned is presented in the second half of verse 17: "In a circle the 

product of the two sagittas of the two arcs [that together constitute the circle] equals the 

square of half the chord."25  

 

A B

C

E

D

 
Fig. 1: CD x DE = AD2 

[51] 

That is to say: CD x DE = AD2. This rule can easily be proved with the help of the 

Pythagorean theorem: 

AC2 = AD2 + CD2 

AE2 = AD2 + DE2 

CE2 = (CD + DE)2 = AC2 + AE2 = AD2 + CD2 + AD2 + DE2 

CD2 + DE2 + 2 x CD x DE = CD2 + DE2 + 2 x AD2 

CD x DE = AD2 q.e.d. 

Bhåskara does not however do so, at least not at the beginning of his comments on this rule. 

Instead he gives a large variety of examples (tasks with solutions), which cover more than 

six pages of the edition. Having provided (numerical) solutions to all the problems 

                                                
25 Gaˆitapåda 17cd: v®tte ßarasaµvargo 'rdhajyåvarga˙ sa khalu dhanu∑o˙. 
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Bhåskara then states:26 "The verification (pratyayakaraˆa) in the case of all these surfaces 

[is obtained] with the [rule according to which] ‘the square of the hypotenuse equals the 

sum of the squares of the two rectangular sides’." In spite of the impression which this 

statement might create, this is not a reference to the proof of the theorem, but a reminder 

that the Pythagorean theorem can be used, instead of the present theorem, to carry out the 

calculations and find the solutions to the problems discussed. That is to say, the 

Pythagorean theorem can be used to verify the solutions that had been reached with the help 

of the other theorem. This may be a justification of sorts of that theorem, but hardly a proof 

in any of its usual senses.27 

 

If we follow Staal in thinking that the study of geometry should more or less automatically 

lead to deductions of the Euclidean kind, then the absence of proofs in Bhåskara's 

commentary demands an explanation. It might then be symptomatic of a fundamental 

difference between Indian and Greek geometry. This difference in its turn, still according to 

Staal, might be due to the methodic influences of Påˆini and Euclid respectively. Is it 

conceivable that Påˆini's grammar may have had this effect on classical Indian geometry? 

Let us consider some aspects of this question in more detail.28  

 Påˆini’s grammar, as was pointed out above, had been studied by all or almost all 

classical Brahmanical scholars in whatever disciplines, as well as by others (such as 

Buddhist and Jaina scholars). It is almost superfluous to recall that Bhåskara’s commentary 

contains ample signs that its author, too, was thoroughly acquainted with it (even though 

his text, in its edited form, contains a number of grammatical infelicities; see note 59 

below). The fourth appendix to K.S. Shukla's edition of the text enumerates eight 

quotations from Påˆini's A∑†ådhyåy¥, one from its [52] Dhåtupå†ha, ten from Patañjali's 

Mahåbhå∑ya,29 one from Bhart®hari's Våkyapad¥ya,30 and one passage referring to the list of 

                                                
26 Óryabha†¥ya Bhå∑ya p. 103 l. 12-13: pratyayakaraˆaµ ca sarve∑v eva k∑etre∑u "yaß caiva bhujåvarga˙ 
ko†¥vargaß ca karˆavarga˙ sa˙" ity anenaiveti. 
27 Earlier authorities have already drawn attention to the absence of proofs in early classical Indian 
mathematics. So e.g. Kline, 1972: 190, as cited in Srinivas, 1990: 76 n. 2: "There is much good procedure and 
technical facility, but no evidence that [the Hindus] considered proof at all." See however below. 
28 Parallel to the hypothesis here considered to the extent that Påˆini may have exerted a negative influence 
on the development of certain sciences in India, is Lloyd's (1990: 87 f.) observation that the influence of 
Euclid's Elements on the development of Greek science was not only positive. Lloyd draws attention in 
particular to medicine and physiology, certain areas of mathematics itself, and to the extent to which problems 
in physics and elsewhere had a tendency to be idealized (exactness may be obtained only at the cost of 
applicability). 
29 This enumeration is not exhaustive even with regard to passages identified in the text. Passages from the 
Mahåbhå∑ya are identified p. 3 l. 7-9, p. 8 l. 1-2, p. 23 l. 25-26; but they are not mentioned in the appendix. 
30 It is tempting to see, furthermore, in the line loke ca na so 'sti gaˆitaprakåra˙ yo 'yaµ v®ddhyåtmako 
'pacayåtmako vå na bhavati (p. 44 l. 6-7; introducing Gaˆitapåda 1) a reflection of Vkp 1.131ab: na so 'sti 
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sounds that precedes Påˆini' s grammar (the "ÍivasËtras"). This enumeration is however far 

from complete.31 A quotation from the Mahåbhå∑ya that has not been identified by the 

editor is the line såmånyacodanåß ca viße∑e 'vati∑†hante (p. 39 l. 23; p. 55 l. 12-13), which is 

cited from the Mahåbhå∑ya on Påˆ. 4.1.92 vt. 3.32 Other quotations that could be added to 

the list are the following. The comparison yathå ‘k∫iti ca’ ity atra luptanirdi∑†o gakåra˙ (p. 

9 l. 18-19) refers, without saying so, to a discussion in the Mahåbhå∑ya on Påˆ. 3.2.139. 

The line yaß ca sarvaß ciraµ j¥vati sa var∑aßataµ j¥vati (p. 13 l. 16) echoes a line from the 

Paspaßåhnika;33 d®∑†ånuvidhitvåc chandasa˙ (p. 14 l. 22) is part of Påˆ. 1.1.6 vt. 1; i∫gitena 
ce∑†itena nimi∑itena mahatå vå sËtraprabandhena [ca] åcåryåˆåm abhipråyo gamyate (p. 34 

l. 16-17) is quoted from the Mahåbhå∑ya on Påˆ. 6.1.37;34 tåtsthyåt tåcchabdyam (not 

°chåbdyam; p. 35 l. 10) occurs on Påˆ. 5.4.50 vt. 3.35 Particularly interesting is the line 

anitya˙ samåsåntavidhi˙ (p. 23 l. 22); this reflects a position taken in the Mahåbhå∑ya on 

Påˆ. 6.2.197 (III p. 140 l. 6: vibhå∑å samåsånto bhavati) but is identical in form with a 

grammatical paribhå∑å which we find, perhaps for the first time, in Vyå∂i's Paribhå∑åv®tti 

(no. 69: samåsåntavidhir anitya˙; Wujastyk, 1993: I: 70).36 Equally interesting is Bhåskara's 

use of the grammatical expression sambandhalak∑aˆå ∑a∑†h¥ (p. 38 l. 2), which does not 

appear to occur in the Mahåbhå∑ya, but which is attested in the Kåßikåv®tti (on Påˆ. 7.1.90). 

The editor has furthermore not identified a i uˆ ® ¬k (p. 18 l. 16), which is "ÍivasËtra" 1 & 2. 

To this must be added that there are many implied references to sËtras of Påˆini. One 

occurs on p. 60 l. 8-9 of the edition, where the correct reading must be anyapadårthena 
(rather than anyapådårthena) samapariˆåhaßabdena k∑etråbhidhånåt , which means: 

"because the expression samapariˆåha — [being a bahuvr¥hi compound and therefore] 

referring to something else [on account of Påˆ. 2.2.24: anekam anyapadårthe (bahuvr¥hi˙)] 
— would denote the field". Similarly, p. 116 l. 2-3: triråßi˙ prayojanam asya gaˆitasyeti 
trairåßika˙ "the trairåßika (‘rule of three’) is called thus because three quantities (triråßi) are 

the purpose (prayojana) of this calculation" contains an implicit reference to Påˆ. 5.1.109 

prayojanam, which prescribes the suffix †haÑ (= ika). The immediately preceding line trayo 
                                                                                                                                               
pratyayo loke ya˙ ßabdånugamåd ®te. Cp. however na so 'sti  puru∑o loke yo na kåmayate ßriyam in 
Jagajjyotirmalla’s Ílokasårasaµgraha, quoted from the Hitopadeßa (Lindtner, 2000: 60, 65). 
31 Many of the following quotations from the Mahåbhå∑ya could be identified thanks to the electronic version 
of that text prepared by George Cardona. No attempt has been made to identify all quotations from the 
Mahåbhå∑ya. 
32 Mahå-bh II p. 246 l. 6: såmånyacodanås tu viße∑e∑v avati∑†hante. 
33 Mahå-bh I p. 5 l. 28: ya˙ sarvathå ciraµ j¥vati sa var∑aßataµ j¥vati. 
34 Mahå-bh III p. 32 l. 4-5. 
35 Mahå-bh II p. 437 l. 2. Mahå-bh II p. 218 l. 15-16 (on Påˆ. 4.1.48 vt. 3) gives as example of tåtsthyåt: 
mañcå hasanti, where Bhåskara gives mañcå˙ kroßanti. 
36 The Kåßikå on Påˆ. 6.4.11 has samåsånto vidhir anitya˙ with variant reading samåsåntavidhir anitya˙. 
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råßaya˙ samåh®tå˙ triråßi˙ "three quantities combined are [called] triråßi" implicitly refers 

to Påˆ. 2.1.51 (taddhitårthottarapadasamåhåre ca) and 52 (sa∫khyåpËrvo dvigu˙) which 

prescribe the compound called samåhåra dvigu, which is a kind of tatpuru∑a. P. 7 l. 3 

tasmin krakace [53] bhava˙ kråkacika˙ and p. 11 l. 3 navånte bhavaµ navåntyam similarly 

refer to Påˆ. 4.3.53 tatra bhava˙; p. 180 l. 15 ådau bhavati iti ådya˙ to Påˆ. 4.3.54 

(digådibhyo yat). P. 2 l. 4 ktvåpratyayena pËrvakålakriyå 'bhidh¥yate evokes Påˆ. 3.4.21 

samånakart®kayo˙ pËrvakåle (ktvå 18). In a way each and every analysis of a compound — 

of which there are numerous instances in the Óryabha†¥ya Bhå∑ya, even though their 

technical names are rarely used — can be considered an implicit reference to Påˆini's 

grammar. The influence of Patañjali's Mahåbhå∑ya on early mathematical literature can also 

be deduced from the fact that Bhåskara refers to the works of Maskari(n), PËraˆa and 

Mudgala as providing the lak∑aˆa and the lak∑ya of various branches of mathematics; these 

are precisely the terms used in the Paspaßåhnika of the Mahåbhå∑ya to designate grammar: 

lak∑aˆa designates the sËtras, lak∑ya the objects to be studied, i.e. words in the case of 

grammar.37 It is in this context interesting to note that Bhåskara refers to Óryabha†a's text 

using these same expressions lak∑aˆa and sËtra: lak∑aˆa infrequently, e.g. p. 74 l. 3; sËtra 

very often.38 This means that Bhåskara, like Patañjali, uses the terms lak∑aˆa and sËtra as 

synonyms. This is particularly clear on p. 49 l. 16, where the two are simply juxtaposed to 

each other; p. 51 l. 12 cites a lak∑aˆasËtra. [It is clear from his discussion that these sËtras 

do not always coincide with the verses of Óryabha†a,39 but can be parts of them. An 

extreme case is verse 19 of the Gaˆitapåda, in which Bhåskara distinguishes no fewer than 

five different sËtras.40] 

 

The presentation of geometrical theorems without proof raises the question whether perhaps 

proofs were known to the authors concerned, but were not recorded in their texts because 

their literary model — Påˆini's grammar and its commentaries, as well as other texts that 

had adopted this model — did not really leave place for them. It is at least conceivable that 
                                                
37 Compare Óryabha†¥ya Bhå∑ya p. 7 l. 7-8 (etad ekaikasya granthalak∑aˆalak∑yaµ 
maskaripËraˆamudgalaprabh®tibhir åcåryair nibaddhaµ k®taµ ...) with Mahå-bh I p. 12 l. 15-17 
(lak∑yalak∑aˆe vyåkaraˆam [vt. 14]/ lak∑yaµ ca lak∑aˆaµ caitat samuditaµ vyåkaraˆaµ bhavati/ kiµ punar 
lak∑yaµ lak∑aˆaµ ca/ ßabdo lak∑ya˙ sËtraµ lak∑aˆam/) 
38 David Pingree (private communication) informs me that this employment of sËtra became common in 
commentaries on mathematical and astronomical texts. In other disciplines the word sËtra refers much less 
commonly to a metrical mËla text; two texts that do so are the Yuktid¥pikå (on the Såµkhyakårika) and the 
Abhidharmakoßabhå∑ya. 
39 They can coincide with verses, in which case Bhåskara, in the first chapter, uses the expression g¥tikåsËtra 
(or g¥tikasËtra, g¥tisËtra; e.g. Óryabha†¥ya Bhå∑ya p. 1 l. 10-11, p. 7 l. 13 & 16, p. 11 l. 14 & 20, etc.), 
elsewhere åryåsËtra (e.g. p. 247 l. 20). 
40 Óryabha†¥ya Bhå∑ya p. 105 l. 12-17; p. 107 l. 10-11. 
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Óryabha†a and Bhåskara (or the mathematicians from whom they took their material) 

practiced geometry on a more abstract level than is evident from their writings, making sure 

that the theorems they presented to their readers were based on solid proofs.41 One would 

be free to think so, were it not that these two authors present some theorems that are quite 

simply wrong.42 This cannot but mean that these theorems were not based on solid proofs, 

for no such proofs are possible. (It does not exclude the possibility that some form of 

verification existed; this system of verification, if it existed, was not however capable of 

discovering and correcting these errors.) 

 Óryabha†a is wrong where he gives the volume of a pyramid as:43 "Half the product 

of the height and the [surface of the triangular base] [54] is the volume called ‘pyramid’." 

The correct volume of a pyramid is a third, not half, of the product here specified. In spite 

of this, Bhåskara accepts Óryabha†a's rule and carries out some (incorrect) calculations with 

its help. The same is true of Óryabha†a's incorrect rule for the volume of a sphere.44 

 Óryabha†a's incorrect rules have drawn the attention of scholars, some of whom 

have tried to interpret the rules differently, so as to obtain a correct result.45 Filliozat and 

Mazars object to such a reinterpretation in a joint publication (1985), pointing out that 

Bhåskara's comments do not support it.46 They further make the following important 

observation (p. 40): "Il faut comprendre Óryabha†a, non pas dans ses seuls résultats 

transposés en formules modernes, mais dans sa propre culture intellectuelle." In a more 

recent publication, Filliozat states (1995: 39): "It is an error to actualise the ideas of past 

scientists, to transpose in modern terminology their ancient expressions." 

                                                
41 So Hayashi, 1994: 122: “Neither the Óryabha†¥ya nor the Bråhmasphu†asiddhånta contains proofs of their 
mathematical rules, but this does not necessarily mean that their authors did not prove them. It was probably a 
matter of the style of exposition.” 
42 D.E. Smith (1923: 158) claims to find faulty theorems in Brahmagupta's Bråhmasphu†asiddhånta, but most 
of his cases concern a rule (12.21ab) which is presented as approximate (sthËla) by its author. His one 
remaining case — a formula for the area of quadrilaterals that is presented as being valid without restriction, 
but is in reality only valid for cyclic quadrilaterals (12.21cd) — may have to be interpreted differently: J. 
Pottage, at the end of a detailed study (1974), reaches the following conclusion (p. 354): "I have been unable 
to accept that Brahmagupta could have imagined that his rules would apply to all quadrilaterals whatsoever". 
43 Óryabha†¥ya Gaˆitapåda 6cd: Ërdhvabhujåtatsaµvargårdhaµ sa ghana˙ ∑a∂aßrir iti. 
44 Cp. Óryabha†¥ya Gaˆitapåda 7: samapariˆåhasyårdhaµ vi∑kambhårdhahatam eva v®ttaphalam/ 
tannijamËlena hataµ ghanagolaphalaµ niravaße∑am// "Half the even circumference multiplied by half the 
diameter is precisely the fruit (i.e., the area) of a circle. That (the area) multiplied by its own square root is the 
exact volume (lit. the without-a-remainder solid fruit) of a sphere." (tr. Hayashi, 1997: 198; similarly Clark, 
1930: 27). Bhåskara also provides an approximate, "practical" (vyåvahårika), rule for calculating the volume 
of a sphere (p. 61 l. 27): vyåsårdhaghanaµ bhittvå navaguˆitam ayogu∂asya ghanagaˆitam "Having divided 
[into two] the cube of half the diameter multiplied by nine, the calculation of the volume of an iron ball [has 
been carried out]." 
45 Filliozat and Mazars (1985) mention Conrad Müller (1940) and Kurt Elfering (1968; 1975; 1977). 
46 See also Hayashi, 1997: 197-198. Smeur, 1970: 259-260 presents a hypothesis to explain how the incorrect 
rule for the volume of a sphere might have come into being. 
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 Filliozat and Mazars are no doubt right in this, and one would expect that they might 

try to explain Óryabha†a's errors in the light of "sa propre culture intellectuelle". 

Unfortunately they don't do so. These errors remain a total mystery to them, as is clear from 

the concluding words of their article (p. 46): 

 
"L'existence de telles erreurs chez le grand mathématicien est certes surprenante. 
Elle l'est encore plus chez Bhåskara, puisque nous savons que son contemporain 
Brahmagupta connaissait, au moins pour le volume de la pyramide, la formule 
exacte." 

 

And yet is seems obvious that these mistakes do throw light on the intellectual culture of 

their authors. It seems inevitable to conclude that the theorems propounded by Óryabha†a 

and Bhåskara were apparently not accompanied by proofs, not even in private, not even 

outside the realm of the written commentary.47 They were handed down as received truths, 

with the result that incorrect theorems were not identified as a matter of routine by any 

student who checked the proofs.48 Bhåskara confirms that he regards the theorems and 

other information contained in Óryabha†a's work as received truths in his commentary on 

the first chapter, the G¥tikåpåda. Here he states, under verse 2, that all knowledge derives 

from Brahmå; Óryabha†a pleased Brahmå on account of his great ascetic practices and 

could then compose, for the well-being of the world, the ten G¥tikåsËtras on planetary 

movement (chapter 1), as well as the one hundred and eight åryå verses on arithmetic (ch. 

2), time (ch. 3) and the celestial globe (ch. 4).49 Elsewhere (p. 189 l. 14-15) he calls 

Óryabha†a at¥ndriyårthadarßin "seeing things that are beyond the reach of the senses". It is 

further noteworthy that in the third [55] chapter, the Kålakriyåpåda, Bhåskara cites, under 

verse 5, a verse from an earlier (non-identified) astronomical  text — about the months in 

                                                
47 Keller (2000: 188) suggests the following explanation: "Bhåskara semble considérer qu'il y a une 
continuité entre la figure plane et la figure solide. Cette continuité pourrait servir d'explication aux formules 
fausses de l'Óryabha†¥ya. Ainsi, la lecture du calcul sur le volume du cube repose sur la lecture du vers qui 
fournit l'aire du carré. Le volume du cube est le produit de l'aire du carré par la hauteur (V = A x H). De même 
le volume de la sphère est la racine carrée de l'aire multipliée par l'aire (V = A x √A). Le volume de la Sphère 
semble encore une fois être le produit d'une aire et d'une «hauteur» que représente numériquement la racine-
carré de l'aire. L'aire d'un triangle équilatéral est le produit de la moitié de la base et d'une hauteur (A = �B x 
H). Dans la continuité de cette aire, le volume du tétraèdre est donné avec la même pondération: la moitié de 
l'aire du triangle équilatéral et de la hauteur (V = �A x H)." Similarly Plofker, 1996: 62: "This error ... 
suggests that in this case reasoning by analogy led Óryabha†a astray." Shukla (1972: 44) observes: "It is 
strange that the accurate formula for the volume of a sphere was not known in India. This seems to suggest 
that Greek Geometry was not known at all in India ..." 
48 Contrast the errors of Óryabha†a and Bhåskara with the situation in classical Greece: "One of the most 
impressive features of Greek mathematics is its being practically mistake-free. An inspectable product in a 
society keen on criticism would tend to be well tested." (Netz, 1999: 216) 
49 Óryabha†¥ya Bhå∑ya p. 11 l. 23 - p. 12 l. 1: anenåcåryeˆa mahadbhis tapobhir brahmårådhita˙/ ... / ato 
'nena lokånugrahåya sphu†agrahagatyarthavåcakåni daßa g¥tikåsËtråˆi gaˆitakålakriyågolårthavåcakam 
åryå∑†aßatañ ca vinibaddham/ 
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which the sun passes the summer and winter solstices — and calls it Sm®ti, more precisely: 

our Sm®ti (p. 182 l. 9: asmåkaµ sm®ti˙); he bolsters this position with an argument based 

on M¥måµså, unfortunately not completely clear in all its details, but which in outline looks 

as follows: this Sm®ti has to be accepted, for it is neither in conflict with the Íruti, nor with 

perception. Calling a text Sm®ti and insisting that it conflicts neither with the Íruti nor with 

perception amounts to granting it the same authority as the Veda itself, and maintaining that 

it cannot be wrong. 

 It seems clear from what precedes that there is little space in Bhåskara's geometry 

for proofs, and none at all for definitions and axioms, the starting points of perfect proofs. 

This raises the following fundamental question. If the geometrical figures dealt with by the 

Indian mathematicians under consideration are not constituted of elements laid down in 

definitions,50 what then is the geometry of Óryabha†a and Bhåskara about? If its triangles, 

circles, pyramids and spheres are not abstractions, what then are they? 

 We may find a clue to the answer in the following passage of Bhåskara's Bhå∑ya on 

Gaˆitapåda verse 11:51 

 
"We, on the other hand, maintain that there is a chord equal to the arc [which it 
subtends]. If there were no chord equal to the arc [it subtends], an iron ball would 
not be stable on level ground. We infer from this that there is an area such that the 
iron ball rests by means of it on the level ground. And that area is the ninety-sixth 
part of the circumference. 
Other teachers, too, have accepted a chord equal to the arc [which it subtends, as is 
clear from] the following quotation: ‘From the body of a sphere, a hundredth part of 
its circumference touches the earth’."52 

 

Both Bhåskara's own words and the line he cites seem to confuse the surface of a sphere 

and the circumference of a circle. This may for the moment be looked upon as a detail.53 

                                                
50 The Greek situation tends to be idealized. A closer study of the evidence leads Netz (1999: 95) to the 
following assessment: "Greek mathematical works do not start with definitions. They start with second-order 
statements, in which the goals and the means of the work are settled. Often, this includes material we identify 
as ‘definitions’. In counting definitions, snatches of text must be taken out of context, and the decision 
concerning where they start is somewhat arbitrary."  
51 Óryabha†¥ya Bhå∑ya p. 77 l. 9-15: vayaµ tu brËma˙: asti kå∑†hatulyajyeti/ yadi kå∑†hatulyajyå na syåt tadå 
samåyåm avanau vyavasthånam evåyogu∂asya na syåt/ tenånum¥mahe kaßcit pradeßa˙ so 'st¥ti yenåsåv 
ayogu∂a˙ samåyåm avanåv avati∑†hate/ sa ca pradeßa˙ paridhe˙ ∑aˆˆavatyaµßa˙/ kå∑†hatulyajyå 'nyair apy 
åcåryair abhyavagatå: tatparidhe˙ ßatabhågaµ sp®ßati dharåµ golakaßar¥råt iti. 
52 The quoted line is problematic, not only because of the neuter ending of ßatabhågaµ, but even more so on 
account of golakaßar¥råt where one would expect something like golakaßar¥ratvåt. Shukla (1976: lxiv) 
translates: "Due to the sphericity of its body, a sphere touches the Earth by one-hundredth part of its 
circumference"; Hayashi (1997: 213) has: "A hundredth part of its circumference touches the ground because 
of its having a spherical body." 
53 Kim Plofker reminds me that one cannot balance a circle on level ground because it would fall over 
sideways; no confusion may therefore be involved here. 
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The most important thing to be learnt from this passage is that for Bhåskara — and no 

doubt for other teachers as well — spheres and circles are no (or not only) abstract objects, 

but (also) concrete things whose features are at least to some extent determined by their 

behavior in the world of our daily experience. A sphere, we learn, has to have flat surfaces, 

for only thus can it be stable on level ground. 

 The question of the absence of proofs in Indian geometry acquires a different 

dimension once it is clear that Euclidean and classical Indian geometry may not really 

concern the same objects. The objects of classical Indian geometry — its triangles, circles, 

spheres etc. — [56] are no mere abstractions, but things present in the outside world. (The 

fact that the use of triangles formed by such imprecise things as shadows and flames 

inevitably implies that the mathematician worked with idealized objects, does not 

necessarily contradict this.) As such they resemble the objects of grammatical analysis far 

more than do Euclidean diagrams. The objects of grammar — sounds, words, phrases — 

are there in the outside world, and grammar is therefore a science which deals with objects 

whose existence is quite independent of the volition of the grammarian. To invoke 

Patañjali's words: one does not visit a grammarian when in need of words as one visits a 

potter when one needs a jar.54 In other words, the objects of grammar, unlike pots, are not 

fashioned in accordance with the wishes of their users. Elsewhere Patañjali states:55 "Words 

are authoritative for us; what the word says is our authority." Once again, words do not 

adjust to grammarians, but grammarians follow the dictates of words. Grammar presents 

multiple linguistic data with the help of rules that are as general as possible, but that cannot 

go against the data of language. Similarly, the rules of classical Indian geometry describe 

numerous geometrical forms that exist in the outside world with the help of rules that are as 

general as possible. The fact that these rules describe concrete objects rather than 

mathematical abstractions has as consequence that they may often be generalizations from 

concrete observations, rather than general statements derived from first principles.56 The 

                                                
54 Mahå-bh I p. 7 l. 28 - p. 8 l. 1: gha†ena kåryam kari∑yan kumbhakårakulam gatvåha kuru gha†aµ kåryam 
anena kari∑yåm¥ti/ na tadvac chabdån prayok∑yamåˆo vaiyåkaraˆakulaµ gatvåha kuru ßabdån prayok∑ya iti/  
55 Mahå-bh I p. 11 l. 1-2. 
56 Concerning the nature of the objects of Greek geometry, read the following remarks by Reviel Netz (1999: 
54-56): "On the one hand, the Greeks speak as if the object of the proposition is the diagram. ... On the other 
hand, Greeks act in a way which precludes this possibility ... Take Pünktchen for instance. Her dog is lying in 
her bed, and she stands next to it, addressing it: ‘But grandmother, why have you got such large teeth?’ What 
is the semiotic role of ‘grandmother’? It is not metaphorical — Pünktchen is not trying to insinuate anything 
about the grandmother-like (or wolf-like) characteristics of her dog. But neither is it literal, and Pünktchen 
knows this. Make-believe is a tertium between literality and metaphor: it is literality, but an as-if kind of 
literality. My theory is that the Greek diagram is an instantiation of its object in the sense in which 
Pünktchen's dog is the wolf — that the diagram is a make-believe object; it is functionally identical to it; what 
is perhaps most important, it is never questioned. ... [The text] does not even hint what, ultimately, its objects 
are; it simply works with an ersatz, as if it were the real thing ... Undoubtedly, many mathematicians would 
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Pythagorean theorem, seen this way, may therefore in the classical Indian context be a 

generalization of measurements taken from various rectangular triangles; the notion of a 

general proof for this theorem might have appeared to the early Indian mathematicians as 

completely out of place, just as to a grammarian a general proof of the grammatical rule 

that i followed by a is replaced by y, not only in dadhyatra out of dadhi atra but also in all 

other similar situations, would have looked strange. 

 Having said this, it should not of course be overlooked that geometrical figures and 

bodies are not the same kinds of things as linguistic expressions. Numerous geometrical 

rules become obvious with the help of minimal manipulation of figures. Take the rule that 

the area of a triangle is half the product of its height and its base.57 This rule follows almost 

automatically from a look at the following diagram, and there is no need to assume that it is 

a generalization of a number of measurements.58 And yet the notion of general proof does 

not characterize Bhåskara's discussions of geometry. 

[57] 
A

B CD

E F

 
  Fig. 2: the area of triangle ABC is half the area of rectangle EFCB. 

 
                                                                                                                                               
simply assume that geometry is about spatial, physical objects, the sort of thing a diagram is. Others could 
have assumed the existence of mathematicals. The centrality of the diagram, however, and the roundabout 
way in which it was referred to, meant that the Greek mathematician would not have to speak up for his 
ontology." 
 Whatever the Greeks may have thought (or not thought) about the objects of geometry, geometry 
came to be looked upon as dealing with abstractions, so much so that the expression "Euclid myth" has been 
coined to designate the false conviction that these objects have anything to do with the outside world: "What 
is the Euclid myth? It is the belief that the books of Euclid contain truths about the universe which are clear 
and indubitable. Starting from self-evident truths, and proceeding by rigorous proof, Euclid arrives at 
knowledge which is certain, objective and eternal. Even now, it seems that most educated people believe in 
the Euclid myth. Up to the middle or late nineteenth century, the myth was unchallenged. Everyone believed 
it. It has been the major support for metaphysical philosophy, that is, for philosophy which sought to establish 
some a priori certainty about the nature of the universe." (Davis and Hersh, 1981: 325, cited in Srinivas, 1990: 
81 n. 14). For a recent discussion of the objects of (modern) mathematics, see Shapiro, 1997. 
57 Cp. Óryabha†¥ya Bhå∑ya p. 48 l. 15-16: ardhåyatacaturaßratvåt tribhujasya. 
58 The procedure illustrated in fig. 2 is close to the one which the Chinese mathematician Liu Hui justifies 
with the reason "Use the excess to fill up the void" (Chemla, 1999: 96 f.). Chemla (1997) distinguishes 
between formal proofs (in italics) and proofs that are provided "in order to understand the statement proved, to 
know why it is true and not only that it is true" (p. 229). 
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 A passage in Bhåskara's comments on Gaˆitapåda verse 10 is interesting in this 

context. We read here:59 

 
"[Question:] Why is the approximate circumference [of a circle] given, not its exact 
circumference?  
[Response:] People think as follows: there is no way in which the exact 
circumference [can] be calculated. 
[Question:] Isn't there the following saying: the circumference of a circle is the 
square root of ten times the square of the diameter?60 
[Response:] Here too, [the claim] that the circumference of a diameter that equals 
one is the square root of ten is mere tradition, and no demonstration (upapatti).  
[Objection:] And if one thinks that the circumference, as directly (pratyak∑eˆa) 
measured, of a [circular] area whose diameter equals one is the square root of ten,  
[Response:] this is not [correct], for the measure of surds cannot be expressed. 
[Objection:] If [it is maintained] that the circumference of [a circle] having that 
diameter (viz. one), surrounded by the diagonal of an oblong quadrilateral whose 
width and length are one and three [respectively], has the [same] size [as that 
diagonal], 
[Response:] that, too, has to be established." 

 

This passage is interesting for various reasons. For one thing, it uses the expression 

upapatti, which some translate "proof", but for which "demonstration" seems more 

appropriate. It also states quite unambiguously that "the measure of surds cannot be 

expressed [in fractions (?)]".61 But its special interest for us at present lies in the fact that it 

mentions, and accepts in principle, the idea of direct measurement as a method to reach 

conclusions of a geometrical nature. It even indicates how the square root of ten can be 

measured, so as to compare its length with the circumference of a circle. It appears to be 

legitimate for Bhåskara to measure the circumference of a circle, presumably with a cord, 

and derive from this measurement what we would call the [58] value of pi. All that he 

demurs to is the claim that the result of this measurement — in the case of a circle whose 

diameter is one — will be the square root of ten. This cannot be true, because the square 

root of ten, like other surds, cannot be expressed, presumably in terms of units or fractions. 
                                                
59 Óryabha†¥ya Bhå∑ya p. 72 l. 10-17: athåsannaparidhi˙ kasmåd ucyate, na puna˙ sphu†aparidhir evocyate? 
evaµ manyante: sa upåya eva nåsti yena sËk∑maparidhir ån¥yate/ nanu cåyam asti: 
vikkhaµbhavaggadasaguˆakaraˆ¥ va††assa parirao hodi (vi∑kambhavargadaßaguˆakaraˆ¥ v®ttasya pariˆåho 
bhavati) iti/ atråpi kevala evågama˙ naivopapatti˙/ rËpavi∑kambhasya daßa karaˆya˙ paridhir iti/ atha 
manyate pratyak∑eˆaiva pram¥yamåˆo rËpavi∑kambhak∑etrasya paridhir daßa karaˆya iti/ naitat, 
aparibhå∑itapramåˆatvåt karaˆ¥nåm/ ekatriviståråyåmåyatacaturaßrak∑etrakarˆena daßakaraˆikenaiva 
tadvi∑kambhaparidhir ve∑†yamåˆa˙ sa tatpramåˆo bhavat¥ti cet tad api sådhyam eva/. For the use of karaˆ¥, 
see the reference in note 24 above. Note that Bhåskara's edited text has a number of grammatically incorrect 
occurrences of °karaˆika- and karaˆitva-; cp. Påˆ 7.4.14 na kapi. 
60 The saying is in Prakrit and has obviously been borrowed from a Jaina text or context. 
61 David Pingree (private communication) suggests "that Bhåskara's problem was that no upapatti could 
verify that pi = √10 because of the difficulty of relating the square root of a surd to any previously verified 
theorem". 
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 It is hard to know what "demonstration" would have convinced Bhåskara of the 

truth of the claim that pi = √10. But one thing is sure. The only other time he uses the term 

upapatti in this same commentary, it does not refer to anything like what we would call a 

proof.62 The passage concerned occurs in the middle of a discussion of an example under 

Gaˆitapåda verse 6cd. Hayashi (1995: 75; modified) translates it as follows:63 "Drawing a 

plane figure in order to show the ground (upapatti) of the following Rule of Three".  

 Bhåskara goes on criticizing the claim that pi = √10 at great length. Part of his 

criticism is interesting because it reveals that he appears to have extended the respect which 

he felt for the rules contained in the Óryabha†¥ya to other rules, which he perhaps found in 

other treatises. One way in which he tries to demonstrate the insufficiency of this value for 

pi is by showing that it leads to totally unacceptable consequences. The following passage 

illustrates this:64 

 
"And the calculation of an arc on the basis of the assumption that the measurement 
of a circumference is made with the square root of ten, is not always [possible]. For 
the sËtra for calculating an arc is [the following] half åryå verse: 
The sum of a quarter of the chord and half the sagitta,  multiplied by 
itself ,  ten times that,  the square root of that.  
[Consider] now the following example: In [a circle] whose diameter is fifty-two, the 
length of the sagitta is two. 
With the help of the rule "ogåhËˆaµ vikkhaµbham" one obtains as length of the 
chord: twenty (20). With this chord the calculation of the arc becomes: a quarter of 
the chord is 5, half the sagitta is 1, their sum is 6, multiplied by itself: 36, ten times 
that: 360, the square root of that is the arc.  
The square of the whole chord is four hundred, the square of the arc three hundred 
sixty; how is that possible? The arc must [certainly] be longer than the chord. Here 
[on the other hand] the arc being thought out by [these] extremely clever thinkers 
has turned out to be shorter than the chord! For this reason, homage be paid to this 
root of ten, charming but not thought out." 

 

                                                
62 Hayashi’s (1994: 123) following remark is therefore to be read with much caution: “The recognition of the 
importance of proofs dates back at least to the time of Bhåskara I ..., who, in his commentary on the 
Óryabha†¥ya, rejected the Jaina value of pi, √10, saying that it was only a tradition (ågama) and that there was 
no derivation of it.” 
63 Óryabha†¥ya Bhå∑ya p. 59 l. 3: ... iti trairåßikopapattipradarßanårthaµ k∑etranyåsa˙. 
64 Óryabha†¥ya Bhå∑ya p. 74 l. 9 - p. 75 l. 4: p®∑†hånayanam api ca daßakaraˆ¥paridhiprakriyåparikalpanayå 
sadå na [bhavati/ yata˙] p®∑†hånayane sËtram åryårdham: 
jyåpådaßarå rdhayuti˙ svaguˆå [daßasa∫guˆå karaˆyas tå˙] 
[atroddeßaka˙: dvipañcåßadvi∑kambhe dvir avagåhya/] 
"ogåhËˆaµ vikkhaµbham" ity anena jyå labdhå viµßati˙ [20]/ [anayå jyayå] p®∑†hånayanam: jyåpåda˙ 5, 
ßarårdhaµ [1], yuti˙ 6, svaguˆå 36, daßasa∫guˆå 360, etå karaˆya˙ p®∑†ham/ sakalajyåvargaß catvåri ßatåni, 
p®∑†haµ karaˆ¥nåµ ∑a∑†ißatatrayam iti, katham etat saµgha†ate? jyåyaså jyåta˙ p®∑†hena bhavitavyam/ tad etad 
vicåryamåˆam atyantasËk∑mavådinåµ jyåta˙ p®∑†ham alp¥y[o]månam åpatitam/ ato 'syai 
avicåritamanoharåyai namo 'stu daßakaraˆyai/. The edition has alp¥yamånam. 
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This passage cites two rules, both of which Bhåskara calls sËtras. The second of these is 

"ogåhËˆaµ vikkhaµbham", which had been cited in full, and illustrated, on the preceding 

page (p. 73 l. 2 ff.); it is in Prakrit and no doubt derives from a Jaina text.65 Contentwise 

this rule is no different from verse 17cd of the Gaˆitapåda, studied above, and it is 

surprising that Bhåskara does not mind citing (and obviously accepts without questioning) 

the rule in the form in which it was used by the Jainas. The first sËtra cited in this passage, 

on the other hand, is in [59] Sanskrit; it is not known where it comes from, but clearly it 

offers a calculation involving the square root of ten. Bhåskara uses this rule, and shows that 

it leads to an absurd outcome. Strictly speaking this may be due (i) to the particular value 

assigned to pi; (ii) to the form of the rule in general, quite apart from the value assigned to 

pi; or (iii) to both of these at the same time. Bhåskara triumphantly concludes that the fault 

lies with the square root of ten. A small calculation would have shown him that the 

approximate value of pi which he, following Óryabha†a's Gaˆitapåda verse 10, does accept 

(pi = 3.1416), if used with the same but adjusted formula, leads to the same absurdity (6 x 

3.1416 = 18.8496 for the length of arc; 20 for the chord). We must conclude that — unless 

Bhåskara had lost his mathematician's mind while writing this passage — he really 

criticized the formula, which may have occurred in a presumably Jaina treatise.66 

 This allows us to draw some further conclusions. Bhåskara might, from a modern 

point of view, have criticized the wrong formula for calculating a length of arc by 

contrasting it with a correct one, along with a proof for the latter.67 He did not do so, most 

certainly because he did not have a correct formula, much less a proof for it.68 What is 

more, it is highly unlikely that he thought in terms of proofs of correct formulae. From his 

point of view the rules and theorems he had inherited were correct, the ones others had 

inherited were presumably mostly correct, but some of these led to unacceptable results, 

and were therefore incorrect. 

 

The preceding reflections teach us the following. Judging by the evidence discussed so far, 

classical Indian geometry and grammar share a number of features, which are compatible 
                                                
65 The rule — which reads in full: ogåhËˆaµ vikkhambhaµ egåheˆa saµguˆaµ kuryåt/ caüguˆiassa tu 
mËÒaµ j¥vå savvakhattåˆam// — is similar to Pådalipta’s Jyoti∑karaˆ∂aka 191, which has: ogåhËˆaµ 
vikkhaµbha mo tu ogåhasaµguˆaµ kujjå/ catuhi guˆitassa mËlaµ så j¥vå va’ttha ˆåtavvå//. 
66 The Tattvårthådhigama Bhå∑ya of Umåsvåti on sËtra 3.11 (I p. 258 l. 17-18) contains a different rule for 
the arc: "The arc (a) is the square root of six times the square of the sagitta (s) plus the square of the chord (c) 
(a = √(6s2 + c2))" (i∑uvargasya ∑a∂guˆasya jyåvargayutasya mËlaµ dhanu˙kå∑†ham); later authors (Mahåv¥ra, 
Óryabha†a II) accepted again different rules. See Datta, 1929: 694, 699. 
67 For the approximation proposed by Heron of Alexandria, see Heath, 1921: II: 331. 
68 He could hardly have such a formula in view of his conviction that "there is a chord equal to the arc [which 
it subtends]"; see above. 
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with (but do not prove) the assumption that Påˆini's grammar did indeed exert an influence 

on the former. Two features in particular deserve mention: 

1. Classical Indian geometry, like grammar, describes objects that exist in the material 

world, not abstractions. The practice of geometry does not therefore exclude the physical 

manipulation of such objects, and the search for generalizations based on concrete 

measurements. This explains that some conclusions — such as the not totally spherical 

shape of a sphere — may be based on reflections about or observations of material objects. 

2. The objects of both classical Indian geometry and Sanskrit grammar are described with 

the help of rules that are as general as possible. In the case of geometry, the resulting rules 

look like Euclidean theorems, but unlike the latter, and like the rules of Påˆini, [60] they do 

not derive their validity from proofs. This explains that some incorrect rules have been able 

to slip into the works of Óryabha†a and Bhåskara and remain undiscovered for a long time. 

 Before we jump to the conclusion that these shared features are due to the influence 

of Påˆinian grammar on classical Indian geometry, some further facts and arguments have 

to be taken into consideration. The claimed absence of proofs in classical Indian geometry, 

in particular, has to be confronted with the conflicting claim that proofs existed already in 

Indian geometry long before Óryabha†a and Bhåskara, and presumably before Påˆini,69 viz., 

in the geometry of the Vedic Íulba SËtras.70 Frits Staal — whose views about the 

importance of grammar are central to this essay — maintains this position in a very recent 

article (1999),71 but does not provide arguments to bolster it beyond referring to a number 

of publications72 by Seidenberg (1978; 1983; one might add 1962; 1975: 289 f.) and Van 

der Waerden (1983: 26 ff.; one might add 1980).73 Seidenberg and Van der Waerden — 

like Staal himself — argue for a common origin of mathematics, or of geometry 
                                                
69 Michaels (1978: 56) points out that many terms related to the layering of the altar (the background of 
Vedic geometry) are known to Påˆini. In a note he mentions, or refers to, i∑†akå, i∑†akacit, agnicit, å∑å∂hå, 
aßvin¥, vayaså, etc. 
70 Michaels's (1978: 70 f.) attempts to show that the Íulba SËtras contain theoretical statements about ideal 
objects ("theoretische Sätze über ideale Gegenstände") have to be treated with much caution, in the light of 
what we now know about classical Indian geometry and the geometry in other cultures (see below). About the 
relationship between Íulba SËtras and classical Indian geometry, see Kaye, 1919: 3 ("Les oeuvres de la 
seconde période [= Óryabha†a etc.] ne font aucune allusion à un seul de ces sujets des ÍulvasËtras") and the 
qualification added by Michaels (1978: 106: "Allerdings sind insbesonders angesichts dessen, dass einige 
Termini der [Íulba SËtras] in der jüngeren indischen Mathematik, wenn auch mit teilweise neuer Bedeutung 
fortleben, hier gewisse Einschränkungen zu erheben"). 
71 This does not withhold him from stating (Staal, 1999: 113): "The only Indian counterpart to Euclid is the 
derivational system of Påˆini's Sanskrit grammar." 
72 To the publications mentioned by Staal one might add Michaels, 1978: 96 f., and the literature referred to 
on p. 97 n. 1. 
73 Staal does not appear to address the question why in India — which purportedly had had both Påˆinian 
grammar and Euclid-like geometry — only the former came to play an important role in science and 
philosophy. Note in this connection that Óryabha†¥ya Bhå∑ya p. 13 l. 24 - p. 16 l. 24 contains a long 
discussion purporting to show the greater importance of the study of Jyoti∑a than that of grammar. 
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specifically, as found in various cultures.74 Staal, for example, pleads for a common origin 

of Greek and Vedic geometry in Bactria / Margiana; Van der Waerden proposes "a 

Neolithic Geometry and Algebra, invented somewhere in Central Europe between (say) 

3500 and 2500 B.C., in which the ‘Theorem of Pythagoras’ played a central rôle" (1980: 

29; cp. 1983: 33-35); Seidenberg claims to prove that "[a] common source for the 

Pythagorean and Vedic mathematics is to be sought either in the Vedic mathematics or in 

an older mathematics very much like it" (1978: 329; similarly already Schroeder, 1884).75 

More important for our present purposes is that these three authors — as pointed out above 

— agree that Vedic mathematics had proofs. Van der Waerden goes further and maintains 

that already the original mathematicians (whom he calls the pre-Babylonian 

mathematicians) had them (1980: 8): "I suppose that these mathematicians had proofs, or at 

least plausible derivations. A pupil who has to solve a mathematical problem can do it just 

by applying a rule he has learnt, but the man who invented the rule must have had some sort 

of derivation. I also suppose that our pre-Babylonian mathematicians had a proof of the 

‘Theorem of Pythagoras’." Seidenberg is hardly less brazen (1978: 332): "The striking 

thing [in the Ópastamba ÍulvasËtra] is that we have a proof. One will look in vain for such 

things in Old-Babylonia. The Old-Babylonians, or their predecessors, must have had proofs 

of their formulae, but one does not find them in Old-Babylonia." 

[61] 

 The notion of proof that is claimed to have existed in India and elsewhere by the 

above-mentioned authors has been examined by G.E.R. Lloyd in the 3rd chapter of his 

book Demystifying Mentalities (1990), some passages of which are worth quoting. Lloyd 

begins as follows (p. 74): 

 
"At the outset we must be clear that ‘proof’ and ‘proving’ may signify a variety of 
more or less formal, more or less rigorous, procedures. In some domains, such as 
law, proving a fact or a point of law will be a matter of what convinces an audience 
as being beyond reasonable doubt. Again in some contexts, including in 
mathematics, ‘proving’ a result or a procedure will sometimes consist simply in 
testing and checking that it is correct. Both of these are quite informal operations. 
But to give a formal proof of a theorem or proposition requires at the very least that 
the procedure used be exact and of general validity, establishing by way of a 
general, deductive justification the truth of the theorem or proposition concerned. 
More strictly still Aristotle was to express the view that demonstration in the fullest 

                                                
74 Reflections about the origin(s) of mathematics may have to take into consideration the extent to which 
mathematical activities were and are present outside the "higher" cultures, in societies without writing. See in 
this connection Marcia Ascher's book Ethnomathematics (1991); further Ascher, 1994. 
75 Cp. also Friberg, 1990: 580: "There are reasons to believe that Babylonian mathematics in a decisive way 
influenced Egyptian, Greek, Indian and Chinese mathematics, in form as well as in content, during the last 
half of the -1st mill., if not earlier." 
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sense depended not just on deductive (he thought specifically syllogistic) argument 
but also on clearly identified premises that themselves had to fulfil rather stringent 
conditions ... He was the first not just in Greece, but so far as we know anywhere, 
explicitly to define strict demonstration in that way. 
 Two crucial distinctions have, then, to be observed, (1) between formal 
proofs and informal ones, and (2) between the practice of proof (of whatever kind) 
and having an explicit concept corresponding to that practice, a concept that 
incorporates the conditions that need to be met for a proof to have been given." 

 

Lloyd points out that the second distinction, in his view, has been ignored or badly 

underplayed in recent attempts to see the notion of proof as originating long before even the 

earliest extant Egyptian and Babylonian mathematics. He then turns to Vedic mathematics 

and argues that the authors of its key texts were not concerned with proving their results at 

all, but merely with the concrete problems of altar construction. Vedic mathematics is again 

dealt with in a "Supplementary note: geometry and ‘proof’ in Vedic ritual" (pp. 98-104), 

where Lloyd observes that "the notion that the authors in question had a clear and explicit 

concept of proof is subject to the general doubt ... that to obtain results is one thing, to have 

that concept as an explicit one is another. ... It also falls foul of one further fundamental 

difficulty. This is that no clear distinction is drawn in these texts between the rules that are 

expressed to arrive at what we should call approximations and those that are employed to 

yield what we should call exact results." (p. 101). 

 The question could be asked whether the notion of proof is really culture-specific to 

ancient Greece. Here Lloyd comments (p. 75): 

 
"The practice of proof, in Greece, antedates by several generations the first explicit 
formal definition (first given by Aristotle in the fourth century B.C.) and the process 
whereby such notions as that of the starting-points or axioms came to be clarified 
was both hesitant and gradual. That long and complex development, in Greece, 
belongs to and is a further instance of the gradual heightening of self-consciousness 
we have [62] exemplified before, when second-order questions came to be raised 
concerning the nature, status, methods and foundations of different types of inquiry. 
None of the attendant circumstances surrounding these developments, and none of 
the steps by which the various interrelated key notions came to be made explicit, 
can be paralleled in Vedic literature or in the evidence for Vedic society."76 

 
                                                
76 Lloyd sums up his views on the development of proof in the following passages (pp. 95-96): "We can say 
that the development, in Greece, of the demand for certainty sprang in part from a dissatisfaction shared by a 
variety of individuals with the merely persuasive. ... We have related other intellectual developments that took 
place in early Greek thought ... to the political and social background, for example the extensive experience 
that many Greeks had of evaluating arguments in the law courts and assemblies. ... [W]e should conclude that 
[in the development of formal or rigorous proof] too ... the political and legal background plays a role at least 
at the beginning of what might otherwise seem a merely intellectual development. However, the qualification 
to the thesis that must be entered is that, in this instance, that role was not as a source of positive, but rather of 
negative, models." 
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Does this mean that we should not expect any such notion to have existed in classical 

India? Is the notion of proof really a Greek invention, determined by the specific social and 

political situation prevailing in that culture? And does it follow that all cultures that do 

possess the notion of proof must have borrowed it — directly or indirectly — from ancient 

Greece? 

 Before trying to answer these questions it seems appropriate to recall that the 

absence of explicit proofs and of an identifiable notion of proof seems to be a common 

feature of many cultures that produced geometry. O. Neugebauer, for example, states about 

ancient Babylonia (1957: 45-46; cited in Seidenberg, 1975: 286): "It must ... be underlined 

that we have not the faintest idea about anything amounting to a ‘proof’ concerning the 

relations between geometrical magnitudes."77 Richard J. Gillings — in an appendix meant 

to counter some of the negative criticism addressed at the mathematics of the ancient 

Egyptians on account of its lack of formal proof — concludes nonetheless (1972: 234): 

"We have to accept the circumstance that the Egyptians did not think and reason as the 

Greeks did. If they found some exact method (however they may have discovered it), they 

did not ask themselves why it worked. They did not seek to establish its universal truth by 

an a priori symbolic argument that would show clearly and logically their thought 

processes."78 Chinese geometry, it appears, did not use proofs either. When early in the 

seventeenth century Euclid's Elements were translated into Chinese,79 by Matteo Ricci and 

Xu Guangqi, the latter of these two wrote (in the preface to another work) that only after 

the translation of Euclid's Elements into Chinese had it become possible to transmit proofs 

and explanations. In fact, he maintained, the Western methods of conveying are not 

essentially different from the methods transmitted in earlier Chinese treatises. What makes 

Western mathematics more valuable is that it supplies explanations which show why the 
                                                
77 Cp. Friberg, 1990: 583: "it is clear that the Greek mathematicians completely transformed the intellectual 
goods they received [from Babylonian mathematics]. ... Rigorous proofs based on abstract definitions and 
axioms took over the role played in Babylonian mathematics by a conceptually simpler method, that of using 
a reversal of the steps in an algorithm with given numerical data in order to check the computed values." 
78 G.G. Joseph — in a chapter called "Egyptian and Babylonian mathematics: an assessment" — proposes to 
adjust the notion of proof so as to include these traditions (1991: 127): "A modern proof is a procedure, based 
on axiomatic deduction, which follows a chain of reasoning from the initial assumptions to the final 
conclusion. But is this not taking a highly restrictive view of what is proof? Could we not expand our 
definition to include, as suggested by Imre Lakatos ..., explanations, justifications and elaborations of a 
conjecture constantly subjected to counter-examples? Is it not possible for an argument or proof to be 
expressed in rhetoric rather than symbolic terms, and still be quite rigorous?" If one is determined to find 
proofs in all cultures that had geometry or something resembling it, adjusting the notion of proof may be the 
way to succeed; it is however open to doubt whether such a procedure adds much to our understanding. 
79 It appears that a copy of a Chinese translation of the Elements was present in the imperial library at the end 
of the thirteenth century, but was ignored; see Needham, 1959: 105 f. Huff (1993: 241; with a reference to 
Aydin Sayili, The Observatory in Islam, Ankara 1960, p. 189) adds: "Even more tantalizing are the reports 
that a Mongol ruler in China, Mangu (d. 1257 ...) is said to ‘have mastered difficult passages of Euclid by 
himself’." 
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methods are correct.80 Joseph Needham (1959: 91) confirms this by stating: "In China there 

never developed a theoretical geometry independent of quantitative magnitude and relying 

for its proofs purely on axioms and postulates accepted as the basis of discussion." We 

learn from Jean-Claude Martzloff's A History of Chinese Mathematics that in the Chinese 

tradition of geometry "the figures essentially refer not to idealities but to material objects 

which, when manipulated in  [63] an appropriate manner, effectively or in imagination, 

may be used to make certain mathematical properties visible".81 This has various 

consequences, among them the use of empirical methods: "To show that the side of a 

regular hexagon inscribed in a circle has the same length as the radius, six small equilateral 

triangles are assembled and the result is determined de visu. One proof technique for 

determination of the volume of the sphere involves weighing it."82 Sometimes "the reader is 

asked to put together jigsaw pieces, to look at a figure or to undertake calculations which 

themselves constitute the sole justification of the matter in hand". Martzloff concludes (p. 

72): "If one has to speak of ‘proofs’, it might be said that, from this point of view, the 

whole of the mathematician's art consists of making visible those mathematical phenomena 

which are apparent not in Platonic essences but in tangible things".83 The concern with 

mathematical objects as parts of objective reality reminds us of the similar concern on the 

part of Bhåskara, studied above. 

 Should we then conclude that the notion of proof only belongs to ancient Greece 

and its inheritors? I think the situation is more complex than this. Recall that India at the 

time of Óryabha†a and Bhåskara did have a clear notion of proof. Such a notion was present 

in Indian logic, which had been developing since long before Óryabha†a and reached some 

of its peaks in the persons of Dignåga and Dharmak¥rti precisely during the period that 

separates Óryabha†a from his commentator. Bhåskara at any rate, it would appear, had no 

excuse for not being aware of the notion of proof, and for not providing proofs for his 

theorems. At first sight the situation of these two mathematicians should not therefore be 

very different from Euclid in Greece. Greek philosophers developed the notion of proof in 
                                                
80 Engelfriet, 1998: 297-298. 
81 Martzloff, 1997: 275. Yabuuti (2000: 40) suggests that Chinese mathematicians deduced theorems like that 
of Pythagoras by analogy, intuitively. 
82 Martzloff, 1997: 72. 
83 Note further Martzloff, 1997: 276: "certain texts by Liu Hui [(end of third century C.E.)] and other 
mathematicians contain reasoning which, while it is not Euclidean, is no less well constructed and completely 
exact. Moreover, although they are not numerous, these arguments appear all the more salient because they 
are without peers in other non-Euclidean mathematical traditions. But they also enable us to understand that 
Chinese mathematics is in part based on a small number of heuristic operational methods of a geometrical 
type. ... In fact, the most striking thing is the concrete appearance of the Chinese approach or rather the fact 
that abstract results are accessed via ‘concrete’ means. Chinese proofs tend to be based on visual or manual 
illustration of certain relationships rather than on purely discursive logic." 
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their logic, and Greek mathematicians did the same in geometry. Indian philosophers 

developed the notion of proof in their logic, but the Indian mathematicians did not follow 

suit. Why not? The situation becomes even more enigmatic if we assume that Indian 

geometry derives from Greek geometry (see note 8, above), and that therefore some Indian 

mathematicians (presumably well before Óryabha†a and Bhåskara) had been familiar with 

Euclidean procedures. 

 Here it is important to recall that Indian philosophers of the classical period were 

engaged in an ongoing debate with each other, in which radically different positions were 

defended and criticized. This debate went on because all participants were part of what I 

have called a "tradition of rational inquiry",84 which translated itself in the social obligation 

— partly embodied in kings and their courts — to listen to [64] one's critics and defend 

one's own point of view. This is not the place to discuss the enormous impact which this 

tradition of rational inquiry has had on the shape and direction of Indian philosophy, but it 

is clear that the development of logic in the different schools of philosophy was a result of 

this ongoing confrontation. Logic specified the rules which even one's greatest enemy 

would have to accept. 

 It seems likely that those who studied and practiced mathematics in India were not 

to the same extent as their philosopher contemporaries obliged to defend their positions 

against opponents who disagreed with practically every single word they uttered (or wrote 

down).85 There were differences of opinion, to be sure,86 but they were apparently not 

looked upon as particularly threatening. Bhåskara could show that the Jaina value for pi, or 

rather their formula for calculating the length of arc that used this value, could not be 

correct. But apparently such disagreements were not yet considered sufficiently serious to 

rethink the whole system. Indeed we have seen that Bhåskara does not mind citing an 

apparently Jaina rule to justify a calculation. Indian astronomers and mathematicians, it 

                                                
84 Bronkhorst, 1999. 
85 Cp. Collins, 1998: 551: "Organizationally, the mathematicians, astronomers, and medical doctors were 
based in private familistic lineages and guilds, never part of the sustained argument provided by philosophical 
networks. Public networks of argument did exist in India; its philosophical lineages reached high levels of 
abstract development. Only mathematics and science were not carried along with it." The striking absence of a 
Buddhist contribution to and participation in the development of astronomy and mathematics in classical India 
may be partly responsible for the relative "peace" enjoyed by these branches of learning. (Vogel, 1997, shows 
that the Buddhists — or at least some of them — were not averse to following developments in astronomy to 
fix the dates of their Po∑adha ceremony. The need to fix these dates did not apparently have the same effect as 
the Christian need to fix the date of Easter; about this latter need Duncan, 1998: 79 states: "The history of 
science in the Middle Ages would have been very different if the bishops at Nicaea had decided to name a 
fixed date for Easter in the solar calendar"; further details in Heilbron, 1999.) Note that jyoti∑a / jyotis is 
mentioned in some lists of kalås occurring in Buddhist texts; see Franco, 2000: 550 ([61]) with note 56. 
86 A whole chapter of Brahmagupta's Bråhmasphu†asiddhånta (no. 11: Tantrapar¥k∑å) is dedicated to the 
refutation of different opinions. 
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appears, were not engaged in any such ongoing debate with fierce opponents belonging to 

altogether different traditions as were the philosophers.87 Nor were they — it seems — 

particularly interested in what was going on in philosophy. Randall Collins claims (1998: 

551) that there are no recorded contacts between philosophical and mathematical networks, 

and that no individuals overlap both activities. This may not be entirely correct: David 

Pingree (private communication) mentions in this connection N¥lakaˆ†ha Somayåjin's 

Jyotirm¥måµså (written in 1504; cp. Pingree, 1981: 50, 128); and Jean Michel Delire — in 

a paper read at the XIth World Sanskrit Conference, Turin, April 2000 — has drawn 

attention to Ve∫ka†eßvara D¥k∑ita, a late 16th century commentator who combined skills in 

M¥måµså and mathematics (Pingree, 1981: 6, 129).88 Yet Collins's claim appears to hold 

true for Bhåskara (and perhaps other mathematicians of his time), judging by the list of 

authorities cited by him which is given at the end of the edition of his Óryabha†¥ya Bhå∑ya 

(Shukla, 1976: 345-346). Bhåskara often cites grammatical and generally linguistic texts (as 

we have seen), astronomical texts, some religious and literary treatises, but not a single 

philosophical work.89 It is true that we have very little information about the lives and 

circumstances of the early Indian mathematicians, but there is no reason that I know of to 

doubt their relative intellectual isolation,90 combined perhaps with low social esteem.91 It 

goes without saying that further research in this complex of questions is called for. 

[65] 

 Some scholars are of the opinion that more recent Indian mathematical authors did 

provide proofs for geometrical theorems. Takao Hayashi, for example, remarks (1995: 75): 

"the term upapatti stands for the proof or derivation of a mathematical formula. We find a 

number of instances of upapatti used in that sense in later commentaries such as Gaˆeßa's 
                                                
87 For a recent example (from Jainism) of the close link between calendrical (i.e. astronomical) and sectarian 
concerns, see Cort, 1999. 
88 He calls his teacher sarvatantrasvatantra and sarve∑u tantre∑u samaµ svatantra˙, his father 
advaitavidyåcårya (CESS 5 (1994), p. 735). 
89 The one quotation from the Våkyapad¥ya (p. 22) concerns the meaning and function of upåya. Be it noted 
that Bhåskara's commentary on G¥tikåpåda 1 enumerates the five buddh¥ndriyas, the five karmendriyas, plus 
manas, buddhi and aha∫kåra, all of them known from Såµkhya (p. 4 l. 11-15). Bhåskara also shows some 
acquaintance with M¥måµså: p. 182 l. 8 sarvaßåkhåpratyayam ekaµ karma may have been cited from 
Íabara's Bhå∑ya on M¥måµsåsËtra 2.4.9; the discussion immediately preceding this has a parallel in Íabara 
on 1.3.2. 
90 Mathematics is most often presented in treatises of astronomy, and it seems likely that astronomers often 
earned their living as astrologers. Cp. Al-B¥rËn¥ (E.C. Sachau's translation as reproduced in Chattopadhyaya, 
1992: 510): "If a man wants to gain the title of an astronomer, he must not only know scientific or 
mathematical astronomy, but also astrology." Cp. Pingree, 1981: 56 as cited in Yano, 1987: 54 : "There was 
never in India a jåti [caste, MY] of mathematicians, and rarely anything that could be called a school; most 
mathematicians were jyoti∑¥s (astronomers or astrologers)." Pingree (1993: 77) argues that Óryabha†a, far 
from making observations himself, derived the longitudes of the planets "from astrological playing with 
numbers". 
91 On the low esteem in which astrologers were held, see Kane, 1974: 526 f. 
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Buddhivilåsin¥ (A.D. 1545) on the L¥låvat¥ and K®∑ˆa's Navå∫kura (ca. A.D. 1600) on the 

B¥jagaˆita." M.D. Srinivas (1990) gives a list of commentaries that contain mathematical 

upapattis in an appendix (no. I; pi. 57 f.) to his article; all of them date from the 16th and 

17th centuries. The highly interesting question to what extent these later mathematical 

authors had an explicit concept of proof (not necessarily Euclidean; cp. Lloyd's remarks, 

cited above) and, if so, when, how and why such a concept made its appearance in Indian 

mathematical works cannot be addressed in this article. One may wonder whether the type 

of arguing that had become common in philosophical debate slowly found its way into this 

area of knowledge. But whether or not such a shift of attitude took place in mathematics, 

there seems to be no doubt that Bhåskara I, the commentator whose work we are 

considering, was not (yet) affected by it. 

 The following example confirms this. The Óryabha†¥ya Bhå∑ya — at least in the 

interpretation of Agathe Keller, who attributes her interpretation to a suggestion made by 

Takao Hayashi — contained the following diagram "to convince the dull-witted":92 

 
A B

C

D

E

c

b

b-aa

 
Fig. 3: There is a square corresponding to AC2  

[66] 

Bhåskara uses this diagram to show that the square of a diagonal of a rectangular surface 

does indeed correspond to a geometric square: AC2 (= AB2 + BC2) corresponds to the 

surface ACDE. However, this same diagram could easily be used, and has been used by 

more recent authors, to prove the Pythagorean theorem (though not, of course, in a 

"Euclidean" manner). In this case, as Keller points out in her thesis, the area of the interior 

                                                
92 Óryabha†¥ya Bhå∑ya p. 48 l. 16 f. The edition of K.S. Shukla contains a somewhat different diagram; 
however, a manuscript page reproduced in Keller's thesis (I p. 223) appears to support her construction. 
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small square (whose sides are equal to b - a) increased by the area of the four triangles 

(whose sides are a and b), gives the area of the big square whose sides are the hypotenuse 

of the four triangles (in other words: c2 = (b - a)2 + 4 x ab/2 = a2 + b2. This proof is given 

by the author Gaˆeßa Daivajña in around 1545 (Srinivas, 1990: 39) and, it is claimed, by 

Bhåskara II around 1150.93 Bhåskara I had this proof of the Pythagorean theorem so to say 

under his nose, but he was apparently not interested. 

 

Where does all this leave us with regard to the influence of Påˆini's grammar on geometry 

in India? Those who, like Staal and others, are inclined to look upon Påˆini as having 

provided methodical guidance to the Indian sciences, will find features in Óryabha†a and 

Bhåskara that remind them of Påˆini's grammar and which they might like to attribute to 

the latter's influence on the former. If so, they may have to consider whether and to what 

extent this influence is responsible for the absence of proofs in early classical geometry. A 

comparative study of various ancient cultures shows that proofs in geometry do not 

normally appear, unless social, political or other circumstances have led to the kind of 

awareness in which an explicit notion of proof has found its place. Such a notion of proof 

did exist in classical India at the time of Óryabha†a and Bhåskara, but among philosopher-

logicians, not among mathematicians. This peculiar situation may in part have to be 

explained by the fact that mathematicians were less exposed to debate and controversy than 

the philosophers. To this must be added that the Indian mathematicians may have been 

happy with their methods which — if not in the case of Óryabha†a and Bhåskara, but 

certainly in that of Brahmagupta and others — led to remarkable results.94 This does not 

change the fact that the example of the grammar of Påˆini may conceivably have lent added 

respectability to a geometry without proof, even at a time when mathematicians came 

across this notion (whether under Greek mathematical or Indian philosophical influence). 

Mathematics in the style of Óryabha†a and Bhåskara had to be good enough, for it 

resembled in some essential respects Påˆini's grammar, which certainly was good enough. 

[67] 

 We are therefore led to the following conclusion. There is no proof for the claimed 

methodical guidance of Påˆini's grammar with respect to classical Indian geometry, except 

                                                
93 Cp. Srinivas, 1990: 35; Sarasvati Amma, 1999: 133 f. Keller refers in this connection to an unpublished 
Ph.D. thesis of Simon Fraser University: A critical edition, English translation and commentary of the 
Upodghåta ›a∂vidhaprakaraˆa and Ku††akådhikåra of the SËryaprakåßa of SËryadåsa, by Pushpa Kumari Jain, 
1995. 
94 David Pingree (private communication) points out that certain theorems on cyclic quadrilaterals presented 
by Brahmagupta (628 C.E.) were not developed from a Euclidean approach until the 16th and 17th centuries 
in Europe. 
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perhaps where completely external features of presentation are concerned. Contentwise, 

classical Indian geometry contrasts as sharply with Euclidean geometry as do other pre-

modern geometries — in China, Babylonia and Egypt — which had no knowledge of 

Påˆini's grammar. Like these other pre-modern geometries, classical Indian geometry did 

not use proofs. The most noteworthy distinguishing feature of classical Indian geometry is 

that, unlike the other pre-modern geometries, it developed in surroundings where the notion 

of proof was well-established. It is not immediately clear whether this lack of susceptibility 

to the notion of proof on the part of classical Indian geometry is in need of an explanation. 

If it is, Påˆini's grammar might conceivably be enumerated among the factors that played a 

role. In that case one may have to consider the possibility that the influence of Påˆini's 

grammar, far from encouraging the development of an abstract geometry, had the opposite 

effect. 

 

[76] 
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