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ABSTRACT

We show that three fundamental information-theoretic constraints—the
impossibility of superluminal information transfer between two physical
systems by performing measurements on one of them, the impossibility of
broadcasting the information contained in an unknown physical state, and
the impossibility of unconditionally secure bit commitment—suffice to en-
tail that the observables and state space of a physical theory are quantum-
mechanical. We demonstrate the converse derivation in part, and consider
the implications of alternative answers to a remaining open question about
nonlocality and bit commitment.
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Of John Wheeler’s ‘Really Big Questions’, the one on which most progress has been rtidammsBit?—

does information play a significant role at the foundations of physics? It is perhaps less ambitious than some
of the other Questions, suchldew Come ExistenceBecause it does not necessarily require a metaphysical
answer. And unlike, sayhy the Quantumt does not require the discovery of new laws of nature: there
was room for hope that it might be answered through a better understanding of the laws as we currently know
them, particularly those of quantum physics. And this is what has happened: the better understanding is the
quantum theory of information and computation.

How might our conception of the quantum physical world have been differdht-fom Bit had been a
motivation from the outset? No one knows how to deitvghe nature of the physical world) frobit (the

idea that information plays a significant role at the foundations of physics), and | shall argue that this will
never be possible. But we can do the next best thing: we can start from the qubit.

Introduction toDavid Deutscls (2003) ‘It From Qubit’

1 Introduction

Towards the end of the passage above, Deutsch is pessimistic about the prospects of
deducing the nature of the quantum world from the idea that information plays a sig-
nificant role at the foundations of physics. We propose to counter Deutsch’s pessimism
by beginning with the assumption that we live in a world in which there are certain
constraints on the acquisition, representation, and communication of information, and
then deducing from these assumptions the basic outlines of the quantum-theoretic de-
scription of physical systents.

The three fundamental information-theoretic constraints we shall be interested in
are:

o the impossibility of superluminal information transfer between two physical sys-
tems by performing measurements on one of them;

o the impossibility of perfectly broadcasting the information contained in an un-
known physical state; and

¢ the impossibility of unconditionally secure bit commitment.

These three ‘no-go’s’ are all well-known consequences of standard nonrelativistic Hilbert
space quantum theory. However, like Einstein’s radical re-derivation of Lorentz’s trans-
formation based upon privileging a few simple principles, we here propose to raise the
above constraints to the level of fundamental information-theoretic ‘laws of nature’
from which quantum theory can, we claim, be deduced. We shall do this by starting
with a mathematically abstract characterization of a physical theory that includes, as
special cases, all classical mechanical theories of both wave and particle varieties, and
all variations on quantum theory, including quantum field theories (plus any hybrids of
these theories). Within this framework, we are able to give general formulations of the
three information-theoretic constraints above, and then show that they jointly entail:

1Chris Fuchs and Gilles Brassard first suggested the project to one of us (JB) as a conjecture or speculation
(Brassard's preferred term) that quantum mechanics can be derived from two cryptographic principles: the
possibility of secure key distribution and the impossibility of secure bit commitment [23, 24, 25, 7].



e that the algebras of observables pertaining to distinct physical systems must
commute, usually called microcausality or (a term we pref@mematic inde-
pendencésee Summers [46]);

o that any individual system’s algebra of observables must be nonabelianone.,
commutative

o that the physical world must beonlocal in that spacelike separated systems
must at least sometimes occupy entangled states.

We shall argue that these latter thygieysicalcharacteristics are definitive of what it
means to be a quantum theory in the most general sense. Conversely, we would want
to prove that these three physical characteristics entail the three information-theoretic
principles from which we started, thereby providing a characterization theorem for
guantum theory in terms of those principles. In this, we are only partly successful,
because there remains an open question about bit commitment.

The fact that one can characterize quantum theory (modulo the open question) in
terms of just a few simple information-theoretic principles not only goes some way
towards answering Wheeler’s query ‘Why the Quantum?’ (withpateDeutsch, the
introduction of new laws), but lends credence to the idea that an information-theoretic
point of view is the right perspective to adopt in relation to quantum theory. Notice, in
particular, that our derivation links information-theoretic principles directly to the very
features of quantum theory—noncommutativity and nonlocality—that are so concep-
tually problematic from a purely physical/mechanical point of view. We therefore sug-
gest substituting for the conceptually problematic mechanical perspective on quantum
theory an information-theoretic perspective. That is, we are suggesting that quantum
theory be viewed, not as first and foremost a mechanical theory of waves and particles
(cf. Bohr’'s infamous dictum, reported in Petersen [39]: ‘There is no quantum world."),
but as a theory about the possibilities and impossibilities of information transfer.

We begin, in sectiog, by laying out the mathematical framework within which our
entire analysis will be conducted—the theoryf-algebras. After introducing the ba-
sics, we establish that tli¢*-algebraic framework does indeed encompass both classi-
cal and quantum statistical theories, and go on to argue that the latter class of theories
is most properly viewed as picked out solely in virtue of its satisfaction of kinematic
independence, noncommutativity, and nonlocality—even though there is far more to
the physical content of any given quantum theory than these three features. Section
3 contains our technical results. We first formulate the three information-theoretic
constraints—no superluminal information transfer via measurement, no broadcasting,
and nobit commitment—irC*-algebraic terms, after briefly reviewing the concepts
as they occur in standard nonrelativistic Hilbert space quantum theory. We show that
these information-theoretic ‘no-go’ principles jointly entail kinematic independence,
noncommutativity, and nonlocality. We demonstrate the converse derivation in part:
that the physical properties of kinematic independence and noncommutativity jointly
entail no superluminal information transfer via measurement and no broadcasting.

The remaining open question concerns the derivation of the impossibility of un-
conditionally secure bit commitment from kinematic independence, noncommutativ-
ity, and nonlocality in the theory-neutrél*-algebraic framework. The proof of this



result in standard quantum mechanics (Mayers [37, 38], Lo and Chau [35]) depends
on the biorthogonal decomposition theorem, which is not available in the more gen-
eral framework. If the derivation goes through, then we have a characterization theo-
rem for quantum theory in terms of the three information-theoretic principles, thereby
considerably generalizing the known proofs of these principles within the standard
nonrelativistic Hilbert space quantum theory framework. If not, then there must be
guantum mechanical systems—perhaps systems associated with von Neumann alge-
bras of some nonstandard type—that allow an unconditionally secure bit commitment
protocol! Sectiort concludes with some further remarks about the significance of our
information-theoretic characterization of quantum theory.

2 The C*-Algebraic Approach to Physical Theory

2.1 Basic Concepts

We start with a brief review of abstract*-algebras and their relation to the standard
formulation of quantum theory in terms of concrete algebras of operators acting on a
Hilbert space.

A unital C*-algebrais a Banach'-algebra overC containing the identity, where
the involution and norm are related yl* A|| = ||A||?>. Thus, the algebr&(H) of
all bounded operators on a Hilbert sp&ge-which, of course, is used in the standard
formulation of nonrelativistic guantum theory—is an example 6f*aalgebra, with*
taken to be the adjoint operation, ajd|| the standard operator norm. Moreover, any
*-sulalgebra ofB(H) containing the identity operator that is closed in the operator
norm is a (unital)C*-algebra. By arepresentatiorof a C*-algebra2l is meant any
mappingr : A — B(H) that preserves the linear, product, anstructure of. If, in
addition, 7 is one-to-one (equivalently;(A) = 0 implies A = 0), the representation
is calledfaithful. In a faithful representationy(2() provides an isomorphic copy of
2. A representation is irreducible just in case the only closed subspaééshatt are
invariant underr are’ and the null space.

A von Neumann algebr& is a concrete collection of operators on some fixed
Hilbert spaceH{—specifically, a*-subalgebra ofB(’H) that contains the identity and
satisfiesR = R”. (HereR” is the double commutant 6®, where the commutant
R’ is the set of all operators oK that commute with every operator R). This is
equivalent, via von Neumann'’s double commutant theorem ([30, Theorem 5.3.1]), to
the assertion thak contains the identity and is closed in the strong operator topology
(whereZ,, — Z strongly just in casé(Z,, — Z)z|| — 0 for all z € H, and the norm
here is the Hilbert space vector norm).

Every von Neumann algebra is alsoCéd-algebra, but not everg'*-algebra of
operators is a von Neumann algebra. A von Neumann algelisaermed a factor just
in case its centeRNR’ contains only multiples of the identity. This is equivalent to the
condition(RUR')"” = B(H), soR induces a ‘factorization’ of the total Hilbert space
algebra®B (H) into two subalgebras which together generate that algebra. Factors are
classified into different types. The algelsBd ) for any Hilbert spacé is a type |
factor, and every type | factor arises as the algebra of all bounded operators on some



Hilbert space [30, Theorem 6.6.1]. Type Il and type Il factors, and subclassifications,
have applications to the thermodynamic limit of quantum statistical mechanics and
qguantum field theory.

A stateof aC*-algebral is taken to be any positive, normalized, linear functional
p : A — Conthe algebra. For example, a statéfH) in standard quantum theory is
obtained if we select a positive trace-one (density) opetaton 7, and defing(A4) =
Tr(AD) for all A € B(H), which defines a linear functional that is positive fif=
X*X, then T{X*X D) = Tr(XDX™*), and the latter is nonnegative becaus® X *
is a positive operator), normalized (since(llP) = 1), and linear (since operator
composition and the trace operation are both linear). We can make the usual distinction
between pure and mixed states, the former defined by the property that ikp; +
(I — X)pa, with X € (0,1), thenp = p; = po. In the concrete case & (H), a
pure state of course corresponds to a density operator for wbice: D—which is
equivalent to the existence of a unit vectay € H representing the state of the system
viap(A) = (v|A|v) (A € B(H)).

One should note, however, that, because countable additivity is not presupposed by
the C*-algebraic notion of state (and, therefore, Gleason’'s theorem does not apply),
there can be pure states Bf({) not representable by vectors H. In fact, if A is
any self-adjoint element of @*-algebra?(, anda € sp(A), then there always exists a
pure state of A that assigns dispersion-freevalue ofa to A [30, Ex. 4.6.31]. Since
this is true even when we consider a point in the continuous spectrum of a self-adjoint
operatorA acting on a Hilbert spacgithoutany corresponding eigenvector, it follows
that thereare pure states B () in theC*-algebraic sense that cannot be vector states
(nor, in fact, representable by any density operatpr

The primary reason countable additivity is not required’Gfalgebraic states is
that it is a representation-dependent concept that presupposes the availability of the
notion of an infinite convergent sum of orthogonal projections. That is: to say that a
statep is countably additive is to say that >, P, = I implies) >~ p(P;) = 1; yet
the notion of convergence required for the first sum to make sense is strong operator
convergence (where a sequence of operat@ionverges strongly to some operatbr
justin case, for alk € H, A;x — Ax in vectornorm). Since, obviously, the elements
of a C*-algebra2l need not be thought of as operators acting on a Hilbert space of
vectors, countable additivity is simply unavailable as a potential general constraint that
could be imposed on the state spac@lof

Nevertheless, it turns out that fany statep of a C*-algebra%l, there is always
somerepresentation dll in which p is representable by a vector (everpifs a mixed
state). According to the Gelfand-Naimark-Segal theorem [30, Thm. 4.5.2], every state
p determines a unique (up to unitary equivalence) representatiori{,) of 2 and
vectorQ, € H, such thatp(A) = (Q,,7,(4)2,) (A € ), and such that the set
{m,(A)Q2, : A € A} is dense inH,. The triple (r,,H,,,) is called the GNS
representation dll induced by the state, and this representation is irreducible if and
only if p is pure (equivalently, every bounded operatorigp is the strong limit of
operators inr, (A)).

Now, by considering the collection of all pure states2nand forming the di-
rect sum of all the irreducible GNS representations these states determine, one obtains
a highly reducible but faithful representation #fin which every pure state & is



represented by a vector (as usual in standard nonrelativistic quantum theory). As a
consequence of this construction, we obtain the Gelfand-Naimark theorem: every ab-
stractC*-algebra has a concrete faithful representation as a norm-clesgloalgebra

of B(H), for some appropriate Hilbert spaéé [30, Remark 4.5.7]. So there is a
sense in whiclC*-algebras are no more general than algebras of operators on Hilbert
spaces—apart from the fact that, when working with an abstraetlgebra, one does

not privilege any particular concrete Hilbert space representation of the algebra (which
turns out to be important not to do in quantum field theory, where one needs to allow for
inequivalent representations of the canonical commutation relations—see, e.g., Clifton
and Halvorson [12]).

2.2 Physical Generality of theC*-Algebraic Language

If C*-algebras supply little more than a way of talking abstractly about operator alge-
bras, and the latter are characteristic of quantum theory, how can we possibly claim
that theC*-algebraic machinery supplies a universal language within which all main-
line physical theories, including evetassicalmechanics, can be framed? The fallacy,
here, is that the use of operator algebras is only relevant to quantum theories.
Take, as a simple example, the classical description of a systenpoint parti-
cles. Focusing first on the kinematical content of the theory, the observables of the
system are real-valued functions on its phase sfite These can be thought of as
the self-adjoint elements of thé*-algebra® (R%") of all bounded, complex-valued
measurable functions dR®*—where the multiplication law is just pointwise multi-
plication of functions, the adjoint is complex conjugation, and the norm of a function
is the supremum of its absolute values. The statistical states of the system are given
by probability measureg onR”, and pure states, corresponding to maximally com-
plete information about the particles, are given by the individual poin&°8f Using
a statistical state, we obtain the corresponding expectation functional, which is the
system’s state in th€*-algebraic sense, by definipgf) = fRﬁn fdu (f € B(RO™)).
Turning now to dynamics, the Heisenberg picture of the time evolution of a state
is determined by a group of bijective, Lebesgue measure-preserving, flow mappings
T, : R" — RS (¢ € R) that induce an automorphism group on B (R°") via
7:(f) = f o T;. State evolution when a measurement occurs is also fully analogous
to the quantum case. The probability in stat¢hat the value off will be found on
measurement to lie in a Borel s&tis given byp(xs-1(a)) (note thatx;-1(a) is @
projection inB(R%")); and, should that be the case, the new post-measurement state is
given by (see Bna [2000] and Duvenhage [2002a,b]):

p(Xffl(A)ngfl(A))
P(Xf—l(A))

p'(g) = (g €eR™)

Lastly, note that because classiagloint particle mechanics employg€&-algebra
(as we have seef(R%")), it follows from the Gelfand-Naimark theorem that classical
mechanics can be done in Hilbert space! Yet this really is nothing new, having been
pointed out long ago by Koopman [31] and von Neumann [47] (see Mauro [36] for an
up-to-date discussion).



Of course, nothing we have saptovesthat all physical theories admit @*-
algebraic formulation. Indeed, that would be absurd to claim: one can certainly con-
ceive of theories whose algebra of observables falls short of being isomorphic to the
self-adjoint part of aC*-algebra and, instead, only instantiates some weaker math-
ematical structure, such as a Segal [45] algebra. To foreclose such possibilities, it
could be of interest to pursue an axiomatic justification ofdtiealgebraic framework
along lines similar to those provided by Emch [21, Ch. 1.2]. However, it suffices for
present purposes simply to observe that all physical theories that have beemifiound
pirically successful-not just phase space and Hilbert space theories (Landsman [34]),
but also theories based a manifold (Connes [13])—fall under this framework (whereas,
for example, so-called ‘nondistributive’ Segal algebras permit violations of the Bell
inequality far in excess of that permitted by standard quantum theory and observed in
the laboratory—see Landau [33]).

2.3 Classical versus Quantum Theories

We must mention one final important representation theorem: every (uaiitelian
C*-algebra2l is isomorphic to the sef’(X) of all continuous, complex-valued func-
tions on a compact Hausdorff spakg30, Thm. 4.4.3]. This is called tHanction rep-
resentationof 2(. The underlying ‘phase spac#’ in this representation is none other
than the pure state spag¥2() of 2l endowed with its weak-* topology. (A sequence

of states{p,, } on 2 weak-* converges to a statejust in casep,,(4) — p(A) for all

A € 21.) The isomorphism maps an elemehte 2 to the functionA (the Gelfand
transformation ofd) whose value at any € P(2l) is just the (dispersion-free) value
that p assigns tad. Thus, not only does every classical phase space presentation of
a physical theory define @*-algebra, but, conversely, behind every abstract abelian
C*-algebra lurks in its function representation a good old-fashioned classical phase
space theory. All of this justifies treating a theory formulated'inalgebraic language

as classical just in case its algebra is abelian. It follows that a necessary condition for
thinking of a theory as guantuntheory is that ita*-algebra be non-abelian. How-
ever, as we shall now explain, we do not believe this is sufficient unless something
further is said about the presence of entangled states.

In 1935 and 1936, Schdinger published an extended two-part commentary [43,
44] on the Einstein-Podolsky-Rosen argument [19], where he introduced the term ‘en-
tanglement’ to describe the peculiar correlations of the EPR-state as [43, p. 555]:
‘the characteristic trait of quantum mechanics, the one that enforces its entire depar-
ture from classical lines of thought.’ In the first part, he considers entangled states for
which the biorthogonal decomposition is unique, as well as cases like the EPR-state,
where the biorthogonal decomposition is non-unique. There he is concerned to show
that suitable measurements on one system can fix the (pure) state of the entangled dis-
tant system, and that this state depends on what observable one chooses to measure,
not merely on the outcome of that measurement. In the second part, he shows that a
‘sophisticated experimenter,’ by performing a suitable local measurement on one sys-
tem, can ‘steer’ the distant system into any mixture of pure states representable by its
reduced density operator. (So the distant system can be steered into any pure state in
the support of the reduced density operator, with a nonzero probability that depends



only on the pure state.) For a mixture of linearly independent states, the steering can
be done by performing a PV-measurement in a suitable basis. If the states are lin-
early dependent, the experimenter performs a POV-measurement, which amounts to
enlarging the experimenter’s Hilbert space by adding an ancilla, so that the dimension
of the enlarged Hilbert space is equal to the number of linearly independent states.
Schibdinger’s result here anticipates the later result by Hughston, Jozsa, and Wootters
[28] that underlies the ‘no go’ bit commitment theorem. (Similar results were proved
by Jaynes [29] and Gisin [27].)

What Schédinger found problematic—indeed, objectionable—about entanglement
was this possibility of remote steering [43, p. 556]:

It is rather discomforting that the theory should allow a system to be
steered or piloted into one or the other type of state at the experimenter’s
mercy in spite of his having no access to it.

He conjectured that an entangled state of a composite system would almost instan-
taneously decay to a mixture as the component systems separated. (A similar possibil-
ity was raised and rejected by Furry [26].) There would still be correlations between
the states of the component systems, but remote steering would no longer be possible
[44, p. 451]:

It seems worth noticing that the [EPR] paradox could be avoided by a very
simple assumption, namely if the situation after separating were described
by the expansion (12), but with the additional statement that the knowledge
of thephase relationdetween the complex constamtshas been entirely

lost in consequence of the process of separation. This would mean that not
only the parts, but the whole system, would be in the situation of a mixture,
not of a pure state. It would not preclude the possibility of determining the
state of the first system bsuitable measurements in the second one or
vice versa But it would utterly eliminate the experimenters influence on
the state of that system which he does not touch.

Expansion (12) is the biorthogonal expansion:

U(a,y) = angr() fr(y) oy
k

Schibdinger regarded the phenomenon of interference associated with noncommu-
tativity in quantum mechanics as unproblematic, because he saw this as reflecting the
fact that particles are wavelike. But he did not believe that we live in a world in which
physical systems can exist nonlocally in entangled states, because such states would al-
low Alice to steer Bob’s system into any mixture of pure states compatible with Bob’s
reduced density operator. Sékdinger did not expect that experiments would bear this
out. On his view, entangled states, which the theory allows, are entirely local insofar as
they characterize physical systems, and nonlocal entangled states are simply an artefact
of the formalism.

Of course, it was an experimental question in 1935 whetherd8afger's conjec-
ture was correct or not. We now know that the conjecture is false. A wealth of experi-
mental evidence, including the experimentally confirmed violations of Bell's inequality



(e.g., Aspecet al [1]), testify to this. The relevance of Sditinger’'s conjecture for

our inquiry is this: it raises the possibility of a quantum-like world in which there is
interference but no nonlocal entanglement. We will need to exclude this possibility on
information-theoretic grounds.

As indicated, for a composite system, A+B, consisting of two component subsys-
tems, A and B, we propose to show (i) that the ‘no superluminal information transfer
via measurement’ condition entails that thé-algebrakl andB, whose self-adjoint
elements represent the observables of A and B, commute with each other, and (ii) that
the ‘no broadcasting’ condition entails tHAitand B8 separately are noncommutative
(nonabelian). Now, il and3 are nonabelian and mutually commuting (afid-
independer), it follows immediately that there are nonlocal entangled states on the
C*-algebrall v B they generate (see Landau [32], who shows that there is gostate
20V B that violates Bell’s inequality and hence is nonlocally entangled; also Summers
and Werner [46] and Bacciagaluppi [3]). So, at least mathematically, the presence
of nonlocal entangled states in the formalism is guaranteed, once we know that the
algebras of observables are nonabelian. What does not follow is that these states ac-
tually occur in nature. For example, even though Hilbert space quantum mechanics
allows for paraparticle states, such states are not observed in nature. In terms of our
program, in order to show that entangled states are actually instantiated, and—contra
Schibdinger—instantiated nonlocally, we need to derive this from some information-
theoretic principle. This is the role of the ‘no bit commitment’ constraint.

Bit commitment is a cryptographic protocol in which one party, Alice, supplies an
encoded bit to a second party, Bob. The information available in the encoding should
be insufficient for Bob to ascertain the value of the bit, but sufficient, together with
further information supplied by Alice at a subsequent stage when she is supposed to
reveal the value of the bit, for Bob to be convinced that the protocol does not allow
Alice to cheat by encoding the bit in a way that leaves her free to reveal either O or 1 at
will.

In 1984, Bennett and Brassard [5] proposed a quantum bit commitment protocol
now referred to as BB84. The basic idea was to associate the 0 and 1 commitments
with two equivalent quantum mechanical mixtures represented by the same density
operator. As they showed, Alice can cheat by adopting an Einstein-Podolsky-Rosen
(EPR) attack or cheating strategy: she prepares entangled pairs of particles, keeps one
of each pair (the ancilla) and sends the second particle (the channel particle) to Bob. In
this way she can fake sending one of two equivalent mixtures to Bob, and reveal either
bit at will at the opening stage, by effectively steering Bob’s particles into the desired
mixture via appropriate measurements on her ancillas. Bob cannot detect this cheating
strategy.

Mayers [37, 38], and Lo and Chau [35], showed that the insight of Bennett and
Brassard can be extended to a proof that a generalized version of the EPR cheating strat-
egy can always be applied, if the Hilbert space is enlarged in a suitable way by intro-
ducing additional ancilla particles. The proof of the ‘no go’ quantum bit commitment
theorem exploits biorthogonal decomposition via the Hughston-Jozsa-Wootters result
[28] (effectively anticipated by Schdinger). Informally, this says that for a quantum

23ee section 3.1.
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mechanical system consisting of two (separated) subsystems represented by the ten-
sor product of two type-I factor®(H1) ® B(Hz), any mixture of states ofB(H,)

can be generated from a distance by performing an appropriate POV-measurement on
the system represented B8( 7, ), for an appropriate entangled state of the composite
systemB(H;) ® B(Hz). This is what makes it possible for Alice to cheat in her bit
commitment protocol with Bob. Itis easy enough to see this for the original BB84 pro-
tocol. Suprisingly, this is also the case for any conceivable quantum bit commitment
protocol. (See Bub [9] for a discussion.)

Now, unconditionally secure bit commitment is impossible for classical systems, in
which the algebras of observables are abelian. It might seem inappropriate, then, that
we propose ‘no bit commitment’ as a constraint distinguishing quantum from classical
theories. The relevant point to note here is that the insecurity of any bit commitment
protocol in a nonabelian setting depends on considerations entirely different from those
in a classical abelian setting. Classically, unconditionally secure bit commitment is
impossible, essentially because Alice can send (encrypted) information to Bob that
guarantees the truth of an exclusive classical disjunction (equivalent to her commitment
to a 0 or a 1) only if the information is biased towards one of the alternative disjuncts
(because a classical exclusive disjunction is true if and only if one of the disjuncts
is true and the other false). No principle of classical mechanics precludes Bob from
extracting this information. So the security of the protocol cannot be unconditional and
can only depend on issues of computational complexity.

By contrast, in a situation of the sort envisaged by 8dmger, in which the al-
gebras of observables are nonabelian but composite physical systems cannot exist in
nonlocal entangled states, if Alice sends Bob one of two mixtures associated with the
same density operator to establish her commitment, then she is, in effect, sending Bob
evidence for the truth of an exclusive disjunction that is not based on the selection of
a particular disjunct. (Bob’s reduced density operator is associated ambiguously with
both mixtures, and hence with the truth of the exclusive disjunction: ‘0 or 1'.) This
is what noncommutativity allows: different mixtures can be associated with the same
density operator. What thwarts the possibility of using the ambiguity of mixtures in
this way to implement an unconditionally secure bit commitment protocol is the exis-
tence of nonlocal entangled states between Alice and Bob. This allows Alice to cheat
by preparing a suitable entangled state instead of one of the mixtures, where the re-
duced density operator for Bob is the same as that of the mixture. Alice is then able
to steer Bob’s systems into either of the two mixtures associated with the alternative
commitments at will.

So what would allow unconditionally secure bit commitmentin a nonabelian theory
is the absence of physically occupied nonlocal entangled states. One can therefore
take Schidinger's remarks as relevant to the question of whether or not secure bit
commitment is possible in our world. In effect, Sédinger believes that we live in a
guantum-like world in which secure bit commitment is possible. Experiments such as
those designed to test Bell's inequality can be understood as demonstrating that this is
not the case. The violation of Bell’s inequalities can then be seen as a criterion for the
possibility of remote steering in Sdbtinger’s sense.

11



3 Technical Results

3.1 Terminology and Assumptions

Our aim in this section is to show that the kinematic aspects of the quantum theory of
a composite system A+B (consisting of two component subsystems A and B) can be
characterized in terms of information-theoretic constraints. The physical observables
of A and B are represented, respectively, by self-adjoint elements of unital subalgebras
20 andB of aC*-algebraZ. We let2(vB denote the&’*-algebra generated Byand.
A state of A, B, or A+B (i.e., a catalog of the expectation values of all observables) can
be represented by means of a positive, normalized, linear functional on the respective
algebra of observables. Recall that a sjate said to be pure just in cage= \p; +
(1 = X)pe, for X € (0,1), entalls thapp = p; = po; otherwise is said to be mixed.
For simplicity, we will assume that the systems A and B are identically constituted —
i.e., they have precisely the same degrees of freedom — and therefore that there is an
isomorphism between the algebfasand®5. (However, it will be clear that most of
our results do not depend on this assumption.) We will hold this isomorphism fixed
throughout our discussion so that we can use the same notation to denote ambiguously
an operator il and its counterpart il8. We will also use the same notation for a state
of 2 and its counterpart in the state spacéof

The most general dynamical evolution of a system is represented by a completely
positive, linear ‘operation’ mapping@’ of the corresponding algebra of observables.
(We also require thaf'(I) < I. The operatiorf” is said to be selective if'(I) < I,
and nonselective if'(I) = I.) Recall that a linear mapping of 2 is positive just
in caseA > 0 entailsT'(A) > 0, and is completely positive just in case, for each
positive integem, the mappingl’ ® ¢ of 2 ® M, (C) into itself, defined by(T' ®
1)(A® B) = T(A) ® B, is positive. (Herelf,,(C) is theC*-algebra ofn x n matrices
over the complex numbers.) F is an operation ofl, andp is a state of( such that
p(T(I)) # 0, then the mappin@™*p defined by

. p(T'(A))

T = T (A e 2)
is a state ofl. The standard example of a selective operation is a collapsing von
Neumann measurement of some observébleith spectral projectiorP. In that case,
T(A) = PAP (A € ), andT™*p is the final state obtained after measurign state
p and ignoring all elements of the ensemble that do not yield as measurement result the
eigenvalue o) corresponding t@. The standard example of a nonselective operation
is a time evolution induced by a unitary operatére 2, whereT'(A) = U*AU
(A € 2) simply represents the Heisenberg picture of such evolution.

Finally, we must add one nontrivial independence assumption in order to capture
the idea that A and B are physicaliystinctsystems. (Our current assumptions would
allow that2l = 9B, which obviously fails to capture the situation we are intending to
describe.) Various notions of independence for a flaits of C*-algebras have been
developed in the literature [22, 46]. We are particularly interested in the notion of
C*-independence developed in [22], because it does not presuppoSeahds are
kinematically independent (i.e., thet, B] = 0 for all A € 2 andB € B). Thus, we
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will assume that — whether or n@tand are kinematically independent — any state
of 20 is compatible with any state &. More precisely, for any state, of 2(, and for
any statep, of B, there is a statp of 21 vV B such thaplg = p1 andplsg = p2. This
condition holds (i.e.l and®B areC*-independent) if and only if AB|| = || A|||| Bl
forall A € 2landB € % [22, Prop. 3].

3.2 No Superluminal Information Transfer via Measurement and
Kinematic Independence

We first show tha®l and®5 are kinematically independent if and only if the ‘no su-
perluminal information transfer via measurement’ constraint holds. The sense of this
constraint is that when Alice and Bob perform local measurements, Alice’s measure-
ments can have no influence on the statistics for the outcomes of Bob’s measurements
(and vice versa); for, otherwise, measurement would allow the instantaneous transfer
of information between Alice and Bob. That is, the mere performance of a local mea-
surement (in the nonselective sense) cannot, in and of itself, transfer information to a
physically distinct system.

The most general nonselective measurement operation performable by Alice is
given by

T(A) = zn: E?AE!? (AcAvB) ©)

i=1

where theE; are positive operators i#f such thaty_" | E; = I. The restriction to
nonselective measurements is justified here because selective operations can trivially
change the statistics of observables measured at a distance, simply in virtue of the fact
that the ensemble relative to which one computes statistics has changed.

We will say that an operatiofi’ conveys no information to Bob just in cag&
leaves the state of Bob's system invariant (so that everything ‘looks the same’ to Bob
after the operation as before, in terms of his expectation values for the outcomes of
measurements on observables).

Definition. An operation?’ on 2 Vv B conveys no information to Bob just in case
(T p)lsg = pleg for all statesp of B.

Note that eaclC*-algebra has sufficient states to discriminate between any two ob-
servables (i.e., ip(A) = p(B) for all statesp, thenA = B). Now (T%p)|sgg = plsg
iff p(T'(B)) = p(B) for all B € B and for all statep of 2 v B. Since all states of
B are restrictions of states @V B, it follows that (7% p)|sg = plsg if and only if
w(T(B)) = w(B) for all statesv of B, i.e., if and only ifT'(B) = B for all B € B.

It is clear that the kinematic independence2bfind B entails that Alice’s local
measurement operations cannot convey any information to BobI({.8) =
S EM?BE!? = Bfor B € B if T is implemented by a positive operator valued
resolution of the identity i(). Thus, we need only show that if Alice cannot convey
any information to Bob by performing local measurement operations,hand 8
are kinematically independent. In the standard Hilbert space case, our argument would
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proceed as follows: Consider any idealiflers), non-selective measurement of the
form

T(A) = PAP+(I—P)A(I-P) (AeAVB) 4)

whereP is a projection irl. Then no superluminal information transfer via measure-
ment entails that for ang € 8,

B = T(B) = PBP+(I-P)B(I-P) (5)
and therefore
2PBP —-PB—-BP = 0 (6)

Multiplying on the left (respectively, right) wittP, and using the fact tha®? = P,
we then obtailPBP — PB = 0 (respectively,PBP — BP = 0). Subtracting these
two equations givesP, B] = 0. Thus, since is spanned by its projections and
9% is spanned by its self-adjoint operators, it follows tRlahnd 5 are kinematically
independent.

In the more general*-algebraic framework, this argument is not available: Since
the algebrall does not necessarily contain projection operators, we cannot assume
that there are any measurement operations of the form given in Eqn. 4 Whisra
projection. Instead, since C*-algebras are spanned by their effects (positive operators),
consider the simplest case of a POV measurement defined by

Tp(A) = EY2AEY?2 4 (I-E)V2A(I-E)Y? (AedAvB) (7)

whereFE is some effect irel. We will now show that wheiB is self-adjoint,Tz(B) =
B entails tha{E, B] = 0.

Theorem 1. Tx(B) = B for all effectsE € 2 and self-adjoint operator® € 9B only
if 2L and3 are kinematically independent.

For the proof of this theorem, recall that a derivation is a linear map such that
d(AB) = A(dB) + (dA)B.

Proof. Suppose thal'z(B) = B whereFE is an effect in2l and B is a self-adjoint
operator infB3. Then a tedious but elementary calculation shows that

[El/Qv[El/ZvBH =0 (8)

Clearly, the mapX + i[E'/2, X] defines a derivatiod of 2 vV 8. Moreover, since
d(dB) = 0 and B is self-adjoint, it follows thaii[E'/?, B] = dB = 0 [10, Ap-
pendix A]. Thus,[E, B] = 0. Finally, since aC*-algebra is spanned by its effects, if
Tg(B) = B for all effectsE € 2 and self-adjoint operato8 € 9B, then and®B are
kinematically independent. O

Thus, the kinematic independence2b&nd®s is equivalent to the ‘no superluminal
information transfer by measurement’ constraint. In deriving our subsequent results,
we assume kinematic independence.
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3.3 No Broadcasting and Noncommutativity

In a cloning process, a ready statef system B, and the state to be cloneaf system

A, are transformed into two copies pf Thus, such a process creates no correlations
between the states of A and B. By contrast, in a more general broadcasting process, a
ready stater, and the state to be broadcasire transformed to a new stateof A+B,

where the marginal states ofwith respect to both A and B are® In the context of
elementary quantum mechanics, neither cloning nor broadcasting is generally possi-
ble: A pair of pure states can be cloned if and only if they are orthogonal (Wootters
and Zurek [48], Dieks [15]), and (more generally) an arbitrary pair of states can be
broadcast if and only if they are represented by mutually commuting density matrices
(Barnumet al [4]). Thus, one might suspect that in a classical theory (in which all
operators commute), all states can be broadcast. In this section, we show that this is in-
deed the case; and, in fact, the ability to broadcast states distinguishes classical systems
from quantum systems.

We now introduce a general notion of broadcasting for afpa® of kinematically
independenC*-algebras. But we must first establish the existence and uniqueness of
product states dil Vv 8.

A statep of 20 vV B is said to be groduct statgust in casep(AB) = p(A)p(B) =
p(BA) forall A € andB € B. Since andB are bothC*-independent and
kinematically independent, there is an isomorphisfrom thex-algebra generated by
20 and‘B onto the algebraic tensor produt® B such thatr(AB) = A ® B for
all A € 2 andB € B. We will occasionally omit reference to and used ® B to
denote the product of € 2l andB € 9. It also follows thatr can be extended to a
continuous surjectioft from 20V B onto the spatial tensor produtx B [22, Thm. 1].

Since the state space %f® % has a natural tensor product structure, we can use the
mappingr to define product states 8f v 8. In particular, for each stajeof 2 @ B
define the state™*p of 2L vV B by setting

(Tp)(A) = p(x(4)) (AeAVB) (9)

If wis a state o andp is a state ofB, then7*(w ® p) is a product state dfl v B
with marginal states) andp. In fact, the following result shows that (v ® p) is the
unique product state & V B with these marginal states.

Lemma 1. Suppose tha#l and‘B are kinematically independent*-algebras. Then
for any statev of 2l and for any state of 95 there is at most one stateof 2 v 8 such
thato (AB) = w(A)p(B) forall A € 2 andB € 8.

Proof. The setS of finite sums of the fornz,’f:1 A;B; with A; e landB; € Bisa
*-algebra containing botkt and%5. Moreover,& is clearly contained in any-algebra
that contains botRl and®8. Thus,& is the*-algebra generated B and®3. Suppose
then thatry ando; are states d¥l VB such thav((AB) = w(A)p(B) = 01(AB) for
all AeandB € 9. Then

i=1

3We are indebted to Rob Spekkens for clarifying this distinction for us, and for supplying relevant refer-
ences.
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forall A; € AandB; € 9B. Since V B is the closure of in the norm topology, and
since states are continuous in the norm topolegy= o;. O

When it will not cause confusion, we will henceforth supress reference to the state
mappingr*, so thatw ® p denotes the unique product statew 9B with marginals
w andp.

Definition. Given two isomorphic, kinematically independéetit-algebrasi and®B,
we say that a paifpo, p1 } of states ol can bebroadcasjust in case there is a standard
states of B and a dynamical evolution represented by an oper&fioh 2( \V 98 such
thatT*(p; ® o)lgg = T*(p;s ® o)|sg = pi (i = 0,1). We say that a paifpo, p1 } of
states ofl can beclonedjust in casel™(p; ® o) = p; ® p; (i =0,1).

We show next that pairwise broadcasting is always possible in classical systems.
Indeed, when the algebras of observables are abelian, there is a ‘universal’ broadcasting
map that clones any pair of input pure states and broadcasts any pair of input mixed
states.

Theorem 2. If 2 and 9B are abelian then there is an operatidh on 21 v 95 that
broadcasts all states éX.

Proof. Since®l is abelian?( v 9B is naturally isomorphic t@ ® 9B [42, Theorem 2].
Since2l and B are isomorphic abelian algebras, both are isomorphic to the space
C(X), whereX is some compact Hausdorff space, and theretore B =~ C'(X) ®

C(X) 2 C(X x X) [30, p. 849]. Define a mappingfrom X x X into X x X by
setting

n((z,y)) = (z,2) (z,y € X) (11)

Sincen is continuous, we can define a linear mappifign C(X x X) by setting

Tf = fomn. Since the range df f is a subset of the range ¢f the mappindl is
positive, andl’(I) = I. Furthermore, every positive mapping whose domain or range
is an abelian algebra is completely positive [30, Exercise 11.5.22]. Ther&fdsea
nonselective operation afi(X) ® C'(X). To see thaf” broadcasts all states, note first
thatT (f ® g) = fg®1I for any product functiorf ® g. In particular,T(I® f) = f®1,

and thus

T“(peo)Ief) = (po)(fel) = pf) (12)

for any stategp, o of C(X). Thatis, 7*(p ® o)|sg = p. On the other hand, since
T(feI)=f®I,Iitfollows that

T*(poo)(fol) = (peo)(fel) = pf) (13)
for any stateg, o of C(X). Thatis,T*(p ® o)y = p. O

Barnumet al [4] note that if density operatorB,, D, on a Hilbert spacé{ can
be simultaneously diagonalized, then there is a unitary opetatbat broadcasts the
corresponding pair of states. Thus, such states can be broadcastMeysableopera-
tion, and the added strengthiafeversible(general completely positive) operations is
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not necessary. However, the broadcasting operd&tidefined in the previous theorem
is patently irreversible, since it corresponds to a many-to-one magping — (z, x)
of the pure state space. Indeed, although there are many physically significant classi-
cal systems where broadcasting can be performed via reversible operations, this is not
generally true. Consider the following two contrasting cases.

First, in the case of classical particle mechanics, systems A and B each have the
phase spacB®", for some finiten. Thus,2 vV B = C(R") @ C(R®") = C(R®" x
RS"), whereC (R%") is the set of bounded continuous functions fri&f into C. Let
the ready state of system B be the zero vect@®ih, and letn be the invertible linear
transformation oR%” x RS" given by the matrix

I —I
(r7)
wherel is the identity matrix oR5”. Sincen is an autohomeomorphismBf” x R,
the mappingf — fon defines an automorphism 2fv 95 [30, Thm. 3.4.3]. Moreover,
n((x,0)) = (x,x) for any pure state, and an argument similar to that used above
shows that) broadcasts arbitrary states.

Second, suppose that systems A and B each have the phas@&gpadé U {oo},
where the open sets & consist of all finite subsets &, plus all cofinite sets con-
taining co. (That is,N* is the one-point compactification &f.) Then®l Vv B =
C(N*) ® C(N*) =2 C(N* x N*), and every automorphisim of 2 v % is induced by
an autohomeomorphismof N* x N* via the equation(f) = f o5 [30, Thm. 3.4.3].
However, it is not difficult to see that there is no autohomeomorphishiiof N* that
clones arbitary pairs of pure states. In particular, for any N*, there is anm € N*
such that(n, m) is not mapped ont6m, m) by any autohomeomorphism df x N*.
Therefore, general classical systems do not permit broadcasting via a reversible opera-
tion.

We now show that general quantum systems do not permit broadcasting. In par-
ticular, we prove that if any two states of a system can be broadcast, then that system
has an abelian algebra of observables. Our proof proceeds by showing that if any two
states can be broadcast, then any puoe states can be cloned; and that if two pure
states of a8C*-algebra can be cloned, then they must be orthogonal.

Two pure statep, w of aC*-algebra are said to be orthogonal just in dgsew|| =
2. More generally, the transition probabilityp, w) is defined to be (see [41]):

plp,w) = 1—1lp—wl|? (14)

If pis a state oR(, andU is a unitary operator if(, then we letp;; denote the state
defined by

pu(4) = p(U"AU) (Ae2l) (15)

In this casep andpy are said to be unitarily equivalent. Furthermord/ifs a unitary
operator iRl andV is a unitary operator ifB, then

(W pPluev(A®B) = (w®p)(U"AU @ V*BV) (16)
= (wr®pv)(A® B) (17)
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forall A € 2 andB € B. Thus, the uniqueness of product states (Lemma 1) entails
that(w ® p)U®V =wy Q py.

For the following lemma, we will need to make use of the fact fhat piy) =
|p(U)|? for any pure state [40, Lemma 2.4].

Lemma 2. If pg, p1 are unitarily equivalent pure states 8f, and o is an arbitrary
state ofB then:

p(po@o,pr®0) = p(po,p1) (18)
p(po ® po,p1 @p1) = plpo,p1)? (19)

Proof. Since pg and p; are unitarily equivalent, there is a unitary operatbre 2
such thajp; = (po)v andp(po, p1) = [po(U)|?. Thusp; ® o = (po ® 0)wer), and
therefore

plpo@a.pr@a) = |(po @)U D = |po(U)* = p(po,p1)  (20)
Similarly, py ® po = (p1 ® p1)weuv), and therefore

p(po @ po, p1 @ p1) = |(po @ po)(U @ U)|* = |po(U)[* = plpo,p1)*  (21)

O

Lemma 3. Suppose tha®l and 9B are kinematically independent. ffis a state of
2L v B such thatp|g is pure orp|y is pure, therp is a product state.

Proof. Letw = ply(, and letB be an effect irB. Define positive linear functionals,
and s on%l by setting

M(A) = p(BY?AB'Y?) = p(AB) (22)
Xa(A) = p((I-B)YV?A(I-B)"?) = p(A(I - B)) (23)

for all A € 2. It then follows that
WA) = p(A) = MA)+FAA) = MA) (24)
Sincew is a pure state dif, \; is a nonnegative multipléw of w, and
ko= kol) = M) = pB) (25)
Accordingly,
pAB) = M(A) = kw(d) = w(A)p(B) (26)

By linearity, the same equation holds when we replBdgy an arbitrary element 68.
Thereforep(AB) = w(A)p(B) = p(A)p(B) forall A € 2andB € B. O
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The proof of the next theorem turns on the fact that nonselective operations cannot
increasethe norm distance between states, and therefore cadenatasehe transition
probabilities between states. That is, for any nonselective operAtion

p(T"w, T"p) = pw,p) @7)
for all statesv, p. To see this, note that
IT"w = T*pll = sup{|(w—p)(T(A)| : [|A] <1} (28)
and the Russo-Dye theorem entails thatdf| < 1 then|T(A)|| < 1.

Theorem 3. If for each pair{pg, p1} of states of, there is an operatioff on2 vV B
that broadcastg p, p1 }, then2l is abelian.

Proof. We assume that for each pdipy, p1} of states ofd, there is an operatiof’
on 2 v B that broadcast$p, p1}. Suppose for reductio ad absurdum tRiats not
abelian. Then there are pure statgsp; of 2l such thatd < ||py — p1]| < 2 [30,
Exercise 4.6.26]. In this casgy; andp; are unitarily equivalent [30, Corollary 10.3.8].
By hypothesis, there is a standard statef % and an operatiofi’ on2( \V 98 such that

T*(po@o)ly = T (po®@o)lg = po (29)
T"(peo)ly = T (m®o)lg = p (30)

Sincepy andp; are pure, it follows from Lemma 3 that*(py ® o) = po ® po and
T*(p1 ® 0) = p1 ® p1. Thus,

p(po,p1) = plpo®o,p1®o) (31)
< p(T*(po @ 0), T*(p1 ® 7)) (32)
= p(po ® po, p1 ® p1) (33)
= p(po, p1)? (34)

(The equalities in Equations 31 and 34 follow from Lemma 2, while the inequality in
Equation 32 follows from the fact that transition probabilities cannot decrease under
T*.) However, the inequality(po, p1) < p(po,p1)? contradicts the fact that <

p(po, p1) < 1. Therefore® is abelian. O

3.4 No Bit Commitment and Nonlocality

We show that the impossibility of unconditionally secure bit commitment between sys-
tems A and B, in the presence of the kinematic independence and noncommutativity of
their algebras of observables, entails nonlocality: spacelike separated systems must at
least sometimes occupy entangled states. Specifically, we show that if Alice and Bob
have spacelike separated quantum systems, but cannot prepare any entangled state, then
Alice and Bob can devise an unconditionally secure bit commitment protocol.

We first show that quantum systems are characterized by the existence of non-
uniguely decomposable mixed states.
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Lemma 4. Let 2 be aC*-algebra. Thertl is nonabelian if and only if there are
distinct pure states » andwy of 2 such that(1/2) (w1 + ws2) = (1/2)(ws + w_).

Proof. If 2 is abelian then its states are in one-to-one correspondence with measures
on its pure state space. In particularpif= (1/2)(w; + w2), wherew;, wo are distinct
pure states, then this decomposition is unique.

Conversely, suppose that there areB € 2( such thafA, B] # 0 (cf. [8, Example
4.2.6]) . Then there is a pure statef 2 such thap([A, B]) # 0[30, Thm. 4.3.8]. Let
(m,H, Q) be the GNS representation #finduced byp. The dimension of the Hilbert
spaceH must exceed one; for otherwise

m([A, B]) = [r(A), 7(B)] = 0 (35)

in contradiction with the fact tha2, 7([A4, B])2) = p([4, B]) # 0. Thus, there is a
pair z1, z2 of orthogonal unit vectors ift{. Define two states; of 2( by setting

wi(4) = (z;,7(A)x;) (Aeq) (36)

Similarly, define, in the same way, another pair of stateof 2 using the orthogonal
unit vector2~1/2(z, +x5). Sincepis pure,(7, H, Q) is irreducible, and all four of the
statesu; o andw. are pure and distinct. Moreover, by constructi@n2) (w; + ws) =
(1/2)(ws +w-). O

If each of A and B has a non-uniquely decomposable mixed state, then A+B has
a pair{pg, p1} of distinct (classically) correlated states whose marginals relative to B
are identical. In particular, let

po = (1/2) (w1 @ wi + ws @ ws) (37)
pr = (1/2) (wy Qui +w-Qw-) (38)

The protocol then proceeds as follows: Alice and Bob arrange things so that at the
commitment stage, Alice can make a choice that will determine that gither p; is
prepared, the former corresponding to the commitnieand the latter corresponding
to the commitment.. Alice and Bob also agree that at the revelation stage, if Alice
committed to0 then she will instruct Bob to perform a measurement that will distin-
guish between states andws, and if she committed td then she will instruct Bob
to perform a measurement that will distinguish between stateandw_. We must
be cautious on this last point: neither Alice nor Bob will typically be able to perform
a measurement that can discriminate with certainty between these states. However, for
anye > 0, there is an effect € 2 such thatv; (4) > 1 —e andw;(A4) < e. Similarly,
there is an effecB € 2 such thatv, (B) > 1 — eandw_(B) < e. That s, Alice and
Bob can perform measurements that will discriminate with arbitrary accuracy between
w1 andws, or betweenv, andw_. Finally, Alice will verify her commitment by per-
forming the corresponding measurement on her system and reporting the outcomes to
Bob.

Our final theorem shows that if Alice and Bob have access only to classically cor-
related states (i.e., convex combinations of product states), then this bit commitment
protocol is secure. In particular, we show that Alice cannot cheat by preparing some
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states which she could later transform at will into eithey or p;. To be precise, the

no superluminal information transfer by measurement constraint entails that Alice can
perform an operatiofi on2( VB only if T'(B) = B for all B € B, andT'(A) € 2 for

all A € 2. It follows then that Alice can transform product states only to other product
states.

Theorem 4. If 2 and*B are nonabelian then there is a pfipy, p1 } of states of( Vv B
such that:

1. polgg = p1lsg-

2. There is no classically correlated stateof 2 v 95 and operationsly and T;
performable by Alice such thd@{fo = py andT;'o = p;.

For the proof of this theorem, we recall that two representationst) and(¢, K)
of a C*-algebra are said to be quasi-equivalent just in case there is@norphism
o from 7(2)"” onto ¢(A)” such thata(m(A)) = ¢(A) for eachA in 2. Similarly,
statesw and p of 2 are said to be quasi-equivalent just in case their corresponding
GNS representations are quasi-equivalent. Finally, quasi-equivalence is an equivalence
relation, and is closed under finite convex combinations.

Proof. Let py and p; be the states defined in Egns. 37 and 38. Supposesthat
Yoy Ai(ai®pB;), where they; are states dil, and theg; are states dB. LetT, andT};
be operations dl \V 98 that can be performed by Alice. Then for each [1, n], there
are states;; anda; of 2 such thatlj (o; ® 8;) = o ® 5; andT} (a; ® §;) = o ® ;.
Moreover, sincd|; and1} are affine,

po = Tgo = Z i(al @ B3;) (39)
i=1
po= Tio = > N ®p) (40)

Il
-

(2

Let ;. denote the mixed staté /2) (w1 +w2) = (1/2)(ws+w_) of B. Thend ! | X\;3; =
i, SO that eacls; is quasi-equivalent tp. Let (7, H) be the representation &f defined
in Lemma 4, letP; denote the projection ontg, and letP, denote the projection onto
2‘1/2(x1 + z2). (Note that sincev; 2, wy are represented by vectors#f it follows
that (w, H) is unitarily equivalent to the GNS representations induced by these states.
Moreover, (7, H) is quasi-equivalent to the GNS representation inducef; hySince
7(B) is weakly dense iB(H), there are net§A;} C B and{B;} C 9B such that
m(A;) converges ultraweakly t& and(B;) converges ultraweakly t&,. (More-
over, we can choose these nets so that 7(4;),7(B;) < I for all i.) Since each
of the statesv; 2, w4 is represented by a vector i, ultraweak continuity of normal
states entails that:

limpi(4;® (I = 4)) = 0 (41)
lim p1((1 — A;) ® A;) (42)

I
o
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limpo(B; @ (I —B;)) = 0 (43)
lim po((I — B;) ® By) (44)

Il
o

Furthermore, sincBm; ;1(A4;) = 1/2, there exists somge [1, n] such thatim; 5;(A4;) > 0.
Let 3 = 3; and leta’ = ). Then, combining the previous equalities with Eqns. 39
and 40 gives:

lima/(A4,)B(1 = 4) = 0 (45)
lima'(I - A)B(A) = 0 (46)
lima”(B;)B(I - B;) = 0 (47)
lima”(I - B;)3(B;) = 0 (48)

Since0 < §(4;),a/(A;) < 1forall i, it follows that{3(4;)} and{a’(A;)} have ac-
cumulation points. Thus, we may pass to a subnet in which/3(A4;) andlim; o/ (A;)
exist (and the preceding equations still hold). We now claim lilat 5(A4;) = 1. In-
deed, sincéim; a(l — A;)B(A;) = 0, if lim; B(A;) > 0thenl — lim; o/(4;) =
lim; o/ (I — A;) = 0. Moreover, sincéim o/ (A;)3(I — A;) = 0, it follows that that
1 —lim; B(4;) = lim; (I — A;) = 0. Thuslim; 5(4;) = 1. An analogous argument
shows that eithelim; 5(B;) = 0 orlim; 3(B;) = 1.

Now, since the GNS representation inducedis quasi-equivalent to the irre-
ducible representatiofir, ), there is a density operatd@ on M such that3(X) =
Tr(DX) for all X € 9. Since density operator states are ultraweakly continuous,

Te(DP) = limTr(D4;) = 1, (49)

and thereford) = P;. Thus, iflim; 5(B;) = 0 then we have a contradiction:

1/2 = Te(PP,) = Te(DPy) = lmTr(DB;) = 0. (50)

Butlim; 8(B;) = 1 would also result in the contradictidr’2 = 1. Therefore, there is
no classically correlated statesuch thatl;jo = po andTi'o = p;. O

The converse result remains open: it is not known whether nonlocality—the fact
that spacelike separated systems occupy entangled states—entails the impossibility of
unconditionally secure bit commitment. As we indicated in the introduction, the proof
of the corresponding result in elementary quantum mechanics (in which all algebras are
type | von Neumann factors) depends on the biorthogonal decomposition theorem, via
the theorem of Hughston, Jozsa, and Wootters [28]. Thus, proving the converse would
amount to generalizing the Hughston-Jozsa-Wootters result to arbitrary nonatyélian
algebras. If, as we believe, the more general result holds, then quantum theory can
be characterized in terms of our three information-theoretic constraints. So, either
guantum theory can be characterized in terms of our information-theoretic constraints,
or there are physical systems which permit an unconditionally secure bit commitment
protocol.
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4 Concluding Remarks

Within the framework of a class of theories broad enough to include both classical and
quantum particle and field theories, and hybrids of these theories, we have shown that
three information-theoretic constraints suffice to exclude the classical theories. Specif-
ically, the information-theoretic constraints entail that the algebras of observables of
distinct physical systems commute, that the algebra of observables of each individ-
ual system is noncommutative, and that spacelike separated systems occupy entangled
states.

Conversely, from the three physical characteristics of a quantum theory in the most
general sense—kinematic independence, noncommutativity, and nonlocality—we have
derived two of the three information-theoretic constraints: the impossibility of superlu-
minal information transfer between two physical systems by performing measurements
on one of them, and the impossibility of perfectly broadcasting the information con-
tained in an unknown physical state.

It remains an open question whether the third information-theoretic constraint—the
impossibility of unconditionally secure bit commitment—can be derived as well. As
we indicated above, this would involve something equivalent to an algebraic general-
ization of the Hughston-Jozsa-Wootters theorem [28] to cover cases of systems with an
infinite number of degrees of freedom that arise in quantum field theory and the thermo-
dynamic limit of quantum statistical mechanics (in which the number of microsystems
and the volume they occupy goes to infinity, while the density defined by their ratio
remains constant). The Stone-von Neumann theorem, which guarantees the existence
of a unique representation (up to unitary equivalence) of the canonical commutation
relations for systems with a finite number of degrees of freedom, breaks down for such
cases, and there will be many unitarily inequivalent representations of the canonical
commutation relations.

Since we intend our characterization of quantum theory to apply quite generally to
these cases as well (including the quantum theoretical description of exotic phenomena
such as Hawking radiation, black hole evaporation, Hawking information loss, etc.), we
do not restrict the notion of a quantum theory to the standard quantum mechanics of a
system represented on a single Hilbert space with a unitary dynamics. So it would not
be an appropriate goal of our characterization project to derive thé&&olyer equa-
tion as a description of the dynamics of a quantum system from information-theoretic
assumptions. A unitary dynamics will not be implementable in a quantum field theory
on a curved space-time, for example, which might be a preliminary semi-classical step
towards a quantum theory of gravity (see Arageoegial [2]).

The foundational significance of our derivation, as we see it, is that quantum me-
chanics should be interpreted aprinciple theory where the principles at issue are
information-theoretic. The distinction betweprinciple and constructivetheories is
introduced by Einstein in his discussion of the significance of the transition from New-
tonian to relativistic physics [18]. As Einstein puts it, most theories in physics are
constructive, with the aim of representing complex phenomena as constructed out of
the elements of a simple formal scheme. So, for example, the kinetic theory of gases is
a constructive theory of thermal and diffusion processes in terms of the movement of
molecules. By contrast [18, p. 228], principle theories begin with empirically discov-
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ered ‘general characteristics of natural processes, principles that give rise to mathemati-
cally formulated criteria which the separate processes or the theoretical representations
of them have to satisfy.” Einstein cites thermodynamics as the paradigm example of a
principle theory. The methodology here is analytic, not synthetic, with the aim of de-
ducing [18, p. 228] ‘necessary conditions, which separate events have to satisfy, from
the universally experienced fact that perpetual motion is impossible.

Einstein’s point is that the theory of relativity is to be understood as a principle
theory. In the case of the special theory, there are two relevant principles: the equiva-
lence of inertial frames for all physical laws (the laws of electromagnetic phenomena
as well as the laws of mechanics), and the constancy of the velocity of light in vacuo
for all inertial frames. These principles are irreconcilable in the Euclidean geometry of
Newtonian space-time, where inertial frames are related by Galilean transformations.
The required revision yields the special theory of relativity and Minkowski geometry,
in which inertial frames are related by Lorentz transformations. In his ‘Autobiograph-
ical Notes’ [20, p. 57], Einstein characterizes the special principle of relativity, that
the laws of physics are invariant with respect to Lorentz transformations from one
inertial system to another, as ‘a restricting principle for natural laws, comparable to
the restricting principle of the non-existence of fferpetuum mobilevhich underlies
thermodynamics.’ In the case of the general theory of relativity, the group of allowable
transformations includes all differentiable transformations of the space-time manifold
onto itself.

A relativistic theory is a theory with certain symmetry or invariance properties, de-
fined in terms of a group of space-time transformations. Following Einstein we under-
stand this invariance to be a consequence of the fact that we live in a world in which nat-
ural processes are subject to certain constraints. A quantum theory is a theory in which
the observables and states have a certain characteristic algebraic structure. Unlike rela-
tivity theory, quantum mechanics was born as a recipe or algorithm for calculating the
expectation values of observables measured by macroscopic measuring instruments.
These expectation values (or probabilities of ranges of values of observables) cannot
be reduced to probability distributions over the values of dynamical variables (or prob-
ability distributions over properties of the system). Analogously, one might imagine
that the special theory of relativity was first formulated geometrically by Minkowski
rather than Einstein, as an algorithm for relativistic kinematics and the Lorentz trans-
formation, which is incompatible with the kinematics of Newtonian space-time. What
differentiates the two cases is that Einstein’s derivation provides an interpretation for
relativity theory: a description of the conditions under which the theory would be true,
in terms of certain principles that constrain the law-like behavior of physical systems.
Itis in this sense that our derivation of quantum theory from information-theoretic prin-
ciples can be understood as an interpretation of quantum theory: the theory can now be
seen as reflecting the constraints imposed on the theoretical representations of physical
processes by these principles.
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