
Characterizing Quantum Theory in terms of
Information-Theoretic Constraints

Rob Clifton ∗

Department of Philosophy, University of Pittsburgh,
Pittsburgh, PA 15260

Jeffrey Bub
Department of Philosophy, University of Maryland,

College Park, MD 20742
(E-mail: jbub@carnap.umd.edu)

Hans Halvorson
Department of Philosophy, Princeton University,

Princeton, NJ 08544
(E-mail: hhalvors@Princeton.edu)

∗Rob Clifton died of cancer on July 31, 2002, while we were working on this project. The final version
of the paper reflects his substantial input to an earlier draft, and extensive mutual discussions and correspon-
dence.

1



ABSTRACT

We show that three fundamental information-theoretic constraints—the
impossibility of superluminal information transfer between two physical
systems by performing measurements on one of them, the impossibility of
broadcasting the information contained in an unknown physical state, and
the impossibility of unconditionally secure bit commitment—suffice to en-
tail that the observables and state space of a physical theory are quantum-
mechanical. We demonstrate the converse derivation in part, and consider
the implications of alternative answers to a remaining open question about
nonlocality and bit commitment.
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Of John Wheeler’s ‘Really Big Questions’, the one on which most progress has been made isIt from Bit?—
does information play a significant role at the foundations of physics? It is perhaps less ambitious than some
of the other Questions, such asHow Come Existence?, because it does not necessarily require a metaphysical
answer. And unlike, say,Why the Quantum?, it does not require the discovery of new laws of nature: there
was room for hope that it might be answered through a better understanding of the laws as we currently know
them, particularly those of quantum physics. And this is what has happened: the better understanding is the
quantum theory of information and computation.
How might our conception of the quantum physical world have been different ifIt From Bit had been a
motivation from the outset? No one knows how to deriveit (the nature of the physical world) frombit (the
idea that information plays a significant role at the foundations of physics), and I shall argue that this will
never be possible. But we can do the next best thing: we can start from the qubit.

Introduction toDavid Deutsch’s (2003) ‘It From Qubit’

1 Introduction

Towards the end of the passage above, Deutsch is pessimistic about the prospects of
deducing the nature of the quantum world from the idea that information plays a sig-
nificant role at the foundations of physics. We propose to counter Deutsch’s pessimism
by beginning with the assumption that we live in a world in which there are certain
constraints on the acquisition, representation, and communication of information, and
then deducing from these assumptions the basic outlines of the quantum-theoretic de-
scription of physical systems.1

The three fundamental information-theoretic constraints we shall be interested in
are:

• the impossibility of superluminal information transfer between two physical sys-
tems by performing measurements on one of them;

• the impossibility of perfectly broadcasting the information contained in an un-
known physical state; and

• the impossibility of unconditionally secure bit commitment.

These three ‘no-go’s’ are all well-known consequences of standard nonrelativistic Hilbert
space quantum theory. However, like Einstein’s radical re-derivation of Lorentz’s trans-
formation based upon privileging a few simple principles, we here propose to raise the
above constraints to the level of fundamental information-theoretic ‘laws of nature’
from which quantum theory can, we claim, be deduced. We shall do this by starting
with a mathematically abstract characterization of a physical theory that includes, as
special cases, all classical mechanical theories of both wave and particle varieties, and
all variations on quantum theory, including quantum field theories (plus any hybrids of
these theories). Within this framework, we are able to give general formulations of the
three information-theoretic constraints above, and then show that they jointly entail:

1Chris Fuchs and Gilles Brassard first suggested the project to one of us (JB) as a conjecture or speculation
(Brassard’s preferred term) that quantum mechanics can be derived from two cryptographic principles: the
possibility of secure key distribution and the impossibility of secure bit commitment [23, 24, 25, 7].
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• that the algebras of observables pertaining to distinct physical systems must
commute, usually called microcausality or (a term we prefer)kinematic inde-
pendence(see Summers [46]);

• that any individual system’s algebra of observables must be nonabelian, i.e.,non-
commutative;

• that the physical world must benonlocal, in that spacelike separated systems
must at least sometimes occupy entangled states.

We shall argue that these latter threephysicalcharacteristics are definitive of what it
means to be a quantum theory in the most general sense. Conversely, we would want
to prove that these three physical characteristics entail the three information-theoretic
principles from which we started, thereby providing a characterization theorem for
quantum theory in terms of those principles. In this, we are only partly successful,
because there remains an open question about bit commitment.

The fact that one can characterize quantum theory (modulo the open question) in
terms of just a few simple information-theoretic principles not only goes some way
towards answering Wheeler’s query ‘Why the Quantum?’ (without,paceDeutsch, the
introduction of new laws), but lends credence to the idea that an information-theoretic
point of view is the right perspective to adopt in relation to quantum theory. Notice, in
particular, that our derivation links information-theoretic principles directly to the very
features of quantum theory—noncommutativity and nonlocality—that are so concep-
tually problematic from a purely physical/mechanical point of view. We therefore sug-
gest substituting for the conceptually problematic mechanical perspective on quantum
theory an information-theoretic perspective. That is, we are suggesting that quantum
theory be viewed, not as first and foremost a mechanical theory of waves and particles
(cf. Bohr’s infamous dictum, reported in Petersen [39]: ‘There is no quantum world.’),
but as a theory about the possibilities and impossibilities of information transfer.

We begin, in section2, by laying out the mathematical framework within which our
entire analysis will be conducted—the theory ofC∗-algebras. After introducing the ba-
sics, we establish that theC∗-algebraic framework does indeed encompass both classi-
cal and quantum statistical theories, and go on to argue that the latter class of theories
is most properly viewed as picked out solely in virtue of its satisfaction of kinematic
independence, noncommutativity, and nonlocality—even though there is far more to
the physical content of any given quantum theory than these three features. Section
3 contains our technical results. We first formulate the three information-theoretic
constraints—no superluminal information transfer via measurement, no broadcasting,
and nobit commitment—inC∗-algebraic terms, after briefly reviewing the concepts
as they occur in standard nonrelativistic Hilbert space quantum theory. We show that
these information-theoretic ‘no-go’ principles jointly entail kinematic independence,
noncommutativity, and nonlocality. We demonstrate the converse derivation in part:
that the physical properties of kinematic independence and noncommutativity jointly
entail no superluminal information transfer via measurement and no broadcasting.

The remaining open question concerns the derivation of the impossibility of un-
conditionally secure bit commitment from kinematic independence, noncommutativ-
ity, and nonlocality in the theory-neutralC∗-algebraic framework. The proof of this
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result in standard quantum mechanics (Mayers [37, 38], Lo and Chau [35]) depends
on the biorthogonal decomposition theorem, which is not available in the more gen-
eral framework. If the derivation goes through, then we have a characterization theo-
rem for quantum theory in terms of the three information-theoretic principles, thereby
considerably generalizing the known proofs of these principles within the standard
nonrelativistic Hilbert space quantum theory framework. If not, then there must be
quantum mechanical systems—perhaps systems associated with von Neumann alge-
bras of some nonstandard type—that allow an unconditionally secure bit commitment
protocol! Section4 concludes with some further remarks about the significance of our
information-theoretic characterization of quantum theory.

2 TheC∗-Algebraic Approach to Physical Theory

2.1 Basic Concepts

We start with a brief review of abstractC∗-algebras and their relation to the standard
formulation of quantum theory in terms of concrete algebras of operators acting on a
Hilbert space.

A unital C∗-algebra is a Banach∗-algebra overC containing the identity, where
the involution and norm are related by‖A∗A‖ = ‖A‖2. Thus, the algebraB(H) of
all bounded operators on a Hilbert spaceH—which, of course, is used in the standard
formulation of nonrelativistic quantum theory—is an example of aC∗-algebra, with∗

taken to be the adjoint operation, and‖ · ‖ the standard operator norm. Moreover, any
∗-subalgebra ofB(H) containing the identity operator that is closed in the operator
norm is a (unital)C∗-algebra. By arepresentationof a C∗-algebraA is meant any
mappingπ : A → B(H) that preserves the linear, product, and∗ structure ofA. If, in
addition,π is one-to-one (equivalently,π(A) = 0 impliesA = 0), the representation
is calledfaithful. In a faithful representation,π(A) provides an isomorphic copy of
A. A representation is irreducible just in case the only closed subspaces ofH that are
invariant underπ areH and the null space.

A von Neumann algebraR is a concrete collection of operators on some fixed
Hilbert spaceH—specifically, a∗-subalgebra ofB(H) that contains the identity and
satisfiesR = R′′. (HereR′′ is the double commutant ofR, where the commutant
R′ is the set of all operators onH that commute with every operator inR). This is
equivalent, via von Neumann’s double commutant theorem ([30, Theorem 5.3.1]), to
the assertion thatR contains the identity and is closed in the strong operator topology
(whereZn → Z strongly just in case‖(Zn − Z)x‖ → 0 for all x ∈ H, and the norm
here is the Hilbert space vector norm).

Every von Neumann algebra is also aC∗-algebra, but not everyC∗-algebra of
operators is a von Neumann algebra. A von Neumann algebraR is termed a factor just
in case its centerR∩R′ contains only multiples of the identity. This is equivalent to the
condition(R∪R′)′′ = B(H), soR induces a ‘factorization’ of the total Hilbert space
algebraB(H) into two subalgebras which together generate that algebra. Factors are
classified into different types. The algebraB(H) for any Hilbert spaceH is a type I
factor, and every type I factor arises as the algebra of all bounded operators on some
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Hilbert space [30, Theorem 6.6.1]. Type II and type III factors, and subclassifications,
have applications to the thermodynamic limit of quantum statistical mechanics and
quantum field theory.

A stateof aC∗-algebraA is taken to be any positive, normalized, linear functional
ρ : A → C on the algebra. For example, a state ofB(H) in standard quantum theory is
obtained if we select a positive trace-one (density) operatorD onH, and defineρ(A) =
Tr(AD) for all A ∈ B(H), which defines a linear functional that is positive (ifA =
X∗X, then Tr(X∗XD) = Tr(XDX∗), and the latter is nonnegative becauseXDX∗

is a positive operator), normalized (since Tr(ID) = 1), and linear (since operator
composition and the trace operation are both linear). We can make the usual distinction
between pure and mixed states, the former defined by the property that ifρ = λρ1 +
(1 − λ)ρ2, with λ ∈ (0, 1), thenρ = ρ1 = ρ2. In the concrete case ofB(H), a
pure state of course corresponds to a density operator for whichD2 = D—which is
equivalent to the existence of a unit vector|v〉 ∈ H representing the state of the system
via ρ(A) = 〈v|A|v〉 (A ∈ B(H)).

One should note, however, that, because countable additivity is not presupposed by
the C∗-algebraic notion of state (and, therefore, Gleason’s theorem does not apply),
there can be pure states ofB(H) not representable by vectors inH. In fact, if A is
any self-adjoint element of aC∗-algebraA, anda ∈ sp(A), then there always exists a
pure stateρ of A that assigns adispersion-freevalue ofa to A [30, Ex. 4.6.31]. Since
this is true even when we consider a point in the continuous spectrum of a self-adjoint
operatorA acting on a Hilbert space,withoutany corresponding eigenvector, it follows
that therearepure states ofB(H) in theC∗-algebraic sense that cannot be vector states
(nor, in fact, representable by any density operatorH).

The primary reason countable additivity is not required ofC∗-algebraic states is
that it is a representation-dependent concept that presupposes the availability of the
notion of an infinite convergent sum of orthogonal projections. That is: to say that a
stateρ is countably additive is to say that

∑∞
i=1 Pi = I implies

∑∞
i=1 ρ(Pi) = 1; yet

the notion of convergence required for the first sum to make sense is strong operator
convergence (where a sequence of operatorsAi converges strongly to some operatorA
just in case, for allx ∈ H, Aix → Ax in vectornorm). Since, obviously, the elements
of a C∗-algebraA need not be thought of as operators acting on a Hilbert space of
vectors, countable additivity is simply unavailable as a potential general constraint that
could be imposed on the state space ofA.

Nevertheless, it turns out that forany stateρ of a C∗-algebraA, there is always
somerepresentation ofA in which ρ is representable by a vector (even ifρ is a mixed
state). According to the Gelfand-Naimark-Segal theorem [30, Thm. 4.5.2], every state
ρ determines a unique (up to unitary equivalence) representation(πρ,Hρ) of A and
vectorΩρ ∈ Hρ such thatρ(A) = 〈Ωρ, πρ(A)Ωρ〉 (A ∈ A), and such that the set
{πρ(A)Ωρ : A ∈ A} is dense inHρ. The triple (πρ,Hρ,Ωρ) is called the GNS
representation ofA induced by the stateρ, and this representation is irreducible if and
only if ρ is pure (equivalently, every bounded operator onHρ is the strong limit of
operators inπρ(A)).

Now, by considering the collection of all pure states onA, and forming the di-
rect sum of all the irreducible GNS representations these states determine, one obtains
a highly reducible but faithful representation ofA in which every pure state ofA is
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represented by a vector (as usual in standard nonrelativistic quantum theory). As a
consequence of this construction, we obtain the Gelfand-Naimark theorem: every ab-
stractC∗-algebra has a concrete faithful representation as a norm-closed∗-subalgebra
of B(H), for some appropriate Hilbert spaceH [30, Remark 4.5.7]. So there is a
sense in whichC∗-algebras are no more general than algebras of operators on Hilbert
spaces—apart from the fact that, when working with an abstractC∗-algebra, one does
not privilege any particular concrete Hilbert space representation of the algebra (which
turns out to be important not to do in quantum field theory, where one needs to allow for
inequivalent representations of the canonical commutation relations—see, e.g., Clifton
and Halvorson [12]).

2.2 Physical Generality of theC∗-Algebraic Language

If C∗-algebras supply little more than a way of talking abstractly about operator alge-
bras, and the latter are characteristic of quantum theory, how can we possibly claim
that theC∗-algebraic machinery supplies a universal language within which all main-
line physical theories, including evenclassicalmechanics, can be framed? The fallacy,
here, is that the use of operator algebras is only relevant to quantum theories.

Take, as a simple example, the classical description of a system ofn point parti-
cles. Focusing first on the kinematical content of the theory, the observables of the
system are real-valued functions on its phase spaceR6n. These can be thought of as
the self-adjoint elements of theC∗-algebraB(R6n) of all bounded, complex-valued
measurable functions onR6n—where the multiplication law is just pointwise multi-
plication of functions, the adjoint is complex conjugation, and the norm of a function
is the supremum of its absolute values. The statistical states of the system are given
by probability measuresµ on R6n, and pure states, corresponding to maximally com-
plete information about the particles, are given by the individual points ofR6n. Using
a statistical stateµ, we obtain the corresponding expectation functional, which is the
system’s state in theC∗-algebraic sense, by definingρ(f) =

∫
R6n fdµ (f ∈ B(R6n)).

Turning now to dynamics, the Heisenberg picture of the time evolution of a state
is determined by a group of bijective, Lebesgue measure-preserving, flow mappings
Tt : R6n → R6n (t ∈ R) that induce an automorphism groupτt on B(R6n) via
τt(f) = f ◦ Tt. State evolution when a measurement occurs is also fully analogous
to the quantum case. The probability in stateµ that the value off will be found on
measurement to lie in a Borel set∆ is given byρ(χf−1(∆)) (note thatχf−1(∆) is a
projection inB(R6n)); and, should that be the case, the new post-measurement state is
given by (see B́ona [2000] and Duvenhage [2002a,b]):

ρ′(g) =
ρ(χf−1(∆)gχf−1(∆))

ρ(χf−1(∆))
(g ∈ R6n)

Lastly, note that because classicaln point particle mechanics employs aC∗-algebra
(as we have seen,B(R6n)), it follows from the Gelfand-Naimark theorem that classical
mechanics can be done in Hilbert space! Yet this really is nothing new, having been
pointed out long ago by Koopman [31] and von Neumann [47] (see Mauro [36] for an
up-to-date discussion).

7



Of course, nothing we have saidproves that all physical theories admit aC∗-
algebraic formulation. Indeed, that would be absurd to claim: one can certainly con-
ceive of theories whose algebra of observables falls short of being isomorphic to the
self-adjoint part of aC∗-algebra and, instead, only instantiates some weaker math-
ematical structure, such as a Segal [45] algebra. To foreclose such possibilities, it
could be of interest to pursue an axiomatic justification of theC∗-algebraic framework
along lines similar to those provided by Emch [21, Ch. 1.2]. However, it suffices for
present purposes simply to observe that all physical theories that have been foundem-
pirically successful—not just phase space and Hilbert space theories (Landsman [34]),
but also theories based a manifold (Connes [13])—fall under this framework (whereas,
for example, so-called ‘nondistributive’ Segal algebras permit violations of the Bell
inequality far in excess of that permitted by standard quantum theory and observed in
the laboratory—see Landau [33]).

2.3 Classical versus Quantum Theories

We must mention one final important representation theorem: every (unital)abelian
C∗-algebraA is isomorphic to the setC(X) of all continuous, complex-valued func-
tions on a compact Hausdorff spaceX [30, Thm. 4.4.3]. This is called thefunction rep-
resentationof A. The underlying ‘phase space’X in this representation is none other
than the pure state spaceP(A) of A endowed with its weak-* topology. (A sequence
of states{ρn} on A weak-* converges to a stateρ just in caseρn(A) → ρ(A) for all
A ∈ A.) The isomorphism maps an elementA ∈ A to the functionÂ (the Gelfand
transformation ofA) whose value at anyρ ∈ P(A) is just the (dispersion-free) value
that ρ assigns toA. Thus, not only does every classical phase space presentation of
a physical theory define aC∗-algebra, but, conversely, behind every abstract abelian
C∗-algebra lurks in its function representation a good old-fashioned classical phase
space theory. All of this justifies treating a theory formulated inC∗-algebraic language
as classical just in case its algebra is abelian. It follows that a necessary condition for
thinking of a theory as aquantumtheory is that itsC∗-algebra be non-abelian. How-
ever, as we shall now explain, we do not believe this is sufficient unless something
further is said about the presence of entangled states.

In 1935 and 1936, Schrödinger published an extended two-part commentary [43,
44] on the Einstein-Podolsky-Rosen argument [19], where he introduced the term ‘en-
tanglement’ to describe the peculiar correlations of the EPR-state as [43, p. 555]:
‘ the characteristic trait of quantum mechanics, the one that enforces its entire depar-
ture from classical lines of thought.’ In the first part, he considers entangled states for
which the biorthogonal decomposition is unique, as well as cases like the EPR-state,
where the biorthogonal decomposition is non-unique. There he is concerned to show
that suitable measurements on one system can fix the (pure) state of the entangled dis-
tant system, and that this state depends on what observable one chooses to measure,
not merely on the outcome of that measurement. In the second part, he shows that a
‘sophisticated experimenter,’ by performing a suitable local measurement on one sys-
tem, can ‘steer’ the distant system into any mixture of pure states representable by its
reduced density operator. (So the distant system can be steered into any pure state in
the support of the reduced density operator, with a nonzero probability that depends
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only on the pure state.) For a mixture of linearly independent states, the steering can
be done by performing a PV-measurement in a suitable basis. If the states are lin-
early dependent, the experimenter performs a POV-measurement, which amounts to
enlarging the experimenter’s Hilbert space by adding an ancilla, so that the dimension
of the enlarged Hilbert space is equal to the number of linearly independent states.
Schr̈odinger’s result here anticipates the later result by Hughston, Jozsa, and Wootters
[28] that underlies the ‘no go’ bit commitment theorem. (Similar results were proved
by Jaynes [29] and Gisin [27].)

What Schr̈odinger found problematic—indeed, objectionable—about entanglement
was this possibility of remote steering [43, p. 556]:

It is rather discomforting that the theory should allow a system to be
steered or piloted into one or the other type of state at the experimenter’s
mercy in spite of his having no access to it.

He conjectured that an entangled state of a composite system would almost instan-
taneously decay to a mixture as the component systems separated. (A similar possibil-
ity was raised and rejected by Furry [26].) There would still be correlations between
the states of the component systems, but remote steering would no longer be possible
[44, p. 451]:

It seems worth noticing that the [EPR] paradox could be avoided by a very
simple assumption, namely if the situation after separating were described
by the expansion (12), but with the additional statement that the knowledge
of thephase relationsbetween the complex constantsak has been entirely
lost in consequence of the process of separation. This would mean that not
only the parts, but the whole system, would be in the situation of a mixture,
not of a pure state. It would not preclude the possibility of determining the
state of the first system bysuitablemeasurements in the second one or
vice versa. But it would utterly eliminate the experimenters influence on
the state of that system which he does not touch.

Expansion (12) is the biorthogonal expansion:

Ψ(x, y) =
∑

k

akgk(x)fk(y) (1)

Schr̈odinger regarded the phenomenon of interference associated with noncommu-
tativity in quantum mechanics as unproblematic, because he saw this as reflecting the
fact that particles are wavelike. But he did not believe that we live in a world in which
physical systems can exist nonlocally in entangled states, because such states would al-
low Alice to steer Bob’s system into any mixture of pure states compatible with Bob’s
reduced density operator. Schrödinger did not expect that experiments would bear this
out. On his view, entangled states, which the theory allows, are entirely local insofar as
they characterize physical systems, and nonlocal entangled states are simply an artefact
of the formalism.

Of course, it was an experimental question in 1935 whether Schrödinger’s conjec-
ture was correct or not. We now know that the conjecture is false. A wealth of experi-
mental evidence, including the experimentally confirmed violations of Bell’s inequality

9



(e.g., Aspectet al [1]), testify to this. The relevance of Schrödinger’s conjecture for
our inquiry is this: it raises the possibility of a quantum-like world in which there is
interference but no nonlocal entanglement. We will need to exclude this possibility on
information-theoretic grounds.

As indicated, for a composite system, A+B, consisting of two component subsys-
tems, A and B, we propose to show (i) that the ‘no superluminal information transfer
via measurement’ condition entails that theC∗-algebrasA andB, whose self-adjoint
elements represent the observables of A and B, commute with each other, and (ii) that
the ‘no broadcasting’ condition entails thatA andB separately are noncommutative
(nonabelian). Now, ifA and B are nonabelian and mutually commuting (andC∗-
independent2), it follows immediately that there are nonlocal entangled states on the
C∗-algebraA∨B they generate (see Landau [32], who shows that there is a stateρ on
A∨B that violates Bell’s inequality and hence is nonlocally entangled; also Summers
and Werner [46] and Bacciagaluppi [3]). So, at least mathematically, the presence
of nonlocal entangled states in the formalism is guaranteed, once we know that the
algebras of observables are nonabelian. What does not follow is that these states ac-
tually occur in nature. For example, even though Hilbert space quantum mechanics
allows for paraparticle states, such states are not observed in nature. In terms of our
program, in order to show that entangled states are actually instantiated, and—contra
Schr̈odinger—instantiated nonlocally, we need to derive this from some information-
theoretic principle. This is the role of the ‘no bit commitment’ constraint.

Bit commitment is a cryptographic protocol in which one party, Alice, supplies an
encoded bit to a second party, Bob. The information available in the encoding should
be insufficient for Bob to ascertain the value of the bit, but sufficient, together with
further information supplied by Alice at a subsequent stage when she is supposed to
reveal the value of the bit, for Bob to be convinced that the protocol does not allow
Alice to cheat by encoding the bit in a way that leaves her free to reveal either 0 or 1 at
will.

In 1984, Bennett and Brassard [5] proposed a quantum bit commitment protocol
now referred to as BB84. The basic idea was to associate the 0 and 1 commitments
with two equivalent quantum mechanical mixtures represented by the same density
operator. As they showed, Alice can cheat by adopting an Einstein-Podolsky-Rosen
(EPR) attack or cheating strategy: she prepares entangled pairs of particles, keeps one
of each pair (the ancilla) and sends the second particle (the channel particle) to Bob. In
this way she can fake sending one of two equivalent mixtures to Bob, and reveal either
bit at will at the opening stage, by effectively steering Bob’s particles into the desired
mixture via appropriate measurements on her ancillas. Bob cannot detect this cheating
strategy.

Mayers [37, 38], and Lo and Chau [35], showed that the insight of Bennett and
Brassard can be extended to a proof that a generalized version of the EPR cheating strat-
egy can always be applied, if the Hilbert space is enlarged in a suitable way by intro-
ducing additional ancilla particles. The proof of the ‘no go’ quantum bit commitment
theorem exploits biorthogonal decomposition via the Hughston-Jozsa-Wootters result
[28] (effectively anticipated by Schrödinger). Informally, this says that for a quantum

2See section 3.1.
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mechanical system consisting of two (separated) subsystems represented by the ten-
sor product of two type-I factorsB(H1) ⊗ B(H2), any mixture of states onB(H2)
can be generated from a distance by performing an appropriate POV-measurement on
the system represented byB(H1), for an appropriate entangled state of the composite
systemB(H1) ⊗ B(H2). This is what makes it possible for Alice to cheat in her bit
commitment protocol with Bob. It is easy enough to see this for the original BB84 pro-
tocol. Suprisingly, this is also the case for any conceivable quantum bit commitment
protocol. (See Bub [9] for a discussion.)

Now, unconditionally secure bit commitment is impossible for classical systems, in
which the algebras of observables are abelian. It might seem inappropriate, then, that
we propose ‘no bit commitment’ as a constraint distinguishing quantum from classical
theories. The relevant point to note here is that the insecurity of any bit commitment
protocol in a nonabelian setting depends on considerations entirely different from those
in a classical abelian setting. Classically, unconditionally secure bit commitment is
impossible, essentially because Alice can send (encrypted) information to Bob that
guarantees the truth of an exclusive classical disjunction (equivalent to her commitment
to a 0 or a 1) only if the information is biased towards one of the alternative disjuncts
(because a classical exclusive disjunction is true if and only if one of the disjuncts
is true and the other false). No principle of classical mechanics precludes Bob from
extracting this information. So the security of the protocol cannot be unconditional and
can only depend on issues of computational complexity.

By contrast, in a situation of the sort envisaged by Schrödinger, in which the al-
gebras of observables are nonabelian but composite physical systems cannot exist in
nonlocal entangled states, if Alice sends Bob one of two mixtures associated with the
same density operator to establish her commitment, then she is, in effect, sending Bob
evidence for the truth of an exclusive disjunction that is not based on the selection of
a particular disjunct. (Bob’s reduced density operator is associated ambiguously with
both mixtures, and hence with the truth of the exclusive disjunction: ‘0 or 1’.) This
is what noncommutativity allows: different mixtures can be associated with the same
density operator. What thwarts the possibility of using the ambiguity of mixtures in
this way to implement an unconditionally secure bit commitment protocol is the exis-
tence of nonlocal entangled states between Alice and Bob. This allows Alice to cheat
by preparing a suitable entangled state instead of one of the mixtures, where the re-
duced density operator for Bob is the same as that of the mixture. Alice is then able
to steer Bob’s systems into either of the two mixtures associated with the alternative
commitments at will.

So what would allow unconditionally secure bit commitment in a nonabelian theory
is the absence of physically occupied nonlocal entangled states. One can therefore
take Schr̈odinger’s remarks as relevant to the question of whether or not secure bit
commitment is possible in our world. In effect, Schrödinger believes that we live in a
quantum-like world in which secure bit commitment is possible. Experiments such as
those designed to test Bell’s inequality can be understood as demonstrating that this is
not the case. The violation of Bell’s inequalities can then be seen as a criterion for the
possibility of remote steering in Schrödinger’s sense.
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3 Technical Results

3.1 Terminology and Assumptions

Our aim in this section is to show that the kinematic aspects of the quantum theory of
a composite system A+B (consisting of two component subsystems A and B) can be
characterized in terms of information-theoretic constraints. The physical observables
of A and B are represented, respectively, by self-adjoint elements of unital subalgebras
A andB of aC∗-algebraC. We letA∨B denote theC∗-algebra generated byA andB.
A state of A, B, or A+B (i.e., a catalog of the expectation values of all observables) can
be represented by means of a positive, normalized, linear functional on the respective
algebra of observables. Recall that a stateρ is said to be pure just in caseρ = λρ1 +
(1 − λ)ρ2, for λ ∈ (0, 1), entails thatρ = ρ1 = ρ2; otherwise,ρ is said to be mixed.
For simplicity, we will assume that the systems A and B are identically constituted —
i.e., they have precisely the same degrees of freedom — and therefore that there is an
isomorphism between the algebrasA andB. (However, it will be clear that most of
our results do not depend on this assumption.) We will hold this isomorphism fixed
throughout our discussion so that we can use the same notation to denote ambiguously
an operator inA and its counterpart inB. We will also use the same notation for a state
of A and its counterpart in the state space ofB.

The most general dynamical evolution of a system is represented by a completely
positive, linear ‘operation’ mappingT of the corresponding algebra of observables.
(We also require thatT (I) ≤ I. The operationT is said to be selective ifT (I) < I,
and nonselective ifT (I) = I.) Recall that a linear mappingT of A is positive just
in caseA ≥ 0 entailsT (A) ≥ 0, and is completely positive just in case, for each
positive integern, the mappingT ⊗ ι of A ⊗ Mn(C) into itself, defined by(T ⊗
ι)(A⊗B) = T (A)⊗B, is positive. (HereMn(C) is theC∗-algebra ofn×n matrices
over the complex numbers.) IfT is an operation ofA, andρ is a state ofA such that
ρ(T (I)) 6= 0, then the mappingT ∗ρ defined by

(T ∗ρ)(A) =
ρ(T (A))
ρ(T (I))

(A ∈ A) (2)

is a state ofA. The standard example of a selective operation is a collapsing von
Neumann measurement of some observableO with spectral projectionP . In that case,
T (A) = PAP (A ∈ A), andT ∗ρ is the final state obtained after measuringO in state
ρ and ignoring all elements of the ensemble that do not yield as measurement result the
eigenvalue ofO corresponding toP . The standard example of a nonselective operation
is a time evolution induced by a unitary operatorU ∈ A, whereT (A) = U∗AU
(A ∈ A) simply represents the Heisenberg picture of such evolution.

Finally, we must add one nontrivial independence assumption in order to capture
the idea that A and B are physicallydistinctsystems. (Our current assumptions would
allow thatA = B, which obviously fails to capture the situation we are intending to
describe.) Various notions of independence for a pairA, B of C∗-algebras have been
developed in the literature [22, 46]. We are particularly interested in the notion of
C∗-independence developed in [22], because it does not presuppose thatA andB are
kinematically independent (i.e., that[A,B] = 0 for all A ∈ A andB ∈ B). Thus, we
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will assume that — whether or notA andB are kinematically independent — any state
of A is compatible with any state ofB. More precisely, for any stateρ1 of A, and for
any stateρ2 of B, there is a stateρ of A ∨B such thatρ|A = ρ1 andρ|B = ρ2. This
condition holds (i.e.,A andB areC∗-independent) if and only if‖AB‖ = ‖A‖‖B‖,
for all A ∈ A andB ∈ B [22, Prop. 3].

3.2 No Superluminal Information Transfer via Measurement and
Kinematic Independence

We first show thatA andB are kinematically independent if and only if the ‘no su-
perluminal information transfer via measurement’ constraint holds. The sense of this
constraint is that when Alice and Bob perform local measurements, Alice’s measure-
ments can have no influence on the statistics for the outcomes of Bob’s measurements
(and vice versa); for, otherwise, measurement would allow the instantaneous transfer
of information between Alice and Bob. That is, the mere performance of a local mea-
surement (in the nonselective sense) cannot, in and of itself, transfer information to a
physically distinct system.

The most general nonselective measurement operation performable by Alice is
given by

T (A) =
n∑

i=1

E
1/2
i AE

1/2
i (A ∈ A ∨B) (3)

where theEi are positive operators inA such that
∑n

i=1 Ei = I. The restriction to
nonselective measurements is justified here because selective operations can trivially
change the statistics of observables measured at a distance, simply in virtue of the fact
that the ensemble relative to which one computes statistics has changed.

We will say that an operationT conveys no information to Bob just in caseT ∗

leaves the state of Bob’s system invariant (so that everything ‘looks the same’ to Bob
after the operation as before, in terms of his expectation values for the outcomes of
measurements on observables).

Definition. An operationT on A ∨ B conveys no information to Bob just in case
(T ∗ρ)|B = ρ|B for all statesρ of B.

Note that eachC∗-algebra has sufficient states to discriminate between any two ob-
servables (i.e., ifρ(A) = ρ(B) for all statesρ, thenA = B). Now (T ∗ρ)|B = ρ|B
iff ρ(T (B)) = ρ(B) for all B ∈ B and for all statesρ of A ∨ B. Since all states of
B are restrictions of states onA ∨ B, it follows that(T ∗ρ)|B = ρ|B if and only if
ω(T (B)) = ω(B) for all statesω of B, i.e., if and only ifT (B) = B for all B ∈ B.

It is clear that the kinematic independence ofA andB entails that Alice’s local
measurement operations cannot convey any information to Bob (i.e.,T (B) =∑n

i=1 E
1/2
i BE

1/2
i = B for B ∈ B if T is implemented by a positive operator valued

resolution of the identity inA). Thus, we need only show that if Alice cannot convey
any information to Bob by performing local measurement operations, thenA andB
are kinematically independent. In the standard Hilbert space case, our argument would
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proceed as follows: Consider any ideal (Lüders), non-selective measurement of the
form

T (A) = PAP + (I − P )A(I − P ) (A ∈ A ∨B) (4)

whereP is a projection inA. Then no superluminal information transfer via measure-
ment entails that for anyB ∈ B,

B = T (B) = PBP + (I − P )B(I − P ) (5)

and therefore

2PBP − PB −BP = 0 (6)

Multiplying on the left (respectively, right) withP , and using the fact thatP 2 = P ,
we then obtainPBP − PB = 0 (respectively,PBP − BP = 0). Subtracting these
two equations gives[P,B] = 0. Thus, sinceA is spanned by its projections and
B is spanned by its self-adjoint operators, it follows thatA andB are kinematically
independent.

In the more generalC∗-algebraic framework, this argument is not available: Since
the algebraA does not necessarily contain projection operators, we cannot assume
that there are any measurement operations of the form given in Eqn. 4 whereP is a
projection. Instead, since C*-algebras are spanned by their effects (positive operators),
consider the simplest case of a POV measurement defined by

TE(A) = E1/2AE1/2 + (I − E)1/2A(I − E)1/2 (A ∈ A ∨B) (7)

whereE is some effect inA. We will now show that whenB is self-adjoint,TE(B) =
B entails that[E,B] = 0.

Theorem 1. TE(B) = B for all effectsE ∈ A and self-adjoint operatorsB ∈ B only
if A andB are kinematically independent.

For the proof of this theorem, recall that a derivation is a linear map such that
d(AB) = A(dB) + (dA)B.

Proof. Suppose thatTE(B) = B whereE is an effect inA andB is a self-adjoint
operator inB. Then a tedious but elementary calculation shows that

[E1/2, [E1/2, B]] = 0 (8)

Clearly, the mapX 7→ i[E1/2, X] defines a derivationd of A ∨ B. Moreover, since
d(dB) = 0 and B is self-adjoint, it follows thati[E1/2, B] = dB = 0 [10, Ap-
pendix A]. Thus,[E,B] = 0. Finally, since aC∗-algebra is spanned by its effects, if
TE(B) = B for all effectsE ∈ A and self-adjoint operatorsB ∈ B, thenA andB are
kinematically independent.

Thus, the kinematic independence ofA andB is equivalent to the ‘no superluminal
information transfer by measurement’ constraint. In deriving our subsequent results,
we assume kinematic independence.
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3.3 No Broadcasting and Noncommutativity

In a cloning process, a ready stateσ of system B, and the state to be clonedρ of system
A, are transformed into two copies ofρ. Thus, such a process creates no correlations
between the states of A and B. By contrast, in a more general broadcasting process, a
ready stateσ, and the state to be broadcastρ are transformed to a new stateω of A+B,
where the marginal states ofω with respect to both A and B areρ.3 In the context of
elementary quantum mechanics, neither cloning nor broadcasting is generally possi-
ble: A pair of pure states can be cloned if and only if they are orthogonal (Wootters
and Zurek [48], Dieks [15]), and (more generally) an arbitrary pair of states can be
broadcast if and only if they are represented by mutually commuting density matrices
(Barnumet al [4]). Thus, one might suspect that in a classical theory (in which all
operators commute), all states can be broadcast. In this section, we show that this is in-
deed the case; and, in fact, the ability to broadcast states distinguishes classical systems
from quantum systems.

We now introduce a general notion of broadcasting for a pairA,B of kinematically
independentC∗-algebras. But we must first establish the existence and uniqueness of
product states ofA ∨B.

A stateρ of A ∨B is said to be aproduct statejust in caseρ(AB) = ρ(A)ρ(B) =
ρ(BA) for all A ∈ A andB ∈ B. SinceA andB are bothC∗-independent and
kinematically independent, there is an isomorphismπ from the∗-algebra generated by
A andB onto the algebraic tensor productA � B such thatπ(AB) = A ⊗ B for
all A ∈ A andB ∈ B. We will occasionally omit reference toπ and useA ⊗ B to
denote the product ofA ∈ A andB ∈ B. It also follows thatπ can be extended to a
continuous surjectionπ from A∨B onto the spatial tensor productA⊗B [22, Thm. 1].
Since the state space ofA ⊗ B has a natural tensor product structure, we can use the
mappingπ to define product states ofA ∨B. In particular, for each stateρ of A ⊗B
define the stateπ∗ρ of A ∨B by setting

(π∗ρ)(A) = ρ(π(A)) (A ∈ A ∨B) (9)

If ω is a state ofA andρ is a state ofB, thenπ∗(ω ⊗ ρ) is a product state ofA ∨ B
with marginal statesω andρ. In fact, the following result shows thatπ∗(ω ⊗ ρ) is the
unique product state ofA ∨B with these marginal states.

Lemma 1. Suppose thatA andB are kinematically independentC∗-algebras. Then
for any stateω of A and for any stateρ of B there is at most one stateσ of A∨B such
thatσ(AB) = ω(A)ρ(B) for all A ∈ A andB ∈ B.

Proof. The setS of finite sums of the form
∑n

i=1 AiBi with Ai ∈ A andBi ∈ B is a
∗-algebra containing bothA andB. Moreover,S is clearly contained in any∗-algebra
that contains bothA andB. Thus,S is the∗-algebra generated byA andB. Suppose
then thatσ0 andσ1 are states ofA∨B such thatσ0(AB) = ω(A)ρ(B) = σ1(AB) for
all A ∈ A andB ∈ B. Then

σ0

(
n∑

i=1

AiBi

)
=

n∑
i=1

ω(Ai)ρ(Bi) = σ1

(
n∑

i=1

AiBi

)
(10)

3We are indebted to Rob Spekkens for clarifying this distinction for us, and for supplying relevant refer-
ences.
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for all Ai ∈ A andBi ∈ B. SinceA∨B is the closure ofS in the norm topology, and
since states are continuous in the norm topology,σ0 = σ1.

When it will not cause confusion, we will henceforth supress reference to the state
mappingπ∗, so thatω ⊗ ρ denotes the unique product state onA ∨B with marginals
ω andρ.

Definition. Given two isomorphic, kinematically independentC∗-algebrasA andB,
we say that a pair{ρ0, ρ1} of states ofA can bebroadcastjust in case there is a standard
stateσ of B and a dynamical evolution represented by an operationT of A ∨B such
thatT ∗(ρi ⊗ σ)|A = T ∗(ρi ⊗ σ)|B = ρi (i = 0, 1). We say that a pair{ρ0, ρ1} of
states ofA can beclonedjust in caseT ∗(ρi ⊗ σ) = ρi ⊗ ρi (i = 0, 1).

We show next that pairwise broadcasting is always possible in classical systems.
Indeed, when the algebras of observables are abelian, there is a ‘universal’ broadcasting
map that clones any pair of input pure states and broadcasts any pair of input mixed
states.

Theorem 2. If A and B are abelian then there is an operationT on A ∨ B that
broadcasts all states ofA.

Proof. SinceA is abelian,A ∨B is naturally isomorphic toA ⊗B [42, Theorem 2].
SinceA and B are isomorphic abelian algebras, both are isomorphic to the space
C(X), whereX is some compact Hausdorff space, and thereforeA ⊗B ∼= C(X) ⊗
C(X) ∼= C(X × X) [30, p. 849]. Define a mappingη from X × X into X × X by
setting

η((x, y)) = (x, x) (x, y ∈ X) (11)

Sinceη is continuous, we can define a linear mappingT on C(X × X) by setting
Tf = f ◦ η. Since the range ofTf is a subset of the range off , the mappingT is
positive, andT (I) = I. Furthermore, every positive mapping whose domain or range
is an abelian algebra is completely positive [30, Exercise 11.5.22]. Therefore,T is a
nonselective operation onC(X)⊗C(X). To see thatT broadcasts all states, note first
thatT (f⊗g) = fg⊗I for any product functionf⊗g. In particular,T (I⊗f) = f⊗I,
and thus

T ∗(ρ⊗ σ)(I ⊗ f) = (ρ⊗ σ)(f ⊗ I) = ρ(f) (12)

for any statesρ, σ of C(X). That is,T ∗(ρ ⊗ σ)|B = ρ. On the other hand, since
T (f ⊗ I) = f ⊗ I, it follows that

T ∗(ρ⊗ σ)(f ⊗ I) = (ρ⊗ σ)(f ⊗ I) = ρ(f) (13)

for any statesρ, σ of C(X). That is,T ∗(ρ⊗ σ)|A = ρ.

Barnumet al [4] note that if density operatorsD0, D1 on a Hilbert spaceH can
be simultaneously diagonalized, then there is a unitary operatorU that broadcasts the
corresponding pair of states. Thus, such states can be broadcast by areversibleopera-
tion, and the added strength ofirreversible(general completely positive) operations is
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not necessary. However, the broadcasting operationT defined in the previous theorem
is patently irreversible, since it corresponds to a many-to-one mapping(x, y) 7→ (x, x)
of the pure state space. Indeed, although there are many physically significant classi-
cal systems where broadcasting can be performed via reversible operations, this is not
generally true. Consider the following two contrasting cases.

First, in the case of classical particle mechanics, systems A and B each have the
phase spaceR6n, for some finiten. Thus,A ∨B ∼= C(R6n) ⊗ C(R6n) ∼= C(R6n ×
R6n), whereC(R6n) is the set of bounded continuous functions fromR6n into C. Let
the ready state of system B be the zero vector inR6n, and letη be the invertible linear
transformation ofR6n × R6n given by the matrix(

I −I
I I

)
whereI is the identity matrix ofR6n. Sinceη is an autohomeomorphism ofR6n×R6n,
the mappingf 7→ f ◦η defines an automorphism ofA∨B [30, Thm. 3.4.3]. Moreover,
η((x,0)) = (x,x) for any pure statex, and an argument similar to that used above
shows thatη broadcasts arbitrary states.

Second, suppose that systems A and B each have the phase spaceN∗ = N ∪ {∞},
where the open sets ofN∗ consist of all finite subsets ofN, plus all cofinite sets con-
taining∞. (That is, N∗ is the one-point compactification ofN.) ThenA ∨ B ∼=
C(N∗) ⊗ C(N∗) ∼= C(N∗× N∗), and every automorphismα of A ∨B is induced by
an autohomeomorphismη of N∗×N∗ via the equationα(f) = f ◦ η [30, Thm. 3.4.3].
However, it is not difficult to see that there is no autohomeomorphism ofN∗× N∗ that
clones arbitary pairs of pure states. In particular, for anyn ∈ N∗, there is anm ∈ N∗
such that(n, m) is not mapped onto(m,m) by any autohomeomorphism ofN∗× N∗.
Therefore, general classical systems do not permit broadcasting via a reversible opera-
tion.

We now show that general quantum systems do not permit broadcasting. In par-
ticular, we prove that if any two states of a system can be broadcast, then that system
has an abelian algebra of observables. Our proof proceeds by showing that if any two
states can be broadcast, then any twopure states can be cloned; and that if two pure
states of aC∗-algebra can be cloned, then they must be orthogonal.

Two pure statesρ, ω of aC∗-algebra are said to be orthogonal just in case‖ρ−ω‖ =
2. More generally, the transition probabilityp(ρ, ω) is defined to be (see [41]):

p(ρ, ω) = 1− 1
4‖ρ− ω‖2 (14)

If ρ is a state ofA, andU is a unitary operator inA, then we letρU denote the state
defined by

ρU (A) = ρ(U∗AU) (A ∈ A) (15)

In this case,ρ andρU are said to be unitarily equivalent. Furthermore, ifU is a unitary
operator inA andV is a unitary operator inB, then

(ω ⊗ ρ)U⊗V (A⊗B) = (ω ⊗ ρ)(U∗AU ⊗ V ∗BV ) (16)

= (ωU ⊗ ρV )(A⊗B) (17)
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for all A ∈ A andB ∈ B. Thus, the uniqueness of product states (Lemma 1) entails
that(ω ⊗ ρ)U⊗V = ωU ⊗ ρV .

For the following lemma, we will need to make use of the fact thatp(ρ, ρU ) =
|ρ(U)|2 for any pure stateρ [40, Lemma 2.4].

Lemma 2. If ρ0, ρ1 are unitarily equivalent pure states ofA, andσ is an arbitrary
state ofB then:

p(ρ0 ⊗ σ, ρ1 ⊗ σ) = p(ρ0, ρ1) (18)

p(ρ0 ⊗ ρ0, ρ1 ⊗ ρ1) = p(ρ0, ρ1)2 (19)

Proof. Sinceρ0 andρ1 are unitarily equivalent, there is a unitary operatorU ∈ A
such thatρ1 = (ρ0)U andp(ρ0, ρ1) = |ρ0(U)|2. Thusρ1 ⊗ σ = (ρ0 ⊗ σ)(U⊗I), and
therefore

p(ρ0 ⊗ σ, ρ1 ⊗ σ) = |(ρ0 ⊗ σ)(U ⊗ I)|2 = |ρ0(U)|2 = p(ρ0, ρ1) (20)

Similarly, ρ0 ⊗ ρ0 = (ρ1 ⊗ ρ1)(U⊗U), and therefore

p(ρ0 ⊗ ρ0, ρ1 ⊗ ρ1) = |(ρ0 ⊗ ρ0)(U ⊗ U)|2 = |ρ0(U)|4 = p(ρ0, ρ1)2 (21)

Lemma 3. Suppose thatA and B are kinematically independent. Ifρ is a state of
A ∨B such thatρ|A is pure orρ|B is pure, thenρ is a product state.

Proof. Let ω = ρ|A, and letB be an effect inB. Define positive linear functionalsλ1

andλ2 onA by setting

λ1(A) = ρ(B1/2AB1/2) = ρ(AB) (22)

λ2(A) = ρ((I −B)1/2A(I −B)1/2) = ρ(A(I −B)) (23)

for all A ∈ A. It then follows that

ω(A) = ρ(A) = λ1(A) + λ2(A) ≥ λ1(A) (24)

Sinceω is a pure state ofA, λ1 is a nonnegative multiplekω of ω, and

k = kω(I) = λ1(I) = ρ(B) (25)

Accordingly,

ρ(AB) = λ1(A) = kω(A) = ω(A)ρ(B) (26)

By linearity, the same equation holds when we replaceB by an arbitrary element ofB.
Therefore,ρ(AB) = ω(A)ρ(B) = ρ(A)ρ(B) for all A ∈ A andB ∈ B.
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The proof of the next theorem turns on the fact that nonselective operations cannot
increasethe norm distance between states, and therefore cannotdecreasethe transition
probabilities between states. That is, for any nonselective operationT ,

p(T ∗ω, T ∗ρ) ≥ p(ω, ρ) (27)

for all statesω, ρ. To see this, note that

‖T ∗ω − T ∗ρ‖ = sup
{
|(ω − ρ)(T (A))| : ‖A‖ ≤ 1

}
(28)

and the Russo-Dye theorem entails that if‖A‖ ≤ 1 then‖T (A)‖ ≤ 1.

Theorem 3. If for each pair{ρ0, ρ1} of states ofA, there is an operationT onA ∨B
that broadcasts{ρ0, ρ1}, thenA is abelian.

Proof. We assume that for each pair{ρ0, ρ1} of states ofA, there is an operationT
on A ∨ B that broadcasts{ρ0, ρ1}. Suppose for reductio ad absurdum thatA is not
abelian. Then there are pure statesρ0, ρ1 of A such that0 < ‖ρ0 − ρ1‖ < 2 [30,
Exercise 4.6.26]. In this case,ρ0 andρ1 are unitarily equivalent [30, Corollary 10.3.8].
By hypothesis, there is a standard stateσ of B and an operationT onA ∨B such that

T ∗(ρ0 ⊗ σ)|A = T ∗(ρ0 ⊗ σ)|B = ρ0 (29)

T ∗(ρ1 ⊗ σ)|A = T ∗(ρ1 ⊗ σ)|B = ρ1 (30)

Sinceρ0 andρ1 are pure, it follows from Lemma 3 thatT ∗(ρ0 ⊗ σ) = ρ0 ⊗ ρ0 and
T ∗(ρ1 ⊗ σ) = ρ1 ⊗ ρ1. Thus,

p(ρ0, ρ1) = p(ρ0 ⊗ σ, ρ1 ⊗ σ) (31)

≤ p(T ∗(ρ0 ⊗ σ), T ∗(ρ1 ⊗ σ)) (32)

= p(ρ0 ⊗ ρ0, ρ1 ⊗ ρ1) (33)

= p(ρ0, ρ1)2 (34)

(The equalities in Equations 31 and 34 follow from Lemma 2, while the inequality in
Equation 32 follows from the fact that transition probabilities cannot decrease under
T ∗.) However, the inequalityp(ρ0, ρ1) ≤ p(ρ0, ρ1)2 contradicts the fact that0 <
p(ρ0, ρ1) < 1. Therefore,A is abelian.

3.4 No Bit Commitment and Nonlocality

We show that the impossibility of unconditionally secure bit commitment between sys-
tems A and B, in the presence of the kinematic independence and noncommutativity of
their algebras of observables, entails nonlocality: spacelike separated systems must at
least sometimes occupy entangled states. Specifically, we show that if Alice and Bob
have spacelike separated quantum systems, but cannot prepare any entangled state, then
Alice and Bob can devise an unconditionally secure bit commitment protocol.

We first show that quantum systems are characterized by the existence of non-
uniquely decomposable mixed states.
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Lemma 4. Let A be a C∗-algebra. ThenA is nonabelian if and only if there are
distinct pure statesω1,2 andω± of A such that(1/2)(ω1 + ω2) = (1/2)(ω+ + ω−).

Proof. If A is abelian then its states are in one-to-one correspondence with measures
on its pure state space. In particular, ifρ = (1/2)(ω1 + ω2), whereω1, ω2 are distinct
pure states, then this decomposition is unique.

Conversely, suppose that there areA,B ∈ A such that[A,B] 6= 0 (cf. [8, Example
4.2.6]) . Then there is a pure stateρ of A such thatρ([A,B]) 6= 0 [30, Thm. 4.3.8]. Let
(π,H,Ω) be the GNS representation ofA induced byρ. The dimension of the Hilbert
spaceH must exceed one; for otherwise

π([A,B]) = [π(A), π(B)] = 0 (35)

in contradiction with the fact that〈Ω, π([A,B])Ω〉 = ρ([A,B]) 6= 0. Thus, there is a
pairx1, x2 of orthogonal unit vectors inH. Define two statesωi of A by setting

ωi(A) = 〈xi, π(A)xi〉 (A ∈ A) (36)

Similarly, define, in the same way, another pair of statesω± of A using the orthogonal
unit vectors2−1/2(x1±x2). Sinceρ is pure,(π,H,Ω) is irreducible, and all four of the
statesω1,2 andω± are pure and distinct. Moreover, by construction(1/2)(ω1 + ω2) =
(1/2)(ω+ + ω−).

If each of A and B has a non-uniquely decomposable mixed state, then A+B has
a pair{ρ0, ρ1} of distinct (classically) correlated states whose marginals relative to B
are identical. In particular, let

ρ0 = (1/2) (ω1 ⊗ ω1 + ω2 ⊗ ω2) (37)

ρ1 = (1/2) (ω+ ⊗ ω+ + ω− ⊗ ω−) (38)

The protocol then proceeds as follows: Alice and Bob arrange things so that at the
commitment stage, Alice can make a choice that will determine that eitherρ0 or ρ1 is
prepared, the former corresponding to the commitment0, and the latter corresponding
to the commitment1. Alice and Bob also agree that at the revelation stage, if Alice
committed to0 then she will instruct Bob to perform a measurement that will distin-
guish between statesω1 andω2, and if she committed to1 then she will instruct Bob
to perform a measurement that will distinguish between statesω+ andω−. We must
be cautious on this last point: neither Alice nor Bob will typically be able to perform
a measurement that can discriminate with certainty between these states. However, for
anyε > 0, there is an effectA ∈ A such thatω1(A) > 1− ε andω2(A) < ε. Similarly,
there is an effectB ∈ A such thatω+(B) > 1− ε andω−(B) < ε. That is, Alice and
Bob can perform measurements that will discriminate with arbitrary accuracy between
ω1 andω2, or betweenω+ andω−. Finally, Alice will verify her commitment by per-
forming the corresponding measurement on her system and reporting the outcomes to
Bob.

Our final theorem shows that if Alice and Bob have access only to classically cor-
related states (i.e., convex combinations of product states), then this bit commitment
protocol is secure. In particular, we show that Alice cannot cheat by preparing some
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stateσ which she could later transform at will into eitherρ0 or ρ1. To be precise, the
no superluminal information transfer by measurement constraint entails that Alice can
perform an operationT onA∨B only if T (B) = B for all B ∈ B, andT (A) ∈ A for
all A ∈ A. It follows then that Alice can transform product states only to other product
states.

Theorem 4. If A andB are nonabelian then there is a pair{ρ0, ρ1} of states ofA∨B
such that:

1. ρ0|B = ρ1|B.

2. There is no classically correlated stateσ of A ∨ B and operationsT0 and T1

performable by Alice such thatT ∗0 σ = ρ0 andT ∗1 σ = ρ1.

For the proof of this theorem, we recall that two representations(π,H) and(φ,K)
of a C∗-algebra are said to be quasi-equivalent just in case there is a∗ isomorphism
α from π(A)′′ onto φ(A)

′′
such thatα(π(A)) = φ(A) for eachA in A. Similarly,

statesω andρ of A are said to be quasi-equivalent just in case their corresponding
GNS representations are quasi-equivalent. Finally, quasi-equivalence is an equivalence
relation, and is closed under finite convex combinations.

Proof. Let ρ0 and ρ1 be the states defined in Eqns. 37 and 38. Suppose thatσ =∑n
i=1 λi(αi⊗βi), where theαi are states ofA, and theβi are states ofB. LetT0 andT1

be operations ofA ∨B that can be performed by Alice. Then for eachi ∈ [1, n], there
are statesα′i andα′′i of A such thatT ∗0 (αi⊗βi) = α′i⊗βi andT ∗1 (αi⊗βi) = α′′i ⊗βi.
Moreover, sinceT ∗0 andT ∗1 are affine,

ρ0 = T ∗0 σ =
n∑

i=1

λi(α′i ⊗ βi) (39)

ρ1 = T ∗1 σ =
n∑

i=1

λi(α′′i ⊗ βi) (40)

Letµ denote the mixed state(1/2)(ω1+ω2) = (1/2)(ω++ω−) of B. Then
∑n

i=1 λiβi =
µ, so that eachβi is quasi-equivalent toµ. Let(π,H) be the representation ofB defined
in Lemma 4, letP1 denote the projection ontox1, and letP+ denote the projection onto
2−1/2(x1 + x2). (Note that sinceω1,2, ω± are represented by vectors inH, it follows
that(π,H) is unitarily equivalent to the GNS representations induced by these states.
Moreover,(π,H) is quasi-equivalent to the GNS representation induced byβi.) Since
π(B) is weakly dense inB(H), there are nets{Ai} ⊆ B and{Bi} ⊆ B such that
π(Ai) converges ultraweakly toP1 andπ(Bi) converges ultraweakly toP+. (More-
over, we can choose these nets so that0 ≤ π(Ai), π(Bi) ≤ I for all i.) Since each
of the statesω1,2, ω± is represented by a vector inH, ultraweak continuity of normal
states entails that:

lim
i

ρ1(Ai ⊗ (I −Ai)) = 0 (41)

lim
i

ρ1((I −Ai)⊗Ai) = 0 (42)
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lim
i

ρ0(Bi ⊗ (I −Bi)) = 0 (43)

lim
i

ρ0((I −Bi)⊗Bi) = 0 (44)

Furthermore, sincelimi µ(Ai) = 1/2, there exists somej ∈ [1, n] such thatlimi βj(Ai) > 0.
Let β = βj and letα′ = α′j . Then, combining the previous equalities with Eqns. 39
and 40 gives:

lim
i

α′(Ai)β(I −Ai) = 0 (45)

lim
i

α′(I −Ai)β(Ai) = 0 (46)

lim
i

α′′(Bi)β(I −Bi) = 0 (47)

lim
i

α′′(I −Bi)β(Bi) = 0 (48)

Since0 ≤ β(Ai), α′(Ai) ≤ 1 for all i, it follows that{β(Ai)} and{α′(Ai)} have ac-
cumulation points. Thus, we may pass to a subnet in whichlimi β(Ai) andlimi α′(Ai)
exist (and the preceding equations still hold). We now claim thatlimi β(Ai) = 1. In-
deed, sincelimi α(I − Ai)β(Ai) = 0, if limi β(Ai) > 0 then1 − limi α′(Ai) =
limi α′(I − Ai) = 0. Moreover, sincelim α′(Ai)β(I − Ai) = 0, it follows that that
1− limi β(Ai) = limi β(I −Ai) = 0. Thuslimi β(Ai) = 1. An analogous argument
shows that eitherlimi β(Bi) = 0 or limi β(Bi) = 1.

Now, since the GNS representation induced byβ is quasi-equivalent to the irre-
ducible representation(π,H), there is a density operatorD onH such thatβ(X) =
Tr(DX) for all X ∈ B. Since density operator states are ultraweakly continuous,

Tr(DP1) = lim
i

Tr(DAi) = 1, (49)

and thereforeD = P1. Thus, iflimi β(Bi) = 0 then we have a contradiction:

1/2 = Tr(P1P+) = Tr(DP+) = lim
i

Tr(DBi) = 0. (50)

But limi β(Bi) = 1 would also result in the contradiction1/2 = 1. Therefore, there is
no classically correlated stateσ such thatT ∗0 σ = ρ0 andT ∗1 σ = ρ1.

The converse result remains open: it is not known whether nonlocality—the fact
that spacelike separated systems occupy entangled states—entails the impossibility of
unconditionally secure bit commitment. As we indicated in the introduction, the proof
of the corresponding result in elementary quantum mechanics (in which all algebras are
type I von Neumann factors) depends on the biorthogonal decomposition theorem, via
the theorem of Hughston, Jozsa, and Wootters [28]. Thus, proving the converse would
amount to generalizing the Hughston-Jozsa-Wootters result to arbitrary nonabelianC∗-
algebras. If, as we believe, the more general result holds, then quantum theory can
be characterized in terms of our three information-theoretic constraints. So, either
quantum theory can be characterized in terms of our information-theoretic constraints,
or there are physical systems which permit an unconditionally secure bit commitment
protocol.
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4 Concluding Remarks

Within the framework of a class of theories broad enough to include both classical and
quantum particle and field theories, and hybrids of these theories, we have shown that
three information-theoretic constraints suffice to exclude the classical theories. Specif-
ically, the information-theoretic constraints entail that the algebras of observables of
distinct physical systems commute, that the algebra of observables of each individ-
ual system is noncommutative, and that spacelike separated systems occupy entangled
states.

Conversely, from the three physical characteristics of a quantum theory in the most
general sense—kinematic independence, noncommutativity, and nonlocality—we have
derived two of the three information-theoretic constraints: the impossibility of superlu-
minal information transfer between two physical systems by performing measurements
on one of them, and the impossibility of perfectly broadcasting the information con-
tained in an unknown physical state.

It remains an open question whether the third information-theoretic constraint—the
impossibility of unconditionally secure bit commitment—can be derived as well. As
we indicated above, this would involve something equivalent to an algebraic general-
ization of the Hughston-Jozsa-Wootters theorem [28] to cover cases of systems with an
infinite number of degrees of freedom that arise in quantum field theory and the thermo-
dynamic limit of quantum statistical mechanics (in which the number of microsystems
and the volume they occupy goes to infinity, while the density defined by their ratio
remains constant). The Stone-von Neumann theorem, which guarantees the existence
of a unique representation (up to unitary equivalence) of the canonical commutation
relations for systems with a finite number of degrees of freedom, breaks down for such
cases, and there will be many unitarily inequivalent representations of the canonical
commutation relations.

Since we intend our characterization of quantum theory to apply quite generally to
these cases as well (including the quantum theoretical description of exotic phenomena
such as Hawking radiation, black hole evaporation, Hawking information loss, etc.), we
do not restrict the notion of a quantum theory to the standard quantum mechanics of a
system represented on a single Hilbert space with a unitary dynamics. So it would not
be an appropriate goal of our characterization project to derive the Schrödinger equa-
tion as a description of the dynamics of a quantum system from information-theoretic
assumptions. A unitary dynamics will not be implementable in a quantum field theory
on a curved space-time, for example, which might be a preliminary semi-classical step
towards a quantum theory of gravity (see Arageorgiset al [2]).

The foundational significance of our derivation, as we see it, is that quantum me-
chanics should be interpreted as aprinciple theory, where the principles at issue are
information-theoretic. The distinction betweenprinciple andconstructivetheories is
introduced by Einstein in his discussion of the significance of the transition from New-
tonian to relativistic physics [18]. As Einstein puts it, most theories in physics are
constructive, with the aim of representing complex phenomena as constructed out of
the elements of a simple formal scheme. So, for example, the kinetic theory of gases is
a constructive theory of thermal and diffusion processes in terms of the movement of
molecules. By contrast [18, p. 228], principle theories begin with empirically discov-
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ered ‘general characteristics of natural processes, principles that give rise to mathemati-
cally formulated criteria which the separate processes or the theoretical representations
of them have to satisfy.’ Einstein cites thermodynamics as the paradigm example of a
principle theory. The methodology here is analytic, not synthetic, with the aim of de-
ducing [18, p. 228] ‘necessary conditions, which separate events have to satisfy, from
the universally experienced fact that perpetual motion is impossible.’

Einstein’s point is that the theory of relativity is to be understood as a principle
theory. In the case of the special theory, there are two relevant principles: the equiva-
lence of inertial frames for all physical laws (the laws of electromagnetic phenomena
as well as the laws of mechanics), and the constancy of the velocity of light in vacuo
for all inertial frames. These principles are irreconcilable in the Euclidean geometry of
Newtonian space-time, where inertial frames are related by Galilean transformations.
The required revision yields the special theory of relativity and Minkowski geometry,
in which inertial frames are related by Lorentz transformations. In his ‘Autobiograph-
ical Notes’ [20, p. 57], Einstein characterizes the special principle of relativity, that
the laws of physics are invariant with respect to Lorentz transformations from one
inertial system to another, as ‘a restricting principle for natural laws, comparable to
the restricting principle of the non-existence of theperpetuum mobilewhich underlies
thermodynamics.’ In the case of the general theory of relativity, the group of allowable
transformations includes all differentiable transformations of the space-time manifold
onto itself.

A relativistic theory is a theory with certain symmetry or invariance properties, de-
fined in terms of a group of space-time transformations. Following Einstein we under-
stand this invariance to be a consequence of the fact that we live in a world in which nat-
ural processes are subject to certain constraints. A quantum theory is a theory in which
the observables and states have a certain characteristic algebraic structure. Unlike rela-
tivity theory, quantum mechanics was born as a recipe or algorithm for calculating the
expectation values of observables measured by macroscopic measuring instruments.
These expectation values (or probabilities of ranges of values of observables) cannot
be reduced to probability distributions over the values of dynamical variables (or prob-
ability distributions over properties of the system). Analogously, one might imagine
that the special theory of relativity was first formulated geometrically by Minkowski
rather than Einstein, as an algorithm for relativistic kinematics and the Lorentz trans-
formation, which is incompatible with the kinematics of Newtonian space-time. What
differentiates the two cases is that Einstein’s derivation provides an interpretation for
relativity theory: a description of the conditions under which the theory would be true,
in terms of certain principles that constrain the law-like behavior of physical systems.
It is in this sense that our derivation of quantum theory from information-theoretic prin-
ciples can be understood as an interpretation of quantum theory: the theory can now be
seen as reflecting the constraints imposed on the theoretical representations of physical
processes by these principles.
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