
A term calculus for (co-)recursive definitions on streamlike data-structures

Wilfried Buchholz, Universität München

buchholz@mathematik.uni-muenchen.de

April 18, 2004

Introduction

We consider recursion equations (∗) FX = t(F,X) where X ranges over streams (i.e., elements of S := N →

N), F is of type stream → stream, and the term t is build up from F , X and previously introduced function

symbols. The question is whether such an equation has a (total) solution. It is wellknown and explicated at

many places in the literature (e.g. [2], [4], [6], [7]) that under certain conditions a (unique) solution for (∗)

is provided by Banach’s Fixed Point Theorem. There is a canonical way to endow the space S → S with a

complete (ultra)metric d. So, if the operator Φ : (S → S) → (S → S) is contracting w.r.t. d then according

to Banach’s FPT, Φ has a unique fixed point F , i.e. (∗) has a unique solution F . In the present paper we

establish certain syntactic criteria for t(F,X) which guarantee that Φ is contracting, but on the other side

are sufficiently liberal to cover a rather large variaty of equations.

In §1 we present some prerequisites on ultrametric spaces. As shown in [7], the notion of an ultrametric space

is in a strong sense equivalent to that of a set X endowed with a separating family (≈l)l∈N of equivalence

relations (cf. also [2] and [4]). The latter will be called a U-space here.

In §2 we introduce sets Tτ of typed terms. A type τ is either a ground type or a function type σ
ϕ
→ρ where

ϕ is a modulus (i.e. a weakly increasing function from N into N). To each basic type ι we assign a complete

U-space U ι, and then extend this to all types by setting Uσ
ϕ
→ρ := Uσ

ϕ
→Uρ := {f ∈ Uσ→Uρ : ∀a, a′ ∈

Uσ(a ≈ϕ(l) a
′ ⇒ fa ≈l fa

′)} and f ≈l f
′ :⇔ ∀a ∈ Uσ(fa ≈l f

′a). Terms are generated from typed

variables and constants by application, (suitably restricted) λ-abstraction, and fixed point formation: t ∈

Tτ
⊖
→τ & FV(t) = ∅ ⇒ Yt ∈ Tτ . For each term t ∈ Tτ and variable assignment ξ an interpretation [[t]]ξ ∈ Uτ

is defined in the canonical way, especially, [[Yt]] is taken to be the unique fixed point of [[t]]. This makes

sense, since Uτ is a complete metric space and Uτ
⊖
→τ is the set of contracting mappings f : Uτ → Uτ . The

only critical point in the definition of [[t]]ξ is the case t = λyσ.r ∈ Tσ
ϕ
→τ . There one defines [[t]]ξ to be the

mapping a 7→ [[r]]ξay from Uσ into Uτ (as expected), and has to prove that this mapping actually is in Uσ
ϕ
→τ .

The formation of terms λy.r ∈ Tσ
ϕ
→τ is restricted just in such a way (by a side condition “my(r) ≤ ϕ”) that

this holds.

In the second part of §2 we define for each term t a sequence of approximating terms t(n) (n ∈ N) which

are Y-free (i.e., contain no occurrences of Y). Roughly speaking, t(n) is obtained from t by replacing every

subterm Ys by s(. . . (s(s0τ))...). By recursion on the build up of t one can find a modulus ϕt (primitive

recursive in the moduli “occurring” in t) such that ∀l∀n ≥ ϕt(l)([[t]]ξ ≈l [[t(n)]]ξ).

In §3 we concentrate on a special system Tree = (Tτ)τ where the only ground types are nat, tree (with

Unat := N, U tree := N<ω → N), and the only constants are 0nat : nat, 0tree : tree, tl : tree
⊕
→nat

id

→tree,

1

hd : tree
id

→nat, cons : nat
id

→(nat
id

→tree)
⊖
→tree, and symbols for primitive recursive functions. Using the

approximating sequences (t(n))n∈N we show that for every term t(xtree) ∈ Ttree the functional (α, ν) 7→

[[t(α)]](ν) is primitive recursive.

In §4 we introduce an especially nice subsystem T̂ree = (T̂τ)τ simple of Tree which has the advantage that

one can rather easily decide whether a given term belongs to it or not. On the other side the system is

comprehensive enough to cover most of the examples occurring in “practice”.

In §5 we use the results of §2 and §4 to define (a version of) Mint’s continuous cut-elimination operator R1

for ω-arithmetic (cf. [5]). Actually our approach is slightly more general insofar as instead of ω-arithmetic

we treat infinitary propositional logic where formulas may have transfinite (even non-wellfounded) rank.

§1 Prerequisites

In a slightly different form the material of this section can be found (e.g.) in Chapter 8 of [7]. But for the

readers convenience we prefer to develop all things we need from scratch here.

Definition.

By a U-space we mean a set X together with a family (≈l)l∈N of equivalence relations ≈l on X such that

for all x, x′ ∈ X the following holds

(i) x ≈0 x
′, (ii) x ≈l+1 x

′ ⇒ x ≈l x′, (iii) ∀l(x ≈l x′) ⇒ x = x′.

Definition.

A modulus is a weakly increasing function ϕ : N → N with ϕ(0) := 0. Moduli are denoted by ϕ, ψ.

Abbreviation. ψ ≤ ϕ :⇔ ∀l(ψ(l) ≤ ϕ(l)).

Some special moduli:

0(l) := 0, id(l) := l, ⊕(l) :=
{

0 if l = 0
l+1 otherwise

, ⊖(l) := l−· 1 :=
{

0 if l = 0
l−1 otherwise

.

max{ϕ, ψ}(l) := max{ϕ(l), ψ(l)}.

Definitions. Let (X, (≈l)l∈N) be a U-space, x ∈ X , and (xn)n∈N a sequence in X .

limn xn = x :⇔ ∀l∃N∀n ≥ N(xn ≈l x).

(xn)n∈N is a Cauchy-sequence :⇔ ∀l∃N∀m,n ≥ N(xm ≈l xn).

(X, (≈l)l∈N) is complete iff for every Cauchy sequence in X there exists an x ∈ X with limn xn = x.

Lemma 1.1. In each U-space the following holds:

(a) limn xn = x & limn xn = x′ =⇒ x = x′.

(b) limn xn = x & ∀n ≥ n0(xn ≈l a) =⇒ x ≈l a.

Proof :

(a) ∀l∃N∀n ≥ N(xn ≈l x) & ∀l∃N∀n ≥ N(xn ≈l x′) ⇒ ∀l∃N(x ≈l xN ≈l x′) ⇒ ∀l(x ≈l x′) ⇒ x = x′.

(b) ∃N∀n ≥ N(xn ≈l x) & ∀n ≥ n0(xn ≈l a) ⇒ ∃n(x ≈l xn ≈l a) ⇒ x ≈l a.

2

Definition.

Let (X, (≈Xl)l∈N), (Y, (≈Yl)l∈N) be U-spaces and f : X → Y .

f is ϕ-continuous : ⇐⇒ ∀l∀x, x′ ∈ X(x ≈X
ϕ(l) x

′ ⇒ f(x) ≈Yl f(x′)).

f : X → X is contracting : ⇐⇒ f is ⊖-continuous.

Definition.

If X,Y are sets then X→Y := set of all functions f : X → Y .

If X = (X,≈Xl), Y = (Y,≈Yl) are U-spaces then X
ϕ
→Y := {f ∈ X→Y : f is ϕ-continuous };

in addition, X
ϕ
→Y denotes the space (X

ϕ
→Y,≈X→Y

l) with f ≈X→Y
l f ′ :⇔ ∀x ∈ X(f(x) ≈Yl f ′(x)).

Remark. f ∈ X
ϕ
→Y & f ′ ∈ X→Y & x, x′ ∈ X & f ≈l f ′ & x ≈ϕ(l) x

′ =⇒ f(x) ≈l f ′(x′).

Theorem 1.2. If X,Y are U-spaces (and Y is complete) then X
ϕ
→Y is a (complete) U-space.

Proof of completeness:

Let (fn)n∈N be a Cauchy sequence in X
ϕ
→Y . Then (fn(x))n∈N is a Cauchy sequence in Y for each x ∈ X .

Let f(x) := limn fn(x). Since (fn) is Cauchy, we have ∀l∃N∀x∀m,n ≥ N(fn(x) ≈l fm(x)). By Lemma

1.1b from this we get ∀l∃N∀x∀n ≥ N(f(x) ≈l fn(x)), i.e., ∀l∃N∀n ≥ N(f ≈l fn). So we have limn fn = f ,

and it remains to prove f ∈ X
ϕ
→Y . But this follows immediately from ∀l∃N∀n ≥ N∀x(f(x) ≈l fn(x)) and

∀l∀x, x′ ∈ X(x ≈ϕ(l) x
′ ⇒ fn(x) ≈l fn(x′)).

Theorem 1.3 (Banach’s Fixed-Point Theorem).

If X is a complete U-space then every f ∈ X
⊖
→X has a unique fixed point fp(f) ∈ X , namely fp(f) = limn xn

where x0 ∈ X is arbitrary and xn+1 := f(xn).

Moreover we have ∀l∀n ≥ l(fp(f) ≈l xn).

Proof :

Uniqueness: f(x) = x & f(y) = y ⇒ ∀l(x ≈l y ⇒ x = f(x) ≈l+1 f(y) = y)
Induction

⇒ ∀l(x ≈l y) ⇒ x = y.

Existence: By induction on l we get (∗) ∀n,m ≥ l(xm ≈l xn):

IH ⇒ ∀m,n ≥ l+1(xm−1 ≈l xn−1) ⇒ ∀m,n ≥ l+1(xm = f(xm−1) ≈l+1 f(xn−1) = xn).

By (∗), x := limn xn exists, and (by Lemma 1.1b) we have ∀l∀n ≥ l(x ≈l xn).

From this we conclude ∀l∀n ≥ l(f(x) ≈l+1 f(xn) = xn+1) and so f(x) = limn xn = x.

Theorem 1.4.

If X is a complete U -space then the mapping

fp : (X
⊖
→X) → X , f 7→ fp(f) is id-continuous, i.e. fp ∈ (X

⊖
→X)

id

→X .

Proof :

To prove: ∀l∀f, f ′ ∈ X
⊖
→X(f ≈l f ′ ⇒ fp(f) ≈l fp(f ′)).

So, assume f, f ′ ∈ X
⊖
→X & ∀x ∈ X(f(x) ≈l f ′(x)):

We have fp(f) ≈l xl & fp(f ′) ≈l x′l, where ∀n(xn+1 = f(xn) & x′n+1 = f ′(x′n)). Further

∀n < l(xn ≈n x
′
n ⇒ xn+1 = f(xn) ≈n+1 f(x′n) ≈n+1 f

′(x′n) = x′n+1), and so fp(f) ≈l xl ≈l x
′
l ≈l fp(f ′).

3

§2 λ-Terms

We introduce a system of typed λ-terms together with a canonic interpretation in complete U-spaces. A

special feature of our system is that every function type is decorated with some modulus ϕ. This corresponds

to the formation of the function spaces X
ϕ
→Y in §1.

Types

1. There are certain (ground types) ι0, ι1, ...;

2. If σ, τ are types, and ϕ is a modulus then σ
ϕ
→τ is a type.

Abbreviations. σ→τ := σ
id

→τ , σn→τ := σ→ . . .→σ︸ ︷︷ ︸
n

→ τ .

Atomic terms (or atoms for short) are typed variables x, y, z,, and typed constants c,

We write a : τ to express that atom a has type τ .

Further we use xτ , yτ , zτ , (cτ , resp.) to denote variables (constants, resp.) of type τ .

As usual, FV(t) denotes the set of free variables of t.

Inductive Definition of term sets Tτ

Simultaneously we define a modulus mx(t) for each t ∈ Tτ and each variable x.

1. xτ , cτ ∈ Tτ ;

2. r ∈ Tσ
ϕ
→τ & s ∈ Tσ =⇒ (rs) ∈ Tτ ;

3. r ∈ Tτ & my(r) ≤ ϕ & y : σ =⇒ λϕy.r ∈ Tσ
ϕ
→τ ;

4. t ∈ Tτ
⊖
→τ & FV(t) = ∅ =⇒ (Yt) ∈ Tτ .

Definition of the moduli mx(t)

1. mx(x) := id, and mx(t) = 0 for x 6∈ FV(t);

2. mx(rs) := max{mx(r) , mx(s)◦ϕ} where r ∈ Tσ
ϕ
→τ ;

3. mx(λ
ϕy.r) := mx(r) (x 6= y).

Abbreviation. λx.r := λidx.r.

As usual we identify α-equivalent terms, and save parenthesis by writing rs1...sn for (. . . ((rs1)s2) . . . sn)

(provided r, si have types σ1
ϕ1

→ . . .→σn
ϕn
→τ , σi, respectively).

Interpretation

We assume that to each ground type ι there is assigned a complete U-space U ι 6= ∅. For function types

we define (inductively) Uσ
ϕ
→τ := Uσ

ϕ
→Uτ . Then from Theorem 1.2 it follows that every Uτ is a complete

U-space. We also assume that for each constant cτ an interpretation [[cτ]] ∈ Uτ is fixed.

An assignment is a mapping ξ which assigns to each variable xτ an object ξ(xτ) ∈ Uτ .

We use ξ, η to denote assignments.

Definition of [[t]]ξ ∈ Uτ for t ∈ Tτ .

1. [[x]]ξ := ξ(x), [[c]]ξ := [[c]] ;

2. [[rs]]ξ := [[r]]ξ[[s]]ξ ;

4

3. [[λϕyσ.rρ]]ξ := the mapping Uσ ∋ a 7→ [[r]]ξay ∈ Uρ.

4. [[Yt]]ξ := fp([[t]]ξ) (cf. Theorem 1.3).

Simultaneously with this definition one proves that indeed [[tτ]]ξ ∈ Uτ . This is obvious in all cases except in

“3. t = λϕyσ.rρ ” which will be taken care of in the following theorem.

Theorem 2.1.

For t ∈ Tτ the following holds:

(i) [[t]]ξ ∈ Uτ ;

(ii) ∀x ∈ FV(t)(ξ(x) ≈mx(t)(l) η(x)) =⇒ [[t]]ξ ≈l [[t]]η.

Proof by induction on t (simultaneously for (i) and (ii)):

(i) We only consider the case t = λϕy.r; in all other cases the claim is trivial or follows immediately from

the I.H. So, let t = λϕy.r with r ∈ Tρ & my(r) ≤ ϕ & y : σ. Then τ = σ
ϕ
→ρ, and by the I.H. we have (i)

∀a ∈ Uσ([[r]]ξay ∈ Uρ) and (ii) ∀l∀a, b ∈ Uσ(a ≈my(r)(l) b ⇒ [[r]]ξay ≈l [[r]]ξby). Hence [[t]]ξ ∈ Uσ
ϕ
→Uρ = Uτ .

(ii) Assume ∀x ∈ FV(t)(ξ(x) ≈mx(t)(l) η(x)) (∗).

1.1. t = x: Then mx(t) = id and thus [[t]]ξ = ξ(x) ≈l η(x) = [[t]]η.

1.2. FV(t) = ∅: trivial.

2. t = rs with r ∈ Tσ
ϕ
→τ and s ∈ Tσ: By definition of mx(rs) from (∗) we get

∀x ∈ FV(r)(ξ(x) ≈mx(r)(l) η(x)) & ∀x ∈ FV(s)(ξ(x) ≈mx(s)(ϕ(l)) η(x)) (∗∗).

From this by I.H. we conclude [[r]]ξ ≈l [[r]]η & [[s]]ξ ≈ϕ(l) [[s]]η.

By I.H. we also have [[r]]ξ ∈ Tσ
ϕ
→τ which together with (∗∗) yields [[rs]]ξ ≈l [[rs]]η .

3. t = λϕy.r with r ∈ Tρ & my(r) ≤ ϕ: Since ∀x ∈ FV(t)(mx(r) = mx(t)), from (∗) we get

∀x ∈ FV(r)(ξay (x) ≈mx(r)(l) ηay (x)). Now the I.H. yields ∀a ∈ Uσ([[r]]ξay ≈l [[r]]ηay), i.e. [[t]]ξ ≈l [[t]]η.

In the next step for each t ∈ Tτ we define a modulus ϕt and a sequence of approximating terms t(n) ∈ Tτ

(n ∈ N) such that ∀l∀n ≥ ϕt(l)([[t]]ξ ≈l [[t(n)]]ξ).

We assume that for each ground type ι there is a special constant 0ι ∈ Tι.

For τ = σ
ϕ
→ρ we set 0τ := λϕxσ.0ρ.

Definition of t+

1. x+ := x, c+ := c; 2. (rs)+ := r+s+; 3. (λϕx.r)+ := λϕx.r+; 4. (Yt)+ := t+(Yt).

Definition of t(n)

1.1. x(0) := x, c(0) := c; 1.2. (rs)(0) := r(0)s(0); 1.3. (λϕx.r)(0) := λϕx.r(0); 1.4. (Yt)(0) := 0τ .

2. t(n+1) := (t+)(n).

Lemma 2.2. (rs)(n) = r(n)s(n) and (λϕx.r)(n) = λϕx.r(n).

Definition of ϕt

1. ϕx := ϕ
 := 0;

2. ϕrs := max{ϕr , ϕs◦ψ} where r ∈ Tσ
ψ
→τ ;

5

3. ϕλψy.r := ϕr;

4. If t = Ys then ϕt(0) := 0, ϕt(l+1) := max{ϕt(l)+1,ϕs(l+1)}.

Remark. If t = Ys with ϕs ≤ id then ϕt = id.

Theorem 2.3. t ∈ Tτ =⇒ ∀l∀n ≥ ϕt(l)([[t]]ξ ≈l [[t(n)]]ξ).

Proof by induction on t:

1. t atomic: trivial.

2. t = rs with r ∈ Tσ
ψ
→τ :

n ≥ ϕt(l) ⇒ n ≥ ϕr(l) & n ≥ ϕs(ψ(l))
IH
⇒ [[r]]ξ ≈l [[r(n)]]ξ & [[s]]ξ ≈ψ(l) [[s(n)]]ξ ⇒ [[t]]ξ ≈l [[t(n)]]ξ.

3. t = λϕy.r:

n ≥ ϕt(l) ⇒ n ≥ ϕr(l)
IH
⇒ ∀a([[r]]ξay ≈l [[r(n)]]ξay) ⇒ [[t]]ξ = [[λϕy.r]]ξ ≈l [[λϕy.r(n)]]ξ = [[t(n)]]ξ.

4. t = Ys with s ∈ Tτ
⊖
→τ : First note that t(n+1) = (t+)(n) = (s+t)(n) = (s+)(n)t(n) = s(n+1)t(n) (∗).

We prove ∀n ≥ ϕt(l)([[t]]ξ ≈l [[t(n)]]ξ) by a subsidiary induction on l:

The case l = 0 is trivial. Assume now that n ≥ ϕt(l+1). Then n > 0, n−1 ≥ ϕt(l), and n ≥ ϕs(l+1).

Hence [[t]]ξ ≈l [[t(n−1)]]ξ (by S.I.H.) and [[s]]ξ ≈l+1 [[s(n)]]ξ (by I.H.).

Together with [[s]] ∈ Uτ
⊖
→τ this implies [[t]]ξ = [[s]]ξ[[t]]ξ ≈l+1 [[s]]ξ[[t

(n−1)]]ξ ≈l+1 [[s(n)]]ξ[[t
(n−1)]]ξ

(∗)
= [[t(n)]]ξ.

§3 The system Tree

In this section we introduce a special instance Tree of our generic system (Tτ)τ and prove that every

Tree-definable functional F : (N<ω → N) → N<ω → N is primitive recursive in the modulus of its defining

term (cf. Theorem 3.4).

Tree has the ground types nat, tree and the constants 0nat, 0tree, hd : tree→nat, tl : tree
⊕
→nat→tree,

cons : nat→(nat→tree)
⊖
→tree, fni : natn → nat.

Semantics of Tree.

We assume a bijective coding N<ω → N, (a0, ..., an−1) 7→ 〈a0, ..., an−1〉 of finite sequences of natural numbers.

We use ν, ν′ to denote natural numbers considered as codes for finite sequences. As usual we define

lh(〈a0, ..., an−1〉) := n, 〈a0, ..., an−1〉 ∗ 〈b0, ..., bm−1〉 := 〈a0, ..., an−1, b0, ..., bn−1〉, and (〈a0, ..., an−1〉)i :=

if i < n then ai else 0 . We assume 〈〉 = 0 and that the funcions a 7→ lh(a), (a, b) 7→ a∗b, (a, i) 7→ (a)i, and

(for each fixed n) (a0, ..., an) 7→ 〈a0, ..., an〉 are primitive recursive.

In consideraton of this coding, the elements of S := N → N are called trees.

If α is a tree then α(0) is the content of its root, and α[n] := λν.α(〈n〉∗ν) is its n-th immediate subtree.

The ground types and constants of Tree are interpreted as follows

Unat := (N,≈nat
l) with a ≈nat

l a′ :⇔ a, a′ ∈ N & (1 ≤ l ⇒ a = a′).

U tree := (S,≈tree
l) with α ≈tree

l α′ :⇔ α, α′ ∈ S & ∀ν(lh(ν) < l ⇒ α(ν) = α′(ν)).

6

We assume that to each constant fni there is assigned some fixed primitive recursive function [[fni]] : Nn → N,

so that the (universal) mapping (⌈fni
⌉, k) 7→ [[fni]](k)0...(k)n−1 is also primitive recursive.

Especially [[f00]] = 0 and [[f10]](a) = a+1.

Abbreviations. S := f10, 0 := 0nat := f00, n+1 := Sn.

The interpretation of the other constants is given by

[[0nat]] := 0, [[0tree]] := λν.0 ;

[[hd]] : S → N, [[hd]]α := α(0) ;

[[tl]] : S → N → S, ([[tl]]αn) := α[n] = λν.α(〈n〉∗ν) ;

[[cons]] : N → (N → S) → S, ([[cons]]af)(ν) :=

{
a if ν = 〈〉
(fn)(ν′) if ν = 〈n〉∗ν′

.

One easily shows that [[cτ]] ∈ Uτ holds for each of these constants cτ .

What follows are preparations for the proof of the above-mentioned Theorem 3.4.

Abbreviation.

For t ∈ Ttree and r1, ..., rn ∈ Tnat let tlr1...rnt :=

{
t if n = 0
tl(tlr1...rn−1

t)rn otherwise
.

For ν = 〈k1, ..., kn〉 let tlν t := tlk1...kn t.

Lemma 3.1. For each t ∈ Ttree the following holds:

(a) ϕtlν t(l) = ϕt(lh(ν)+l).

(b) [[t]]ξ(ν) = [[tlν t
(m)]]ξ(0) for all m ≥ ϕt(lh(ν)+1).

Proof :

(a) ϕtl0 t = ϕt, ϕtlν∗〈n〉
(l) = ϕtl(tlν t)n(l) = ϕtl(tlν t)(l) = ϕtlν t(l+1)

IH
= ϕt(l+1+ lh(ν)).

(b) For m ≥ ϕt(lh(ν)+1) we have [[t]]ξ ≈lh(ν)+1 [[t(m)]] and thus [[tlν t]]ξ ≈1 [[tlν t
(m)]]ξ.

Hence [[t]]ξ(ν) = [[tlν t]]ξ(0) = [[tlν t
(m)]]ξ(0).

Definition of t ⊲ t′

t ⊲ t′ if, and only if, t, t′ ∈ Tτ and one of the following cases holds

(⊲1) t = (λx.r)s and t′ = rx(s) ,

(⊲2) t = hd(cons rt̃) and t′ = r , (⊲3) t = tl(cons rt̃) and t′ = t̃ ,

(⊲4) t = hd 0tree and t′ = 0nat , (⊲5) t = tl 0treer and t′ = 0tree.
Inductive Definition of t→1

β t for t, t′ ∈ Tτ .

1. t ⊲ t′ =⇒ t→1
β t

′;

2. r →1
β r

′ =⇒ rs→1
β r

′s; s→1
β s

′ =⇒ rs →1
β rs

′;

3. r →1
β r

′ =⇒ λϕx.r →1
β λ

ϕx.r′.

As usual, =β denotes the reflexive, symmetric and transitive closure of →1, and t∗ is called a β-normalform

of t if t∗ =β t and t∗ is in β-normalform (i.e. ¬∃t′(t∗ →1
β t

′)).

7

Theorem.

(a) Every reduction sequence t0 →1
β t1 →1

β . . . terminates.

(b) Every t ∈ Tτ has a unique β-normalform nf(t) ∈ Tτ .

Proof: Easy extension of the corresponding proofs for the simply typed λ-calculus.

Definition. nf(t) := the β-normalform of t.

Definitions.

type2 := {tree} ∪ {natn→nat : n ∈ N},

Var2 := {xσ : σ ∈ type2}

t is Y-free iff the constant Y does not occur in t.

Tτ2 := {t ∈ Tτ : FV(t) ⊆ Var2}, Tτ∗2 := {t ∈ Tτ2 : t Y-free and β-normal}.

Syntactic variables:

x, y: variables of type nat;

xn: variables and constants of type natn→nat;

X : variables of type tree.

Lemma 3.2.

(a) If r ∈ Tnat∗
2 then r has one of the following shapes:

xnr1...rn, hd(tlr1...rnX) with r1, ..., rn ∈ Tnat∗
2 ;

(b) If t ∈ Ttree∗
2 then t has one of the following shapes:

0tree, cons rt̃, tlr1...rnX with r, r1, ..., rn ∈ Tnat∗
2 .

Proof by induction on r, t, resp., simultaneously for (a) and (b):

(a) Obviously r = xnr1...rn or r = hd t with r1, ..., rn ∈ Tnat∗
2 , t ∈ Ttree∗

2 . In addition, t 6= 0tree and t cannot

have the form cons Therefore, by IHb, t = tlr1,...,rnX with r1, ..., rn ∈ Tnat∗
2 .

(b) Obviously t = X or t = tl t0r or t = cons rt̃ with r ∈ Tnat∗
2 , t0 ∈ Ttree∗

2 . In addition, t0 cannot have the

form cons Therefore, by IHb, t0 = tlr1,...,rnX with r1, ..., rn ∈ Tnat∗
2 .

Definition.

A Var2-assignment is a mapping ζ : Var2×N → N.

With each Var2-assignment ζ we associate an assignment ζ in the original sense:

ζ(xσ) :=






λk1...λkn.ζ(x
σ , 〈k1, ..., kn〉) if σ = natn → nat

λν.ζ(xσ , ν) if σ = tree

[[0σ]] otherwise
.

Then we set [[t]]ζ := [[t]]
ζ

for t ∈ Tτ2 .

T∗
2 := Tnat∗

2 ∪ Ttree∗
2 .

8

Definition of h : (Var2×N → N) × T∗
2 → N

hζ(x
nr1...rn) :=

{
ζ(xn, 〈hζ(r1)...hζ(rn)〉) if xn is a variable
[[xn]]hζ(r1) . . .hζ(rn) otherwise

;

hζ(hd(tlr1...rnX)) := hζ(tlr1...rnX) := ζ(X, 〈hζ(r1), ...,hζ(rn)〉);

hζ(0
tree) := 0;

hζ(cons rt̃) := hζ(r).

Theorem 3.3.

(a) If tι ∈ T∗
2 then hζ(t

ι) =

{
[[t]]ζ(0) if ι = tree

[[t]]ζ if ι = nat
.

(b) The functional h is primitive recursive.

Theorem 3.4.

If t ∈ Ttree
2 and ϕt ≤ ψ, then the functional

Ft : (Var2×N → N) × N → N, Ft(ζ, ν) := [[t]]ζ(ν) is primitive recursive in ψ.

Proof :

[[t]]ζ(ν)
L.3.1b

= [[tlν t
(m)]]ζ(0) = [[nf(tlν t

(m))]]ζ(0)
Th.3.3a

= hζ(nf(tlν t
(m))) where m := ψ(lh(ν)+1).

§4 The subsystem T̂ree ; Examples

Definition. A type τ is called simple if all its arrows are decorated by the modulus id.

In this section we introduce an especially nice subsystem T̂ree = (T̂τ)τ simple of Tree which has the

advantage that one can rather easily decide whether a given term belongs to it or not. On the other side the

system is comprehensive enough to cover most of the examples occurring in “practice”, as indicated by the

examples below.

Definition of Cr(t)

Cr(tl t) := FV(t); Cr(cons rt) := Cr(r);

Cr(rs) := Cr(r) ∪ Cr(s) if r 6= tl and r 6= cons r0;

Cr(λy.r) = Cr(r) \ {y}; Cr(y) := Cr(c) := Cr(Yt) := ∅ .

Inductive Definition of T̂τ for simple τ

1.1. If aτ is a variable or a constant 6= cons, tl then aτ ∈ T̂τ ;

1.2. r ∈ T̂nat & t̃ ∈ T̂nat→tree =⇒ cons rt̃ ∈ T̂tree;
1.3. t ∈ T̂tree & Cr(t) = ∅ =⇒ tl t ∈ T̂nat→tree;
2. r ∈ T̂σ→τ & s ∈ T̂σ =⇒ rs ∈ T̂τ ;

3. r ∈ T̂ρ & y 6∈ Cr(r) & y : σ =⇒ λy.r ∈ T̂σ→ρ;

4. t ∈ T̂τ & z : τ & FV(t) ⊆ {z} & t = λ~x. cons rt̃ with z 6∈ FV(r) ∪ Cr(t̃) =⇒ Yλ⊖z.t ∈ T̂τ .

We prove now that T̂τ ⊆ Tτ (for simple τ), so that for any assignment ξ, each t ∈ T̂τ has a well defined

value [[t]]ξ ∈ Uτ .

9

Theorem 4.1. t ∈ T̂τ =⇒ t ∈ Tτ and mx(t) ≤ ψ[x, t] :=
{
⊕ if x ∈ Cr(t)
id otherwise

.

Proof :

1.1. t a variable or constant: trivial.

1.2. t = cons rt̃: mx(t) = max{mx(r),mx(t̃) ◦ ⊖}
IH
≤ max{ψ[x, r], ψ[x, t̃] ◦ ⊖} ≤ max{ψ[x, t], id} = ψ[x, t].

1.3. t = tl s with Cr(s) = ∅: Then mx(t) = mx(s) ◦ ⊕, and since Cr(s) = ∅, by IH we have mx(s) ≤ id, and

so mx(t) ≤ ⊕. If x 6∈ Cr(t) then x 6∈ FV(s) and so mx(t) = mx(s) ◦ ⊕ = 0 ◦ ⊕ = 0.

2. t = rs with r ∈ T̂σ→τ : Then mx(t) = max{mx(r),mx(s)}
IH
≤ max{ψ[x, r], ψ[x, s]} = ψ[x, t].

3. t = λy.r with r ∈ T̂ρ and y 6∈ Cr(r): By IH we have r ∈ Tρ and my(r) ≤ id which yields t ∈ Tτ . By IH

we also have mx(r) ≤ ψ[x, r], hence (for x ∈ FV(t)) mx(t) = mx(r) ≤ ψ[x, r] = ψ[x, t].

4. t = Yλ⊖z.t0 with FV(t) = ∅, t0 = λ~x. cons rt̃ ∈ T̂τ and z 6∈ FV(r) ∪ Cr(t̃):

Then mz(t0) = mz(cons rt̃) = max{mz(r),mz(t̃) ◦ ⊖}. Since z 6∈ FV(r) ∪ Cr(t̃), we have mz(r) = 0 and (by

I.H.) mz(t̃) ≤ id, hence mz(t0) ≤ ⊖. By I.H. we also have t0 ∈ Tτ . Together with mz(t0) ≤ ⊖ this yields

λ⊖z.t0 ∈ Tτ
⊖
→τ , hence t = Yλ⊖z.t0 ∈ Tτ . Further mx(t) = 0, since FV(t) = ∅.

Theorem 4.2. For each t ∈ T̂tree
2 the functional Ft : (Var2×N → N) × N → N, Ft(ξ, ν) := [[t]]ξ(ν) is

primitive recursive.

Proof :

By induction on t ∈ T̂τ we prove ϕt ≤ id. Then the claim follows by Theorem 3.4.

The only nontrivial case is t = Yλ⊖z.t0 with t0 ∈ T̂τ . Then by a subsidiary induction on l we obtain

ϕt(l) = l: ϕt(0)
Def
= 0, ϕt(l+1)

Def
= max{ϕt(l)+1,ϕt0(l+1)}

SIH
= max{l+1,ϕt0

(l+1)}
IH
= l+1.

Examples

In these examples instead of tree we have the ground type str (streams).

The types of the constants hd, tl, cons are now: hd : str→nat, tl : str
⊕
→str, cons : nat→str

⊖
→str.

In (1)-(7) one almost immediately sees that the respective term belongs to the subsystem (T̂τ)τ . (1)-(6) are

choosen in view of [8] where the same examples are treated, but with much more effort than here.

To increase readability we write F~x := r :: tz(F) for F := Yλ⊖zλ~x. cons rt.

Let X,X1, ... be variables of type str.

(1) map fX := f(hdX) :: map f(tlX).

(2) zip fX1X2 := f (hdX1)(hdX2) :: zip f (tlX1)(tlX2).

(3) casesl xX1...Xl := flx(hdX1)...(hdXl) :: casesl x(tlX1)...(tlXl), where [[fl]]ka1...al :=
{
ak+1 if k < l

0 otherwise
.

(4) mergeX1X2 := g(hdX1)(hdX2) :: cases3(f (hdX1)(hdX2))






merge(tlX1)X2

merge(tlX1)(tlX2)
mergeX1(tlX2)

with [[g]]a1a2 := min{a1, a2} and [[f]]a1a2 :=

{
0 if a1 < a2

1 if a1 = a2

2 otherwise

.

10

(5) ham := 1 :: merge(map(×2) ham)(map(×3) ham) with [[×k]]a := k · a.

(6) fib := 0 :: 1 :: zip add fib (tl fib) with [[add]]a1a2 := a1 + a2.

(7) F0X := 1+ hdX ::F0(F0(F0(tlX))).

(8) F1X :
ψ
= 1+ hdX ::F1(GX), i.e.,

F1 := Yλ⊖zτλψX.t with t := 1+ hdX :: zτ (GX) , G ∈ Tstr ϕ→str and τ := str
ψ
→str.

mz(t) = mz(z(GX)) ◦ ⊖ = id ◦ ⊖ = ⊖,

mX(t) = max{mX(1+ hdX),mX(z(GX))◦⊖} = max{id, ϕ◦ψ◦⊖}.

Let us assume that id ≤ ϕ. Then for ψ(l) := ϕ(l)(0) we have mX(t) ≤ ψ and therefore F1 ∈ Tτ .

(9) F2X :
ψ
= 1+ hdX ::F2(F2(tl(tlX))), i.e.,

F2 := Yλ⊖zτλψX.t with t := 1+ hdX :: zτ (zτ (tl(tlX))) and τ := str
ψ
→str.

By computing the moduli mz(t), mX(t) we show that the term F2 does not belong to Tτ , independently

of how we choose ψ. In addition one can easily see that there is actually no function F : S → S satisfying

the equation for F2.

mz(t) = mz(z(z(tl(tlX))))◦⊖ = max{id,mz(z(tl(tlX)))◦ψ}◦⊖ =

= max{id,max{id, 0 ◦ ψ}◦ψ}◦⊖ = max{id, ψ}◦⊖,

mX(t) = max{id,mX(z(z(tl(tlX))))}◦⊖ = max{id,⊕◦ ⊕ ◦ψ◦ψ}◦⊖.

Let us assume that mz(t) ≤ ⊖ and mX(t) ≤ ψ.

Then we have ψ(2) ≤ mz(t)(3) ≤ 2 & 1 ≤ mX(t)(1) ≤ ψ(1) & ⊕ (⊕(ψ(ψ(1)))) ≤ mx(2) ≤ ψ(2).

From 1 ≤ ψ(1) it follows that ⊕(⊕(ψ(ψ(1)))) = 2 + ψ(ψ(1)) ≥ 3, thence 3 ≤ ψ(2) ≤ 2. Contradiction.

So there is no modulus ψ such that mz(t) ≤ ⊖ and mX(t) ≤ ψ. Therefore F2 is not a term of the

system T.

§5 Cut-elimination for infinitary propositional logic

In this section we apply Theorem 4.2 to define (a version of) Mint’s continuous cut-elimination operator R1

for ω-arithmetic introduced in [5]. Actually our approach is slightly more general insofar as instead of ω-

arithmetic we treat infinitary propositional logic where formulas may have transfinite (even non-wellfounded)

rank. We will work with a one sided sequent calculus á la Tait. Derivations will be formalized as trees of

inferences (strictly speaking, inference symbols), and the relation “d is a derivation of Γ with deg(d) ≤ ρ” will

be introduced by a co-inductive definition. In order to save some cases in the definition of the cut-elimination

operator, we will not eliminate atomic cuts.

We assume the following entities to be given

(1) a set V ;

(2) a set F ; the elements of F are called formulas;

(2) a linear ordering (O,≺);

11

(3) for each C ∈ F

– a symbol ⋄(C) ∈ {At,
∧
,
∨
}, we set

∧
:=

∨
,
∨

:=
∧

, At := At,

– an element rk(C) ∈ O,

– a subset |C| ⊆ V and formulas C[ι] (ι ∈ |C|) such that

(⋄(C) = At ⇒ |C| = ∅) and ∀ι ∈ |C|(rk(C[ι]) ≺ rk(C));

(4) an operation ¬ : F → F such that

⋄(¬C) = ⋄(C), |¬C| = |C|, rk(¬C) = rk(C), ∀ι ∈ |C|((¬C)[ι] = ¬(C[ι])) and ¬¬C = C.

Definitions.

Fx := {C ∈ F : ⋄(C) = x} , for x ∈ {At,
∧
,
∨
};

IS := FAt ∪ F∧ ∪ {(κ,B) : B ∈ F∨ & κ ∈ |B|} ∪ {CutC : C ∈ F} ∪ {Rep} (inference symbols);

D := V <ω → IS (derivations).

SEQ := set of all sequents, i.e., (finite) sets of formulas.

We will use the following syntactic variables:

ι, κ ∈ V

ν ∈ V <ω

ρ, σ, τ ∈ O

J ∈ IS

d, e, c ∈ D

P ∈ FAt
A ∈ F∧

B ∈ F∨

C ∈ F

Γ ∈ SEQ.

Informally every inference symbol J ∈ IS represents a family of inferences as follows

(P)
Γ,¬P, P

(A)
. . .Γ, A[ι] . . . (ι ∈ |A|)

Γ, A
(κ,B)

Γ, B[κ]

Γ, B
(CutC)

Γ, C Γ,¬C

Γ
(Rep)

Γ

Γ
.

Formally this is rendered by assigning to each inference symbol J its arity |J | ⊆ V and seqents ∆(J) (main

part), ∆ι(J) (ι ∈ |J |) (minor part(s)) in such a way that the above inferences get the shape

(J)
. . .Γ,∆ι(J) . . . (ι ∈ |J |)

Γ,∆(J)
.

The definition of |J |, ∆(J), ∆ι(J) is shown in the following table

J P A (κ,B) CutC Rep

|J | ∅ |A| {0} {0, 1} {0}

∆ι(J) {A[ι]} {B[κ]} {C}, {¬C} ∅

∆(J) {¬P, P} {A} {B} ∅ ∅

Abbreviation.

For d ∈ D we set d〈〉 := d(〈〉) ∈ IS, and d[ι] := λν.d(〈ι〉∗ν) ∈ D.

12

Definition of functions I : F∧ → V → D → D, R : F∨ → D → D → D, E : O → D → D

(IAκd)〈〉 =

{
Rep if d〈〉 = A

d〈〉 otherwise
(IAκd)[ι] =

{
IAκd[κ] if d〈〉 = A

IAκd[ι] otherwise

(RBde)〈〉 =

{
CutB[κ] if d〈〉 = (κ,B)
d〈〉 otherwise

(RBde)[ι] =

{
I¬B κ e if d〈〉 = (κ,B) and ι = 1
RBd[ι]e otherwise

(Eσd)〈〉 =

{
Rep if d〈〉 = CutC with σ � rk(C) and C ∈ F∧ ∪ F∨
d〈〉 otherwise

(Eσd)[ι] =






Eσ(RB(Eνd[0])(Eνd[1])) if d〈〉 = CutB with σ � rk(B) =: ν
Eσ(R¬A(Eνd[1])(Eνd[0])) if d〈〉 = CutA with σ � rk(A) =: ν
Eσd[ι] otherwise

Remark. It follows from Theorem 4.1 (together with Theorem 2.1) that the above equations actually

define the desired functions I, R, E . To see this we assume (w.l.o.g.) that F∧ ∪ F∨ ∪ O ∪ IS ⊆ V

and that I,R, E actually are restrictions of corresponding functions I : V → V → D → D, R : V →

D → D → D, E : V → D → D which are obtained as the interpretations of terms tI ∈ T̂nat2→tree→tree,
tR ∈ T̂nat→tree→tree→tree, tE ∈ T̂nat→tree→tree. In this context the ground types nat, tree are interpreted by

Unat := V , ι ≈l κ :⇔ (l ≥ 1 ⇒ ι = κ) and U tree := D, d ≈l e :⇔ ∀ν ∈ V <ω(lh(ν) < l ⇒ d(ν) = e(ν)). The

constants fni are interpreted by suitable functions [[fni]] : V n → V as needeed in the above definitions.

Definition.

We assume that −1 6∈ O, and set −1 ≺ ρ for all ρ ∈ O.

deg(J) :=

{
rk(C) if J = CutC with C ∈ F∧ ∪ F∨
−1 otherwise

.

Inductive definition of d ⊢ρ Γ (d is wellfounded derivation of Γ with cut-degree � ρ)

deg(d〈〉) ≺ ρ & ∆(d〈〉) ⊆ Γ & ∀ι ∈ |d〈〉|(d[ι] ⊢ρ Γ,∆ι(d〈〉)) =⇒ d ⊢ρ Γ

Coinductive Definition of d ⊢
co

ρ
Γ (d is a derivation of Γ with cut-degree � ρ)

d ⊢
co

ρ
Γ =⇒ deg(d〈〉) ≺ ρ & ∆(d〈〉) ⊆ Γ & ∀ι ∈ |d〈〉|(d[ι] ⊢

co

ρ
Γ,∆ι(d〈〉)).

In other words:

d ⊢ρ Γ :⇔ 〈d,Γ〉 ∈ µΦρ, and d ⊢
co

ρ
Γ :⇔ 〈d,Γ〉 ∈ νΦρ,

where µΦρ =
⋂
{X ⊆ D×SEQ : Φρ(X) ⊆ X} is the least,

and νΦρ =
⋃
{X ⊆ D×SEQ : X ⊆ Φρ(X)} is the greatest fixed point

of the monotone operator Φρ : P(D×SEQ) → P(D×SEQ),

Φρ(X) := {〈d,Γ〉 : deg(d〈〉) ≺ ρ & ∆(d〈〉) ⊆ Γ & ∀ι ∈ |d〈〉|(〈d[ι] ; Γ,∆ι(d〈〉)〉 ∈ X)}.

Theorem 5.1. If d ⊢
co

ρ
Γ and σ � ρ then Eσd ⊢

co

σ
Γ.

Proof:

We have to find a set Xσ ⊆ D×SEQ such that {〈Eσd,Γ〉 : ∃ρ(d ⊢
co

ρ
Γ & σ � ρ)} ⊆ Xσ ⊆ Φσ(Xσ).

Then we obtain {〈Eσd,Γ〉 : ∃ρ(d ⊢
co

ρ
Γ & σ � ρ)} ⊆ Xσ ⊆ ⊢

co

σ
, i.e. the claim.

Such a set is Xσ := {〈d,Γ〉 : d ⊢∗
σ Γ} where ⊢∗

σ is defined below. Lemma 5.2 yields Xσ ⊆ Φσ(Xσ).

13

Inductive definition of d ⊢∗
σ Γ

(⊢∗ 0) d ⊢
co

σ
Γ =⇒ d ⊢∗

σ Γ;

(⊢∗ 1) d ⊢∗
ρ Γ & σ � ρ =⇒ Eσd ⊢∗

σ Γ;

(⊢∗ 2) rk(B) � σ & d ⊢∗
σ Γ, B & e ⊢∗

σ Γ,¬B =⇒ RBde ⊢∗
σ Γ;

(⊢∗ 3) d ⊢∗
σ Γ, A =⇒ IAκd ⊢∗

σ Γ, A[κ].

Lemma 5.2.

c ⊢∗
σ Γ ⇒ deg(c〈〉) ≺ σ & ∆(c〈〉) ⊆ Γ & ∀ι ∈ |c〈〉|(c[ι] ⊢

∗
σ Γ,∆ι(c〈〉)).

Proof by induction over ⊢∗
σ:

0. c ⊢
co

σ
Γ: Then deg(c〈〉) ≺ σ & ∆(c〈〉) ⊆ Γ & ∀ι ∈ |c〈〉|(c[ι] ⊢

co

σ
Γ,∆ι(c〈〉)).

By (⊢∗ 0) we obtain ∀ι ∈ |c〈〉|(c[ι] ⊢
∗
σ Γ,∆ι(c〈〉)).

1. c = Eσd with d ⊢∗
ρ Γ and σ � ρ:

By IH deg(d〈〉) ≺ ρ & ∆(d〈〉) ⊆ Γ & ∀ι ∈ |d〈〉|(d[ι] ⊢
∗
ρ Γ,∆ι(d〈〉)).

From the definition of Eσd it follows that deg(c〈〉) ≺ σ and ∆(c〈〉) ⊆ ∆(d〈〉) ⊆ Γ.

1.1. d〈〉 = CutB with σ � rk(B) =: ν:

Then c〈〉 = Rep, c[0] = Eσ(RB(Eνd[0])(Eνd[1])) and ν = rk(B) = deg(d〈〉) ≺ ρ.

d[0] ⊢∗
ρ Γ, B & d[1] ⊢∗

ρ Γ,¬B
(⊢∗1)+ν≺ρ

=⇒

Eνd[0] ⊢∗
ν Γ, B & Eνd[1] ⊢∗

ν Γ,¬B
(⊢∗2)+rk(B)=ν

=⇒

RB(Eνd[0])(Eνd[1]) ⊢∗
ν Γ

(⊢∗1)+σ�ν
=⇒

c[0] ⊢∗
σ Γ, i.e. c[0] ⊢∗

σ Γ,∆0(c〈〉), since ∆0(c〈〉) = ∆0(Rep) = ∅.

1.2. d〈〉 = Cut¬B: similar to 1.1.

1.3. otherwise: Then c[ι] = Eσd[ι] and from d[ι] ⊢∗
ρ Γ,∆ι(d〈〉) we get c[ι] ⊢∗

σ Γ,∆ι(d〈〉).

2. c = RBde with rk(B) � σ & d ⊢∗
σ Γ, B & e ⊢∗

σ Γ,¬B:

2.1. d〈〉 = (κ,B): From the definition of RBde it follows that

c〈〉 = CutB[κ], ∆(c〈〉) = ∅, c[0] = RBd[0]e, and c[1] = I(¬B)κe.

d ⊢∗
σ Γ, B

IH
⇒ d[0] ⊢∗

σ Γ, B,B[κ]
(⊢∗2)
⇒ RBd[0]e ⊢∗

σ Γ, B[κ], i.e. c[0] ⊢∗
σ Γ,∆0(c〈〉).

e ⊢∗
σ Γ,¬B

(⊢∗3)
⇒ I(¬B)κe ⊢∗

σ Γ,¬B[κ], i.e. c[1] ⊢∗
σ Γ,∆1(c〈〉).

2.2. otherwise: Then c〈〉 = d〈〉, c[ι] = RBd[ι]e and B 6∈ ∆(d〈〉).

Hence deg(c〈〉) = deg(d〈〉)
IH
≺ σ and ∆(c〈〉) = ∆(d〈〉) \ {B}

IH
⊆ Γ.

d ⊢∗
σ Γ, B

IH
⇒ d[ι] ⊢∗

σ Γ, B,∆ι(d〈〉)
(⊢∗2)
⇒ RBd[ι]e ⊢∗

σ Γ,∆ι(d〈〉), i.e. c[ι] ⊢∗
σ Γ,∆ι(c〈〉).

3. c = IAκd and Γ = Γ0, A[κ] with d ⊢∗
σ Γ0, A:

3.1. d〈〉 = A: Then c〈〉 = Rep and c[0] = IAκd[κ]. Hence deg(c〈〉) = −1 and ∆(c〈〉) = ∅.

IH ⇒ d[κ] ⊢∗
σ Γ0, A,A[κ]

(⊢∗3)
⇒ IAκd[κ] ⊢∗

σ Γ0, A[κ], i.e. c[0] ⊢∗
σ Γ,∆0(c〈〉).

3.2. otherwise: Then c〈〉 = d〈〉, c[ι] = IAκd[ι] and A 6∈ ∆(d〈〉).

Hence deg(c〈〉) = deg(d〈〉)
IH
≺ σ and ∆(c〈〉) = ∆(d〈〉) \ {A}

IH
⊆ Γ0.

As in 2.2. we obtain c[ι] ⊢∗
σ Γ,∆ι(c〈〉).

14

Remark.

Let W (the set of wellfounded derivations) be inductively defined by: ∀ι ∈ |d〈〉|(d[ι] ∈ W) =⇒ d ∈ W.

Then the following holds: d ⊢ρ Γ ⇐⇒ d ∈ W & d ⊢
co

ρ
Γ .

Proof left to the reader.

References

[1] T. Coquand, Infinite Objects in Type Theory. In: Types for Proofs and Programs (eds. H. Barendregt

and T. Nipkow), LNCS 806 (1994) 62-78.

[2] R. Di Gianantonio, M. Miculan, A Unifying Approach to Recursive and Co-recursive Definitions. Draft

2003(?)

[3] E. Gimenez, Codifying guarded definitions with recursive schemes. In: Types for Proofs and Programs,

Springer LNCS 996 (1994) 39-59.

[4] J. Matthews. Recursive function definition over coinductive types. In Y. Bertot, G. Dowek, A. Hir-

showitz, C. Paulin, and L. Th’ery (eds.)s, Proc. TPHOL’99, LNCS 1690, Springer-Verlag (1999) 73-90.

[5] G. Mints, Finite investigations of transfinite derivations. J. Sov. Mat. 10 (1978).

[6] D. Pattinson, Recursion on Streams via Banach’s Theorem. Unpublished notes 2003.

[7] V. Stoltenberg-Hansen, I. Lindström, E. Griffor, Mathematical Theory of Domains. Cambridge Univer-

sity Press 1994

[8] A. Telford, D. Turner, Ensuring the Productivity of Infinite structures. The computing Laboratory,

University of Kent at Canterbury, Technical Report 14-97 (1998).

15

