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Analyzing geometric properties of high-dimensional loss functions, such as local curvature and
the existence of other optima around a certain point in loss space, can help provide a better under-
standing of the interplay between neural network structure, implementation attributes, and learning
performance. In this work, we combine concepts from high-dimensional probability and differen-
tial geometry to study how curvature properties in lower-dimensional loss representations depend
on those in the original loss space. We show that saddle points in the original space are rarely
correctly identified as such in expected lower-dimensional representations if random projections are
used. The principal curvature in the expected lower-dimensional representation is proportional to
the mean curvature in the original loss space. Hence, the mean curvature in the original loss space
determines if saddle points appear, on average, as either minima, maxima, or almost flat regions.
We use the connection between expected curvature in random projections and mean curvature in
the original space (i.e., the normalized Hessian trace) to compute Hutchinson-type trace estimates
without calculating Hessian-vector products as in the original Hutchinson method. Because random
projections are not suitable to correctly identify saddle information, we propose to study projections
along dominant Hessian directions that are associated with the largest and smallest principal curva-
tures. We connect our findings to the ongoing debate on loss landscape flatness and generalizability.
Finally, for different common image classifiers and a function approximator, we show and compare
random and Hessian projections of loss landscapes with up to about 7× 106 parameters.

I. INTRODUCTION

Every deep neural network loss function depends on parameters, θ ∈ RN , which induce a loss landscape that
is typically in high dimensions [1]. The loss landscape associated with a neural network and the performance of
optimization procedures that operate on it are each influenced by several factors, including the structural properties
of the neural network [2–4] and a range of implementation attributes one may choose [5–9]. The exact nature of these
factors and how their combinations influence learning performance, however, remain largely unknown.

One way to better understand the interplay between neural network structure, implementation attributes, and
learning performance is through a better understanding of the geometric properties of loss landscapes. For example,
Keskar et al. [10] analyze the local curvature around candidate minimizers via the spectrum of the underlying Hessian
to characterize the flatness and sharpness of loss minima, and Dinh et al. [11] demonstrate that reparameterizations
can render flat minima sharp without affecting generalization properties. Another approach, which holds out the
promise of visualizing the curvature around a point and the existence, if any, of nearby optima, aims to visualize
high-dimensional loss functions by a lower-dimensional (and often random) projection of two or three dimensions [12–
16]. Building on this approach, Horoi et al. [16] pursue improvements in learning by dynamically sampling points in
projected low-loss regions surrounding local minima during training.

Given the advantages afforded by the promise of visualizing loss landscape optima, one may ask: how do the curva-
ture properties in low-dimensional visualizations of high-dimensional functions depend on the curvature properties of
the original, high-dimensional loss space? Specifically, do random two- and three-dimensional loss projections mean-
ingfully represent convexity and concavity properties of high-dimensional loss functions? In short, they do not. Saddle
points are generally misrepresented in the expected lower-dimensional representation of an original, high dimensional
loss space. Yet, due to the exponential proliferation of saddle points in high dimensions [17, 18], a critical point in
high-dimensional loss space is almost certain to be a saddle rather than a minimum. Nevertheless, random projections
can be useful to obtain curvature estimates, as we shall demonstrate by establishing a connection between expected
curvature in random loss projections and Hessian trace estimates based on Hutchinson’s method [19].

Our contributions in this paper are threefold. First, we explain why random projections from a high-dimensional
space do not preserve curvature information. This argument is developed in Section II. One consequence of this
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result is that saddle points of an original high-dimensional loss landscape are not identified correctly in the associated
expected low-dimensional random projection, a point we illustrate with simulation examples in Section IIIA. Second,
while principal curvatures associated with a random projection are not weighted ensemble means of the principal
curvatures in the original high-dimensional space, the principal curvatures in a low-dimensional projection are given
by functions of weighted ensemble means of the Hessian elements in the original, high-dimensional space. This result
is developed in Section II as well, and it is also illustrated by a simulation example in Section IIIA. A complementary
simulation example in Section III B shows how one can estimate mean curvature from the slope of random loss
projections. Together, Section II is intended to be a self-contained description of the relationship between principal
curvatures of a loss function and the principal curvatures associated with a lower-dimensional, random projection.

Our third contribution builds on the results reported in Sections II and IIIA to propose an efficient method
for estimating and visualizing Hessian information in high-dimensional loss landscapes. Instead of using random
projections to visualize loss functions, we propose in Sections III C and IV to analyze projections along dominant
Hessian directions that are associated with the largest-magnitude positive and negative principal curvatures, i.e.,
those directions along which the magnitude of positive and negative changes of the loss function is largest. For
different common image classifiers and a function approximator as studied in [20], we show and compare random
and Hessian projections of loss landscapes with up to about 7 × 106 parameters. In accordance with related works
unlocking Hessian information in non-linear and high-dimensional settings [21, 22], our proposal uses Hessian-vector
products (HVPs), thereby bypassing the computational expense of computing a Hessian matrix. In short, the role of
random projections in our approach is to estimate mean curvature and weighted ensemble means of elements of the
original high-dimensional Hessian.

Finally, we conclude our paper in Section V with a discussion of our results. Our source code is publicly available
at [23].

II. PRINCIPAL CURVATURE IN RANDOM PROJECTIONS

To describe the connection between the principal curvature of a loss function L(θ) and that associated with a lower-
dimensional, random projection, we provide in Section IIA an overview of concepts from differential geometry [24–26]
that are useful to mathematically describe curvature in high-dimensional spaces. In Sections II B and IIC, we show the
relationship between principal curvature and random projections. Finally, in Section IID, we highlight a relationship
between measures of curvature presented in Section IIC and Hutchinson-type Hessian trace estimates.

A. Differential and information geometry concepts

In differential geometry, the principal curvatures are the eigenvalues of the shape operator (or Weingarten map1),
a linear endomorphism defined on the tangent space Tp of L at a point p. For the original high-dimensional space, we
have (θ, L(θ)) ⊆ RN+1 and there are N principal curvatures κθ

1 ≥ κθ
2 ≥ · · · ≥ κθ

N . At a non-degenerate critical point
θ∗ where the gradient ∇θL vanishes, the matrix of the shape parameter is given by the Hessian Hθ with elements
(Hθ)ij = ∂2L/(∂θi∂θj) (i, j ∈ {1, . . . , N}).2 Some works refer to the Hessian as the “curvature matrix” [28] or use it to
characterize the curvature properties of L(θ) [13]. In the vicinity of a non-degenerate critical point θ∗, the eigenvalues
of the Hessian Hθ are the principal curvatures and describe the loss function in the eigenbasis of Hθ according to

L(θ∗ +∆θ) = L(θ∗) +
1

2

N∑
i=1

κθ
i∆θ2i . (1)

The Morse lemma states that, if a critical point θ∗ of L(θ) is non-degenerate, then there exists a chart (θ̃1, . . . , θ̃N ) in
a neighborhood of θ∗ such that

L(θ̃) = −θ̃21 − · · · − θ̃2i + θ̃2i+1 + · · ·+ θ̃2N + L(θ∗) , (2)

where θ̃i(θ
∗) = 0 for i ∈ {1, . . . , N}. The loss function L(θ̃) in Eq. (2) is decreasing along i directions and increasing

along the remaining i + 1 to N directions. Further, the index i of a critical point θ∗ is the number of linearly

1 Some authors distinguish between the shape operator and the Weingarten map depending on if the change of the underlying tangent
vector is described in the original manifold or in Euclidean space (see, e.g., chapter 3 in [27]).

2 A critical point is degenerate if the Hessian Hθ at this point is singular (i.e., det(Hθ) = 0). At degenerate critical points, one cannot
use the eigenvalues of Hθ to determine if the critical point is a minimum (positive definite Hθ) or a maximum (negative definite Hθ).
Geometrically, at a degenerate critical point, a quadratic approximation fails to capture the local behavior of the function that one
wishes to study.
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independent decreasing dimensions of L near θ∗ (i.e., the number of negative eigenvalues of the Hessian Hθ at that
point).

In the standard basis, the Hessian is

Hθ := ∇θ∇θL(θ) =


∂2L
∂θ2

1
· · · ∂2L

∂θ1∂θN
...

. . .
...

∂2L
∂θN∂θ1

· · · ∂2L
∂θ2

N

 . (3)

Closely related to the Hessian is the Fisher information matrix (FIM) [29, 30], whose elements Fij are given by

Fij = E
[

∂

∂θi
log p(X | θ) ∂

∂θj
log p(X | θ)

]
, (4)

where the expectation is taken over the random variable X and p(x | θ) denotes the probability density function
associated with X conditioned on the parameter θ. The probability that X falls within the infinitesimal interval
[x, x+ dx], given a known value of θ, is p(x | θ) dx. Provided that certain regularity conditions such as

d

dθi
E
[

∂

∂θj
log p(X | θ)

]
=

∫
∂

∂θi

[(
∂

∂θj
log p(x | θ)

)
p(x | θ)

]
dx (5)

are satisfied [29, 31], we may rewrite Eq. (4) as

Fij = −E
[

∂2

∂θi∂θj
log p(X | θ)

]
. (6)

Notice the structural similarity between Fij and the elements of Hθ [see Eq. (3)]. In natural gradient descent [32],
the metric associated with a stochastic feedforward neural network is the FIM.

Considering a neural network with input-output pairs (x, y) and parameters θ, a possible choice of a model dis-
tribution, which takes on the role of the probability density in Eq. (4), is p(x, y|θ) = p(y|x, θ)q(x) with p(y|x, θ) =

exp(−∥y − fθ(x)∥22/2)/
√
2π. Here, q(x) denotes the distribution of inputs x, fθ(x) is the output of a neural network

given input x, and ∥·∥2 is the Euclidean norm [33]. The expected values associated with FIM elements Fij for p(x, y|θ)
are calculated with respect to (w.r.t.) input-output pairs (x, y) of the joint distribution p(x, y|θ).
For a set of input samples x(t) (t ∈ {1, . . . , T}) and corresponding outputs fθ(t) ≡ fθ(x(t)), the empirical Fisher

information matrix is

Fθ =
1

T

T∑
t=1

C∑
k=1

∇θfθ,k(t)∇θfθ,k(t)
⊤
, (7)

where fθ,k is the k-th entry of the neural network output and k ∈ {1, . . . , C} [33, 34]. The empirical FIM converges
towards the FIM, Eq. (4), as T → ∞.
Given the mean squared loss function

L(θ) =
1

2T

T∑
t=1

∥y(t)− fθ(t)∥22 , (8)

the Hessian Hθ of L(θ) and the empirical FIM Fθ are connected via

Hθ = Fθ −
1

T

T∑
t=1

C∑
k=1

(yk(t)− fθ,k(t))∇θ∇θfθ,k(t) . (9)

Here, y(t) denotes the desired output associated with sample x(t). At the global optimum, which is usually attained
for overparameterized neural networks [1], the difference yk(t)− fθ,k(t) vanishes for all k, t, and the empirical FIM is
equal to the Hessian Hθ [34].

We can also establish a connection betweenHθ and Fθ for the cross-entropy loss L(θ) = −1/T
∑T

t=1

∑C
k=1 yk(t) log(fθ,k(t)),

where softmax outputs fθ,k(t) are used to approximate binary class labels yk(t).
3 Similarly to Eq. (9), we obtain

3 In this case, the underlying conditional probability distribution is p(y|x, θ) =
∏C

k=1

(
fθ,k(t)

)yk [35].
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Hθ =
1

T

T∑
t=1

C∑
k=1

yk(t)(∇θfθ,k(t)∇θfθ,k(t)
⊤ − fθ,k(t)∇θ∇θfθ,k(t))

fθ,k(t)2
. (10)

Given the scenario in which fθ,k(t) approaches yk(t) for all k, t and using
∑C

k=1 fθ,k(t) = 1 (i.e.,
∑C

k=1 ∇θ∇θfθ,k(t) =
0), we again have Hθ = Fθ where

Fθ =
1

T

T∑
t=1

C∑
k=1

1

fθ,k(t)
∇θfθ,k(t)∇θfθ,k(t)

⊤ (11)

is the empirical FIM associated with the cross-entropy loss [35].
The neural network examples that we consider in Section IV are trained using cross-entropy loss. In the Appendix,

we also consider a function approximation problem in which we train neural networks using a mean squared loss
function.

B. Random projections

To graphically explore an N -dimensional loss function L around a critical point θ∗, one may wish to work in a
lower-dimensional representation. For example, a two-dimensional projection of L around θ∗ is provided by

L(θ∗ + αη + βδ) , (12)

where the parameters α, β ∈ R scale the directions η, δ ∈ RN . The corresponding graph representation is
(α, β, L(α, β)) ⊆ R3.
In high-dimensional spaces, there exist vastly many more almost-orthogonal than orthogonal directions. In fact, if

the dimension of our space is large enough, with high probability, random vectors will be sufficiently close to orthogonal
[36]. Following this result, many related works [13, 15, 16] use random Gaussian directions with independent and
identically distributed vector elements ηi, δi ∼ N (0, 1) (i ∈ {1, . . . , N}).

We now turn to showing that η, δ are almost orthogonal using a concentration inequality for chi-squared distributed
random variables. To do so, we first note that the scalar product of random Gaussian vectors η, δ is a sum of the
difference between two chi-squared distributed random variables because

N∑
i=1

ηiδi =

N∑
i=1

1

4
(ηi + δi)

2 − 1

4
(ηi − δi)

2 =

N∑
i=1

1

2
X2

i − 1

2
Y 2
i , (13)

where Xi, Yi ∼ N (0, 1). In the last step of Eq. (13), we rescaled Xi and Yi by a factor
√
2 to obtain normally

distributed random variables with variance 2. Since E[Z] = N for Z =
∑N

i=1 X
2
i , the right-hand side of Eq. (13)

vanishes in expectation. That is,

lim
N→∞

1

N

N∑
i=1

ηiδi = 0 . (14)

Hence, the vectors η, δ are orthogonal in the limitN → ∞. For finiteN , we can bound Eq. (13) using the concentration
inequalities

Pr

(
1

N

N∑
i=1

X2
i − 1 ≥ ϵ+

1

2
ϵ2

)
≤ e−

Nϵ2

4 (15)

Pr

(
1− 1

N

N∑
i=1

X2
i ≥ ϵ

)
≤ e−

Nϵ2

4 (16)

for any ϵ > 0 [37]. In the limit ϵ → 0, the above inequalities can be cast in the following form

Pr

(∣∣∣∣∣ 1N
N∑
i=1

X2
i − 1

∣∣∣∣∣ ≥ ϵ

)
≤ 2e−

Nϵ2

4 . (17)
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Symbol Definition

Hθ ∈ RN×N Hessian in the original loss space

κθ
i ∈ R principal curvatures in the original loss space,

where i ∈ {1, . . . , N} (i.e., the eigenvalues of Hθ)

Hα,β ∈ R2×2 Hessian in a two-dimensional projection of an
N -dimensional loss function

κα,β
± ∈ R principal curvatures in a two-dimensional

loss projection (i.e., the eigenvalues of Hα,β)

κ̄α,β ∈ R principal curvature in the expected, two-dimensional
loss projection (i.e., the eigenvalue of E[Hα,β ])

H ∈ R mean curvature (i.e.,
∑N

i=1 κ
θ
i /N = κ̄α,β/N)

TABLE I. Overview of several quantities that are useful to characterize curvature of high-dimensional loss
functions. We summarize the employed definitions of Hessians and several derived curvature measures that are useful to
quantify curvature of N -dimensional loss functions L(θ∗) : RN → R and their two-dimensional random projections L(θ∗ +αη+
βδ) at a non-degenerate critical point θ∗. The vectors η, δ ∈ RN are the directions along which we project the original loss
function and α, β ∈ R are the corresponding scale factors. Random loss projections are usually based on Gaussian vectors η, δ,
which are almost orthogonal in high-dimensional spaces (i.e., for large N).

Using |N−1
∑

i ηiδi| = |(2N)−1
∑

i X
2
i − 1 + 1− Y 2

i |, we obtain

Pr

(∣∣∣∣∣ 1N
N∑
i=1

ηiδi

∣∣∣∣∣ ≥ ϵ

)
≤

√
2e−

Nϵ2

2 (18)

in the limit of large N . For further details on the derivation of Eq. (18), see Appendix A.

C. Principal curvature

With the form of random Gaussian projections in hand, we now analyze the principal curvatures in both the original
and lower-dimensional spaces. The Hessian associated with the two-dimensional loss projection (12) is

Hα,β =

(
∂2L
∂α2

∂2L
∂α∂β

∂2L
∂β∂α

∂2L
∂β2

)
=

(∑
i,j ηiηj

∂2L
∂θiθj

∑
i,j ηiδj

∂2L
∂θiθj∑

i,j ηiδj
∂2L
∂θiθj

∑
i,j δiδj

∂2L
∂θiθj

)

=

(
(Hθ)ijη

iηj (Hθ)ijη
iδj

(Hθ)ijη
iδj (Hθ)ijδ

iδj

)
,

(19)

where we use Einstein notation in the last equality.
In analogy with Eq. (9), the dimension-reduced Hessian Hα,β is connected to the corresponding FIM Fα,β according

to

Hα,β = Fα,β − 1

T

T∑
t=1

C∑
k=1

(yk(t)− f(α,β),k(t))∇(α,β)∇(α,β)f(α,β),k(t) , (20)

where f(α,β),k(t) is the k-th entry of the output of a neural network with parameters θ∗ + αη + βδ. The operator
∇(α,β) denotes the gradient w.r.t. parameters α, β. Recall that Eq. (9) [and hence Eq. (20)] is based on a mean
squared loss function. One may also use Eq. (10) to obtain a connection between the dimension-reduced Hessian and
the corresponding cross-entropy FIM.

Lower-dimensional approximations Hα,β of the Hessian Hθ in the original high-dimensional space might be useful in
generalized Gauss–Newton algorithms that are based on positive semidefinite and computationally affordable Hessian
approximations [38, 39].

Because the elements of δ, η arising in Hα,β are distributed according to a standard normal distribution, the second
derivatives of the loss function L in Eq. (19) have prefactors that are products of standard normal variables and,
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hence, can be expressed as sums of chi-squared distributed random variables as in Eq. (13). To summarize, elements
of Hα,β are sums of second derivatives of L in the original space weighted with chi-squared distributed prefactors.

The principal curvatures κα,β
± (i.e., the eigenvalues of Hα,β) are

κα,β
± =

1

2

(
A+ C ±

√
4B2 + (A− C)2

)
, (21)

where A = (Hθ)ijη
iηj , B = (Hθ)ijη

iδj , and C = (Hθ)ijδ
iδj . To the best of our knowledge, a closed, analytic

expression for the distribution of the quantities A,B,C is not yet known [37, 40–42].
We now turn to the relationship between random projections and principal curvature. The appeal of random

projections is that pairwise distances between points in a high-dimensional space can be nearly preserved by a lower-
dimensional linear embedding, affording a low-dimensional representation of mean and variance information with
minimal distortion [43]. The question is whether random projections also preserve curvature information, and if so,
what is the nature of the relationship between random Gaussian directions and principal curvature. For instance, Li
et al. [13] assert that “the principal curvatures of a dimensionality-reduced plot (with random Gaussian directions)
are weighted averages of the principal curvatures of the full-dimensional surface”. However, our results show that the

principal curvatures κα,β
± in a two-dimensional loss projection are weighted averages of the Hessian elements (Hθ)ij

in the original space and not weighted averages of the principal curvatures κθ
i , which instead are solutions of an N -th

degree polynomial. Similar arguments apply to projections with dimension larger than 2.
In Section III we discuss examples that show that lower-dimensional projections of L(θ) can be misleading, since

high-dimensional saddle points may appear to be minima, maxima, or almost flat regions depending on the index of
the underlying Hessian Hθ in the original space.
Returning to principal curvature, since

∑
i,j aijη

iηj =
∑

i aiiη
iηi +

∑
i ̸=j aijη

iηj (aij ∈ R), we find that E[A] =

E[C] = (Hθ)
i
i and E[B] = 0 where (Hθ)

i
i ≡ tr(Hθ) =

∑N
i=1 κ

θ
i .

4 To show that the expected values of aijη
iηj (i ̸= j)

or aijη
iδj vanish, one can either invoke independence of ηi, ηj (i ̸= j) and ηi, δj or transform both products into

corresponding differences of two chi-squared random variables with the same mean [see Eq. (13)].
Hence, the expected, dimension-reduced Hessian (19) is

E[Hα,β ] =

(
(Hθ)

i
i 0

0 (Hθ)
i
i

)
. (22)

The corresponding eigenvalue (or principal curvature) κ̄α,β is therefore given by the sum over all principal curvatures in

the original space (i.e., κ̄α,β =
∑N

i=1 κ
θ
i ). Hence, the value of the principal curvature κ̄α,β in the expected dimension-

reduced space will be either positive (if the positive principal curvatures in the original space dominate), negative (if
the negative principal curvatures in the original space dominate), or close to zero (if positive and negative principal
curvatures in the original space cancel out each other). As a result, saddle points will not appear as such in the
expected random projection.

In addition to the connection between κ̄α,β and the principal curvatures κθ
i , we now provide an overview of additional

mathematical relations between different curvature measures that are useful to quantify curvature properties of high-
dimensional loss functions and their two-dimensional random projections.

Invoking Eq. (21), we can relate κ̄α,β to tr(Hθ) and κα,β
± . Because κα,β

+ + κα,β
− = A+ C, we have

tr(Hθ) = κ̄α,β =

N∑
i=1

κθ
i =

1

2

(
E[κα,β

+ ] + E[κα,β
− ]
)
. (23)

The mean curvature H in the original space is related to κ̄α,β via

H =
1

N
κ̄α,β =

1

N

N∑
i=1

κθ
i . (24)

We summarize the definitions of the employed Hessians and curvature measures in Tab. I.

4 The expected values of the quantities A, B, and C correspond to ensemble means (29) over S realizations of random projections in the
limit S → ∞.
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D. Hessian trace estimates

Finally, we point to a connection between the above curvature measures and existing Hessian trace estimates.
The trace (or unnormalized mean curvature) of the Hessian Hθ has already found applications in characterizing
loss landscapes of neural networks [21, 44]. A common way of estimating tr(Hθ) without explicitly computing all
eigenvalues of Hθ is based on Hutchinson’s method [19] and random numerical linear algebra [45, 46]. The basic
idea behind this approach is to (i) use a random vector z ∈ RN with elements zi that are distributed according to
a distribution function with zero mean and unit variance (e.g., a Rademacher distribution with Pr (zi = ±1) = 1/2),
and (ii) compute z⊤Hθz, an unbiased estimator of tr(Hθ), using Hessian-vector products. That is,

tr(Hθ) = E[z⊤Hθz] . (25)

Recall that Eq. (23) shows that the principal curvature of the expected random loss projection, κ̄α,β , is equal to
tr(Hθ). Instead of estimating tr(Hθ) using the original Hutchinson’s method (25), an alternative Hutchinson-type

estimate is provided by the mean of the expected values of κα,β
− and κα,β

+ [see Eq. (23)].

III. ILLUSTRATIVE EXAMPLES

In this section, we summarize the main concepts derived in Section II in terms of different examples. These
examples are intended to aid intuition on how (i) principal and mean curvatures of the original loss function relate to
those of random projections, (ii) curvature-based Hessian trace estimates relate to those obtained with the original
Hutchinson’s method, and (iii) Hessian directions (i.e., the eigenbasis of the Hessian Hθ of L(θ)) can be used for a
guided visual analysis of saddle information in high-dimensional spaces.

A. Extracting curvature information

We now study two examples that will help build intuition for the concepts discussed in the previous sections. In the
first example, we study a critical point θ∗ of an N -dimensional loss function L(θ) for which (i) all principal curvatures
have the same magnitude and (ii) the number of positive curvature directions is equal to the number of negative
curvature directions. The mean curvature of this saddle point is zero. In accordance with Eq. (24), we will show
that the mean curvature can be approximated by a function of ensemble means of elements of the dimension-reduced

Hessian Hα,β , and that the principal curvatures κα,β
± are able to correctly identify the saddle point in the majority of

simulated projections. In the second example, we use a loss function associated with an unequal number of negative
and positive curvature directions. For the different curvature measures derived in Section IIC, we find that random
projections cannot identify the underlying saddle point.

The loss function of our first example is

L(θ) =
1

2
θ2n+1

(
n∑

i=1

θ2i − θ2i+n

)
, n ∈ Z+ , (26)

where we set N = 2n+ 1. A critical point θ∗ of the loss function (26) satisfies

(∇θL)(θ
∗) =



θ∗1θ
∗
2n+1
...

θ∗nθ
∗
2n+1

−θ∗n+1θ
∗
2n+1

...
−θ∗2nθ

∗
2n+1

1
2

(∑n
i=1 θ

∗2
i − θ∗

2

i+n

)


= 0 . (27)

The Hessian at the critical point θ∗ = (θ∗1 , . . . , θ
∗
2n, θ

∗
2n+1) = (0, . . . , 0, 1) is

Hθ = diag(1, . . . , 1︸ ︷︷ ︸
n times

,−1, . . . ,−1︸ ︷︷ ︸
n times

, 0) . (28)
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FIG. 1. Convergence of the ensemble mean (29) of Hessian elements and curvatures measures as a function of the number
of random projections S. (a,c) The deviation of the ensemble means ⟨(Hα,β)ij⟩ (i, j ∈ {1, 2}) of Hessian elements from the
corresponding expected values as a function of S. Notice that the expected value of the diagonal elements (Hα,β)11 and (Hα,β)22
is equal to κ̄α,β (i.e., to the sum of principal curvatures in the original space) [see Eqs. (22) and (23)]. A relatively large number
of random projections between 103 and 104 is required to keep the deviations at values smaller than about 2–4. (b,d) The

ensemble means ⟨κα,β
± ⟩ [see Eq. (21)] and ⟨κ̃α,β

± ⟩ [see Eq. (30)] as a function of S. Dashed grey lines represent κ̄α,β = tr(Hθ).
In panels (a,b) and (c,d), the N -dimensional loss functions are given by Eqs. (26) and (31), respectively. We evaluate the
corresponding Hessians (28) and (32) at the saddle point θ∗ = (θ∗1 , . . . , θ

∗
2n, θ

∗
2n+1) = (0, . . . , 0, 1). In both loss functions, we

set n = 500 and in loss function (31) we set ñ = 800.

BecauseHθ has positive and negative eigenvalues, the critical point is a saddle. The corresponding principal curvatures
are κθ

i ∈ {−1, 1} (i ∈ {1, . . . , N − 1}) and κθ
N = 0. In this example, the mean curvature H, as defined in Eq. (24),

is equal to 0. According to Eq. (22), the principal curvature, κ̄α,β , associated with the expected, dimension-reduced
Hessian Hα,β is also equal to 0, erroneously indicating an apparently flat loss landscape if one would use κ̄α,β as the
main measure of curvature. To compare the convergence of different curvature measures as a function of the number
of loss projections S, we will now study the ensemble mean

⟨X⟩ = 1

S

S∑
k=1

X(k) (29)

of different quantities of interest X such as Hessian elements and principal curvature measures in dimension-reduced
space. Here, X(k) is the k-th realization (or sample) of X.

We first study the dependence of ensemble means ⟨(Hα,β)ij⟩ (i, j ∈ {1, 2}) of elements of the dimension-reduced
Hessian Hα,β on the number of samples S. According to Eq. (22), the diagonal elements of E[Hα,β ] are proportional
to the mean curvature of the original high-dimensional space and are thus useful to examine curvature properties of
high-dimensional loss functions. Figure 1(a) shows the convergence of the ensemble means ⟨(Hα,β)ij⟩ towards the
expected values E[(Hα,β)ij ] as a function of S. Note that E[(Hα,β)ij ] = 0 for all i, j. For a few dozen loss projections,
the deviations of the ensemble means from the corresponding expected values reach values larger than 20. A relatively
large number of loss projections S between 103–104 is required to keep these deviations at values that are smaller

than about 2–4. The solid black and red lines in Figure 1(b), respectively, show the ensemble means ⟨κα,β
± ⟩ and the
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FIG. 2. Distribution of principal curvatures κα,β
− (red bars) and κα,β

+ (black bars). In panels (a) and (b), the loss functions
are given by Eqs. (26) and (31), respectively. We evaluate the corresponding Hessians (28) and (32) at the saddle point
θ∗ = (θ∗1 , . . . , θ

∗
2n, θ

∗
2n+1) = (0, . . . , 0, 1). In both loss functions, we set n = 500 and in loss function (31) we set ñ = 800.

While in panel (a), the probability Pr(κα,β
+ κα,β

− > 0) that the critical point in the lower-dimensional, random projection does
not appear as a saddle is about 0.3, it is 1 in panel (b). Histograms are based on 10,000 random projections that are used to

compute κα,β
± . Solid grey lines indicate Gaussian approximations of the empirical distributions.

eigenvalues

⟨κ̃α,β
± ⟩ = 1

2

(
⟨A⟩+ ⟨C⟩ ±

√
4⟨B⟩2 + (⟨A⟩ − ⟨C⟩)2

)
(30)

of the ensemble-averaged dimension-reduced Hessian as a function of S. Since E[A] = E[C] = (Hθ)
i
i and E[B] = 0

[see Eq. (22)], we have that ⟨κ̃α,β
± ⟩ = κ̄α,β in the limit S → ∞. In the current example, the ensemble means ⟨κ̃α,β

± ⟩
thus approach κ̄α,β = 0 for large numbers of samples S, represented by the dashed red lines in Figure 1(b). The

ensemble means ⟨κα,β
± ⟩ converge towards values of opposite sign, indicating a saddle point.

For a sample size of S = 104, we show the distribution of the principal curvatures κα,β
± in Figure 2(a). We observe

that the distributions are plausibly Gaussian. We also calculate the probability Pr(κα,β
+ κα,β

− > 0) that the critical

point in the lower-dimensional, random projection does not appear as a saddle (i.e., κα,β
+ κα,β

− > 0). For the example

shown in Figure 2(a), we find that Pr(κα,β
+ κα,β

− > 0) ≈ 0.3. That is, in about 30% of the simulated projections, the
lower-dimensional loss landscape wrongly indicates that it does not correspond to a saddle.

Our first example, which is based on the loss function (26), shows that the principal curvatures in the lower-
dimensional representation of L(θ) may capture the saddle behavior in the original space if one computes ensemble

means ⟨κα,β
± ⟩ in the lower-dimensional space [Figure 1(b)]. However, if one first calculates ensemble means of the

elements of the dimension-reduced Hessian Hα,β to infer ⟨κ̃α,β
± ⟩, the loss landscape appears to be flat in this example.

We thus conclude that different ways of computing ensemble means (either before or after calculating the principal
curvatures) may lead to different results with respect to the “flatness” of a dimension-reduced loss landscape.

In the next example, we will show that random projections cannot identify certain saddle points regardless of the
underlying averaging process. We consider the loss function

L(θ) =
1

2
θ2n+1

(
ñ∑

i=1

θ2i −
2n∑

i=ñ+1

θ2i

)
, n ∈ Z+, n < ñ ≤ 2n , (31)

where we use the convention
∑b

i=a(·) = 0 if a > b. The Hessian at the critical point (θ∗1 , . . . , θ
∗
2n, θ

∗
2n+1) = (0, . . . , 0, 1)

is

Hθ = diag(1, . . . , 1︸ ︷︷ ︸
ñ times

,−1, . . . ,−1︸ ︷︷ ︸
2n−ñ times

, 0) . (32)

As in the previous example, the critical point is again a saddle, but the mean curvature is H = 2(ñ− n)/N > 0.
In the following numerical experiments, we set n = 500 and ñ = 800. Figure 1(c) shows that the ensemble means
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FIG. 3. Estimating the trace of the Hessian Hθ. In panels (a) and (b), the loss functions are given by Eqs. (26) and (31),
respectively. We evaluate the corresponding Hessians (28) and (32) at the saddle point θ∗ = (θ∗1 , . . . , θ

∗
2n, θ

∗
2n+1) = (0, . . . , 0, 1).

In both loss functions, we set n = 500 and in loss function (31) we set ñ = 800. Solid black and dash-dotted red lines represent
Hutchinson [⟨z⊤Hθz⟩; see Eq. (25)] and curvature-based (⟨κα⟩) estimates of tr(Hθ), respectively. We compute ensemble means
⟨·⟩ as defined in Eq. (29) for different numbers of random projections S. The trace estimates in panels (a) and (b), respectively,
converge towards the true trace values tr(Hθ) = 0 and tr(Hθ) = 600 that are indicated by dashed grey lines. In both methods,
the same random vectors with elements that are distributed according to a standard normal distribution are used. For the
curvature-based estimation of tr(Hθ), we perform least-square fits of L(θ∗ + αη) over an interval α ∈ [−0.05, 0.05].

⟨(Hα,β)ij⟩ converge towards the expected value E[(Hα,β)ij ] as the number of samples increases. We again observe
that a relatively large number of random loss projections S between 103 and 104 is required to keep the deviations
of ensemble means from their corresponding expected values small. Because of the dominance of positive principal

curvatures κθ
i in the original space, the corresponding ensemble means of principal curvatures (i.e., ⟨κα,β

± ⟩, ⟨κ̃α,β
± ⟩) in

the lower-dimensional representation approach positive values [Figure 1(d)]. The distribution of κα,β
± indicates that

the probability of observing a saddle in the lower-dimensional loss landscape is vanishingly small [Figure 2(b)]. In this
second example, both ways of computing ensemble means, before and after calculating the lower-dimensional principal
curvatures, mistakenly suggest that the saddle in the original space is a minimum in dimension-reduced space.

To summarize, for both loss functions (26) and (31), the saddle point θ∗ = (0, . . . , 0, 1) in the original loss function
L(θ) is often misrepresented in lower-dimensional representations L(θ + αη + βδ) if random directions are used.
Depending on (i) the employed curvature measure and (ii) the index of the underlying Hessian Hθ in the original
space, the saddle θ∗ = (0, . . . , 0, 1) often appears erroneously as either a minimum, maximum, or an almost flat region.
If the critical point were a minimum or maximum (i.e., a critical point associated with a positive definite or negative

definite Hessian Hθ), it would be correctly represented in the corresponding expected random projection because the
sign of its principal curvature κ̄α,β , which is proportional to the sum of all eigenvalues κθ

i of the Hessian Hθ in the
original loss space, would be equal to the sign of the principal curvatures κθ

i . However, such points are scarce in
high-dimensional loss spaces [17, 18].

Finally, because of the confounding factors associated with the inability of random projections to correctly identify
saddle information, it does not appear advisable to use “flatness” around a critical point in a lower-dimensional
random loss projection as a measure of generalization error [13].

B. Hessian trace

We now use the loss functions (26) and (31) to compare the convergence behavior between the original Hutchinson
method (25) and the curvature-based trace estimation (23). Instead of two random directions, we use one random
Gaussian direction η and perform quadratic least-square fits for 50 equidistant values of α in the interval [−0.05, 0.05]
to extract estimates of tr(Hθ) from L(θ∗+αη). We use the same random Gaussian directions in Hutchinson’s method.
Figure 3 shows how the Hutchinson and curvature-based trace estimates converge towards the true trace values, 0 for

the loss function (26) and 600 for the loss function (31) with n = 500 and ñ = 800. Given that we use the same random
vectors in both methods, their convergence behavior towards the true trace value is similar. With the curvature-based
method, one can produce Hutchinson-type trace estimates without computing Hessian-vector products. However, it
requires the user to specify an appropriate interval for the quantity α so that the mean curvature can be properly
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FIG. 4. Dimensionality-reduced loss L(θ∗ +αη+ βδ) of Eq. (31) with n = 900, ñ = 1000 for different directions η, δ. (a–c) The
directions η, δ correspond to eigenvectors of the Hessian Hθ of Eq. (31). If the eigenvalues associated with η, δ have different
signs, the corresponding loss landscape is a saddle as depicted in panel (a). If the eigenvalues associated with η, δ have the same
sign, the corresponding loss landscape is either a minimum (both signs are positive) as shown in panel (b) or a maximum (both
signs are negative) as shown in panel (c). Because there is an excess of ñ − n = 100 positive eigenvalues in Hθ, a projection
onto a dimension-reduced space that is spanned by the random directions η, δ is often associated with an apparently convex
loss landscape. An example of such an apparent minimum is shown in panel (d). We selected a single pair of random directions
η, δ (i.e., no averaging over random directions has been performed).

estimated in a quadratic-approximation regime. It also requires a sufficiently large number of points in this interval.
Therefore, it may be less accurate than the original Hutchinson method.

C. Hessian directions

Given the described shortcomings of random projections (e.g., in correctly identifying saddles of high-dimensional
loss functions), we suggest to use Hessian directions (i.e., the eigenbasis of Hθ) as directions η, δ in L(θ∗+αη+βδ). For
Eq. (31) with n = 900, ñ = 1000, we show projections along different Hessian directions in Figure 4(a–c). We observe
that different Hessian directions indicate different types of critical points in dimension-reduced space. If the eigenvalues
associated with the Hessian directions η, δ have different signs, the corresponding lower-dimensional loss landscape is
a saddle [Figure 4(a)]. If both eigenvalues have the same sign, the loss landscape is either a minimum [Figure 4(b):
both signs are positive] or it is a maximum [Figure 4(c): both signs are negative]. If one uses a random projection
instead, the resulting lower-dimensional loss landscape often appears to be a minimum in this example [Figure 4(d)].
To quantify the proportion of random projections that correctly identify the saddle with n = 900, ñ = 1000, we

generated 10,000 realizations of κα,β
± [see Eq. (21)]. We find that the signs of κα,β

± were different in only about 0.5%

of all simulated realizations. That is, in this example the principal curvatures κα,β
± indicate a saddle in only about

0.5% of the studied projections.
In the next section, we will show that Hessian directions that are associated with the largest-magnitude positive and

negative eigenvalues of Hθ are useful to appropriately identify saddle information and visually study the geometric
properties of saddle points in high-dimensional loss spaces of image classifiers.

IV. APPLICATIONS TO NEURAL NETWORKS

We now compare projections L(θ∗ + αη + βδ) using (i) dominant Hessian directions (i.e., eigenvectors that are
associated with the largest-magnitude positive and negative eigenvalues of Hθ) and (ii) random directions. Hessian
directions were computed using HVPs without an explicit representation of Hθ (see Algorithm 1). We first compute
the largest-magnitude eigenvalue and then use an annihilation method [47] to compute the second largest-magnitude
eigenvalue of opposite sign. More details on the annihilation algorithm are provided in Appendix B. Other deflation
techniques can be used to find additional Hessian directions.

Instead of explicitly representing the Hessian Hθ, Algorithm 1 evaluates products between Hθ and a vector v ∈ RN

using the identity

∇θ[(∇θL)
⊤v] = (∇θ∇θL)v + (∇θL)

⊤∇θv = Hθv . (33)

In the first step, the gradient (∇θL)
⊤ is computed using reverse-mode autodifferentiation (AD) to then compute

the scalar product [(∇θL)
⊤v]. In the the second step, we again apply reverse-mode AD to the computational graph
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FIG. 5. Loss landscape projections for ResNet-56. (a,c) The projection directions η, δ are given by the eigenvectors associated
with the largest and smallest eigenvalues of the Hessian Hθ, respectively. The zoomed inset in panel (c) shows the loss landscape
for (α, β) ∈ [−0.01, 0.005]×[−0.05, 0.05]. We observe a decreasing loss along the negative β-axis. (b,d) The projection directions
η, δ are given by random vectors. We selected a single pair of random directions η, δ (i.e., no averaging over random directions
has been performed). The domains of (α, β) in panels (a,b) and (c,d) are [−0.05, 0.05] × [−0.05, 0.05] and [−1, 1] × [−1, 1],
respectively. All shown cross-entropy loss landscapes are based on evaluating the CIFAR-10 training dataset that consists of
50,000 images.

associated with the scalar product [(∇θL)
⊤v]. Because the vector v does not depend on θ (i.e., ∇θv = 0), the result

is Hθv. One may also use forward-mode AD in the second step to provide a more memory efficient implementation.5

We used the LinearOperator module that is available in the Python package scipy to represent HVPs. As an alter-
native to implementing HVPs manually, one may use the hvp function provided in the torch.autograd.functional
module. Moreover, the Python package PyHessian [21] can be also used to evaluate Hessians of high-dimensional
functions in a distributed manner. For the computation of dominant Hessian directions, we used the scipy function
eigsh that is based on the implicitly restarted Lanczos method [48].
The computational cost of Algorithm 1 can be summarized as follows. For the HVPs, the computational cost

is O(N) [49], where N is the number of neural-network parameters. To identify extremal eigenvalues along with

5 Different forward-mode AD functions have been made available in PyTorch since at least version 1.11, starting from March 2022.
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their corresponding eigenvectors using a Lanczos-type method, one has to perform a certain number of matrix-vector
multiplications. The required number of iterations depends on several factors, including the desired accuracy, the
characteristics of the underlying Hessian matrix, and the choice of the initial vector.

We first focus on a ResNet-56 architecture that has been trained in [13] on CIFAR-10 using stochastic gradient
descent (SGD) with Nesterov momentum. The number of parameters is 855,770. The training and test losses at the
local optimum found by SGD are 9.20× 10−4 and 0.29, respectively; the corresponding accuracies are 100.00 and
93.66, respectively.

Algorithm 1 Compute dominant Hessian directions

1: L1 = LinearOperator((N,N), matvec = hvp) ▷initialize linear operator for HVP calculation

2: eigval1, eigvec1 = solve lm evp(L1) ▷compute largest-magnitude eigenvalue and corresponding eigenvector associated with

operator L1

3: shifted hvp(vec) = hvp(vec) - eigval1*vec ▷define shifted HVP

4: L2 = LinearOperator((N,N), matvec = shifted hvp) ▷initialize linear operator for shifted HVP calculation

5: eigval2, eigvec2 = solve lm evp(L2) ▷compute largest-magnitude eigenvalue and corresponding eigenvector associated with

operator L2

6: eigval2 += eigval1
7: if eigval1 >= 0 then
8: maxeigval, maxeigvec = eigval1, eigvec1
9: mineigval, mineigvec = eigval2, eigvec2

10: else
11: maxeigval, maxeigvec = eigval2, eigvec2
12: mineigval, mineigvec = eigval1, eigvec1
13: return maxeigval, maxeigvec, mineigval, mineigvec

In accordance with [13], we apply filter normalization to random directions. This and related normalization methods
are often employed when generating random projections. One reason is that simply adding random vectors to
parameters of a neural network loss function (or parameters of other functions) does not consider the range of
parameters associated with different elements of that function. As a result, random perturbations may be too small
or large to properly resolve the influence of certain parameters on a given function.

When calculating Hessian directions, we are directly taking into account the parameterization of the underlying
functions that we want to visualize. Therefore, there is no need for an additional rescaling of different parts of the
perturbation vector. Still, reparameterizations of a neural network can result in changes of curvature properties (see,
e.g., Theorem 4 in [11]).

Figure 5 shows the two-dimensional projections of the loss function (cross entropy loss) around a local critical point.
The smallest and largest eigenvalues are −16.4 and 5007.9, respectively. This means that the found critical point is
a saddle with a maximum negative curvature that is more than two orders of magnitude smaller than the maximum
positive curvature at that point. The saddle point is clearly visible in Figure 5(a,c). We observe in the zoomed inset
in Figure 5(c) that the loss decreases along the negative β-axis.

If random directions are used, the corresponding projections indicate that the optimizer converged to a local
minimum and not to a saddle point [Figure 5(b,d)]. Overall, the ResNet-56 visualizations that we show in Figure 5
exhibit structural similarities to those that we generated using the simple loss model (31) [Figure 4(d)].

As a second neural-network structure, we consider DenseNet-121 that has also been trained in [13] on CIFAR-10
using SGD with Nesterov momentum. In this neural network, the number of parameters is 6,956,298. Figure 6 shows
the projections L(θ∗ + αη + βδ) of the loss function (cross entropy loss) around a local optimum. The training and
test losses of the local optimum found by SGD are 8.07× 10−4 and 1.69 × 10−1, respectively; the corresponding
accuracies are 100.00 and 95.63, respectively. We again observe the typical saddle shape of L if dominant Hessian
directions are used and an apparent local minimum for projections along random directions. One should keep in mind

that the principal curvatures in the random direction plot are given by κα,β
± [see Eq. (21)]. At a critical point, the

principal curvatures in dimension-reduced, random-projection space are, on average, equal to the sum of the principal
curvatures in the original space. If only very few, small-magnitude negative principal curvatures are present in the
original space, the expected random projections are associated with an apparent local minimum in dimension-reduced,
random-projection space.

Analyzing the Hessian Hθ of DenseNet-121 around its local optimum, we find that the minimum and maximum
principal curvatures are -109.1 and 1937.5, respectively. In comparison to ResNet-56, the relative difference between
these two curvatures is substantially smaller. In particular the largest-magnitude negative principal curvature in
DenseNet-121 is by a factor of about 7 smaller than that in ResNet-56, indicating that more substantial loss im-
provements may be possible in the former by changing the neural-network parameters θ along the negative curvature
direction.
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FIG. 6. Loss landscape projections for DenseNet-121. (a,c) The projection directions η, δ are given by the eigenvectors
associated with the largest and smallest eigenvalues of the Hessian Hθ, respectively. (b,d) The projection directions η, δ are
given by random vectors. We selected a single pair of random directions η, δ (i.e., no averaging over random directions has
been performed). The domains of (α, β) in panels (a,b) and (c,d) are [−0.4, 0.4]× [−0.4, 0.4] and [−1, 1]× [−1, 1], respectively.
All shown cross-entropy loss landscapes are based on evaluating the CIFAR-10 training dataset that consists of 50,000 images.

In Figure 7, we compare changes in the projected loss along random and dominant Hessian directions for DenseNet-
121 and ResNet-56. In addition to evaluating the loss on training data (50,000 images) as in Figures 5 and 6, we
also provide a comparison to loss changes in the test dataset (10,000 images). Black crosses in Figure 7 indicate
loss minima. For both neural networks, we observe that random projections are associated with loss values that
increase along both directions δ, η and for both training and test data [Figure 7(a,b,e,f)]. For these projections, the
loss minima are very close to the origin of the loss space. Different observations can be made if Hessian directions
are employed in the loss projections. Figure 7(c) shows that the training loss minimum of DenseNet-121 in the
Hessian projection is not located at the origin but at (α, β) ≈ (0, 0.2). A value of β ≈ 0.2 means that one has to
move along the negative curvature direction to find a loss function value that is smaller than the one at the origin.
We find that the value of the loss at that point is more than one order of magnitude smaller than the original loss
at the origin or the smallest loss found in a random-projection plot. Similar observations can be made in the test
dataset. However, the smallest loss value found in the Hessian direction plot is associated with a relatively large
loss in the test dataset [Figure 7(d)]. Using Hessian directions to improve training and test performance requires
one to balance potential performance improvements in the test and training datasets. Because of the relatively small
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FIG. 7. Heatmaps of cross-entropy loss functions along random and dominant Hessian directions. (a–c) Loss heatmaps for
DenseNet-121 [(a,c): training data, (c,d): test data]. (e–h) Loss heatmaps for ResNet-56 [(e,g): training data, (f,h): test data].
Random directions are used in panels (a,b,e,f) while Hessian directions are used in panels (c,d,g,h). Green and red regions
indicate small and large loss values, respectively. Black crosses indicate the positions of loss minima in the shown domain.
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negative principal curvature of ResNet-56, one can only achieve small loss improvements along the corresponding
Hessian direction and differences in minimum losses between random and Hessian projections are less pronounced
[Figure 7(e–h)].

In Appendix C, we study random and Hessian loss projections of three additional architectures, namely ResNet-56
without skip connections [13], MobileNetV2 [50], and GoogLeNet [50]. For ResNet-56 without skip connections, we
find that the training loss minimum in the Hessian projection is associated with slightly larger training and test
accuracies than the training loss minimum in the random projection. For MobileNetV2 and GoogLeNet, we find that
the minimum training loss in the Hessian projection is associated with an either slightly larger training or test accuracy
compared to the training loss minimum in the random projection. In the examples that we study in Appendix C, the
training and test loss minima in the Hessian projections are better aligned than those in the corresponding random
projections. Table II in Appendix C summarizes the results for all five architectures.

Image classification architectures and their training are already highly optimized to achieve very good performance
in common image classification tasks. Our results show that it is possible to improve training loss values along
the dominant negative curvature direction. Smaller loss values may be also achievable with further gradient-based
training iterations, so one has consider tradeoffs between gradient and curvature-based optimization methods. Also,
assessing overall performance of dominant Hessian directions on this task is not straightforward. For instance, loss
measurements and accuracy measurements are not proportional to one another for this image classification task (see
Table II in Appendix C). A further complication is that, since these architectures are highly optimized and the
underlying generative processes are unknown, it is difficult to interpret variations in performance that may appear
between training loss, test loss, and accuracy. Therefore, to better address the question of whether better performance
in training by dominant Hessian directions can translate to better test performance, we need to control for some of the
suspected confounds that appear in the image classification task. So, we also study possible loss improvements along
the dominant negative curvature direction in a function approximation task [20] that we describe in Appendix D.

Unlike image classification, function approximation involves sampling from a known generative distribution. Our
results, summarized in Appendix D, show that both training loss and test loss are smaller in our functional approxi-
mation task for Hessian projections than for random projections. Specifically, for 2-layer and 10-layer fully connected
neural networks (FCNNs), with 20,501 and 101,301 parameters, respectively, training loss is more than 9% smaller
for the 2-layer network and 26% smaller for the 10-layer network for Hessian projections than for random projections
and test loss is 1% smaller and 6% smaller, respectively. Using this function approximation example, we have also
included in the Supplemental Information [51] an animation that shows the evolution of random and Hessian loss
projections during training.

V. DISCUSSION AND CONCLUSION

Given that a global understanding of high-dimensional loss landscapes remains still very limited [1], one- and two-
dimensional projections of such functions are a common tool to study the geometric properties of loss regions nearby
critical points and along optimizer trajectories [12–16]. For an informed way of projecting high-dimensional functions
to lower-dimensional representations, it is important to mathematically interpret the geometric information contained
in such visualizations. To put it in the words of Ker-Chau Li [52]: “There are too many directions to project a
high-dimensional data set and unguided plotting can be time-consuming and fruitless.” Therefore, it is important to
understand how projection directions η, δ affect the resulting loss visualizations. A standard choice in the literature
is to use random Gaussian directions to obtain lower-dimensional loss representations L(θ∗ + αη + βδ). Combining
concepts from high-dimensional probability and differential geometry, we show that saddle points in the original space
may not be correctly identified as such in lower-dimensional representations if such random projections are used.

As formalized in Eq. (24), the expected principal curvature κ̄α,β = tr(Hθ), obtained by averaging over Hessian
elements (Hθ)

i
i in a dimension-reduced Hessian [see Eq. (22)], is proportional to the mean curvature H = tr(Hθ)/N

in the original loss space. The connection between κ̄α,β and tr(Hθ) shows that Hutchinson-type trace estimates can
be computed directly from curvature information in lower-dimensional random projections [19].

Depending on the value of the mean curvature in the original loss space, saddle points appear, on average, as either
minima (H > 0), maxima (H < 0), or almost flat regions (H ≈ 0). Instead of computing ensemble means of elements of
dimension-reduced Hessians, one may also compute ensemble means of principal curvatures. As illustrated in different
numerical experiments, both ways of averaging are associated with different geometric interpretations and random
projections are generally not able to correctly identify saddle points. We therefore propose to study projections
along dominant Hessian directions that are associated with the largest-magnitude positive and negative principal
curvatures in the original space. Similar methods have been developed and applied in related work on exploratory
data analysis [52]. Thus, our work may be viewed as part of a recent “Hessian turn” in machine learning characterized
by computationally tractable methods for unlocking Hessian information in non-linear and high-dimensional settings
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[21, 22]. Projecting high-dimensional loss functions along Hessian directions provides a genuine way of illustrating
their geometric properties around critical points. Negative curvature directions may be used as a starting point for
further improving the performance of a given neural network. Analyzing principal curvatures (or eigenvalues of Hθ)
at critical points θ∗ is also useful to identify global minima. It has been shown by Cooper [1] that for any global
minimum of L(θ), the corresponding Hessian Hθ has rn positive eigenvalues, N − rn eigenvalues equal to 0, and no
negative eigenvalues. Here, n and r are the number of input samples (i.e., data points) and the output dimension,
respectively.

Our numerical experiments on different image classifiers and a function approximation task are in accordance with
our reasoning and identify marked differences in the projections that are based on Hessian and random directions. Our
results also address the ongoing debate on the connection between flatness of a certain loss region and generalizability
(i.e., the ability to effectively use trained neural networks on unseen data). Dinh et al. [11] provided a detailed
discussion on different mechanisms (e.g., reparameterization of flat regions) that indicate that sharp minima can
achieve good generalization properties. Their work also highlighted the importance of clear definitions of flatness.
Our work shows that flatness in randomly projected loss landscapes might be just apparent and a consequence of
(large) principal curvatures of opposite sign that cancel out each other.

There are many interesting and worthwhile directions for future research building on the work reported here.
To provide more insights into the geometric properties of high-dimensional loss functions of deep neural networks,
future work may study other convolutional architectures [53, 54], vision transformers [55], and residual multi-layer
perceptrons [56]. Our results suggest that negative curvature directions may be useful to find better local optima, but
further research is needed to gain a clearer understanding of the tradeoffs associated with optimization protocols that
are based on gradients and curvature information. More research on learning algorithms that minimize loss functions
along negative curvature directions [57] can contribute to the development of more effective optimizers. Such guided
optimization algorithms may be of particular use in applications (e.g., neural network–based control [58–60] and
function approximation in numerical analysis [20]) where training data can be generated with a high resolution and
used to approximate a function as closely as possible. In applications where one wishes to reduce generalization error,
the proposed mean-curvature estimation method may be also useful to improve existing curvature regularization
approaches [61]. Furthermore, to improve our understanding of the properties of loss landscapes, it may be helpful
to devote more attention to the study of connections between random matrix theory and the characterization of
high-dimensional functions [62, 63]. For example, for critical points of Gaussian fields in high-dimensional spaces,
Bray and Dean [62] showed that there is a monotonic relation between the index of the Hessian (i.e., the number of
negative eigenvalues) and the loss value: the larger the index, the larger the corresponding loss. Bray and Dean [62]
also showed that the eigenvalues of the Hessian at a critical point of such fields are distributed according to Wigner’s
semicircle law [64] up to an additional shift. However, traditional random-matrix-theory results such as Wigner’s
semicircle law or the Marčenko–Pastur law [65] are based on various simplifying assumptions, including Gaussian
weight, error, and data distributions, which do not hold in practical applications of neural networks [22].
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[18] Y. N. Dauphin, R. Pascanu, Ç. Gülçehre, K. Cho, S. Ganguli, and Y. Bengio, Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization, in Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, edited by
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (2014) pp. 2933–2941.

[19] M. F. Hutchinson, A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines, Communi-
cations in Statistics-Simulation and Computation 18, 1059 (1989).

[20] B. Adcock and N. Dexter, The gap between theory and practice in function approximation with deep neural networks,
SIAM Journal on Mathematics of Data Science 3, 624 (2021).

[21] Z. Yao, A. Gholami, K. Keutzer, and M. W. Mahoney, PyHessian: Neural networks through the lens of the Hessian, in
2020 IEEE International Conference on Big Data (Big data) (IEEE, 2020) pp. 581–590.

[22] Z. Liao and M. W. Mahoney, Hessian eigenspectra of more realistic nonlinear models, Advances in Neural Information
Processing Systems 34, 20104 (2021).
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[51] L. Böttcher, Video of loss evolution, https://vimeo.com/787174225 (2023).
[52] K.-C. Li, On principal hessian directions for data visualization and dimension reduction: Another application of Stein’s

lemma, Journal of the American Statistical Association 87, 1025 (1992).
[53] S. Zagoruyko and N. Komodakis, Wide Residual Networks, in Proceedings of the British Machine Vision Conference 2016,

BMVC 2016, York, UK, September 19-22, 2016 , edited by R. C. Wilson, E. R. Hancock, and W. A. P. Smith (BMVA
Press, 2016).

[54] N. Martinel, G. L. Foresti, and C. Micheloni, Aggregating Deep Pyramidal Representations for Person Re-Identification,
in IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2019, Long Beach, CA,
USA, June 16-20, 2019 (Computer Vision Foundation / IEEE, 2019) pp. 1544–1554.

[55] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold,
S. Gelly, J. Uszkoreit, and N. Houlsby, An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, in
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (OpenRe-
view.net, 2021).

[56] H. Touvron, P. Bojanowski, M. Caron, M. Cord, A. El-Nouby, E. Grave, G. Izacard, A. Joulin, G. Synnaeve, J. Verbeek,
et al., ResMLP: Feedforward networks for image classification with data-efficient training, IEEE Transactions on Pattern
Analysis and Machine Intelligence (2022).

[57] G. Alain, N. L. Roux, and P.-A. Manzagol, Negative eigenvalues of the Hessian in deep neural networks, arXiv preprint
arXiv:1902.02366 (2019).
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Appendix A: Concentration inequality

For ηi, δi ∼ N (0, 1) and Xi = ηi + δi, Yi = ηi − δi, our goal is to construct a concentration inequality for

|N−1
∑

i ηiδi| = |(2N)−1
∑

i X
2
i −1+1−Y 2

i | = |(X̃−1+1− Ỹ )/2|, where X̃ = N−1
∑N

i=1 X
2
i and Ỹ = N−1

∑N
i=1 Y

2
i .

Notice that X̃ and Ỹ are independent because the covariance associated with the corresponding bivariate normal
distribution, which is valid in the limit of large N , vanishes. Using that the cumulative distribution function of the
sum of independent random variables is given by the convolution of the individual distributions, we obtain
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)
=

∫ ∞

0

Pr
(
X̃ − 1 ≥ 2ϵ+ Ỹ − 1|Ỹ = y
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(A1)

where we used inequality (15) for ϵ → 0 in the last step. In the limit of large N , the distribution function fỸ (y) of

the random variable Ỹ approaches a Gaussian with mean 1 and variance 2/N . With this approximation, we find
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The same bound applies to Pr
(
1− X̃ + Ỹ − 1 ≥ 2ϵ

)
, so we have

Pr

(∣∣∣∣∣ 1N
N∑
i=1

ηiδi

∣∣∣∣∣ ≥ ϵ

)
≤

√
2e−

Nϵ2

2 . (A3)

For two independent random variables X,Y , a similar bound can be derived using the inequality

Pr (X + Y ≥ ϵ) =

∫
R2

1x+y≥ϵfX,Y (x, y) dxdy

=

∫
R2

1x+y≥ϵ1x≥ϵ/2fX,Y (x, y) dxdy

+

∫
R2

1x+y≥ϵ1x<ϵ/2fX,Y (x, y) dxdy

≤
∫ ∞

−∞
1x≥ϵ/2fX(x) dx+

∫ ∞

−∞
1y≥ϵ/2fY (y) dy

= Pr (X ≥ ϵ/2) + Pr (Y ≥ ϵ/2) ,

(A4)

where fX,Y (x, y) = fX(x)fY (y) denotes the joint distribution associated with random variablesX,Y . Using inequality
(A4), we obtain
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Appendix B: Annihilation method

Let A ∈ RN×N be a symmetric matrix with eigenvalues {λi}i=1,...,N satisfying

|λ1| > |λ2| ≥ · · · ≥ |λN | and |λk − λ1| > |λj − λ1| for j ̸= k . (B1)

Here, λk is the largest-magnitude eigenvalue that belongs to the set of eigenvalues of opposite sign of λ1. An example
of a matrix with eigenvalues that satisfy Eq. (B1) is a Hessian Hθ at a saddle point with distinct largest-magnitude
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eigenvalues (i.e., principal curvatures). Because the matrix A is symmetric, it has an orthonormal eigenbasis which
we denote by {vj}j=1,...,N . Furthermore, let B = A− λ11N×N . For a vector z0 ∈ RN , we calculate

z1 ≡ Bz0 = Az0 − λ1z0 =

N∑
j=1

cjAvj − λ1

N∑
j=1

cjvj =

N∑
j=2

cj(λj − λ1)vj , (B2)

where cj = ⟨vj , z0⟩. The corresponding Rayleigh quotient associated with zn = Bzn−1 (n ∈ {1, 2, . . . }) is

λ(n) ≡ z⊤n Bzn
z⊤n zn

=

∑N
j=2 c

2
j (λj − λ1)

2n+1∑N
j=2 c

2
j (λj − λ1)2n

, (B3)

where we used that ⟨vi, vj⟩ = 0 if i ̸= j and 1 otherwise. Notice that λ(n) → λk − λ1 in the limit n → ∞. The
described method is reminiscent of eigenvalue annihilation as commonly used in deflation techniques [47]. The main
difference of the outlined deflation method w.r.t. standard annihilation approaches is that we are not interested in the
second largest-magnitude eigenvalue, but in the largest-magnitude eigenvalue that belongs to the set of eigenvalues
of opposite sign of λ1. The eigenvalues λ1, λk can be identified with the largest-magnitude negative and positive
principal curvatures and the corresponding eigenvectors are the dominant Hessian directions.

Appendix C: Image classification

To complement our results on loss landscape visualizations of common image classifiers (see Section IV), we consider
three additional architectures, namely the ResNet-56 architecture from the main text but without skip connections [13],
MobileNetV2 [50], and GoogLeNet [50]. The numbers of parameters of these three networks are 853,018, 2,236,682,
and 5,490,986, respectively. As in the main text, all architectures were trained using SGD with Nesterov momentum.
Further implementation details are available in [13, 50].

A complete summary of results for all five image classifiers is given in Table II. For ResNet-56 without skip
connections, MobileNetV2, and GoogLeNet, we show heatmaps of the corresponding cross-entropy loss along random
and dominant Hessian directions in Figure 8. Overall, Table II shows that random projections and Hessian directions
are comparable in performance, as measured by minimum loss and maximum accuracy. However, the heatmaps in
Figure 8 reveal differences between the two methods: first, in terms of the loss landscape around a learned minimizer;
second, and more importantly, in terms of the degree of alignment between the location of the optimal training
parameters and the location of the optimal test parameters.

The lack of skip connections in the studied ResNet-56 architecture is associated with larger loss values (training loss:
1.37× 10−1; test loss: 4.33× 10−1) and smaller accuracies (training accuracy: 95.55; test accuracy: 86.69) compared
to the ResNet-56 loss values reported in the main text. Because of the large absolute values between 104 − 108 of
the principal curvatures associated with the dominant Hessian directions, we study loss projections in a small domain
[−10−3, 10−3] × [−10−3, 10−3] around the found optimum. Figure 8(a,b) shows that the minimum training and test
loss points in the random projection heatmaps are not aligned. The minimum training loss is 1.36 × 10−1 with an
associated accuracy of 95.58. The corresponding test loss and accuracy are 4.32 × 10−1 and 86.73, respectively. In
the Hessian direction heatmaps that we show in Figure 8(c,d), the minimum training loss is 1.35 × 10−1, slightly
smaller than the minimum loss in the random-projection plot. The corresponding accuracies are slightly larger than
the corresponding random projection values (training accuracy: 95.584 vs. 95.578; test accuracy: 86.74 vs. 86.73).

Also for MobileNetV2 we observe in Figure 8(e,f) that the minimum training and test loss values in the random
projection heatmaps are not aligned. The minimum training loss is 4.92 × 10−2 and the corresponding test loss is
2.26×10−1. The associated training and test accuracies are 99.52 and 93.90, respectively. The minimum training and
test loss points in the Hessian projections in Figure 8(g,h) are more closely aligned than in the random projections. The
minimum training loss in the Hessian projection is 4.90× 10−2, again slightly smaller than in the random projection.
The training accuracy is also slightly smaller (99.516 vs. 99.524) while the corresponding test accuracy is slightly
larger (93.93 vs. 93.90) compared to the random projection values.

In contrast to the other random projections in Figure 8, the GoogLeNet random projection in Figure 8(i,j) has
better aligned training and test loss minima. The minimum training loss is 3.91 × 10−2 and the corresponding test
loss is 2.45 × 10−1. The associated training and test accuracies are 99.88 and 92.89. The minimum training loss
in the Hessian projection is also 3.91 × 10−2, but the training accuracy is slightly larger than in the corresponding
random projection (99.884 vs. 99.878). The corresponding test accuracy is slightly smaller (92.76 vs. 92.89) than in
the random projection.
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FIG. 8. Heatmaps of cross-entropy loss functions along random and dominant Hessian directions. (a–c) Loss heatmaps for
ResNet-56 without skip connections [(a,c): training data, (c,d): test data]. (e–h) Loss heatmaps for MobileNetV2 [(e,g):
training data, (f,h): test data]. (i–l) Loss heatmaps for GoogLeNet [(i,j): training data, (k,l): test data]. Random directions
are used in panels (a,b,e,f,i,j) while Hessian directions are used in panels (c,d,g,h,k,l). Green and red regions indicate small and
large loss values, respectively. Black crosses indicate the positions of loss minima in the shown domain.
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Train loss Test loss Train acc Test acc dHd

RN-56 9.20 × 10−4 2.88 × 10−1 99.998 93.66 {−16.4, 5007.9}

rand proj 9.10 × 10−4 2.88 × 10−1 99.998 93.68 –

Hess 8.75 × 10−4 2.89 × 10−1 99.998 93.66 –

DN-121 8.07 × 10−4 1.69 × 10−1 100 95.63 {−109.1, 1937.5}

rand proj 8.03 × 10−4 1.69 × 10−1 100 95.64 –

Hess 6.14 × 10−5 2.46 × 10−1 100 95.32 –

RN-56 (w/o skips) 1.37 × 10−1 4.33 × 10−1 95.546 86.69 {−39308.9, 50064044.0}

rand proj 1.36 × 10−1 4.32 × 10−1 95.578 86.73 –

Hess 1.35 × 10−1 4.33 × 10−1 95.584 86.74 –

MobileNetV2 4.93 × 10−2 2.27 × 10−1 99.518 93.91 {−405.0, 1061115.0}

rand proj 4.92 × 10−2 2.26 × 10−1 99.524 93.90 –

Hess 4.90 × 10−2 2.26 × 10−1 99.516 93.93 –

GoogLeNet 3.95 × 10−2 2.45 × 10−1 99.878 92.82 {−8208.8, 1427483.0}

rand proj 3.91 × 10−2 2.45 × 10−1 99.878 92.89 –

Hess 3.91 × 10−2 2.44 × 10−1 99.884 92.76 –

TABLE II. Summary of image classification results. We summarize the four performance measures training loss, test
loss, training accuracy, and test accuracy of ResNet-56, DenseNet-121, ResNet-56 without skip connections, MobileNetV2, and
GoogLeNet. For each neural network, we report all performance measures after initial training in the first row of each cell. The
second and third rows in each cell list the performance measures that are associated with minimum training loss in random
projections (“rand proj”) and Hessian projections (“Hess”), respectively. The column “dHd” lists the principal curvatures
associated with the dominant Hessian directions at the initial training optimum.

Appendix D: Function approximation

We compare loss function visualizations that are based on random and Hessian directions in a function approxima-
tion task. In accordance with [20], we consider the smooth one-dimensional function

f(x) = log(sin(10x) + 2) + sin(x) , (D1)

where x ∈ [−1, 1). To approximate f(x), we use two fully connected neural networks (FCNNs) with 2 and 10 layers,
respectively. Each layer has 100 ReLU activations. The numbers of parameters of the 2 and 10 layer architectures
are 20,501 and 101,301, respectively. The training data is based on 50 points that are sampled uniformly at random
from the interval [−1, 1). We train both neural networks using a mean squared error (MSE) loss function and SGD
with a learning rate of 0.1. The 2 and 10 layer architectures are respectively trained for 100,000 and 50,000 epochs
to reach loss values of less than 10−4. The best model was saved and evaluated by calculating the MSE loss for 1,000
points that were sampled uniformly at random from the interval [−1, 1).
Figure 9 shows heatmaps of the training and test loss landscapes of both neural networks along random and

dominant Hessian directions. Black crosses in Figure 9 indicate loss minima. As in the main text, we observe for both
neural networks that random projections are associated with loss values that increase along both directions δ, η and
for both training and test data [Figure 9(a,b,e,f)]. For these projections, we find that the loss minima are very close to
or at the origin of the loss space. The situation is different in the loss projections that are based on Hessian directions.
Figure 6(c) shows that the loss minimum for the 2-layer FCNN is not located at the origin but at (α, β) ≈ (0, 0.04).
We find that the value of the training loss at that point is more than 9% smaller than the smallest training loss found
in a random-projection plot. The corresponding test loss is about 1% smaller than the test loss associated with the
smallest training loss in the random-projection plot. For the 10-layer FCNN, the smallest training loss in the Hessian
direction projection is more than 26% smaller than the smallest training loss in the randomly projected loss landscape
[Figure 9(e,g)]. The corresponding test loss in the Hessian direction plot is about 6% smaller than the corresponding
test loss minimum in the random direction plot [Figure 9(f,h)]. Notice that both the training and test loss minima in
the random direction heatmaps in Figure 9(e,f) are located at the origin while they are located at (α, β) ≈ (0,−0.05)
in the Hessian direction heatmaps in Figure 9(g,h).

In the Supplemental Information [51], we include an animation that shows the evolution of lower-dimensional loss
projections of the 10-layer FCNN.
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FIG. 9. Heatmaps of the mean squared error (MSE) loss along random and dominant Hessian directions for a function
approximation task. (a–c) Loss heatmaps for a fully connected neural network (FCNN) with 2 layers and 100 ReLU activations
per layer [(a,c): training data, (c,d): test data]. (e–h) Loss heatmaps for an FCNN with 10 layers and 100 ReLU activations
per layer [(e,g): training data, (f,h): test data]. Random directions are used in panels (a,b,e,f) while Hessian directions are
used in panels (c,d,g,h). Green and red regions indicate small and large mean squared error (MSE) loss values, respectively.
Black crosses indicate the positions of loss minima in the shown domain. Both neural networks, FCNN 1 and FCNN 2, are
trained to approximate the smooth one-dimensional function (D1).
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