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ABSTRACT 
 
Deductionism assimilates nature to conceptual artifacts (models, equations), and tacitly holds that 
real physical systems are such artifacts. Some physical concepts represent properties of deductive 
systems rather than of nature. Properties of mathematical or deductive systems can thereby 
sometimes falsely be ascribed to natural systems. 
 
 
 
1. Introduction 
 
Science can be described as a system of concepts that support technical recipes, which 
tell us how to manipulate physical processes and materials to advantage. It is convenient 
in many ways if such a system of concepts can be formally expressed, either 
mathematically or otherwise as a formal deductive system. Deductionism is here defined 
as the faith that all of physical reality can be mapped by formal constructs, especially by 
deductive systems or mathematical models. It is thus the premise that nature is ultimately 
rational, insofar as it is reducible to formal terms. Such a belief, often tacit, is an example 
of what Gerald Holton calls thematic content within the practice of science. It began with 
the ancient Greeks, who held that one should be able to deduce natural details strictly 
from first principles, in the way that theorems of geometry are proven from axioms. In its 
extreme, deductionism holds that mathematical models work because there is virtually no 
distinction between the model and the natural reality it models. Indeed, in practice, 
models are often the actual objects of scientific study. They are usually defined by 
equations, and the natural systems chosen for study are re-defined in such a way that they 
can be described by (preferably simple) equations. Deductionism thus blurs the very 
distinction between mathematics and the physical world [Tegmark 2007].  
 However, one key difference is that physics depends on physical evidence, while 
mathematics depends only on reason and definitions. When a physical system has been 
re-defined as a mathematical model, however, the correspondence between mathematics 
and physics is then actually a correspondence of one deductive system to another. The 
correspondence with reality remains a separate question or else an article of faith. But 
that is often a self-confirming faith, since phenomena that can be treated with existing 
mathematics are the ones generally selected for study. Given that a deductive system is 
conceptually equivalent to a machine, the deductive approach is compatible with the 
philosophy of mechanism. It serves technological advance, since mathematical models 
can often be engineered into literal machines or devices. These include the apparatus 
involved in experiments, which materially embody the theory behind them. Yet, seeing 
the world through deductive eyes can limit what is perceived as significant for 
investigation. Experiment is “theory-laden” and also affirms the categories of theory in a 
self-reinforcing cycle. 



 
 
2. The unreasonable effectiveness of reason 
 
Leibniz took note of the apparent correspondence between mathematics and physical 
reality, which he took to be an act of God, a divinely “pre-established harmony.” 
Physicist Eugene Wigner [1960] would later famously call this harmony “the 
unreasonable effectiveness of mathematics.” Let us grant that logic and mathematics in 
fact reflect and generalize aspects of natural reality. One reason for the correspondence, 
then, is that these abstractions from nature are then projected back upon nature as 
underlying its features, and are also reflected in the ways experiments are constructed. 
The expectation that nature will behave mathematically is then something of a tautology. 
It is no coincidence that fundamental laws of nature are mathematical; for, mathematical 
laws maximally compress empirically observed patterns [Chaitin 2008]. It is no surprise 
that equations, which idealize natural properties and relationships, happen to describe 
idealized experimental setups. For, to be described mathematically at all, a natural system 
must first be redefined in idealized terms. Thus, another reason for the correspondence is 
that there is a selection effect involved, so that reality appears intrinsically mathematical 
simply because we focus on those aspects of it that can be most easily treated 
mathematically, or which correspond to the constrained behavior produced in 
experiments. Idealizations are chosen that do correspond closely enough to reality. 
 While laws of nature succinctly capture results of observation and experiment, 
following Popper such inductive generalizations cannot be proven, only disproven. 
Theorems of mathematics, on the other hand, can be proven because they are 
propositions within formal systems, not empirical assertions; the very concept of proof is 
integral to logic and formalism. Whatever power of necessity natural laws appear to 
possess derives from translating inductive generalizations into theorems of a formal 
system. If we marvel at the effectiveness of simple mathematical expressions to portray 
the real world, we should bear in mind that far more complicated expressions for the 
same relationships can be found. We are pleased by simple equations because they are 
succinct and solvable—a preference dating at least to the Pythagoreans, for whom 
“rational” meant tidy proportions, as in rational numbers. Often in the name of esthetics, 
we seek simplified aspects of nature because these are what we can deal with 
mathematically and technologically. A further benefit is that conceptual devices can lead 
to the construction of real devices, such as computers, automobiles, and radio telescopes.  
 While the pre-established harmony between mathematics and physics is amazing, 
perhaps the true marvel is the general ability of thought to model the external world at all: 
the pre-established harmony between world and brain. Einstein (following Hume) 
considered the capacity of reason to grasp reality to be little short of miraculous. Since 
his generation, understanding of the relationship between reason and reality has been 
naturalized by evolutionary epistemology: logic is a form of cognition, and the 
relationship between cognition and world is established through natural selection. Since 
that relation is historical and not a priori, logic itself must be an evolutionary product. An 
evolutionary general theory of intelligence would help to account for the astonishing 
effectiveness of mathematics to describe the world in simple terms, which is but one 
development of a broader capacity to model, abstract, and generalize [Baum 2007]. 



Moreover, it is psychologically reassuring to believe that physical reality is rational and 
can generally be redefined in human terms. Successful mathematical treatment of nature, 
reflected in technology, richly confirms that faith.  
 Abstract creations lead to tangible creations. Scientists understandably focus on 
conceptual artifacts because these are just the things they can most readily understand 
and make use of.1 One sees this materially reflected in the popularity at one time of 
mechanical models of the solar system and the atom, and in the current use of molecular 
models in chemistry. But scientific constructs also include a diversity of subtler 
abstractions. Philosopher Nancy Cartwright generically calls such conceptual artifacts 
nomological machines [Cartwright 1983; 1989]. Deductionism is the belief that such 
artifacts can exhaustively map all of physical reality; the universe may even be a literal 
machine such as a quantum computer [Lloyd 2013].  
 A controlled experiment is a nomological machine [Mets 2012], which often 
consists of literal machinery. Select factors are isolated for study, with other influences 
deliberately excluded—which is hardly the situation in nature, where the real system 
generally cannot be controlled to isolate specific factors of interest, and the number of 
factors involved is indefinite. In an experiment, ideally a single factor is isolated for 
study. Idealization is justified on the ground that the gain of treating the situation 
mathematically outweighs the loss from simplification. The isolation of causes is justified 
on the ground that in nature some causal factors are overwhelmingly more significant 
than others. It is argued that science would simply not be possible if this were not so 
[Wigner 1960]. Yet, “significance” is relative, and is evaluated within the terms of the 
theory that is to be tested. 
 “Twiddling a knob” is a theorist’s figure of speech [Davies 1995] that treats initial 
conditions, natural constants, and even the laws of nature themselves as variables of a 
nomological machine that can be adjusted by the theorist at whim. The world is then 
taken to be a mechanism whose (mathematical) settings can be controlled to make a 
different universe. 
 Closed reversible systems are a staple of classical physics because they can be 
well treated mathematically. The fundamental laws of physics are generally “time-
reversal invariant,” even though many physical processes at the macroscopic scale seem 
irreversible, as expressed in the second law of thermodynamics. However, this 
reversibility of laws is not a property of nature but a mathematical property of equations 
(–t can be substituted for t). One calculates the behavior, backward or forward in time, of 
the model, which is reversible by definition. Though time plays a key role within such a 
framework, deductive systems themselves are timeless by definition. In the real universe, 
there is a direction of time. Irreversible processes predominate because no part of the real 
world is actually a deductive system, even though it may be convenient to treat it as ruled 
by (reversible) equations. Irreversibility is fundamental even at the quantum level, as 
demonstrated by the “collapse of the wave function.”  
 While physical symmetry is ever only empirically approximate, mathematical 
symmetry has the precision of definition. The success of mathematical symmetry 
arguments at predicting discoveries in high-energy physics suggests that symmetry (of 

                                                
1 Cf. Vico’s “maker’s knowledge”. 



laws, at least) is an objective property of nature.2 Does this mean that nature itself must 
be profoundly symmetrical at deep levels simply because the mathematical theory of the 
day uses symmetry principles? “Symmetry breaking” describes the departure of reality 
from an ideal. When symmetry is considered a natural ground state, an event is sought to 
account for any departure from it. (This concept may be compared to Aristotle’s notion of 
a “natural” tendency or state, which can be perturbed by an external efficient cause.) In 
modern physics, symmetry breaking is reified as a causal agent; whereas symmetry and 
asymmetry are but ideas imposed by the theorist upon natural situations, which are 
generally neither static nor perfectly symmetric. 
 Most real numbers are non-computable, which is sometimes an inconvenience for 
a science based on the continuum (differential equations). However, while physics could 
be reformulated in terms of a discrete mathematics, this would reduce it to a deductive 
system, with all that does not fit into its Procrustean bed left undefined. One might expect 
to find integers or rational numbers at the base of a digital world, but instead we find 
numbers such as e and π [Tipler 2005]. That in itself is evidence that the world is not a 
deductive system, computer program, or simulation. 
 
 
3. Models and deductive systems 
 
The great advance represented by formal thinking is to define things precisely and 
unambiguously [Cassirer 1980]. Ordinary words are ambiguous, if only because they are 
tied to references in the complexly interrelated social world. Ideally, scientific terms are 
precisely defined and free from intuitive secondary meanings or associations. In 
principle, formal scientific concepts mean only what they are explicitly held to mean, so 
that one always knows what one is talking about. (A disadvantage, however, is that it is 
difficult then to talk of anything else.) Deductionism is the belief that physical processes 
correspond to such artificially constructed meanings. In the extreme, it is the premise that 
nature itself is reducible to definitions and mathematical models, which are often the 
actual objects of scientific study.  
 Models are deductive systems, usually defined by equations, representing select 
aspects of the real world. Equations are distilled expressions of empirical data, which are 
records of specific interactions between observer and world [Smolin 2013]. A model and 
its equation(s) express the same idealization of an inductive generalization. However, 
neither model nor equation should be assumed to be isomorphic to the real process or 
system modeled [Giere 1999]. Even if a deductive system is complete in the 
mathematical sense, it cannot represent reality exhaustively. For, model, equations, and 
deductive systems are finite products of human definition, whereas natural reality is not. 
Scientific modeling resembles other cognitive processes that are highly selective, serve 
biological needs, and are limited by the intentions behind them and the material processes 
that support them. Mathematical prediction, after all, presupposes an agent with reasons 
to predict the future and values that inform those reasons [Turchin 1990]. 
 The correspondence of mathematics with physical reality parallels the 
correspondence of our ordinary cognition with the external world. In both cases, the 
                                                
2 One should bear in mind that “new” particles (whether or not predicted through symmetry 
arguments) are not naturally occurring entities but artificial products of high-energy experiments. 



correspondence is a matter of utility, not identity or truth. In the case of perception, 
cognitive modeling serves the creature and is endorsed by its evolutionary success. 
However, mathematical modeling, though underpinning our present civilization, has not 
been around long enough to prove its long-term evolutionary value to the species. While 
our perceptual models are so ingrained that we take them for the world itself, taking 
mathematics for the world itself does not enjoy the same warrant. 
 The world is made intelligible through a synergy of its real properties with 
successful strategies employed to model and understand it. For example, the extreme 
velocity of light rendered it feasible to ignore the very small relativistic effects occurring 
at speeds that could be studied during the first two centuries of classical physics. 
Similarly, the very small size of atoms, electrons, and energies of visible light made it 
possible to ignore quantum effects occurring among classical objects. Such circumstances 
rendered the development of physics possible in the first place, but also required its 
eventual revision. On the other hand, if it had been the case that light travels with infinite 
speed, as was early supposed, life would not have been shielded from the simultaneous 
arrival of all the radiation and other distant influences that might occur at a given 
moment. Similarly, but for being quantized, matter would not be stable, and neither 
chemistry nor chemists would not be possible. 
 If life itself has depended on relative isolation and separation of effects on 
different scales, so has science [Hartle 1997]. Without such localism, the notion of the 
isolated system would not have been feasible and physical laws could not have taken a 
simple and practically computable form. This was also facilitated by the apparent 
continuity of the macroscopic world, for which differential equations were effective 
[Barrow 1991, p50]. The huge disparity in energy between macroscopic objects and 
photons allows one to neglect the physical effects of observation in everyday 
circumstances. Consequently, one can postulate the existence of real objects independent 
of observers and of observers independent of objects. Without this effect of scale—which 
might be but an incidental fact of nature—there could be no clear distinction even 
between subject and object. To that degree, philosophy is at the mercy of physics; for, 
such categories cannot be taken as a priori if they depend on contingent physical facts. 
 The fundaments of deductive systems are true by definition or fiat. A deductive 
system is self-contained and coheres purely by logical necessity. There is no reference 
outside itself until it is “interpreted” as a mapping of some portion of the real world—just 
as plane geometry, for example, can be applied to the physical properties of the earth’s 
surface. One can know with certainty what a deductive system contains because it has 
been defined to contain just those things. As with a computer program, one knows in 
advance that there is a specified output to any input. In order to infer what a natural 
system contains, by contrast, one must either take it apart or else observe its outputs in 
relation to inputs. Imagining from the outset that the system is a deductive system lends 
support to the notion of determinism and the assumption that systems are well defined.  
 One proposes a model to assimilate observed correlations in nature to a rational 
scheme. But logical relations between elements in the model do not necessarily reflect 
causal relations in nature. All we can be certain of is that correlations exist among data; 
there can always be alternative models to account for them, and there can always be 
undiscovered correlations. While relationships within deductive systems are logically 
necessary, only by analogy are relationships within nature “necessary.” Since, causality 



involves an inference from actual observed patterns and measurements, the notion of 
causal necessity simply transfers, for psychological reasons, the model’s internal logical 
necessity to the physical system concerned. Causality is an empirical issue, while 
determinism is a property of models. 
 
 
4. Determinism 
 
The only truly deterministic systems are deductive systems, which are logically self-
contained and coherent by definition. Nature and natural systems, in contrast, are open 
and ambiguous, always eluding definition. It is not nature that is deterministic, but human 
thought systems projected upon it.3  
 The precision associated with determinism can be of two very different types: 
either the precision of definition or that of large statistical runs. All empirical knowledge 
is statistical in essence; it pertains to data before making claims about the world. Even in 
the classical realm, one simply disregards the spread of error in order to imagine a precise 
and necessary link between cause and effect. It might seem that the classical realm is 
distinguished from the quantum realm by the nature of its entities, but the essential 
difference is epistemological rather than ontological, a function of the type of statistics. 
 While nature cannot be reduced to a deductive system, it does often seem to mimic 
one. Many classical systems, such as the solar system, conform to their mathematical 
descriptions to great accuracy. Quantum entities appear to manifest the precise and 
simple integrity characterizing products of definition. One can accurately predict the 
future of classical systems (such as planetary motions) because such real systems 
coincide, for all practical purposes, with deductive systems. This is because, in such 
massive systems deviations on a micro scale cancel out to yield a statistically precise 
averaged macroscopic pattern that can be codified as a law. This sort of predictability is 
an emergent effect of large numbers. If the motion of a planet-sized object could be made 
to depend, through amplification, on individual micro events (as in the case of 
Schrödinger’s cat), predicting its path would be impossible [Ellis 2006].4 On the other 
hand, a very large ensemble of such hypothetical unpredictable planets should average 
out to approach classical expectations! 
 Determinism gives the comforting impression that the laws of physics are magical 
incantations that can be invoked to predict the future. This power seems guaranteed 
within a deterministic system, where future is logically linked to past by known 
algorithms. This may even give the illusion that a deterministic system aims toward a 
pre-given end.5 However, there is no guarantee that the world actually is such a system, 

                                                
3 Conversely, however, if it could be proven that nature is deterministic, this would imply that the 
cosmos itself is a deductive system—perhaps a simulation or an alien engineering project, or a 
divine creation as originally supposed. In other words, nature is deterministic only if it is not 
natural! 
4 Such amplification would require great entropic resources, as in George Ellis’ example of a 
massive object powered by rocket engines that are triggered by quantum events. 
5 At least in systems presumed to be deterministic, descriptions by means of action principles are 
no more than equivalent alternatives to dynamical descriptions. This was noted by many 
commentators since Maupertuis, who were anxious to preserve the independence of science from 



or—if it is—that the appropriate formulae can be known. Knowledge that enables one to 
predict the future is based on extrapolating from patterns of the past. While these patterns 
may be expressed mathematically, no equation has causal power to set the future. 
 Determinism and chance are complementary concepts that are alike nebuluous. 
What does ‘chance’ (or accident) mean other than that which does not occur by intention? 
And what does ‘determine’ mean if not (by an act of free will) either to ascertain what is 
so or else to intentionally make it so (e.g., in an experimental set-up)? Does causality then 
even have a meaning apart from conscious agents? Confusion surrounding these concepts 
leads to the impression that laws of nature “govern,” or that mathematical formulae 
somehow carry a power to fix the behavior of matter in advance of actual events.  
 Finally, what does it mean for nature to be undetermined, random? Indeed, what 
does random mean, other than that no explanatory precedent or ordered pattern can be 
found? Finding such causes or patterns (or failing to find them) involves an act of 
searching by a conscious agent (the “observer”). The observer is not merely a passive 
witness to what occurs, but an active participant. There is always an entangling 
interaction of object with subject. Randomness is therefore not a property of a system, 
process, collection of events that does not include the observer. On the contrary, it is a 
relation to the observer. Yet, it is a natural mental habit to view the world as self-existent 
and independent of the observer. This psychological fact leads to paradoxical notions 
such as involved in the measurement problem. The very concepts of determinism and 
indeterminism are reified as observer-independent properties of a system. In truth, 
however, there is always someone who determines or cannot determine. Indeterminism 
means only that a given agent (and perhaps no agent at all) can find out what the state of 
the individual system actually is. The only other coherent sense of ‘determine’ is to fix, as 
in setting experimental conditions. One may interpret the quantum wave function to 
imply that a system exists in a “mixed state.” But that interpretation simply reifies the 
uncertainty of the observer as though it were a property of the system itself; whereas 
knowledge, certainty, and uncertainty are properties of the relationship of the observer to 
the system. 
 
 
5. The deductionist program 
 
Galileo famously called mathematics the language in which nature is “written.” But 
natural things are not literal numbers and nature is not literally a text. Mathematics is 
rather the language of science—or its grammar, at least. Scientific explanation is 
communication, whether in a natural or in a formal (mathematical) language.6 Scientific 
theories consist of propositions, communicated by one or more scientists primarily to 
other scientists. Yet, mathematics can no more capture all aspects of natural reality than 
ordinary language can capture all of human experience. Of course, this has not daunted 
the inclination toward deductionism nor the general mathematization of science. 
                                                
religion by denying any metaphysical significance to action principles [Stöltzner 2003]. Action 
principles do not imply teleology [d’Abro 1939; Bunge 1979, p83]. 
6 The structure of both is based on common perceptual experience: language usually contains 
nouns to represent objects, adjectives to describe qualities, verbs to represent interactions, etc. 
Formal systems contain the parallel elements more abstractly. 



 The deductionist program in science was first fully expressed in Newton’s 
Principia, presented as geometric proofs in the style of Euclid. It had been a major theme 
of the ancients and is inherent in the later thought of Einstein, whose confidence in 
mathematical formalism was inspired by his success with general relativity [Barrow 
1991, p244]. It is encouraged by textbooks, which teach physics in terms of logical rather 
than historical development—a revisionist approach that makes the laws of nature seem 
falsely simple and inevitable [Barrow, p156]. It also creates the impression that science, 
if not nature itself, can be axiomatized, in a final story that has erased its conceptual 
tracks and all traces of historical process. After all, a deductive system is timeless, 
eliminating dependency on the messy particulars of the real world. However, the reality 
of nature consists in the particular, not the general.  
 Mathematical treatment restricts the operative factors involved to the few that can 
be treated mathematically. While useful “for all practical purposes,” this creates the 
misleading impression that natural reality involves only these defined factors. It may be 
true that science as we know it could not have developed without such simplification; but 
this does not make it a literally true picture of the world. Nor should the history of 
scientific practices constrain its future. We cannot know what purposes in future may be 
deemed “practical.” 
 Deductive systems are effective just to the extent that simplification and 
idealization are useful toward specific aims. One can gloss over discrepancies between 
real and ideal, even defying common sense, by redefining the target system as a 
deductive system, an idealization tailored to make sense. Mathematical equations define 
toy systems that model selected aspects of the real world. But neither equation nor model 
is strictly isomorphic to the real process or system it represents. The faith that nature is 
rationally comprehensible amounts to a program to assimilate it to such models.  
  
 
6. Conclusion 
 
The only well-defined systems are deductive systems. The only “necessity” is the force of 
logic. The only absolutely certain knowledge is deductive-axiomatic. All physical 
knowledge is necessarily statistical, involving some uncertainty. However perfectly 
differential equations may describe idealized systems, they correspond only imperfectly 
to real systems. 
 The concepts of isolated system, determinism, reversibility, equilibrium, and 
symmetry represent properties of deductive systems, not of nature. Deductionism 
assimilates nature to artifacts (models, equations), and tacitly holds that physical systems 
are such artifacts. Properties of mathematical or deductive systems are thereby 
sometimes falsely ascribed to natural systems. This may also lead to excluding 
consideration of other properties than those defined in the deductive program (for 
example, properties of self-organization when matter is viewed implicitly as passive) 
[Bruiger 2014, 2016]. 
 A deductive system has the connotation of being timeless, self-contained and 
fixed. This misleadingly suggests that changing laws are not to be expected any more 
than unforeseen variables are to be expected in a theory deemed complete. Through 
geometricized time (the block universe), with its associated determinism, deductionism 



may actually hinder the development of physics [Cahill 2003]. We must re-examine 
change from a point of view in which it is fundamental, rather than seeking either 
unchanging laws or a transcendent meta-time [Smolin 2013] in which laws may vary, but 
which itself is fixed. We must free ourselves from the sheer logical closure of 
deductionism that may lead to false expectations, particularly of a final theory.  
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