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Introduction 

A fascinating result of (Gentzen-style) proof theory is the characterization of the 
provably total functions of Peano-arithmetic in terms of KREISEL'S ordinal recur- 
sive functions (see KREISEL [9]), or alternatively, in terms of the +-descent recursive 
functions (see SMITH [13], TAKEUTI [15] or FRIEDMAN-SHEARD [7]), where + de- 
notes a standard representation of EO in the natural numbers. This class of functions 
can also be characterized by hierarchies of number-theoretic functions which are de- 
fined relative to  the system of standard fundamental sequences for the ordinals less 
than € 0 .  Examples are here the Hardy hierarchy, the extended Grzegorczyk hierar- 
chy and a hierarchy which is based on iterated enumeration (SCHWICHTENBERG [14], 
WAINER [17]). A generalization of the latter concepts would still seem to be problem- 
atic. There were some results concerning I'o, the proof-theoretic ordinal of predicative 
analysis, or q, ,  the proof-theoretic ordinal of ID, (cf. ZEMKE [22], BUCHHOLZ [2]). 
But the larger the countable ordinal in question, the harder becomes the problem of 
assigning an appropriate (Bachmann) system of fundamental sequences. In his arti- 
cle [5] CICHON proposes implicitly a very simple and general method for approaching 

')e-mail: buchho1zQrz.mathematik.uni-muenchen.de 
')e-mail: cichonQloria.crin.fr 
3)e-mail: weiermaQmath.uni-muenster.de 
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this problem. His approach is based on the interplay between Bachmann systems of 
fundamental sequences and a term-complexity-function (which we call norm from 
now on). The importance of a norm function is already implicit in the literature 
(see ZEMKE [22] and SMITH [13]). The new idea is to  define a Bachmann system 
of fundamental sequences (a[n]c)nen in terms of the norm instead of defining it by 
refering to  some normal form representation of the respective ordinals. For example, 
if N : EO - N is a norm function such that NO = 0, N ( a  + 1) 6 N a  + 1 for all 
a < E O  and card{P < a : N P  < d }  is finite for all d E W and a < E O ,  then we put (see 
CICHON [5]): 

Moreover it turns out that the Hardy hierarchies can be defined in terms of the norm 
without any reference to  fundamental sequences at  all. If we put 

a[n]c := max{P < a : N P  6 ~a + n}.4) 

~ , ( n )  := max { {n} u { ~ p ( n  + 1) : P < a & N P  5 ~a + n}}, 
then this hierarchy coincides with (a slight variant of) the usual Hardy hierarchy with 
respect to . [ .]c, namely for a > 0 one has H,(n)  = H,[,],(n + 1). 

An immediate consequence of this definition which is very useful for applications 
is the following effective majorization property: 

(EMP) 

Of course (EMP) yields the usual majorization property of the Hardy hierarchy, 
namely 

a < P & N a  5 N P +  n + H,(n)  < H p ( n ) .  

a < P * (3m)(Vn 2 . z ) [H,(n)  < Hp(41. 

But, in additition, (EMP) gives an useful effective criterion how to compute a natural 
number rn such that H,(n) < Hp(n) holds for all n 2 rn. Simply pick m such that 
N a  5 N P  + rn. In the more traditional approach the verification of assertions like 
(EMP) (especially for proof-theoretic ordinals larger than E O )  is not always immediate 
(see ZEMKE [22]). 

In this article we investigate the consequences of this new approach to  the theory 
of Hardy hierarchies and we will compare this approach with the usual one. It turns 
out that under some natural assumptions the new approach is equivalent to  the old 
one. The new approach has proven useful in WEIERMANN [19] where a comparatively 
simple and straightforward characterization of the provably total functions of Peane  
arithmetic is given in terms of a Cichon-style Hardy h ie rar~hy.~)  

In Section 1 we develop a general theory of normed Bachmann systems and their 
related Hardy hierarchies. In Section 2, following WAINER [16], we compare the Hardy 
hierarchies with certain hierarchies of primitive recursively norm bounded descent 
functions. This also provides means for comparing Hardy hierarchies belonging to 
different normed Bachmann systems. In Section 3 we relate CICHON'S approach to  
the more traditional theory of normed Bachmann systems presented in Section 1. In 

4 ) A  similar (but not equivalent) definition is contained in FRIEDMAN-SHEARD [7, Lemma 1.311 
')The new approach has recently also been proved useful for bounding derivation lengths of rewrite 

systems with slow growing functions (see WEIERMANN [ZO]) and for investigations on slow versus fast 
growing for proof-theoretic ordinals larger than the first subrecursive ordinal (see WEIERMANN [21]). 
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Section 4 we give some applications to E O  and other proof-theoretic ordinals. Moreover 
we reformulate the main result of Section 2 in a way which avoids any reference to 
fundamental sequences. 

1 Fundamental sequences and Hardy hierarchies 

Let w be the least infinite ordinal and let r be fixed such that (3r0 > O ) [ T  = ww .TO]. In 
the following a, P,  y, < range over ordinals less than r ,  and i, j, k, 1, rn, n over natural 
numbers (finite ordinals). The set of natural numbers is denoted by N and the set of 
limit ordinal less than T is denoted by Lim. 

D e f i n i t i o n .  Let . [ . I :  r x N - r  and N :  r -N. 
(1) . [ . ]  is called a system offundamental sequences or an assignment offundamental 

(Va,  n) [O[n] = 0 & (a + l)[n] = a & [a E Lim 3 a[.] < a[n + 11 < a] ] .  

Ho(n)  := n, and H,(n)  := H,[,](n + 1) for a > 0. 

sequences if 
(Bl)  

(2) The Hardy hierarchy for (7,. [ . ]  ) is defined by 

Now let . [ . ]  be an assignment of fundamental sequences. 
(3) (T, . [ . ]  ) is called a Bachmann system if 

(4) We say that . [ ' 1  is compatible with N and call (7,. [ .], N) a normed Bachmann 
(B2) Pa, P ,  .)[.[.I < P < a 3 4.1 5 P[OI]. 

033) (Va,  P,  .)[a[.] < P < a * N a b 1  < NP] , 
system if 

(B4) (Va E Lim) [Na 5 Na[O] + 11. 

(5) We call (r,  . [ . ] ,  N) a regular Bachmann system if (VP < a) [P 5 a [ N P ] ] .  
(6) N is called a norm on r if (Va, n)[card{P < a : N P  5 n} < w]. 

R e  m a r k s . In Lemma 3 we shall prove that sup{cr[n] : n E N} = a for Bachmann 
systems and limit ordinals a. Since we shall concentrate mainly on Bachmann systems 
in this article we do not demand this additional property in (Bl) .  Our definition 
of the Hardy hierarchy is a slight modification of the usual Hardy hierarchy which 
is defined by Ho(n)  := n, H,+l (n )  := H,(n + l),  and H,(n)  := H,[,](n) for limit 
ordinals a. Our choice has some technical advantages but our approach can be carried 
out in the same way also for the classical Hardy hierachy. Condition (B2) is the s e  
called Bachmann property (see SCHMIDT [12]). The usefulness of this condition in 
investigations on subrecursive hierarchies is discussed for example in ROSE [ll] .  The 
idea of considering normed systems of fundamental sequences is already contained 
in ZEMKE [22]. Compared with his definition our approach is more restrictive (see 
Lemma 1 below). The concept of a norm is contained in SMITH [13]. A slightly 
different concept of Bachmann system, namely the concept of a structured tree ordinal 
has been investigated in WAINER [18]. 

(a) ( r ,  . [ ' I )  is a Bachmann system, 
(b) N is a norm on r ,  
(c) (7,. [ .], N) is a regular Bachmann system. 

L e m m a  1. l f ( ~ , . [ . ] , N )  is a normed Bachmann system, then 
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P r o o f .  
(a). Let a[.] < P < ck and assume P[O] < a[.]. Then by (B l ) ,  (B3), (B4) we get 

(b). This follows by induction on a from 
N a [ n ]  < N P  5 NP[O] + 1 5 N a [ n ] .  Contradiction. 

(*) 
For a $! Lim (*) is trivial; if a E Lim, then by (B3) we have ( V n ) [ N a [ n ]  < N a [ n + l ] ] ,  
and therefore n 5 Na[n];  (€33) also yields (VP < a)"@ I Na[n] j P 5 a[n]] .  

(c). Let a E Lim. Then by (R3) we have (Vn)[n I Na[n]] ,  so, in particular, 
N P  5 N ck[NP]. The latter together with (B3) yields [ p  < a =+ /3 5 a [ N P ] ] .  0 

R e  m a r k  . Lemma l(c) yields that normed Bachmann systems are regulated in 
the sense of ZEMKE [22]. It can be shown that the conclusion of Lemma l(c) can be 
sharpened to  (VP < a )  [P  5 a [ N P  - ( N a  - I)]] .  

{ P  < a : N P  5 n} C {a 5 a[.] : N P  5 n}. 

In the following, we write a[Oli to  denote a [O] . . . [O] .  

L e m m a  2 .  Let ( r ,  [ ' I )  be a system offundamental sequences and let G : r - N 
(a) I f ( 7 ,  . [ ' 1 )  zs a Bachmann system, then ( r ,  . [ . I ,  C) is a normed Bachmann system 

(b) Zf(Va)[{,C : P[O] = a }  < w ] ,  then G i s  a norm. 

- 
i-times 

be defined b y  Ga := min{i : a[O]' = 0 ) .  Then we have: 

and ( V a ) [ { P  : P[O] 5 a < P }  < w ] .  

P r o o f .  
(a). If 4.1 < P < a ,  then a[n]  = ,8[0]' for some i > 0, and thus Ga[n] < GP. 

,Obviously Ga = Ga[O] + 1 for each a > 0. Thus ( r ,  . [ '1 ,  G) is a normed Bachmann 
system. By Lemma l(b)  G is a norm and therefore ( V a ) [ { p  : GP 5 Ga + 1) < w ] .  
Since (7,. [ .], C) is a normed Bachmann system, we also have { p  : p[O] 5 a < p }  C 

(b). Assume that there are a and d < w such that { p  < a : GP < d }  is infinite. 
Then X := {a < a : CP = k} is infinite for some minimal k < d .  Then k > 0, 
since P[O]' = /3 > 0,  if p > 0. Put  Y := {p[O] : p E X } .  The minimality of k yields 
that  Y is finite. So there is a y such that  y = p[O] for infinitely many p E X .  This 

For the remainder of this section let . [ . ]  : r x N  - r be fixed such that  ( r ,  . [ .], N )  
be the Hardy hierarchy for (7,. [ . I ) .  

L e m m a 3 .  

{ P :  GP 5 Ga + 1). 

contradicts the assumption. 0 

is a regular Bachmann system, and let 

(a) H u ( n )  < H u ( n  + 1). 
(b) P[m] < a < P =+ Hp[m](n) < H a ( n ) .  
(c) O < & m I n =+ H , [ m ] ( n  + 1) 5 H a ( n ) .  
(d) (VP < a)[NP 5 n * Hp(n + 1) I Ha(n)l .  
(e) a E Lim 3 a = sup{a[n] : n E N}. 
(f) H , ( n )  = min{k 2 n : a[n][n + 11..  . [k - 11 = 0} = min{k : a[n : k] = 0 } ,  with 

a[n : k ]  := a + (n - k), fork 5 n, and a[n : k + 11 := (a[. : k])[k], for k 2 n.  
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P r o o f  (compare the proof of CICHON [3, Theorem 21). 
(a) and (b) are proved simultaneously by induction on a: Let a > 0. Then 

H a ( n )  = Hu[n](n + 1) < Hutn](n + 2) < Hu[n+l](n + 2) = H a ( n  + I ) ,  
and if p[m] < a < p, then p[m] 5 a[.] < p and 

H ~ [ m ] ( n )  I H u ~ n l f n )  < Ha[nl(n + 1). 

(c) follows from (b). 
(d) is proved by induction on a: Let p < a and N P  5 n .  Then P 5 a [ N P ]  I a[.]. 

If p = a [ n ] ,  then H p ( n  + 1) = H , ( n ) .  If  /3 < a[n] ,  then [by I .H.  and (a)] H p ( n  + 1) < 
H p ( n  + 2) I Hatn] (n  + 1) = H a ( n ) .  

(e). Suppose /3 < a and (Vm)[a[m] < p ] .  Then by (b) we have 

(vm) [ ~ a [ m ] ( o )  < ~ a [ m + 1 1 ( 0 )  < ~ ~ ( 0 1 1  
Contradiction. 

( f ) .  Let m := min{k : a[n : k ]  = 0). Then m 2 n and, by definition, 

H,[,,,](i) = H,[ , : ,+ l ] ( i  + l),  for n 5 i < m. 

Hence H,(n) = H,[ , , , ] (n )  = H,[,,,](m) = Ho(m) = m. 
D e f i n i t i o n .  

0 

L e m m a  4. Assume  

(B5) Pa,  0) " F ( %  P )  * + P[.I 5 (a + ml] 1 

(B6) (Vm, n )  [wm . ( n  + 1)  5 [ n ] ] .  

Then we have: 

(4 NF(a,P) Ha(Hp(n)) I Ha+p(n). 
(b) (Hum)("+' ) ( ,  + 1)  5 H w m + * ( n ) .  
(c) For each primit ive  recursive function f there ecists m such that 

(V?) [ f ( ~ )  < ~ , m ( m a x { ~ ) ) ] .  

P r o o f  
(a). From (B5) it follows that H,+p(n) = Ho+,(n + 1) with P[n] 5 y < p. By 

(b). From (B6) it follows that H , m + l  ( n )  = H,m.(n+l)+7(n+l) for some y < wm+'.  

(c) follows from (a) and (b). 
D e f i n i t i o n . By PR' we denote the set of all primitive recursive functions which 

Lemma 3(a),(b) and I . H .  we obtain H,(Hp(n) )  5 H o ( H , ( n  + 1)) 5 H,+,(n + 1) .  

By (a) we have H,$?')(n + 1) I H w m . ( , + i ) ( n  + 1) 5 H,m. (n+ l )+r (n  + 1). 

are strictly increasing in each argument. 
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L e m m a 5. If N satisfies 

( N l )  (3hEPR')(Vn,al,. . . ,a,)[al 2 . . . 2 an 
3 max{n, Nu"', . . . , NwQn}5  N(wQ1 + . . . + 0%) 

5 h(max{n, N W " ' ,  . . . , NU"-})] I 

(N2) 

then there e t i s t s  a g E PR' such that (Val I)[N(w' . (a + 1)) 5 g(Na, I ) ] .  
P r o o f  . Let a = wU1 + . . . + w o k  + wml + . . . w m n I  where a1 2 . . . 2 Q k  2 w and 

w > rnl 2 . . . 2 m,. Then w' . (a + 1) = wQ1 + - - . + w o k  + W ' + ~ I  + .  1 . w ' + ~ -  + w ' .  
Thus 

(3hEPR*)(Vm)[rn < Num 5 h(m)], 

N(w' . (a + 1)) 
5 h(max{ k + n + 1 , Nw"' , . . . , NwUk , Nw'+'"l , . . . , N W ' + ~ .  I N w ' } )  
5 h(max{k + n + 1, Nw"', .  . . , Nw"', h(I+ ml), . . . , h( l+  m,,),h(I)}) 
5 h ( h ( l +  Na + 1)). 0 

2 Descent functions and Hardy hierarchies 

D e f i n i t i o n . By R(7, N) we denote the set of all functions f : M" - M with 

f(Z) = min{k : 6(Z, k + 1) y! 6(Zl k)}, 
where 6 : N"+l - 7 such that 

(3a)(VZEWn)[6(Z, 0) 5 a] and (3q E PR*)(Vz', k ) [ N 6 ( 1 ,  k) 5 q(Z, k)]. 
D e f i n i t i o n .  I f F i s a s e t  offunctionsf:M-M, thenCI(F) i s  theset o f d l  

The proof of the following Theorem has been extracted from WAINER [16]. 
T h e o r e m  1. r f ( ~ , . [ . ] , N )  i s  a normed Bachmann system safisfying (B5), (B6), 

( N l ) ,  (N2),  then R(7, N )  
P r o o f .  Let 6 : W2 - 7 ,  a < 7, g E PR' such that (Vn)[b(n,O) 5 a] and 

(Vn,k)[Nb(n,k) 5 g(n,k)]. (This case can be assumed without loss of generality.) 
By Lemma 5 we may assume that also N(w'.(<+l)) 5 g ( N ( ,  I) for all(, 1 .  By Lemma 
4(c) there is an rn 2 1 such that 

functions g : Mn - M such that (3f E F)(VZ) [g(Z) 5 f(max{Z})]. 

Cl({H, : a < T}). 

g(g(n, k. + Z), 1 )  < HUm(max{l, n, k}), for all I, k, n. 
Abbreviations: a ( n ,  k) := wm . b(n, k) and f(n, k) := g(g(n, k + I), m). 
Then we have 

(1) 

and 

(1') 

N(a(n, k + 1) + urn) = N(wm . (6(n, k + 1) + 1)) 
- < g(Nb(n, k + l), rn) L g(g(n, k + 11, m) = f(n1 k)l 

a ( n ,  0) 5 wm . a and N a ( n ,  0) 5 f(n, 0 ) ,  

(2) f(n,  k + 1) < KP(m={m, n, k}). 
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0 

From (2) we get 

(3) f(n, k + 1 )  < Hwm(f(n, k)). 

(4) a(n, k + 1) < 6(n, k) * Ha(n ,k+ l ) ( f (n ,  k + 1 ) )  < Ha(n,t)(f(n, k)). 

3(a),(d), 

Now we are going to prove 

Indeed: The premise yields a(n,  k + 1) + wm 5 a(n,  k )  and thus, by (1) and Lemma 

Ha(n,k+l)+wm(f(nr k)) I Ha(n,k)(f(n, k)). 
By (3), Lemma 3(a) and Lemma 4(a) we get 

Ha(n,k+l)(f(n, k + 1 ) )  < Ha(n,k+l)Hwm(f(n, k)) I Ha(n,k+l>+wm(f(n, k)). 
This proves (4). 

From (4) it follows that 

min{k : 6(n, k + 1 )  f a(n, k)} I Ha(n,o)(f(n, 0)). 
By ( 1 ' ) ,  (2), Lemma 4(a) we obtain 

Ha(n,o)(f(n, 0)) I f L . a ( f ( n ,  0)) 
I Hwm.(,+l)(m={m, .I) 
5 Hwm,(a+l)+m(n). 

L e m m a  6. I f there  i s  an h E PR* such that 

(Va)"(a + 1) I h ( N a ) l  and (YO, n)"(a[nl) I h(m={NQ, n } ) l ,  
then {Ha : a < r }  c R(r, N )  and (Vn, k ) [ N 6 ( n ,  k )  5 h ( n + k ) ( N ~ ) ] .  

P r o o f .  By Lemma 3(f) we have H,(n) = min{k : ( ~ [ n  : k + 11 f a[n : k]} with 
a[n : k] := Q + (n - k), for k 5 n, 

and 
a[n : k + 11 := (a[. : k ] ) [ k ] ,  for k 2 n. 

(Vn)[a[n : 01 < Q + w ]  and (Vn, k ) [ N a [ n  : k] 5 h("+') (Na)] .  
The premises of Lemma 6 yield 

Hence H ,  E R(r,  N ) .  0 
R e  m a r k  . Theorem 1 and Lemma 6 provide useful criteria for comparing the 

growth rates of Hardy hierarchies belonging to different normed Bachmann sys- 
tems. Suppose that (r, [ . I ,  N) and (7,. [ . ] I ,  N') satisfy the assumptions of Theo- 
rem 1 and Lemma 6 ,  respectively, and that there is a function q E PR* such that 
(Va < ~ ) ( N Q  I q ( N ' a ) ) .  Then { H L  : a < r }  Cl({H, : (Y < r }  holds for the 
respective Hardy hierarchies. 

D e f i n i t i o n . Let (d, 4) be a primitive recursive well-order (A C_ M, +c M x M) of 
order type r ,  and let ord : W - r and (.)* : r - A, such that (VQ E r)[ord(a*) = a] 
and (Va, b E d)[b 4 a e ord(b) < ord(a)]. Let R(A, 4) be the set of all functions 
f : M" - W, with f(Z) = min{k : O(I,k + 1) + Q ( Z , k ) } ,  where 0 : W"+l - A 
is primitive recursive and (3a E d)(Vt')[Q(I,O) 1' a]. For each set X of functions 
f : M" - W let PR[X] be the set of all functions which are primitive recursive in X. 
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T h e o r e m  2. Let (T, . [ .I) be a Bachmann system and assume 

(1) (7, .  [ . I )  satisfies (B5), (B6), 

( 3 )  N := XQ.Q* satisfies (Nl),  (N2). 
(2) (3 E PR*)(VQ,P)[(P < Q * P I .[q(al)l], 

Then 4) G U a C s  PR[Ha]. 
P r o o f .  Let N'Q := q(a*), with q from assumption (2). Obviously N' also 

satisfies (Nl),  (N2). So ( T ,  . [ .], N')  is a regular Bachmann system satisfying (B5), 
(B6), (Nl) ,  (N2), and therefore, by Theorem 1, R(T, N ' )  

Now let f(z) = min{k : O ( z , k  + 1) + O(z,k)}. We set 6 ( z , k )  := ord(Q(z,k)). 
Then f(z) = min{k : 6 ( z , k  + 1) # 6 ( z , k ) }  and N ' 6 ( z , k )  = q ( O ( z , k ) ) .  Hence 
f E R(T,N') C CI({H, : a < T}) and therefore (Vz)(f(z) 5 H,(z)) for some a < T. 
It follows f(z) = min{k 5 H, ( z )  : Q(z, k + 1) 7(: O(z, k)} and thus f E PR[H,]. 0 

Cl({Ha : Q < T}). 

T h e o r e m  3. Let (T, . [ . I )  be a Bachmann system satisfying 

035') (VQ,P, n"F(a,P) * a + P[nI = (Q + P"11, 
(B6') 

(+) 

Then W, 4 G R(T, G) E Ua<r PR[H,]. 

(Vm, n)[um . (n + 1) = (w"+')[n]], 

(3q E PR*)(Va)[Ga := min{i : a[O]' = 0) 5 q(a*)]. 

P r o o f .  By (B5') we have ( N F ( a , P )  j G ( Q + ~ )  = Ga+GP),  and (BS') yields 
Gwm+' = GW" + 1, hence Gwm = m + 1. It  follows that G satisfies (Nl), (N2). 
Hence, by Lemma 2, (T, . [ '1, G) is a regular Bachmann system, and from Theorem 1 
we obtain R ( r , G )  C CI{H, : Q < T}. 

Now let f(z) = min{k : O ( z , k  + 1) + O ( z , k ) } .  We set 6 ( z , k )  := ord(8(z,k)) .  
Then f(z) = min{k : 6(z, k + 1) # b(z, k)} and Gb(z,  k) 5 q ( 6 ( 2 ,  k)*) = q(e(z, k)), 

R e  m a r  k . The conditions of the last theorem are satisfied by the standard coding 
( E ,  +) of EO and the standard system of fundamental sequences . [ .I,. 

L e m m a  7. If (T, . [ . I )  is  a Bachmann system such that the function s(a,n)  := 
(ord(a)[n])* is primitive recursive, then { H a  : a < T} C PR[R(d, +)I. 

P r o o f .  Let Q < T and a := a*. From Lemma 3(f) it follows that 

i.e. f E R(T,G). 0 

H,(n) = n + min{k : O(n, k + 1) + 0 ( n ,  k)} 
with Q(n, 0) := a, Q(n, k + 1) := s(O(n, k), n + k). 0 

3 Cichon's fundamenta l  sequences and normed Bachmann sys tems 

In this section we relate (a slightly generalized version of) CICHON'S definition 
a [ n ] ~  := ma.{@ < Q : N P  5 Na + n} to the concept of a normed Bachmann 
system and its corresponding Hardy hierarchy. Actually in Theorem 4 and Theorem 
5 we show that under certain rather weak assumptions both approaches are inter- 
changeable. 
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T h e o r e m  4.  Let N : r - N be a n o r m  on r with 

(Va)[NO 5 Na]  and ( V a ) [ N ( a  + 1) 5 N a  + 11, 

and let p : r - N with ( V a ) [ N a  5 p ( a ) + l  5 p(a+1)] .  W e  define . [ . I  : r x N  - T 

b y  

O[n] := 0 and 4.1 := max{P < a : N B  5 p ( a  + n)}, f o r  a > 0 .  

Let be the Hardy hierarchy belonging t o  . [ . I .  Then  

(a) (7,. [ . I ,  N )  is a normed Bachrnann sys t em.  
(b) p(X + n) = NX[n], f o r  X E Lim. 
(c)  H,(n) = max{Hp(n + 1) : P < a& N P  5 p ( a  + n ) } ,  f o r  a > 0. 

P r o o f .  
(b). Let X E Lim. Then X[n] < X and NX[n] 5 p(X + n), and thus 

NX[n]  # p(X + n) * 4.1 + 1 < A &  N(X[n] + 1) 5 p(X + n). 
By maximality of X[n] the latter yields NX[n] = p(X + n). 

(a). For a = a0 + 1 we have a[n] = max{P 5 a0 : N P  5 p ( a 0  + n + 1)) = ( Y O ,  

since N o 0  5 p ( a 0  + n + 1). Now let a E Lim. Then 
(Bl):  N(a[n] + 1) = Na[n] + 1 5 p ( a +  n)+ 1 5 p(a+n+ 1) + a[n]+ 1 5 a[n+ 11. 
(B3): a[n] < P < a 3 Na[n]  = p ( a  + n) < N P .  
(B4): N a  5 p ( a )  + 1 = Na[O] + 1. 

(c). By definition we have Na[n] 5 p ( a  + n). Hence 

H,(n) = Ha[n](n + I )  5 max{Hp(n + 1)  : P < Q & N P  5 p ( ~  + n)}. 
For the reverse direction we prove by induction on a: 

P < a & NP 5 p ( a  + n) 3 Hp(n + 1) 5 H,(n). 

Indeed: From the premise we get H,(n) = H,[,](n + 1) and /3 5 a[n]. If /3 = 4.1 
then Hg(n + 1) = H,(n). Now let /3 < a[n]. Using (a0 + l)[n] = a0 and (b) one 
easily verifies that p ( a  + n) 5 p(a[n] + n + 1) .  From N P  5 p ( a  + n) 5 p ( a [ n ]  + n + 1)  

0 

Now we show that the roles of p and . [ ' 1  in the last theorem can be reversed in 

T h e o r e m  5 .  Let ( . , . [ . ] ,N)  be a normed Bachmann sys t em wi th  

by I . H .  one obtains H p ( n  + 1) < HB(n + 2) 5 H,[,](n + 1) = Ha(.). 

some sense. 

(Va)[NO 5 N a ]  and (Va)[N(a + 1) 5 Na + 11, 

and let be the corresponding Hardy hierarchy. W e  define p : r - M by 

p ( n )  := N ( n )  and p(X + n) := NX[n], for X E Lim. 

Then  the following holds for all a: 

(a) N a  5 p ( a )  + 1 5 p ( a  + 1). 
(b) a[.] = max{P < a : N P  5 p ( a  + n)}, for a > 0. 
(c) H,(n)  = max{Hp(n + 1) : /3 < a& N P  5 p ( a  + n)}, for  a > 0. 
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P r o o f .  
(a). Let a = X + n with X E Lim. Then Na = NX + n 5 NX[O] + n + 1 5 

(b). If a = p + 1, then a[.] = p, N/3 5 p ( p  + 1) 5 p ( a  + n). If a E Lim, then 

0 

T h e o r e m  6. There ecists N : T - M such that NO = 0, N ( a  + 1) = Na + 1 
P r o o f .  Let N’ : T n Lim -+ W be an arbitrary injective function and put 

0 

This last theorem yields for example that for every countable ordinal T there is an 
assignment of fundamental sequences which has the Bachmann property (B2). The 
standard proof of this fact given in ROSE [ll] is based on a non immediate transfinite 
recursion! 

NX[n] + 1 = p ( a )  + 1 5 NX[n + 11 = p ( a  + 1). 
N a [ n ]  = p ( a  + n) and (Vp < a ) ( N B  5 N a [ n ]  * p 5 a[.]). 

(c). This follows from (a), (b) and Theorem 4. 

and (Vd E Pi)[{@ < a : N p  5 d} < w]. 

N ( a  + n) := ”(a) + n for a E Lim. 

4 Applications 

In a first step we concentrate on the ordinal EO := min{( : ( = d}, the proof- 
theoretic ordinal of PA. We assume a standard coding ( E , + )  of EO in the natural 
numbers (see, for example, ROSE [ll] for a definition) such that especially E and +& 

are primitive recursive. The standard system of fundamental sequences . [ . ]  is given 
by the following definition. 

(wo . ( p  + 1))[2] := w Q  . p + wu[zl if a is a limit 

and 

(wQ . ( p  + 1))[2] := w o  . /3 + woo . (z + 1) if a = a0 + 1. 
Let be the corresponding Hardy hierarchy. One easily verifies that ( E O ,  . [.I) 
is a Bachmann system. 

Let G : 60 - W, where G(a)  := min{k : a[0Ik = 0). Then ( E O , . [ . ] , G )  is a 
normed Bachmann system (cf. Lemma 2). Moreover the “axioms” (B5), (B6) are 
satisfied, and 

(Va, /? > O)[max{Ga, GP} < G(a#P) = Ca + GP] and (Vrn)[Gwm = rn + 11. 
Hence by Theorem 1 

(1) ‘R(T,G) s C1({Ho : Q < T } ) .  

Now let N : EO - M be a norm with NO = 0 and (Va)[N(a + 1) = NQ + 11. Let 
q E PR* and p := q o N .  Let H t B P ( n )  := n and 

~ ,N ,p (n )  := max{H?P(n + 1) : p < a t,c N P  5 p ( a  + n)}, for a > 0. 

Then by Lemma 6 and Theorem 4 we have 

(2) { H p  : a < E O }  R(7, N ) .  

From (1) and (2) we get 

(3) (3qEPR*)(Va)[Ga 5 q ( N a )  + {Ha”’ : < E O }  s CI({Ho : (Y < .}I. 
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Now put p ( n )  := N ( n )  and p(X + n) := N(X[n]). A transfinite induction with the use 
of Theorem 4 and 5 yields H,(n)  = HFiP. So the classical Hardy hierarchy appears 
as a special case of our approach. We arrive at the following classical result: 

C o r o l l a r y .  I f t h e  Hardyfunctions are defined with respect t o  (EO,.[.]), then 

Now we look at three concrete examples of norms 
The first norm, N1 is given by the depth or rank of the ordinal term when the 

ordinals less than EO are represented by the “constant” 0 and the binary function 
Jell. wc + 7. More precisely, let N10 := 0 and N l a  := max{Nlal, Nlaz} + 1 if 
a = wal + a2 > Q1, a2. 

The second norm (see CICHON [5]) is given by the depth of the ordinal term 
when the ordinals less than EO are represented by 0, and the varyadic function 

. . .Em .wcl +. . .+wcm. Let NzO := 0 and Nza  := max{l+N2al, .  . . , l+N~a,, m} 
if a = wQ’ + . . . + w”” > a1 2 . . . >  a,. 

Finally we consider a norm which is given by the number of symbols (except 0 
and +) which occur in an ordinal term (see WEIERMANN [19]). Let N3(O) := 0 and 
N3a := 1 + N301+ . . . +  1 +N3am if o = w a l +  . . .+warn > a1 2 . . . 2  a,. (It can 
be seen easily that N3 equals the function G from the discussion above.) 

: N i p  5 p i ( & +  71)). 
Then for i = 1,2,3 the “axioms” (Nl), and (N2)z are satisfied for h and N i .  More- 
over the axioms (B5)i and (B6)i are satisfied for . [ .], and i E { l, 2,3}. Therefore, 
{Ht’ipt : a < E O }  C R ( E o , N ~ )  C C1({H$ipl : a < E O } ) .  Furthermore, the systems 
( E O ,  . [ ‘ I , ,  N , )  are normed Bachmann systems. (In WEIERMANN [19] i t  is shown that 
every provably total function of PA is bounded by H 2 1 p 3  for some CY < E O . )  

Let h ( z )  := p ,  := h o N i  and a[.], := max{P < 

C o r o l l a r y .  I f i  E {1,2,3}, then 

U{PR[{H,”9p’}] : < E O }  PR[R(E, +)I. 

Now we turn to a strong generalization of this example. 
Let 7 ( M )  and < s  7 ( M )  x 7 ( M )  be defined as in RATHJEN [lo]. This ordinal 

notation system is characteristic for the theory KPM formalizing a recursively Mahlo 
universe. Let (M, +..I) be a standard coding of ( 7 ( M ) ,  <) in the natural numbers. 
Define N : 7 ( M )  - w as follows: 

1. NO, 
2. NM := 1, 
3. N e(a1 , .  . . ,a,) := N a l  + . ’ .  + N a n ,  
4. N P  := N a +  1, 
5. N p Y P  := 1 + N a  + N P ,  
6. N$KQ := 1 + NK + N a ,  
7. N Z a  := N a  + 1. 

Na+=+l For a E 7 ( M )  let a [ z ] ~  := max{p < a : N P  5 33 
corollary. 

}. Then we get the following 



284 Wilfried Buchholz, Adam Cichon and Andreas Weiermann 

C o r o l l a r y .  If the Hardy functions are defined with respect t o  (~(M),.[.]M), 
then 

Furthermore, for every function f : w - w which is provably total  i n  KPM there is  
an a E 7 ( M )  such that f(z) < H,(z) f o r  all 2 < w .  

We think that our method also applies t o  arbitrary so-called natural well-orderings. 
But since so far a precise definition of this notion has not been given we can only give 
the construction of fundamental sequences for notation systems which satisfy certain 
not too restrictive ‘haturalness”-assumptions. (These assumptions are satisfied by 
all notation systems used in proof-theory so far.) We assume that we are given an 
inductively defined primitive recursive set of terms T ,  where the underlying set of 
function symbols is finite, together with a primitive recursive well-ordering <T on 
T .  We assume furthermore, that  there is a zero-constant 0’ in T which denotes the 
<T-minimal element of T and that (among the function symbols in question) there 
is a binary function +* (respectively varyadic function +* such that the order type 
of t l  +* . . . +* t ,  with respect to  <T is the sum of the order types of 1 1 ,  . . . , t ,  with 
respect to  < T .  Then we define a norm N of an ordinal term t by taking the number of 
occurrences of the “on+”-function symbols and nonzero-constants which occur in T .  
As an assumption on T we additionally demand that N1’ = 1, where 1’ denotes the 
<T-successor of 0’. Then N satisfies the assumptions of Theorem 4, and therefore 
by using CICHON’S method for defining assignments of fundamental sequences we 
automatically obtain a normed Bachmann system (r,  . [ .], N ) .  

As shown in Theorems 4 and 5 the theory of Hardy hierarchies could as well be 
developed without any reference to  fundamental sequences (using instead the auxiliary 
functions p ) .  For the reader’s convenience we present one of our main results (namely 
the comparison between descent functions and the Hardy hierarchy) in a formulation 
which does not refer t o  fundamental sequences a t  all. 

T h e o r e m .  Let N : T - M be a n o r m  on  r with 

(1) (Va > O ) [ N a  > NO], 
( 2 )  N w m  = m +  1, 
(3) a ,  P > 0 + N ( a # P )  = N o  + N P .  

Let p : T - M such that 

(4) P(@) < P(a + 11, 
(5) N a  5 p ( a )  + 1 5 h ( N a ) ,  f o r  some  h E PR’, 
(6) N ( w m  . n) 5 p(wm+’ + n), 
(7) N F ( a , P )  + N a  + P(P)  I P(a + PI.  

Let Hflp (n )  := n and H z p ( n )  := max{H;lp(n + 1) : P < a &  N P  5 p ( a  + n)}, for  
a > 0. Then c~(‘R(T, N ) )  = c~({H,N+’ : a < r } ) .  

P r o o f .  Let 

O[n] := 0 and a[.] := max{P < a : N P  5 p ( a  + n)}, for a > 0. 
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By Theorem 4 (7,. [ . I ,  N )  is a normed Bachmann system and ( H f J ' ) c r < z  is the corre- 
sponding Hardy hierarchy. By definition and ( 2 ) ,  (3), ( 5 )  we have N a [ n ]  5 p ( a + n )  5 
h ( N a  + n). Therefore, Lemma 6 yields ( H a  : a < r }  R(r, N ) .  According to  The- 
orem 1 it remains to verify (B5) , (B6), ( N l ) ,  ( N 2 ) .  

( N l )  follows from ( 3 )  and (1). 
( N 2 )  follows from ( 2 ) .  
(B6) follows from (6). 
(B5) follows from (7). [ N ( a + P [ n ] )  = N a + N ( P [ n ] )  5 Na+p(P+n)  5 p ( a + P + n ) . ]  
R e m a r k .  ( 4 )  - (7) are satisfied if for example p ( a )  := f ( 2 N a )  with f E PR'. 

ad (6): N(wm . n) = (Num) .  n < 2N" m+l t n  < f (2N(""+' tn) )  = p(um+' + .). 
ad (7): N a  + p ( P )  = N a  + f ( 2  N P  ) < - f(2Na+>P) = p ( a  + p). 

Finally assume additionally that the norm N is primitive recursive and that the 
computation of max{s <T t : N s  5 p ( t + *  n)} (with respect to  <T) can be done prim- 
itive recursively in the arguments t and n. (These assumptions are also satisfied by 
all notation systems used in proof-theory so far.) Then the system ( (T ,  <T), . [ . I ,  N )  
is p.r.-regulated in the sense of ZEMKE [22] .  Therefore, as an immediate corollary 
of the main theorem of [22] we obtain the hierarchy equivalence property for these 
ordinal notation systems! 
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