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Abstract. The Grätzer-Schmidt theorem of lattice theory states that
each algebraic lattice is isomorphic to the congruence lattice of an alge-
bra. A lattice is algebraic if it is complete and generated by its compact
elements. We show that the set of indices of computable lattices that
are complete is Π1

1 -complete; the set of indices of computable lattices
that are algebraic is Π1

1 -complete; and that there is a computable lat-
tice L such that the set of compact elements of L is Π1

1 -complete. As a
corollary, there is a computable algebraic lattice that is not computably
isomorphic to any computable congruence lattice.
Keywords: lattice theory, computability theory.

Introduction

The Grätzer-Schmidt theorem [2], also known as the congruence lattice represen-
tation theorem, states that each algebraic lattice is isomorphic to the congruence
lattice of an algebra. It established a strong link between lattice theory and uni-
versal algebra. In this article we show that this theorem as stated fails to hold
effectively in a very strong way.

We use notation associated with partial computable functions, ϕe, ϕe,s, ϕσe,s,
ϕfe as in Odifreddi [3]. Following Sacks [5] page 5, a Π1

1 subset of ω may be
written in the form

Ce = {n ∈ ω | ∀f ∈ ωω ϕfe (n) ↓}.

A subset A ⊆ ω is Π1
1 -hard if each Π1

1 set is m-reducible to A; that is, for
each e, there is a computable function f such that for all n, n ∈ Ce iff f(n) ∈ A.
A is Π1

1 -complete if it is both Π1
1 and Π1

1 -hard. It is well known that such sets
exist. Fix for the rest of the paper a number e0 so that Ce0 is Π1

1 -complete. With
each n, the set Ce0 associates a tree T ′n defined by

T ′n = {σ ∈ ω<ω | ϕσe0,|σ|(n) ↑}.

Note that T ′n has no infinite path iff n ∈ Ce.
A computable lattice (L,�) has underlying set L = ω and an lattice ordering

� that is formally a subset of ω2.
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We will use the symbol � for lattice orderings, and reserve the symbol ≤
for the natural ordering of the ordinals and in particular of ω. Meets and joins
corresponding to the order � are denoted by ∧ and ∨. Below we will seek to
build computable lattices from the trees T ′n; since for many n, T ′n will be finite,
and a computable lattice must be infinite according to our definition, we will
work with the following modification of T ′n:

Tn = T ′n ∪ {〈i〉 : i ∈ ω} ∪ {∅}

where ∅ denotes the empty string and 〈i〉 is the string of length 1 whose only
entry is i. This ensures that Tn has the same infinite paths as T ′n, and each Tn
is infinite. Moreover the sequence {Tn}n∈ω is still uniformly computable.

1 Computational strength of lattice-theoretic concepts

1.1 Completeness

Definition 1. A lattice (L,�) is complete if for each subset S ⊆ L, both supS
and inf S exist.

Lemma 1. The set of indices of computable lattices that are complete is Π1
1 .

Proof. The statement that supS exists is equivalent to a first order statement
in the language of arithmetic with set variable S:

∃a[∀b(b ∈ S → b � a) & ∀c((∀b(b ∈ S → b � c)→ a � c)].

The statement that inf S exists is similar, in fact dual. Thus the statement
that L is complete consists of a universal set quantifier over S, followed by an
arithmetical matrix.

Example 1. In set-theoretic notation, (ω+1,≤) is complete. Its sublattice (ω,≤)
is not, since ω = supω 6∈ ω.

Proposition 1. The set of indices of computable lattices that are complete is
Π1

1 -hard.

Proof. Let Ln consist of two disjoint copies of Tn, called Tn and T ∗n . For each
σ ∈ Tn, its copy in T ∗n is called σ∗. Order Ln so that Tn has the prefix ordering

σ � σ_τ,

T ∗n has the reverse prefix ordering, and σ ≺ σ∗ for each σ ∈ Tn. We take the
transitive closure of these axioms to obtain the order of Ln; see Figure 1.

Next, we verify that Ln is a lattice. For any σ, τ ∈ Tn we must show the
existence of (1) σ∨τ , (2) σ∧τ , (3) σ∨τ∗, and (4) σ∧τ∗; the existence of σ∗∨τ∗
and σ∗ ∧ τ∗ then follows by duality.

We claim that for any strings α, σ ∈ Tn, we have α∗ � σ iff α is comparable
with σ; see Figure 1. In one direction, if α � σ then α∗ � α � σ, and if σ � α
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then α∗ � σ∗ � σ. In the other direction, if α∗ � σ then by the definition of �
as a transitive closure there must exist ρ with α∗ � ρ∗ � ρ � σ. Then α � ρ
and σ � ρ, which implies that α and ρ are comparable.

Using the claim we get that (1) σ ∨ τ is (σ ∧ τ)∗, where (2) σ ∧ τ is simply
the maximal common prefix of σ and τ ; (3) σ ∨ τ∗ is σ∗ ∨ τ∗ which is (σ ∧ τ)∗;
and (4) σ ∧ τ∗ is σ ∧ τ .

It remains to show that (Ln,�) is complete iff Tn has no infinite path. So
suppose Tn has an infinite path S. Then supS does not exist, because S has no
greatest element, S∗ has no least element, each element of S∗ is an upper bound
of S, and there is no element above all of S and below all of S∗.

Conversely, suppose Tn has no infinite path and let S ⊆ Ln. If S is finite then
supS exists. If S is infinite then since Tn has no infinite path, there is no infinite
linearly ordered subset of Ln, and so S contains two incomparable elements σ
and τ . Because Tn is a tree, σ∨τ is in T ∗n . Now the set of all elements of Ln that
are above σ ∨ τ is finite and linearly ordered, and contains all upper bounds of
S. Thus there is a least upper bound for S. Since Ln is self-dual, i.e. (Ln,�) is
isomorphic to (Ln,�) via σ 7→ σ∗, infs also always exist. So Ln is complete.

Fig. 1. The lattice Ln from Proposition 1.

1.2 Compactness

Definition 2. An element a ∈ L is compact if for each subset S ⊆ L, if a �
supS then there is a finite subset S′ ⊆ S such that a � supS′.
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Lemma 2. In each computable lattice L, the set of compact elements of L is
Π1

1 .

Proof. Similarly to the situation in Lemma 1, the statement that a is compact
consist of a universal set quantifier over S followed by an arithmetical matrix.

Example 2. Let L[a] = ω+ 1∪{a} be ordered by 0 ≺ a ≺ ω, and let the element
a be incomparable with the positive numbers. Then a is not compact, because
a � supω but a 6� supS′ for any finite S′ ⊆ ω.

Fig. 2. The lattice L[a] from Example 2.

The following result will be useful for our study of the Grätzer-Schmidt the-
orem.

Proposition 2. There is a computable algebraic lattice L such that the set of
compact elements of L is Π1

1 -hard.

Proof. Let L consist of disjoint copies of the trees Tn, n ∈ ω, each having the
prefix ordering; least and greatest elements 0 and 1; and elements an, n ∈ ω,
such that σ ≺ an for each σ ∈ Tn, and an is incomparable with any element not
in Tn ∪ {0, 1} (see Figure 3).

Suppose Tn has an infinite path S. Then an = supS but an 6� supS′ for any
finite S′ ⊆ S, since supS′ is rather an element of S. Thus an is not compact.

Conversely, suppose Tn has no infinite path, and an � supS for some set
S ⊆ L. If S contains elements from Tm ∪ {am} for at least two distinct values
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of m, say m1 6= m2, then supS = 1 = σ1 ∨ σ2 for some σi ∈ S ∩ (Tmi
∪ {ami

}),
i = 1, 2. So an � supS′ for some S′ ⊆ S of size two. If S contains 1, there is
nothing to prove. The remaining case is where S is contained in Tm ∪ {am, 0}
for some m. Since an � supS, it must be that m = n. If S is finite or contains
an, there is nothing to prove. So suppose S is infinite. Since Tn has no infinite
path, there must be two incomparable elements of Tn in S. Their join is then
an, since Tn is a tree, and so an � supS′ for some S′ ⊆ S of size two.

Thus we have shown that an is compact if and only if Tn has no infinite path.
There is a computable presentation of L where an is a computable function of
n, for instance we could let an = 2n. Thus letting f(n) = 2n, we have that Tn
has no infinite path iff f(n) is compact, i.e. {a ∈ L : a is compact} is Π1

1 -hard.

Fig. 3. The lattice L from Proposition 2.

1.3 Algebraicity

Definition 3. A lattice (L,�) is compactly generated if C = {a ∈ L :
a is compact} generates L under sup, i.e., each element is the supremum of
its compact predecessors. A lattice is algebraic if it is complete and compactly
generated.

Lemma 3. The set of indices of computable lattices that are algebraic is Π1
1 .

Proof. L is algebraic if it is complete (this property is Π1
1 by Lemma 1) and each

element is the least upper bound of its compact predecessors, i.e., any element
that is above all the compact elements below a is above a:

∀b(∀c(c ∈ C & c � a→ c � b)→ a � b)
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Equivalently,
∀b(∃c(c ∈ C & c � a & c 6� b) or a � b)

This is equivalent to a Π1
1 statement since, by the Axiom of Choice, any state-

ment of the form ∃c ∀S A(c, S) is equivalent to ∀(Sc)c∈ω ∃c A(c, Sc)

Example 3. The lattice (ω + 1,≤) is compactly generated, since the only non-
compact element ω satisfies ω = supω. The lattice L[a] from Example 2 and
Figure 2 is not compactly generated, as the non-compact element a is not the
supremum of {0}.

Proposition 3. The set of indices of computable lattices that are algebraic is
Π1

1 -hard.

Proof. Let the lattice Tn[a] consist of Tn with the prefix ordering, and additional
elements 0 ≺ a ≺ 1 such that a is incomparable with each σ ∈ Tn, and 0 and
1 are the least and greatest elements of the lattice. Note that Tn[a] is always
complete, since any infinite set has supremum equal to 1. We claim that Tn[a]
is algebraic iff Tn has no infinite path.

Suppose Tn has an infinite path S. Then a � supS, but a 6� supS′ for any
finite S′ ⊆ S. Thus a is not compact, and so a is not the sup of its compact
predecessors (0 being its only compact predecessor), which means that Tn[a] is
not an algebraic lattice.

Conversely, suppose Tn[a] is not algebraic. Then some element of Tn[a] is not
the join of its compact predecessors. In particular, some element of Tn[a] is not
compact. So there exists a set S ⊆ Tn[a] such that for all finite subsets S′ ⊆ S,
supS′ < supS. In particular S is infinite. Since each element except 1 has only
finitely many predecessors, we have supS = 1. Notice that Tn[a]\{1} is actually
a tree, so if S contains two incomparable elements then their join is already 1,
contradicting the defining property of S. Thus S is linearly ordered, and infinite,
which implies that Tn has an infinite path.

2 Lattices of equivalence relations

Let Eq(A) denote the set of all equivalence relations on A. Ordered by incusion,
Eq(A) is a complete lattice. In a sublattice L ⊆ Eq(A), we write supL for the
supremum in L when it exists, and sup for the supremum in Eq(A), and note
that sup ≤ supL.

A complete sublattice of Eq(A) is a sublattice L of Eq(A) such that supL =
sup and infL = inf. A sublattice of Eq(A) that is a complete lattice is not nec-
essarily a complete sublattice in this sense. The following lemma is well known.
A good reference for lattice theory is the monograph of Grätzer [1].

Lemma 4. Suppose A is a set and (L,⊆) is a complete sublattice of Eq(A).
Then an equivalence relation E in L is a compact member of L if and only if E
is finitely generated in L.
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Fig. 4. The lattice Tn[a] from Proposition 3.

Proof. One direction only uses that L is a sublattice of Eq(A) and L is com-
plete as a lattice. Suppose E is not finitely generated in L. Let C(a,b) de-
note the infimum of all equivalence relations in L that contain (a, b). Then
E ⊆ supL{C(a,b) : aEb}, but E is not below any finite join of the relations
C(a,b). So E is not compact.

Suppose E is finitely generated in L. So there exists an n and pairs (a1, b1),. . .,
(an, bn) such that aiEbi for all 1 ≤ i ≤ n, and for all equivalence relations F in
L, if aiFbi for all 1 ≤ i ≤ n then E ⊆ F . Suppose E ⊆ supL{Ei : 1 ≤ i < ∞}
for some E1, E2, . . . ∈ L. Since L is a complete sublattice of Eq(A), supL = sup,
so E ⊆ sup{Ei : 1 ≤ i <∞}. Note that sup{Ei : 1 ≤ i <∞} is the equivalence
relation generated by the relations Ei under transitive closure. So there is some
j = jn < ∞ such that {(ai, bi) : 1 ≤ i ≤ n} ⊆

⋃j
i=1Ei and hence E ⊆

⋃j
i=1Ei.

Thus E is compact.

A computable complete sublattice of Eq(ω) is a uniformly computable collec-
tion E = {Ei}i∈ω of distinct equivalence relations on ω such that (E ,⊆) is a
complete sublattice of Eq(ω). We say that the lattice L = (ω,�) is computably
isomorphic to (E ,⊆) if there is a computable function ϕ : ω → ω such that for
all i, j, we have i � j ↔ Eϕ(i) ⊆ Eϕ(j).

Lemma 5. The indices of compact congruences in a computable complete sub-
lattice of Eq(ω) form a Σ0

2 set.
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Proof. Suppose the complete sublattice is E = {Ei}i∈ω. By Lemma 4, Ek is
compact if and only if it is finitely generated, i.e.,

∃n ∃a1, . . . , an ∃b1, . . . , bn

[
n∧
i=1

aiEkbi & ∀j

(
n∧
i=1

aiEjbi → Ek ⊆ Ej

)]
.

Here Ek ⊆ Ej is Π0
1 : ∀x∀y (xEky → xEjy), so the formula is Σ0

2 .

Theorem 1. There is a computable algebraic lattice that is not computably iso-
morphic to any computable complete sublattice of Eq(ω).

Proof. Let L be the lattice of Proposition 2, and let f be the m-reduction of
Proposition 2. Suppose ϕ is a computable isomorphism between L and a com-
putable complete sublattice of Eq(ω), (E ,⊆). Since being compact is a lattice-
theoretic property, it is a property preserved under isomorphisms. Thus an el-
ement a ∈ L is compact if and only if Eϕ(a) is a compact congruence relation.
This implies that Tn has no infinite path if and only if f(n) is a compact element
of L, if and only if Eϕ(f(n)) is a compact congruence relation. By Lemma 5, this
implies that Ce0 = {n : Tn has no infinite path} is a Σ0

2 set, contradicting the
fact that this set is Π1

1 -complete.

3 Congruence lattices

An algebra A consists of a set A and functions fi : Ani → A. Here i is taken
from an index set I which may be finite or infinite, and ni is the arity of fi.
Thus, an algebra is a purely functional model-theoretic structure. A congruence
relation of A is an equivalence relation on A such that for each unary fi and all
x, y ∈ A, if xEy then fi(x)Efi(y), and the natural similar property holds for fi
of arity greater than one.

The congruence relations of A form a lattice under the inclusion (refinement)
ordering. This lattice Con(A) is called the congruence lattice of A.

The following lemma is well-known and straight-forward.

Lemma 6. If A is an algebra on A, then Con(A) is a complete sublattice of
Eq(A).

Thus, may define a computable congruence lattice to be a computable com-
plete sublattice of Eq(ω) which is also Con(A) for some algebra A on ω.

Theorem 2. There is a computable algebraic lattice that is not computably iso-
morphic to any computable congruence lattice.

Proof. By Theorem 1, there is a computable algebraic lattice that is not even
computably isomorphic to any computable complete sublattice of Eq(ω).

Thus, we have a failure of a certain effective version of the following theorem.
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Theorem 3 (Grätzer-Schmidt [2]). Each algebraic lattice is isomorphic to
the congruence lattice of an algebra.

Remark 1. Let A be a set, and let L be a complete sublattice of Eq(A). Then
L is algebraic [1], and so by Theorem 3 L is isomorphic to Con(A) for some
algebra A on some set, but it is not in general possible to find A such that L is
equal to Con(A). Thus, Theorem 1 is not a consequence of Theorem 2.

Remark 2. The proof of Theorem 2 shows that not only does the Grätzer-
Schmidt theorem not hold effectively, it does not hold arithmetically. We con-
jecture that within the framework of reverse mathematics, a suitable form of
Grätzer-Schmidt may be shown to be equivalent to the system Π1

1 -CA0 (Π1
1 -

comprehension) over the base theory ACA0 (arithmetic comprehension). On the
other hand, W. Lampe has pointed out that the Grätzer-Schmidt theorem is nor-
mally proved as a corollary of a result which may very well hold effectively: each
upper semilattice with least element is isomorphic to the collection of compact
congruences of an algebra.

Conjecture 1. An upper semilattice with least element has a computably enu-
merable presentation if and only if it is isomorphic to the collection of compact
congruences of some computable algebra.

The idea for the only if direction of Conjecture 1 is to use analyze and slightly
modify Jónsson and Pudlák’s construction [4]. The if direction appears to be
straightforward.

Remark 3. The lattices used in this paper are not modular, and we do not know
if our results can be extended to modular, or even distributive, lattices.
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