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A N E W S Y S T E M O F P R O O F - T H E O R E T I C 
O R D I N A L F U N C T I O N S 
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Mathematisches Institut der Universität München, Theresienstrasse 39, D 8000 München 2, Fed. 
Rep. Germany 

Communicated by D. van Dalen 
Received 27 November 1984 

In this paper we present a family of ordinal functions xpv (v ̂  a>), which seems 
to provide the so far simplest method for denoting large constructive ordinals. 
These functions are a simplified version of the 0-functions, but nevertheless have 
the same strength as those. This wil l be shown at the end of the paper (Theorem 
3.7) by using proof-theoretic results from [1], [2], [5]. — In Section 1 we define 
the functions i p v and prove their main properties. In Section 2 we define a 
primitive recursive notation System ( O T , < ) based on the functions i p v . This 
System has the great advantage that its ordering relation < is very simple and can 
be defined without reference to sets of coefficients or any similar concept. O T is 
introduced as a subset of a larger set T of terms, which plays an important role in 
Section 3. There we show that the Statement P R W O ( ^ 0 ß o ) ) ) which says that 
there exist no primitive recursive infinite descending sequences in ( { x e O T : 
x < i l > 0 Q ( O } y <), is not provable in J7{-CA 0 . This result is essentially used in 
Simpson [6] to establish the unprovability of a certain theorem of finite 
combinatorics. The proof of n } - C A 0 1 P R W O ( ^ 0 ß o > ) is based on the following 
results from [1]: 

I D v K V n 3 A : c : ( A : ) = 0 ( V ^ Ö > ) 

where c " ( k ) e Ty for all n , k e N \ and every sequence ( c " ( k ) ) k e N is primitive 
recursive. 

In Section 3 we will prove c n

v { k ) e O T and ( c n

v ( k ) * 0 ^ > c n

v ( k +1) < c n

v ( k ) ) . 
Since for all v < CD we have c " ( k ) < i / / 0 ß w , it follows that PRWO(t/> 0 ßa)) implies 
Vv < o) VAI 3 k c 1 ( k ) = 0. Since this can be proved in Peano Arithmetic and since 
n } - C A 0 is conservative over U v « o I D V with respect to arithmetic sentences, we 
obtain now H J - C A Q K PRWO(i/>oßa>). 

For readers unfamiliar with ordinal notations we give a short description of the 
basic ideas in the construction of Feferman's 0-functions and then indicate how 
our xp-functions are related to this construction. The functions fl^iOn—>On 
( a e On) constitute a hierarchy of normal functions extending the usual Veblen 
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196 W. Buchholz 

hierarchy ( q ) a ) a < r o > Usually one writes daß instead of 6a(ß) and considers 0 as a 
binary function. The ordinals daß are defined by transfinite recursion on a in 
such a way that — intuitively spoken — as many ordinals as possible become 
denotable in terms of the constants 0, K l t . . . , N«» and the function Symbols + 
and 0. Suppose that 0§rj has been defined for all £ < a y rj e O n . Then for each 
ß e O n we consider the set C ( a , ß) of all ordinals y which can be generated from 
ordinals <ß and the constants 0, X l f . . . , K w by successive application of the 
functions + and 0 \ a } x O n . A n ordinal ß is called ar-critical iff 
ß $ C ( a , ß)y and 6a :On—»On is introduced as the ordering function of the class 
of all ar-critical ordinals. After daß has been defined for all a , ß e On let 
0(a> +1) denote the set of all ordinals representable in terms of 0, . . . , K w , 
+, 0. Surprisingly it turned out that the following subset d * ( c o + 1) of 0(a> +1) 
has essentially the same ordertype as 0(a> + 1): 

I n d u c t i v e d e f i n i t i o n of 0*(a> -I-1) 
(i) Oe0*(<ü + 1). 

(ii) £ f?e0*(a> + l ) z > £ + r ?e0* (ö ) + l ) . 
(iii) a e e * ( ( D + l)&v^a)^6aXved*(ü) + l ) . 

So by using only the functions a^daX» (v = 0, 1 , . . . , (o) instead of ( a , 
daß one obtains a System of ordinal notations which has almost the same strength 
as the füll System 6(CD +1). This suggests to define directly a family of ordinal 
functions \ p v (v ^ CD) corresponding to a * - + OaKy (v ^ co) such that the System of 
all ordinals representable in terms of 0, +, i p 0 , . . . , ip^ wil l be isomorphic to 
0*(ct> + 1). So we are led to the following definition of i p v a : 

V\,or: = m i n { y : y ^C;(or)}, 

where Q i a ) denotes the set of all ordinals which can be generated from ordinals 
<K„ by the functions + (addition) and xpu \ { § : £ < a } ( u ̂  CD). 

1 . The functions ifc, (v ^ ÖI) 

P r e l i m i n a r i e s . We are working in Z F C . The letters a t ß, y , ö, t), £ always 
denote ordinals. ' O n ' denotes the class of all ordinals and ' L i m ' the class of all 
limit ordinals. Each ordinal a is identified with the set of its predecessors so that 
a = { x e O n : x < a ) and a < ß <=> a e ß. A s usual a * - + X a enumerates the class of 
all infinite cardinals. We define 

We denote by P the class of all additive principal numbers, i.e., 

P = { a e O n : 0 < a A V £ , r? < a (§ + rj e a ) } = { c ^ : % e On}. 
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D e f i n i t i o n o f P ( a ) . (1) P(O): = 0. 
(2) For a > 0 there are uniquely determined a 0 , . . . . , ocn e P with a = a 0 + 

• • • + £*„ and a n ̂  • • • ^ a 0 ; we set P(ar) : = {(*0> . . . , 

D e f i n i t i o n . For or0, . . . , ocn e P we set a 0 # • • • # arn := arÄ ( 0) + • • • + 
where JT is a permutation of (0, . . . , w) with a n ^ 0 ) 2* • • • 5* orW(„). 

1.1. Proposition, (a) ar £ P « P ( a r ) c a . 
(b) y e P = > ( P * c y < ^ a r < y ) . 
(c) P(j8) c P(ar + j3) c P(ar) U P(j8). 
(d) ß f e P , f o r a l l £ e O n . 

D e f i n i t i o n ofsets o f o r d i n a l s C(ar) a/id o r d i n a l s i p v a (v ^ co) 
The definition proceeds by transfinite recursion on er simultaneously for all 

v ^ co. Suppose that Q,(£) and are defined for all £ < a , co. 
Then we set 

Q(or):= U CS(of), i/;var: = min{y:y^C ;(ar)}, 

n<(o 

where CS(ar) is defined by induction on n as follows 

C2(or ) :=ß„, 

C r V ) := CS(or) U {y: P(y) s CS(or)} 
U {V„§: % e * n CS(a) A | e C u ( § ) A U « ö>}. 

Remark. The condition " | e C u (f)" in the definition of C " + l ( a ) is included since 
it makes the important properties of the functions xpv easier to prove. But it can 
be shown that by omitting this condition one does not change the sets Q , ( a ) . 
Hence can be characterized as the least set .Ywi th : 

(Cl) QV^X, 
(C2) V | , i j 6 J r ( § + f j 6 J 0 , 
(C3) V£eXnaVu*s;o)(yu!;eX). 

In the following the letters u, v, w shall always denote ordinals =£a>. 

1.2. Lemma, (a) xpv0 = Qv. 
(b) x l > v a e P . 
(c) Q v ^ t p v a < Q v + 1 . 
(d) a^ß =>Q(or)sQ,(/3) and < 
(e) y e Q ( a r ) < » F ( y ) s C ; ( a r ) . 
(f) § ,T ? eC(ar)^>| + J j 6 C ( a r ) . 
(g) f + i/eq,(af)=>!f€C;(ar). 
(h) ar0< a a n d V | ( a „ < § < or => I $ C(*o)) => Q(*o) = Q , ( a ) . 
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Proof. (a) By induction on n we get C"(0) = ß v . 
(b) Assume x p v a $ P . Then P ( i p v a ) cz x p v a cz Q,(ar) and thus x p v a eQ(ar). 

Contradiction. 
(c) From ß v c z Q ( a r ) it follows that £2v^ipva. Obviously the cardinality of 

Q,(ar) is less than ß u + i . Hence there exists y < ß u + 1 with y£Q,(ar) and 
therefore t//vor < ß v + 1 . 

(d) Trivial . 
(e) Using the fact that i l > u % e P one proves V y 6 C^or) (P(y) c CJ(or)) by 

induction on n. O n the other side, if P (y) cz C(ar), then P(y) cz C"(ar) for some 
n e N (since P(y ) is finite and C v ( a ) c C;,+1(ar)) and thus y e Cj;+ 1(ar) £ C(ar). 

(f) From ^ r j e C v i a ) we obtain P ( £ + IJ) c P ( § ) U P ( r j ) c and then 
§ + i jeC;(ar) . 

(g) From §-hry6Q;(ar) we obtain P(ry) cz P ( £ + tj) cz Q(or) and then 77 e 

(h) Suppose or0 < ar and V£ (ar0 ^ § < ar-> § $ Q,(ar0))- Then we get Q,(ar0) cz 
C(ar) by 1.2(d), and V y (y e C£(ar) -> y e C ( * o ) ) by induction on n . 

1.3. Lemma. a<ß a n d aeCv(a)^>ipva<\pvß. 

Proof. From the premise we conclude ipva^tpvß and \ \ ) v a eQ,{ß). Hence 
r p v a < %ßy since tpvß $ Qiß). 

1.4. Lemma, (a) y = «nd e CM|(§,-) f o r i = 0, 1 => "o = § 0 = §i-
(b) y e Q(ar) and ß v ^ y e P^> 3u, § (y = wirf § e or n Q(or) n C M (§)) . 
(c) ß v ^ ^u? € C(af) and § e C „ ( | ) => § 6 ar n Q,(ar). 

Proof. (a) follows immediately from 1.2(c) and 1.3. 
(b) We have P (y ) = {y} and y e C n

v + \ o c ) \ C n

v ( < x ) for some neN. Hence 
y = y£ with § e or H CS(ar) and § e C u ( £ ) . 

(c) Let y := By (b) we obtain y = V\,S with f e ar f l C(ar) D C w ( f ) . Now 
by (a) it follows that w = u and § = £ e ar fl C(a-) 

1.5. Lemma. Q ( a r )n ß v + i = i/̂ ar. 

Proof. ^ a c Q ( a f ) n ß u + 1 holds by definition and 1.2(c). 
Now let y e Q(ar) H ß v + 1 . We have to show that y < Vv<x 
1. y < ß v : Then y < i p v a holds by 1.2(c). 
2. y e P : Then y = i/; u£ with § < ar and § e C M (§) (1.4(b)). 

By 1.2(c) we have w^u. If u < v y then y < ß M + 1 ^ Qv ^ t/̂ ar. If u = v, then 
7 = ^ v £ < V 'v^by 1.3. 

3. ß v ^ y < £ P : Then y 0 : = max P (y ) e C(ar) n ß ^ + i , and by 2. we obtain 
y 0 < t l > v a . Hence y < i p v a y since x j > v a e P . 
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1.6. Lemma 
min{y e P : \ p v a < y}, if or e Q(ar), 
i l > v a , o t h e r w i s e . 

(b) ar e L i m => r p v a = s u p { i p v % : § < or a n d £ e 

Proof. (a) 1. ar€Q(a): by 1.2(b) and 1.3 we have i//va:<i/;u(^ + l ) e P . 
Suppose V>v# ̂  Y < tyv(<x + 1) and y e P. Then by 1.4(b) we have y = with 
§ ^ ar and £ G C M (£) . From if>va ^ Vu£ < + 1) we get u = v. From i/>var ̂  
V„g and £ e Q ( £ ) it follows by 1.3 that or ^ §. Hence ar = § and y = ^vor. 

2. If ar« Q,(ar), then Q(ar) = Q,(ar + 1) by 1.2(h). 
(b) By 1.3 we have x p v ^ < x p v a for all £ < ar with £ e C ( £ ) . Suppose now that 

y v 0 ^ Y < x p v a , and let y 0 : = maxP(y) . Then ß v ^ y 0 e Q(ar) and therefore 
7o = V v Z with £ < or and £ e q , ( § ) . Since 1 = xpo0 and 0 e Q,(0) cz + 1), we 
obtain g + 1 e Q ( £ + 1). By 1.3 we also have y 0 = < V\,(§ + 1) and therefore 
y< + 

1.7. Lemma, (a) ar < e 0 ^ > ar e Q)(ar) a n d x p 0 a = G>* 
(b) a r < £ ß u + 1 , u=£0=>are C(ar) and i^ar = (Ü^**. 

Proof. B y transfinite induction on ar: We set 

1. We have 0 e q,(0) and t/\,0 = ß v = <Ü°*V. 
2. Suppose areQ,(ar) and \ l > v a = a ) a * v . Then also or + 1 e Q(ar + 1) and 

y v ( a + 1) = a ) a * v + l = a)(«+l)*v by 1.6(a). 
3. Suppose a e e ( v ) n L i m and V§ < or (g e A V\,§ = Then by 

1.6(b) we obtain i p v a = sup{a)^*u: § < ar} = a>a*v. It remains to prove that 
ar e Q,(ar). For ar < ß v this is trivial. For ar = ß „ we have ar = t//v0 > 0 and thus 
a e C v { a ) y since 0 e C ( 0 ) cz Q(ar). For ß v < a r < £ ( u ) we have P(ar)czar and 
therefore by L H . (induction hypothesis) § e cz C(ar) for all § 6 P(ar). This 
yields ar e C(ar). 

1.8. Lemma, (a) Q , ( a ) cz e ß a > + 1 . (b) e ß a > + 1 ^ or=> C ( £ ß u , + i ) = C^or). 

Proof. (a) Using 1.7(b) and 1.2(c) one proves C£(ar) cz £ ß f t , + i by induction on n. 
(b) follows from (a) and 1.2(h). 

D e f i n i t i o n of Guy. For every y e Q ( £ ß w + i ) we define a finite set Guy czOn in 
such a way that, for each ar, y e C u ( a ) < ^ > G u y cz ar. These sets will be used in 
Section 2 to define the set O T of ordinal notations. The definition of Guy 
proceeds by induction on min{n e ^ : y e C g ( e ß w + 1 ) } : 

for v = 0, 
for v > 0, 

for v = Ö, 
for u > 0. 

(1) y * P : G w y : = U { G M £ : £ e P ( y ) } . 
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(2) y = V^S with G m £ : = { 
0, if v < Uy 

1.9. Lemma, / / y e Q(e ßft,+i), f/ien y e C u(ar) /io/ds i / , and o n l y if Guy cz ar. 

Proof. B y induction on min{n e N : y e Co(eßö>+i)}: 
1. y $ P : By L H . we have £ G C u ( a ) < ^ G u ^ cz ar, for every £ e P ( y ) . Hence 

P ( y ) £ C M ( a r ) » G u y cz ar. By 1.2(e) we have y G CM(or)<S>P(y) cz CM(or). 
2. y = ^ | w i t h | € Q ( § ) : 

2.1. w ^ u : Then by L H . we have § G C u ( a r ) < ^ G u £ cz or, and by 1.4(c), 
y e C u ( a ) < 3 > % e a n C u ( a ) . From this we obtain y G C t t ( a r ) o { £ } U G M £ cz or. But 
G u y = { ? } U G M £ . 

2.2. v < u: In this case we have y e Qucz C u(or) and Guy = 0. 

2. The notation System (OJ, <) 

In this section we introduce a primitive recursive set O T of formal terms 
together with a primitive recursive ordering on O T such that { O T y < ) is 
isomorphic to ( Q ) ( £ ß a > + 1 ) , <). 

Let D 0 , A > • • • > D o , be a sequence of formal Symbols. 

I n d u c t i v e d e f i n i t i o n of a set T of terms 
( T l ) O e T . 
(T2) If a e T and u ̂  a>, then D v a e T ; v t e call D v a a p r i n c i p a l t e r m . 
(T3) If a 0 , . . . , a k e T are principal terms and k ^ 1, then ( a 0 , . . . , a k ) e T. 

In the following the letters a, b, c, d will always denote elements of T. 
For principal terms a we set: (a): = a. 

I n d u c t i v e d e f i n i t i o n of a < b f o r a , b eT 
(<1) fc=£0=>0<6. 
(<2) w < u or ( u = u and a < b ) => Z)Ma < D„&. 
(<3) Let a = (a 0 , . . . , a„), 6 = ( b 0 , . . . , fcm), 1 ̂  m + n. Then a < 6 iff one of 

the following two cases holds: 
(i) n < m and a t = b, for i ̂  n. 

(ii) 3A: ^ min{n, m } ( a k < bk and a, = b, for i < k ) . 

2.1. Lemma. < is a l i n e a r o r d e r i n g o n T. 

Proof. Straightforward. 
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A b b r e v i a t i o n s . Let aeT and M , M ' cz T: 

M < M ' : 0 V x e A f 3y e M ' ( x < y ) , 

M < a :<=> VJC e M (JC < a ) , 

a < M :<=> 3 x e M ( a < x ) . 

I n d u c t i v e d e f i n i t i o n o f Gua cz T f o r aeT 
( G l ) G M O: = 0. 
(G2) G u ( a 0 , . . . , a k ) : = G u a 0 U • • • U Guak. 

I n d u c t i v e d e f i n i t i o n o f the subset O T o f T 
(OT1) OeOT. 
(OT2) If a0, . . . , ak e O T ( k ̂  1) are principal terms with ak < • • • < a0, then 

( a 0 , ...,ak)e OT. 
(OT3) If b e O T with G v J> < b, then D vft e 0 7 . 

The elements of O T are called o r d i n a l terms. 

Proposition, a e O T ^ Gua cz OT. 

I n d u c t i v e d e f i n i t i o n o f an o r d i n a l o { a ) f o r aeT 
(o. l) o(0): = 0. 
(o.2) o ( ( a 0 , . . . , a k ) ) : = o ( a 0 ) # • • • # 0(0*) ( k & 1). 
(o.3) o ( D v b ) : = y v o ( l > ) . 

2.2. Lemma. For a, c 6 O T we have: 
(a) o ( a ) e C o ( s Q ( o + l ) f 

(b) G u o(a) = {<>(*) : x e G M ö } , 
(c) a < c ^ > o ( a ) < o ( c ) . 

Proof. By induction on the length of a, simultaneously for (a), (b), (c): Let 

1. a = 0: trivial. 
2. a = D vfc: Then G v b < b and e O F . 
(a) By L H . we have o ( b ) e CQ(S) and G v o ( b ) = {o(x):jt e G v b } c z o ( b ) . F rom 

this we obtain o { b ) eef) Q (o (6 ) ) by 1.8, 1.9 and then o ( a ) = x p v o ( b ) e Q ( c ) . 
(b) Since o(fc) e Q(o(fc)), we have 

by L H . we have Guo(b) = { o ( x ) : x e G u b } . Hence Guo(a) = { o ( x ) : x e G u a ) . 

e : = 
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(c) We make a subsidiary induction on the length of c: 
(i) c = D u d with v < u: o ( a ) < Qv+l ^ Qu ^ \ p u o ( d ) = o(c). 

(ii) c = D v d with fc<d: By the L H . we get o ( b ) < o ( d ) and, as shown 
above, o (£ ) e Q,(o(b)). This yields i p v o ( b ) < i p v o ( d ) . 

(iii) c = (c 0 , . . . > c m ) with m ^ 1 and a < c 0 : By the subsidiary L H . we get 
o ( a ) ^ o(c 0) and thus o(a) < o ( c 0 ) # o(c x) ^ o(c). 

3 . Ö = (a0> • • • * ö n ) with n ^ 1 and a n < • • • < a 0 : 
(a) B y L H . we have P ( o ( a ) ) = { o ( a 0 ) , • • • , o(fl„)} c Co(e) and therefore 

o ( a ) e C o ( e ) . 
(b) By L H . we have G u o ( a i ) = {O(JC):JC e GM(a,)} for * = 0, . . . , n . Hence 

G u o ( a ) = Ü G u o ( a i ) = (o (x) : JC e Ü G t t a ] = { o ( x ) : x e G u a } . 
i=0 l /=o J 

(c) Let c = (c 0 , . . . , cm) with m ^ 0. 
(i) n < m and a, = c{ for i ^ n : o ( a ) = o(c 0 )# • • • # o ( c „ ) < o ( c ) . 

(ii) / : ^min{Ai , m} with a k < c k and fl,- = C/ for i<fc : B y L H . we have 
^ ^ o ( a k ) < o ( c k ) and thus o ( a k ) # • • • # o(a„) < o ( c k ) ^ o(c*) # 

• • • # o(c m ) . Hence 

o ( a ) = o(c 0) # • • • # o(c*_!) # o(a*) # • • • # o(a„) < o(c). 

2.3. Lemma, (a) C o ( e Q ü ) + l ) = { o ( x ) : x e O T } 
(b) For euery a e O T w i t h a < D f i h o l d s : o ( a ) = t h e o r d e r t y p e of ( { x e 

O T : x < a } , < ) . 
(c) V o ^ + i = t h e o r d e r t y p e of ( { x e O T : x < A 0 } , <). 

Proof. Let e : = e ß t ü + 1 . 
(a) By induction on n we prove: oc e C o ( e ) ^ 3 a e O T ( a = o ( a ) ) . (Together 

with 2.2(a) this yields Q ) ( e ) = { o ( x ) : x e O T } . ) for n = 0 the assertion is trivial. 
Let a e C % + l ( e ) \ C Z ( e ) . 

1. oc = or0 + • • * + ock with ar0, . . . , ock e C3(f) and a k ^ • • • ̂  a 0 : By L H . there 
are a 0 , . . . , a k e O T with o(a,) = ar, (/ = 0, . . . , /c). By 2.1 and 2.2(c) we obtain 
a k < • • • < a 0 and thus a : = ( a 0 , . . . , ak)e OT. Now o(a) = o ( a 0 ) # • • • # 0(0*) = 
oc. 

2. oc = \1>V% with £ e Cg(e) fl By L H . there exists 6 e 0 7 with o(fc) = 
By 2.2(b) and 1.9 we obtain { o ( x ) : x e G v b } = Gv% c § = o(&). Hence G v & < & by 
2.1 and 2.2(c). It follows that D vft e O T and o(D vfc) = oc. 

(b) , (c) By (a) and 2.2(c) the System ( { x e O T :x < a } , < ) is isomorphic to 
(Co(e)no(a) , <), for each aeOT. By 1.5 we have f l 0 ( ^ 0 ) = fl 
ß i = Vo^- This yields part (c). For a < D x 0 we have o ( a ) e C0(e) C \ Q l = i p 0 e and 
thus C o ( e ) f l o ( a ) = o ( a ) . 
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3. Unprovability of PRWO(t|) 0 ^) in H}-CAo 

Let a r^ t / ; 0 e ß t ü + 1 . B y P R W O ( a ) we denote the Statement that there are no 
primitive recursive infinite descending sequences in ({JC e O T : o ( x ) < a } , < ) . 
Using a result from [1] we will prove the following theorem. 

3.1. Theorem. I D V K P R W O ( ^ ß v + i ) (0 < v ^ c o ) . 

Since i l > o £ n v + i < tyoQio* for all v < a ) y and since J7}-CAo proves the same 
arithmetic sentences as { J y < ( 0 I D V f we get from 3.1: 

Corollary. n } - C A 0 f PRWO(t /> 0 ßa>) . 

Remark. In Pohlers [5] it was shown that TI(v) , i.e. the principle of transfinite 
induction up to 0 £ ß v + 1 O , is not provable in I D V , Theorem 3.1 improves this result 
(for v ^ co) in so far as P R W O ( ^ A V + I ) * s a JHß-sentence while the complexity of 
TI(v) is n \ . Moreover PRWO(t/> 0 £ß v +i) is a consequence of TI(v). 

We repeat now some definitions from [1]. A s before the letters ay by c, d shall 
always denote elements of T. 

D e f i n i t i o n of a + b a n d a • n 

a + 0: = 0 + a : = a, 

( a 0 y . . . , an) + ( b 0 y . . . , bm) : = ( a Q y . . . , any b0y . . . , b m ) y 

a • 0: = 0, a • ( n + l ) : = a • n + a. 

Proposition, (a + b ) + c = a + ( b + c). 

D e f i n i t i o n o f Tv f o r v ^co 

Tv := {0} U { ( D U o a 0 , . . . , D u a n ) : n a 0 y . . . y an e Ty u 0 y . . . y u n ^ v } . 

Remark. T0 g 7i g • • • 5 7 ,̂ = Ty and r„ = { x e r : j c < A<+iO} for u < c o . 

A b b r e v i a t i o n . 1 : = D 0 0 . 
We idenitfy N with the subset {0,1,1 + 1,1 + 1 + 1,. . .} of O T n T0. 

D e f i n i t i o n of dom(a) a n d a [ z ] f o r a eTy z e dom(a) 
([ ].0) dom(O): = 0. 
([ ] . l) d o m ( l ) : = { 0 } ; l [ 0 ] : = 0. 
([ ].2) d o m ( D t t + 1 0 ) : = 7 ; ; ( D u + 1 0 ) [ z ] : = z. 
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([ ].3) d o m ( D „ 0 ) : = N ; ( D a 0 ) [ n ) : = D n + l 0 . 
([ ].4) Let a = D v b with b±Q: 

(i) dom(fc) = {0}: dom(a): = N: a [ n ] : = ( D v b [ 0 ] • ( n + 1). 
(ii) dom(fr) = T t t with u ^ w < CÜ: dom(a) : = M; : = D v b [ D u b [ \ ] \ . 

(iii) d o m ( & ) € { N } U { r M : u < t / } : dom(a): = dom(fr); a [ z ] : = D v b [ z ] . 
([ 1-5) a = (ßo, • • • , a k ) { k ^ l ) : dom(a) : = dom(a*); 

*[z] : = («o, • • • , + 

D e f i n i t i o n . 0 [ n ] : = 0, 
a [ n ] : = a [ 0 ] , if dom(a) = {0}. 

3.2. Lemma, (a) z e dom(a )=>ö[z ] < a . 
(b) z, z ' 6 dom(ö) = Tw and z < z ' =>a[z] < a[z']. 
\ c ) Oj±aeTv^dom(a)e{{0},N}U{Tu:u<v}, a n d a[z] e Tv f o r a l l ze 

dom(a). 

Proof. Straightforward by induction on the length of a . 

3.3. Lemma, a , z e O T a n d z e dom(a) =>a[z] e OT. 

Before we are going to prove this lemma we want to give the 

Proof of Theorem 3.1. Let 0 < v ^ o>, 

n 
cn

v: = D o D v • • • DCO, c n

v ( k ) : = c n

v [ l ] [ 2 ] • • • [ * ] . 

In [1, Corollary 4.0] we have shown: 

(1) l D v W n 3 k c n

v ( k ) = 0. 

One easily proves that c" e O T f l T0; this can be done in P A (Peano Arithmetic). 
Since the proofs of 3.2 and 3.3 can also be formalized in P A , we obtain: 

(2) P A h Vn Vfc ( c n

v ( k ) G O T A ( c n

v ( k ) # 0 ^ cftifc +1) < c n

v ( k ) ) ) . 

Obviously the sequences ( c " ( k ) ) k e N are primitive recursive, and by 1.3, 1.7 we 
have o ( c 1 ) < r p 0 e a y + 1 . Together with (2) this yields: 

(3) P A h P R W O ( i / ; o £ ß v + 1 ) ^ V« 3 k c n

v ( k ) = 0. 

From (1) and (3) we obtain Theorem 3.1. 

For the proof of 3.3 we need the following definitions and lemmata. 
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D e f i n i t i o n . 

G°ua:=GuaU{0} 

b < z a < a and Vw Vc ( b < c < a GMfc < G M c U G°uz). 

3.4. Lemma. b < z a , G u a < a , Guz < b ^ > G u b < b . 

Proof. We have Gub < G u a U G£z < a . 
Assumption: b < G u b . Then there exists a subterm d of b with minimal length 

such that b < G u d < a . B y the minimality of d we have d = D v c with G w c < < 
c < a . Using fc < z a and Guz < b we obtain GMfc < G M c ü G°uz < b . Contradiction. 

3.5. Lemma. b 0 < z b => a + b 0 < z a + b a n d D v b 0 < z D v b . 

Proof. 1. Suppose a + b 0 < c < a + b . Then c = a + c 0 with fe0^c0<fe. Hence 

G w (fl + b 0 ) = G M a U G t tfe 0 < G u a U G M c 0 U G°uz = Guc U G£z. 

2. Suppose D v b Q < c < D v b . Then c = ( D u c 0 ) + c 1 with b 0 < c 0 < b . Using the 
premise b 0 < z b we obtain G u b 0 < Guc0 U G£z. Now, for v ^ u , we have 

G u ( D v b 0 ) = {fc0} U GMfc 0 < { c 0 } U G M c 0 U G°uz c= G M c U G£z. 

If v < uy then G u ( D v b 0 ) = 0. 

3.6. Lemma. a e T a n d z e dom(ö) ^>a[z] < i z a 

Proof. By induction on the length of a: 
By 3.2 we have a [ z ] < a . —Suppose a[z] < c < a . We have to prove G u a [ z ] < 

Guc U G°uz. 
1. a = 1 or a = D^+iO: trivial. 
2. a = D ö ,0 :G M a[z] = GMD2+10c={0}. 
3. a = D v b with dom(fc) = {0}: Then a[z] = ( D v b [ 0 ] ) • (z + 1) and G t t a[z] = 

G t tDv6[0]. By L H . and 3.5 we get D v b [ 0 ] < 0 D v b = a . We also have D v b [ 0 ] < 
c < fl and therefore G u D v b [ 0 ] < Guc U {0}. 

4. a = D v b and dom(fc) = Tw and U ^ W < ( Ü : Then a[z] = D v b [ x ] with JC: = 

D > vfc[l]. Suppose u^v, since otherwise GMa[z] = 0. From A [ Z ] < C < A it follows 
that c = ( D v c 0 ) + cl with fc[x]<c0<6. By L H . we have b [ x ] < x b f fc[l] < ! fc. 
Since b [ l ] < b [ x ] < c 0 < b , we obtain 

G u a [ z ] = { b [ x ] } U G u b [ x ] < {c 0} U G M c 0 U G^x 

= {c 0} U Guc0 U {&[1]} U G2fc[l] < {c 0} U G M c 0 U G°ul c G M c U G£z. 

5. a = D v b and dom(fc)e {N} U { T w : w < v } : B y L H . we get b[z] < z b and 
then a[z] = D v b [ z ] < z D v b = a b y 3.5. 

6. a = ( A 0 , . . . , a k ) ( k ^ l ) : B y L H . we get a k [ z ] < z a k and then a [ z ] = 
(a 0, • • •, + <* (flo> • • • > + fl* = a by 3.5. 
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Proof of Lemma 3.3« B y induction on the length of a: 
1. a = ( a 0 , . . . , ak) e OT: Then a0, . . . , ak e O T and a k [ z ] < ak < • • • < a0. B y 

L H . we have a k [ z ] e O T Hence a [ z ] = ( a 0 , . . . , ak.x) + a k [ z ] e OT. 
2. a = A,fc e 0 7 : Then b e O T and Gvb < b. 

2.1 dom(ft) = {0}: B y L H . and 3.6 we obtain b [ 0 ] e O T and b [ 0 ] < 0 b. F rom 
b [ 0 ] < 0 b and Gvb <f twe get G vfc[0] < b [ 0 ] by 3.4. Hence a[z] = ( D v b [ 0 ] ) • (z + 
1) e OT. 

2.2. dom(fc) = rM with v ^ u < o o : We have to show D v b [ x ] e OT, where 
jc: = D M fc[l] . — By L H . we have b [ l ] e O T and (je e 07^>&[JC] e O T ) . B y 3.6 we 
have b [ l ] < x b. From this together with G v b < b and G v K f c [ l ] we obtain 
G v b [ \ ] < b [ l ] by 3.4. Since v ^ u, G u b [ l ] c G v f c [ l ] . Hence JC = D u fc[l] e 07 1 , and 
therefore also b [ x ] e OT. It remains to show that G v 6[JC] < b [ x ] . But this follows 
immediately from b [ x ] < x b (3.6), Gvb < by Gvx = { b [ l ] } U G v b [ \ ] < b [ l ] < b [ x ] 
by 3.4. 

2.3. d o m ( f c ) e { N } U { 7 ; : w < t ; } : By L H . and 3.6 we have b [ z ] e O T and 
b [ z ] < z b . Since z e dom(fc) 6 { N } U { T u : u < v } , we have G v z < b [ z ] . By 3.4 
from b [ z ] < z b , G v b < b , G v z < b [ z ] we get G v b [ z ] < b [ z ] . Hence a [ z ] = 
D v b [ z ] e O T . 

Finally we want to show that the xp-functions have essentially the same strength 
as the ö-functions. 

3,7. Theorem. 0 £ ß v + x O = t / ; 0 £ ß v + i (0 < v ^ co) 

Proof. B y [2] and [5] we have 0 e O v + 1 O = | I D V | . The proof of 0 e ß v + 1 O ^ | I D V | 
given in [2] can easily be adapted to the ip-functions; so we get t /> 0 £ ß v +i ^ | I D V | , 
and its remains to prove | I D V | ̂  t/>o£ ß v+i. 

In the appendix of [1] we have proved: 
k 

| I D V | = sup{rk(c*):k e N } , where ck

v = D 0 D V • • • D v 0 , (1) 

and rk(a) = sup{rk(a[«]) + 1 :n e dom(a)}, for all a e T0. 
B y 3.2 and 3.3 we have: 

0 ^ ö 6 O r n r 0 ^ a [ n ] < a and a [ n ] e O T n T 0 . (2) 

From (2) and 2.2(c) we obtain by transfinite induction on a: 

rk(fl) ^ o ( a ) , for all a e O T n T0. (3) 

From 1.2(d), 1.6(b), 1.7(b) we obtain: 

Vo£ß v+i = sup{o(c*) : k e N } . (4) 

A s already mentioned in the proof of 3.1 we have: 

ck

veOTC\T0. (5) 

Now from (1), (3), (4), (5) it follows that | I D V | ̂  V o ^ + i . 
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Remark. The functions t p v (v ^ c o ) were first defined in an unpublished manu-
script (1981) by the author. Later on this approach was extended by Jäger [4] and 
Schütte [3]. 
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