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It is one of Kurt  Schiitte's great merits to have established cut-elimination on 
infinitary derivations as a powerful and elegant tool for proof-theoretic investi- 
gations. Compared to the Gentzen-Takeuti approach where ordinals are assigned 
to finite derivations in a rather cryptic way, the use of infinitary derivations 
together with the canonical assignment of ordinals as lengths of derivations 
provides a very perspicious and conceptually clear-cut method which has proved 
successful even with respect to the strongest systems analyzed till now. But on the 
other side something is lost when passing from finite to (unrestricted) infinite 
derivations, in so far as along these lines one only obtains information on the 
provable/-/~-sentences of a formal theory, while Gentzen's method - if successfully 
applied - yields stronger results, e.g. bounds for provable//~ (provably 
recursive functions) or the unprovability of primitive recursive wellfoundedness 
PRWO.  Of course, as pointed out by Kreisel [7] such stronger results can be 
recaptured by arithmetizing the cut-elimination procedure for (primitive) recur- 
sively represented infinite derivations via the (Primitive) Recursion Theorem (cf. 
Schwichtenberg [15], Girard [5]). But this requires a lot of cumbersome and 
boring coding machinery which on the other side is not completely trivial, and it 
seems to me that all presentations of this subject in the existing literature are more 
or less unsatisfactory. 

Our purpose here is to provide a technically smooth method for the finitary 
treatment of infinite derivations in ~-arithmetic Zoo, where we don't need 
numerical codes but instead are working with natural notations for infinite 
derivations. These notations are finite terms generated from finite derivations 
(considered as constants) by certain function symbols Ik, a, Rc, E corresponding to 
the operations Jk, A : Zoo ~Zoo, ~ c  : Zoo x Zoo ~Zoo, 6 ~ : Z oo ~Zoo which make up the 
cut-elimination procedure for Z ~ developed by Schtitte [12] and Minc [10]. 
(Minc' contribution was to modify Schiitte's cut-elimination procedure by 
incorporating the so-called repetition-rule, which is crucial for the subsequent 
work.) 
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In order to demonstrate the working of our method we will prove two 
wellknown results of classical proof theory for the system Z + TI.<r O.e. Peano- 
Arithmetic together with the scheme of transfinite induction along any proper 
segment of some prim. rec. wellordering ~(). These results are 

(I) If Z+ TI.<t~-Vx3yR(x,y ) (R~Z ~ then there are prim. rec. functions g, 
0 :N2--,N, such that min{m :R(n, m)} = g(n, min{k:o(n, k + 1)d(o(n, k)}), for all 
n~N. 

(II) PRA~PRWO(-<)~II~ (Z + TI.<t ). 
Of course in the proof of(I) and (II) we cannot completely dispense with coding. 

But we only need the comparatively trivial coding of syntactic objects (such as 
formulas, sequents, finite derivations, etc.) and even this plays a rather marginal 
rrle, while the central part of our proof is coding-free. 

Content 

Section 1 contains besides some preliminary definitions and abbreviations a 
precise definition of the set Z.< of all (Z+ TI.~r)-derivations. In Sect. 2 we 
introduce the set Z ~ of derivations of og-arithmetic and define the Schfitte-Minc 
operator 8:  Zoo ~Zoo by transfinite recursion on wellfounded trees. The effect of 8 
is to lower the cutrank deg(~o) of each ~o ~ Zoo (with 0 < deg(~o)< co) at least by 1. In 
[10] g is denoted ~1. In fact the material of this section is not necessary for the 
proof of (I), (II) above; it only serves as a semantical basis for the syntactic 
definitions of Sect. 3. In Sect. 3 we define the notation system Z~ which contains 
notations for all ~o~Zoo arising from finite derivations d~Z.< via embedding 
oo :Z.< ~Zoo and subsequent cut-elimination in Zoo. The main point is that (by a 
simple recursion on the built up of terms) from every notation h e Z~ one can 
compute the endsequent of v(h) (the Z~ denoted by h) and notations 
%h, ~ lh .... for the immediate subderivations of v(h). In Sect. 4 we prove (I) and (II) 
using the work of Sect. 3. In Sect. 5 we generalize the approach of Sect. 3 and 
introduce the notion of an arbitrary notation system for o~-derivations. This is then 
used in Sect. 6 to give an alternative description of Minc's continuous cut- 
elimination operator 8' for arbitrary (not necessarily wellfounded) proof-figures of 
og-arithmetic. In fact 8' is an extension of 8. 

Remarks 

1. We want to emphasize that the present paper has profited considerably by 
previous presentations of the subject by Girard [5], Minc [10], Schwichtenberg 
[15]. In some sense it may be considered as a supplement to those; but nevertheless 
it is completely selfcontained. 

2. The idea of using terms (built up from constants and function symbols with 
a welldefined semantical meaning) as notations for infinite derivations is nothing 
more than a slight (and rather obvious) generalization of Schiitte's approach to 
systems of ordinal notations as presented in Chap. V of his "Proof Theory" [14]. 

3. We are indebted to G. Minc, W. Pohlers, and W. Sieg for substantial 
comments on an earlier version of this paper. 
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1 The formal system Z< 

Preliminaries 

1.1 Syntax 

In the following L denotes a fixed W-order language consisting of the following 
symbols: a constant 0 (zero), a unary function constant ' (successor), and some 
predicate symbols. We distinguish two sorts of individual variables, free variables 
(denoted by u, v) and bound variables (denoted by x, y). The closed L-terms, O, 0', 
0", ... are called numerals; we identify numerals and natural numbers and denote 
them by i,j ,  k, m, n. An expression of the shape pt~.. . t ,  or ",~ptl...t,, where p is a 
n-ary predicate symbol of L and tl . . . .  , t, are arbitrary L-terms, is called a prime 
formula. Formulas are built up from prime formulas by means of ^ ,  v ,  Vx, qx. The 
negation ---1A of a formula A is defined by 

-apt: -- ,,~ pt, ~ (,,~pt): =p t ,  ~ ( A ~ B ) : = ( - I A ) V ( - I B ) ,  

~xF(x): = Ix -7  F(x) . 

The length f(A) of a formula ,4 is defined by 

d(p~): ---- d(,-, p~): = 0 ,  f(A ^ B): =d(A v B): = max{f(A), f(B)} + 1, 

r = r = r + 1. 

Note that r A)= r and r r 
In the whole paper we are working with Tait's sequent calculus (cf. [17]), where 

sequents are finite sets of formulas denoted by F, A . . . . .  The intended meaning of a 
sequent {A1,...,`4k} is the disjunction A l v . . . v . 4  k. We use the following 
syntactical variables: .4, B, C for formulas, F for 1-place nominal forms (in the sense 
of Schfitte [14]), F, A for sequents, t for L-terms. If O is a term, formula, nominal 
form or squent then FV(O) denotes the set of all free variables occurring in O. O is 
called closed iff FV(O) = O. 

1.2 Assumptions 

(i) We choose a standard G6del-numbering O~--~ro 7 of all syntactic objects 
(formulas, sequents, finite derivations, etc.) occurring in the paper. A. set 3E of 
syntactic objects is called primitive recursive if the set {tO1; O~3s has this 
property. An analogous agreement is made with respect to functions. 

(ii) For each n-ary predicate symbol p ~ L we choose some fixed primitive 
recursive relation p__C N". The set of all closed prime formulas which are true under 
this interpretation is denoted by TRUE,  i.e. 

TRUE:  = {pkl . . .k ,  : p ~ L and (kl . . . . .  k,) ~ p} 

w { , , , p k ~ . . . k , : p ~ L  and (kl. . .k,)~p}. 

We assume that T R U E  is primitive recursive. 
(iii) We assume that L contains some distinguished binary predicate symbol Po 

such that Po is a wellordering of its field ~ .  In the following we always write ~ for 
P0. Moreover we assume that there are primitive recursive functions ~ : N  2 ~ N ,  
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o x p : N ~ N  satisfying the following conditions: 
(<  1) exp(0)= 1; and 0, 1 are the first two elements of (M, < )  
(<2) Va, b ~ t ( a ~ ) b ~ C  & e x p ( a ) ~ C  & a ~ O = O ~ a = O )  
(<3) Va, b, c ~ dcC(b < a ~ c ~ b  < c ~ a  & exp(b)<exp(a)) 
(<4) Va, b, c e ~r c<exp(a) =~ b@c<exp(a)). 

1.3 Abbreviations 

m~n:r not m<n 
s<t:=-post 
A~B:==_-aA v B. 
erog <(F): - Vx(Vy(y < x ~ F(y)) ~ F(x)). 
F, A:= r u A : =  r u  {A}; r \ A : =  F\{A}. 
FOR:= set of all L-formulas 
SEQ: = set of all sequents. 
/A -FOR:={A~FOR:  A is of shape Ao AA1 or VxF(x)}. 
W-FOR:= {A ~ FOR: A is of shape A o v A1 or 3xF(x)} = {--7 B: B ~ ~ - F O R } .  

For A ~ /~ -FORu W -FOR we set 

[ F(n), if A-gxF(x) 
A[n]:= ~A1, if A=Ao~A1 and n = l  

LAo, if A=Ao~A1 and n + l  

Wo-FOR: = W -FORu{--aA: A ~ TRUE} 

N<~: = {<no . . . .  , nk- 1> :k, no,..., n k_ 1 6N}; 

<too ..... me_l> * <no, . . . ,nk- x > := <mo . . . .  ,me-l ,  no . . . .  ,nk- l >. 

< >: = empty sequence. 

e - l ,  if O<~<co 
a- ' l := ~, if a~{0, o9}" 

1.4 The formal system Z +  TI.<t 

Z +  TI< t is the extension of classical arithmetic Z (formulated in L) by the axioms 
of transfinite induction along every proper initial segment of (d ,  <). 

The axioms of Z+ TI.<t (in sequent form) are: 
(i) Basic axioms: 

a) Logical axioms: {--aA, A}, for every prime formula A. 
b) Arithmetical axioms: Peano-axioms for 0 and ', defining axioms for 

primitive recursive relations (in sequent form). [It is not necessary to display these 
axioms in detail; we only need to know that they are closed under substitution of 
L-terms, and that F n  TRUE ~=0 for each closed arithmetical axiom F.] 

(ii) Complete Induction: {--1F(0), -a Vx(F(x) ~F(x')), VxF(x)}, for each F. 
(iii) Transfinite Induction: {--aProg.<(F), Vx-<mF(x)}, for each F and each 

m s d .  
The inference rules of Z +  TI<r are: 

F, Ao F, A1 F, F(v) 
(A) , (V) with vCFV(F,F) ,  

F, Ao A A1 F, VxF(x) 

F , A  i F,F(t) F , A  F,--aA 
( v )  F, A o v A t '  (3) F, 3xF(x)' (Cut) F 
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Usually one defines the derivations of a system like Z + TI<I as finite trees of 
sequents built up from axioms by the inference rules ( ̂  ), ( v ), (V), (3), (Cut). But for 
the purpose of this paper we need a somewhat sharper notion of derivation, where 
at each node tr of the tree also some special instance r of the above rules is specified 
by which the sequent F at node a can be derived from its premises ...F~ .. . .  
Moreover we require that every free varible v occurring in some premise of an 
inference r has to occur also in the conclusion, except r is an instance of(V) and v is 
its eigenvariable. Further we deviate a little bit from common practice in so far as 

we consider "" .F~...(n < z) as shorthand for 
F 

"If, for each n < z, d, is a derivation with endsequent End(d,)____ F~, then 
�9 

d:= \1/  is a derivation with End(d)=F." 
F 

while usually one requires End(d,)= ~. 
Now we are going to give the "official" definition of the set Z.<I of all 

(Z+TI<t)-derivations. The elements of Z.< will be finite trees of pairs (r,F) 
represented in linear notation, i.e. every d ~ Z< is of the form (r, F, (di)i < ~) with 
End(d): = F ~ SEQ, z < 2 and d i ~ Z.<. When writing down the defining rules for Z.< 
we use the following abbreviation: 

dl~-F : c~'d ~ Z ~ & End(d) C=F. 

1.4.1 Inductive definition of the set Z< 
(Z.1) For  every basic Axiom F: (Ax, F, 0 ) e Z <  
(Z.2) For  each nominal form F: ((Ind, F), {~F(0),  ~Vx(F(x)~F(x')), 
VxF(x)}, O) e Z.< 
(Z.3) For  each nominal form F and m e a t :  ((TI,F,m), {-qProg<(F), 
Vx~(mf(x)}, O) ~ Z< 
(Z.4) A o A A 1 ~F &dil~-FuAi(i=O , 1) ~ (( /~ ,A  o/x A1) , F, (do, d1) ) ~Z< 
(Z.5) A o v A  1 ~ F & dol~--FUAk(k = 0 or 1) ~ (( Wk, A o v A1), F, do) ~ Z< 
(Z.6) VxF(x) ~ F & dol~-FuF(v) with v ~ FV(F) =~ ((v, VxF(x)), F, do) ~ Z< 
(Z.7) 3xf(x) ~ F & dolt-F~F(t) with FV(t) c= FV(F) ~ ((Wt, 3xF(x)), F, do) ~ Z.~ 
(Z.8) do I~-ruA & dll~Fu--7 A with FV(A) c_ FV(F) =~ ((Cut, A), F, (do, dl)) ~ Z< 

1.4.2 Definition of the cut-rank deg(d)~]N for d~Z<. Let d =  (r, F, (di)i<~) ~Z.<. 

deg(d): = max({deg(d,):i < z} u {Cc(r)}), 
where 

~ f ( A ) + l ,  if r= (Cut ,  A) 
~c(r): = (0 ,  otherwise 

2 The system Z ~ and the cut-elimination operator 

Combining work of Schiitte [13], Tait [17], and Mine [10] we shall now describe 
the system Z ~ of wellfounded infinitary derivations (of og-arithmetic), and the 
operator  8 transforming each Z~ with finite cut-rank m into a 
derivation of the same sequent but with cut-rank < m-" 1. Informally Zoo is defined 
as the set of all wellfounded trees (derivations) generated from initial sequents F 
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with F n T R U E 4 : 0  by the rules (^) ,  (v),  (Cut), (3) [with witness t e N ]  and 

F (V)o o . . .F, F(n). . .(n ~ N)  (co-rule) (Rep) ~- (repetition-rule). 
F, VxF(x) 

But as in 1.4 we will consider a modified notion of derivation, where to each 
node is assigned a pair (r, F) with F e SEQ and r an expression indicating some 
special instance of the above inference rules. The set of all these expressions will be 
called R U L E .  Then the inference rules can be written as local correctness conditions 
(LC.1),...,(LC.5) between a pair ( r , F ) ~ R U L E  x SEQ and a family (F,)n~, of 
sequents (the premises of F); and Z~ is defined as the set of all wellfounded (R ULE  
x SEQ)-trees which are locally correct with respect to (LC1) .. . . .  (LC.5). 

2.1 Definition 
R U L E :  = {Ax} u {( ?A, A): A ~ / ~  -FOR} •{( W k, A): k e N, A ~ W -FOR} 

u{Rop, :  n e]N}u{(Cut, A): A e F O R } .  

For r e R U L E  we use the following abbreviations 
(r, r )  e Ax :r = Ax, 
r ~ Cut :o.~llA[r = (Cut, A)], r ~ Rep :o71ln[r = R o p J ,  

~fc(A)+l ,  if r=(Cut ,  A) 
t~c(r): = (0 ,  otherwise 

2.2 Definition. LC((r, r), (F,),~) abbreviates the conjunction of (LC.I), ..., (LC.5) 
below: 
(LC.1) r = A x  ~ F n T R U E 4 : 0  
(LC.2) r = ( /~ ,  A) ~ A e F & Vn(I', c= r w A [ n ] )  
(LC.3) r=(Wk, A) ~ Aer&roCrwA[k] 
(LC.4) r=(Cut ,  A ) ~  Fo C=FwA &F~ C=Fw-qA 
(LC.5) r = Rep, =~ F,____ r .  

2.3 Definitions 
a) Let T R E E  be the set of all functions ~p: ]N<~'-~RULE • SEQ satisfying the 

condition 
Va ~ N < ~ e NEq~(a) ~ Ax =~ q~(a * <n>) = q~(a)]. 

b) 0(,,r) denotes the constant tree ~o with ~o(a)= (r, F) for all a e N <'~ 
c) For q~ ~ T R E E  we define: 
(i) q~~ =r,  ~ol(a): = F ,  with (r, F): = q~(a). 

(ii) Rule(~o): = q~o(< >), End(~o): = ~o'(< >). 
(iii) r 2a.  q~(<n) * a)e  T R E E  (the n-th immediate subtree of q~). 

q~z~: = 2a.  q~(z * a )e  T R E E  (the subtree of ~o determined by z). 
(iv) q~ is wellfounded :r V(ni)i~ r~.~nk(~o((no . . . .  , nk- 1)) e Ax). 
(v) q~ is locally correct:<e,'v2~a e N <~ (r * (n)))n~N). 

Notation. We use q~ as syntactical variable for elements of TRE E.  

2.4 Remark 
a) tp ~ T R E E  & q~(()) = (Ax, F) ~ q~ = 0(A~, r). 
b) ~p e T R E E  :e, [~n(q)[n] = (p) ~ q~ = 0~(< >)]. 

2.5 Definition 
W T :  = {q9 ~ TRE E:  q~ wellfounded} 
Z ~~ : = {q~ e WT:  (p locally correct}. 
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2.6 Proposition (Inductive definition of W T  and Z ~) 
a) W T  is the least subset of TREE satisfying 
(WT.O) O(Ax, r) ~ WT, for each Fe SEQ. 
(WT.1) Rule (q~) 4= Ax & "q'n ~ ~(q~[n] e WT) => q9 ~ WT. 
b) Z ~ is the least subset of TREE satisfying 
(Zoo.0) 0(Ax,r)~Z | for each F with Fc~ TRUE4:0, 
(Z oo. 1) Rule( qg) 4= Ax &'~n e N(q~[n] ~ Zoo) & LC(q~( ( ) ), (End(q~ [n])), ~ N) 
~ ~peZoo. 

2.7 Definit ion of deg(~o) < 09 for q~ e TREE 
deg(q~): = sup{:c(tp~ tr ~ N <'~ (=  sup{:(A) + 1 : ~tr ~ N <'~176 = (Cut, A))}). 

2.8 Definition of I1~11 tOn  for q~e W T  

0, if Rule(q~)=Ax 
I1~~ sup{l l~o[n]l l+l:n~N},  otherwise 

Now we are going to define the cut-elimination operator ~: W T ~  W T  which 
transforms every q~ ~ Z OO into a derivation 8(~o)~ Zoo with End(g(q~))= End(q~) and 
deg(o~(q~)) < deg(q~)--" 1. For the definition of 8 we need two families of auxiliary 
operators, namely the inversion operators Jk, A (k ~ IN, A ~ /X'x-FOR) and the 
reduction operators ~tc(C~ Wo-FOR). The operator Jk, a replaces in q~ every 
sequent F by (FkA)uA[k], and every occurrence of ( /~ ,  A) by Repk. The effect of 
~ c  is to reduce a cut with cutformula C to cuts with cutformulas C[k]; namely if~p, 
~0~Z ~176 are derivations with EndOp)C=Fw-qC, End(q~)C=FwC and max{degOp), 
deg(~o)} < :(C) then 0: = 9~c0P, ~0) e Zoo is a derivation with End(O) c= F and deg(0) 
< :(C). - The definitions of Jk, a(~0), ~tC(tp, q~), g(q~) proceed by transfinite recursion 
on I1~oll using the fact that every ~o~ TREE is uniquely determined by the data 
End(tp), Rule(qg), (r 

2.9 Definition of the inversion operator Jk, A: W T ~  W T  for A ~/X'X-FOR, k ~ 1'4 
(i) End(Jk, a(q~)):=(End(q~)kA)uA[k] (RePk, if Rule(q~)=(/A,A) 

(ii) Rule(Jk, a(q~)):= [Rule(q~), otherwise 

(iii) Jk, a(q~) I-n] : = ~r a(q~[n])- 

Explanation. Let J abbreviate Jk, a" If Rule(q~)4: Ax then in defining J(~0)l-n] we 
can refer to the previously defined J(q~[n]), which is not possible when Rule(qO 
= Ax. In that case we have q~ = 0~Ax, r), and (iii) becomes J(q~) l-n]: = J(~0) which is 
circular. But according to 2.4b) we consider this as an abbreviation for 
J(tp):=0(,,r, ) with F':=End(J(q~)), r:=Rule(J(qO) as defined under (i) and (ii). 
Moreover in that case by (ii) we have r = A x  and thus J(q~)=0(Ax, r,)~ WT. An 
analogues remark applies to the definitions of ~ c  and g below. 

2.10 Definition of ~c :  WT x W T ~ W T  for C ~ Wo-FOR 
End(~cOp, r = (End(~)\--7 C)w (End(qo)\ C) 

~(Cut, C[k]), if Rule(q~)=(Wk, C ) 
Rule(~lc(V A tp)): = (Rule(~o), otherwise 

,~c(lp, tp)[n]:= SdCk,~C(tp),. if Rule(~o)=(Wk, C ) and n = l  
[~cOP, q~[n]), otherwise 
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2.11 Definition of 8: WT--+ W T  
End(8(tp)): = End(tp). 

SRepo, if Rule(q~)eCut 
Rule(8(q~)): 

(Rule(tp), otherwise 

J ~c(~(~0[1]), ~(~oE0])), 
if Rule(~p)=(Cut, C) with C~ Wo-FOR 

e(~o) [n]:= ~c(e(~oE0]),e(~o[1])), 
if Rule(cp)=(Cut,--nC) with Ce Wo-FOR 

r otherwise 

2.12 Proposition. For all ~v, cpeZoo, A e  ?A-FOR, k e N ,  Ce  W o-FOR we have: 
a) d;k.a(tP) e Z~176 deg(jk,A((p)) ~ deg(~p), II Jk, A(CP) II < It ~0 II 
b) ~c(~V, q~) ~ Z ~176 deg(~c(~, ~p)) <max{:(C), deg(~v), deg(cp)}, 

II~e(~,~)ll <= It~11 + I1~011 
c) 8(q~) ~ Zoo, deg(~(cp)) < deg(cp)-" 1, II ~(~P) II _-< ~ I1~oll 

Proof  by induction on II ~P II- 

2.13 Definition of Z ~  Z ~  : = {d ~ Z.<" End(d) closed}. 

2.14 Proposition. There is a canonical embedding Z ~  ~, d~--~doo such that 
End(d ~176 = End(d) and deg(doo) = deg(d), dO~ is obtained from d essentially by replacing 
in d every axiom of complete or transfinite induction by its (cutfree) og-derivation. 

3 The notation system Z~ 

Our goal is to show that every provably recursive function of Z +  TI.<I can be 
represented as f(n) = g(n, min{k : o(n, k + 1)d(o(n, k)}) with prim. rec. function g, o. 
Of  course it suffices to show that for each p ~ L  with Z +  TI<r~-\/x3ypxy the 
Skolem-function fp(n): = min{m: p(n, m)} has such a representation. We want to do 
this by methods formalizable in PRA+PRWO(-<) ,  i.e. primitive recursive 
arithmetic together with the axiom that there are no primitive recursive infinite 
descending sequences in (~r -(). This will be achieved as follows: we introduce a 
primitive recursive system Z~< of(finite) notations for all those ~p ~ Zoo which can be 
obtained via cut-elimination from derivations do~ (deZ~ Then we define 
primitive recursive functions e : Z~ ~ SEQ, r: Z*  ~ R U LE, s : N x Z*  ~ Z*,  b : Z*  
~ l  such that, for all h e Z * ,  n ~ N ,  e(h)=End(v(h)), r(h)=Rule(v(h)), v(s(n,h)) 
= v(h) In], deg(v(h)) < b(h), where v(h) is the value of h, i.e. the Zoo-derivation denoted 
by h~ 

Notation. s , h : -  s , (h) :-  s(n, h). 
We also define a prim. rec. function o : Z * ~ d  such that [r(h) 

4= Ax => o(snh)<(o(h)], for all h e Z~<, n e N. (Thus o(h) corresponds to IIv(h)ll). 
Now assume that Z +  TI<rt-A, where A=Vx3ypxy.  Then there exists some 

d e Z ~ with End(d) c= {A} and v: = deg(d) < 09. 
Let 

tOn, O: =Jn, aetV)(doo), 

= ~qgn, kFi] , if Rule(qgn,k)---- RePi, F~ k:=End(tP, k)" 
f 

9.,k+l: (~P.,kI-O], otherwise, ' ' 
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Then by induction on k we get: F~.k____ {3ypny, pnO, pnl . . . .  }, and thus 

(1) Rule(q~n, k) = Ax ~ ~ m < u (F~, k)ll(n, m), 

with 
u(F): =sup{m: m occurs in F}. 

Using r, ~ we can define a prim. rec. function s : N E - ~ Z  * such that v(s(n,k)) 

Then s(n, k + 1) e {sis(n, k): i e N} and therefore 

(2) r(s(n, k)) =~ Ax ~ o(n, k + 1) -< o(n, k), 

with 
o(n, k): = o(s(n, k)). 

Using r(s(n, k))= Rule(q~n.k), e(s(n, k))= Fn. k and (1), (2) we obtain 

(3) o(n, k +  1)-~ o(n, k) ~ f,(n)= g(n, k), 

with 
g(n, k): = min{m < u(e(s(n, k))): p(n, m)}, 

Since by PRWO(<) we have ~n.~k(o(n, k+ 1)~(o(n, k)), this yields 

Ip(n) = o(n, min{k: o(n, k + 1) N o(n, k)}). 

Remark. The above argument cannot directly be formalized in PRA, since there we 
cannot define the interpretation v: Z*  ~ Z  ~ But as we will see below this is really 
not necessary. It will suffice to prove in PRA the/ /~  

~Y'h e Z* [LC((r(h), e(h)), (e(s~h)) n ~N) & :c(r(h)) < b(h) & ~'n(b(s~(h) < b(h)) 

& [r(h)=k Ax ~ "vTn(o(~h)-,( o(h))]]. 

3.1 Definition of the set Z*.  Since we want that Z~ contains notations just for all 
tp e Z ~~ obtainable from derivations d ~176 (d e Z ~ by applications of the operators 
Jk, a, ~c,  8, we now introduce function symbols Ik, a, Rc, E (keN,  A ~ ~-FOR,  
C e W o-FOR) and define 

the set of all (finite)terms h generated from 
Z * : =  ( constants' d e Z  ~ by the function symbols Ik, a, Rc, E. 

3.2 Definition of the value v(h)eZ ~ for each heZ~  
(i) v(h):=h ~176 if h~Z~ 

(ii) V(Ik, ah): = Jk, A(v(h)); v(Rc(hohl): = ~c(v(h0), v(hl)); v(Eh): = g(v(h)). 

3.3 Definition of the length :*(h) e l~l for each h e Z~ 

:*(h) :=0,  if h e Z ~  :*(Eh):=:*(Ik, Ah):=:*(h)+ l,  

:*(gchoh 1): = max{:*(ho), :*(h 1)} + 1. 

Now we are going to define the above mentioned functions 

e:Z*--*SEQ, r:Z*--*RULE, ~ : N x Z * ~ Z * ,  

b : Z * - - , N ,  o : Z * - - , ~ r  
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The definition proceeds by (primitive) recursion on Y*(h). First we define e(d), 
r(d), ... for all d e Z ~ and then we define e(I~,ahO, e(RchohO, e(Ehl) , r(Ik, ahx) . . . .  
under the induction hypothesis that e(hi), r(hi), ... are already defined. The defining 
equations for e, r, s in the induction step are obtained by a simple rewriting from 
the corresponding equations for Jk, a, ~c,  8 on pp. 283, 284. But of course both 
definitions are fundamentally different with respect to the underlying recursion 
principle, 

3.4 Definition of e(d), r(d), s.(d) for deZ<.  Let d = ( r , F ,  (di)i.<~)~Z<. 
e(cO:= F= End(d) 

{ (/~,VxF(x)), if r=(v, VxF(x)) or (Ind, F) 
r(d):= (~,Vx-<mF(x)) ,  ' if  r=(TI, F,m) 

r,  otherwise 

d, if r = A x  
c. ~, if r=(Ind,  F) 
F if r =(Yl, F,m) ~.(a):  = Cm,. '  

do[v/n], if r=(v, VxF(x)) 
d., if z = 2  and n < 2  

do, otherwise 
F F c. and c,,., are defined below. For  each n e N ,  dol,V/n] denotes the result of 

substituting n for every occurrence of v in do which is "linked" to the root of do. 

Definition of xi,A]. For A �9 FOR let xI-A] e Z.< be the canonical cutfree derivation 
of {--3A, A}, 

Definition of c. v. Let G : -  --1Vx(F(x)---.F(x')) =- 9x(F(x) A -q F(x')). 

cg: = ~I,F(0)]  
F Cn+ 1 :=  (( W., G), F, (( ?A, F(n) A --1F(n')), F., (or., x[V(n')]))) 

with 
F: = { --1 F(0), G, F(n')}, F~: = {--7 F(O), F, F(n) A --1 F(n'), F(n')}. 

To improve readability we repeat the definition of c~+ 1 in familiar notation: 

r xl,F(n')] C, n 

I I 
I --q F(O), G, F(n) --1F(n'), F(n') 

p --1F(O), G, F(n) A --1F(n'), F(n') ( A ) 
Cn + 1 : = --1F(0), G, F(n') (9) 

Definition of p Cm, n 

(i) n-a(,m: c~,,: = <( W o, n~m~F(n)) ,  {n<m~F(n)},  <Ax, {--q n-<m}, 0>> 
(ii) n<m: Let G: = "-1Prog<(F), i.e. G =- 9x(Vy<xF(y) A --1F(x)). 

c~,.: = (( W 1, -q n.<m v F(n)), A, (( W,, G), A', ( ( /~ ,  Vy<nF(y) 

A --1F(n)), A", (e, xEF(n)])))) 
with 

e: = ( (TI ,  F, n), { G, Vy~.nF(y)}, 0)  
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and 

d" : = ( G, V y ~( nF(y) ^ -1F(n), F(n) } . 

In familiar notation: 

[ G, Vy<nF(y) -"nF(n),F(n) , , 

3.5 Lemma. d e Z ~ =~ r(d) e RULE and ~,d e Z ~ 

Proof Straightforward, using the fact that for d=<r,F,(di ) i<,)eZ ~ one has 

FV(End(di))c - ~{v}, if r--(v, VxF(x)) and [r=(Wt,3xF(x))  ~ t e N ] .  
- ~0, otherwise 

3.6 Definition of b(d)eN and o (d )E~  for deZ.~.  Let d = ( r , F ,  (di)i<,). 

b(d): = deg(d), 

t exp(1), if r=( Ind ,  F) 
o(d):= ~ - m a x { e x p ( m ) , l ~ l } ,  if r=(TI,  F,m) 

~ ( - s u p { o ( d i ) ~ l : i < z } ,  otherwise 

3,7 Definition of e(h), r(h), %(h), b(h), o(h) for h ~ Z * \ Z  ~ 

e(Ik, Ah): =(e(h)\A)u a[k],  e(Rchohl): = (e(ho)\-n C)w(e(hl)\ C), e(Eh): = e(h). 

r(ik, Ah):= ~RePk , if r ( h ) = ( ~ , A )  
Jr(h), otherwise. 

r(Rchohl):= ~(Cut, C[k]), if r (h l )=(W k, C) 
~r(hl) otherwise 

r(Eh):= ~ReOo, if r(h)eCut 
It(h), otherwise 

~.(Ik, Ah): = Ik, A~n(h) 

~Ik'~cho, if r(ht)=(Wk, C) and n = l  
~n(Rch~ (Rcho~(hl) ,  otherwise 

{ RcE~l(h)E%(h), if r(h)=(Cut, C) ,Ce Wo-FOR 
~,(Eh):= RcE%(h)E~l(h), if r(h)=(Cut,--nC),Ce V/o-FOR 

E~(h), otherwise. 

b(Ik, Ah): = b(h), b(Rchoh~): =max{f(C), Nho), b(h0}, b(Eh): = b(h)-' 1, 

O(Ik,Ah): = o(h), o(Rchohl):--- o(ho)~)o(hl), o(Eh): = exp(o(h)). 

3.8 Theorem. For all h e Z ~  the following holds: 
a) e(h) ~ SEQ & r(h) e R U L E  & ~h  ~ Z~  & (r(h) = Ax ::~ ~h  = h), 

b) LC((r(h), e(h)), (e(~.h)).~N), 
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c) :c(r(h))<~h)& b(%h)<b(h), 

d) r (h) : l=Ax => o(~.h)-<o(h). 

Proof  by induction on d*(h). 
The proof  of a) is trivial (cf. Lemma 3.5) and one easily verifies that b) and c) 

hold for all h e Z  ~ The induction step for b) and c) is treated in Sect. 5. Here we 
only carry out the proof  of d). 

Proof of 3.8d). Let ZS~: = {d ~ Z.<: d is built up by the rules (Z.1), (Z.4) .. . . .  (Z.7)}. 
Obviously o(d)-<exp(1), for all d e ZS~, and x[A] ~ ZS~, for all A e FOR. 
(0.1) h=((Ind, F),F,O): Then ~,h=~ZS~ and thus o(c.F)-<exp(1)=o(h). 
(0.2) h=<(TI, F,m),F,O>: 
(0.2.1) n~(m: Then ~.h = ( ( W  t, "), ", ( ( W , , - ) , . ,  ( (A~,-) , . ,  (e, x[F(n)])))> with 
e = (('1-1, F, n),., 0>, o(x[F(n)])-< exp(m), o(e) = ~( - max {exp(n), 1 @ 1 } < exp(m). 
Hence o(~,h) = ~( -max{o(e)@ 1, o(x[F(n)])~ 1} �9 1 @ 1-<exp(m) = o(h). 
(0.2.1) n-~m: Then ~.h= ((Wo, -), -, (Ax, -, 0 ) )  and therefore o(~,h)=l-<~-<o(h). 
(0.3) h = ((v, VxF(x)),., d o ): Then ~,h = d o [v/n] and o(do [v/n] ) = o(do) <(o(do) ~ 1 
=o(h). 
(0.4) otherwise: trivial. 
(1) h=Ik, Ag: We have o(h)=o(g), O(~.h)=O(Ik, A~.g)=o(~.g), and by I.H. o(~.g) 
do(g). 
(2) h=Rchohl: We have o(h)=o(ho)@o(hl) , (~.h=Ik,~cho or ~nh=Rcho~,hx), 
O(Ik, ~cho) = o(ho) ~= o(ho)O O(~,h 0 = o(Rcho~.h 0 and (by I.H.) o(~,h0~(o(h0. 
(3) h=Eg: It suffices to consider the case where ~nh=Ra(E~lg ) (E~og). 
Then we have o(~,h)= exp(o(~lg))@exp(o(~og)) and (by I.H.) o(%g), o(~lg)~(o(g ). 
This yields o(~.h)~(exp(o(g)) = o(h). []  

4 Proof theoretic analysis of Z +  TI.< r 

Now we carry out the proof theoretic analysis of Z+ TI.<r sketched at the 
beginning of Sect. 3. Let p e L be a fixed binary predicate symbol and p____ N 2 the 
primitive recursive relation assigned to p. 
Abbreviation: A: = Vx3ypxy, fv(n): = min{m: p(n, m)}. 

4.1 Definition of prim. rec. functions sub:  Z,~* ~Z.<,* ^ : Z ~ Z ~  

s u b ( h ) : = ~ . h ,  if r (h)=Rep, .  / ~ : = E ~ E h  with n:=b(h).  
(soh,  otherwise ' 

4.2 Lemma. For every h~Z* holds: 
a) b(h') = 0. 
b) r(h) ~ Ax =~ o(sub(h))~o(h), r(h) = Ax ~ sub(h) = h. 

Proof Trivial. (cf. definition of b and Theorem 3.7a), d)). []  

4.3 Definition of prim. rec. functions s: Z ~ x NZ-~Z *, u: SEQ~N 
s(d, n, k): = sub(k)(I,,aa)(where sub (k) is the kth iterate of sub). 
u(F): =sup{m: m occurs in F}. 
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4.4 Lemma 
d ~ Z ~ & e(d) g {A} & o(s(d, n, k + 1))-~ o(s(d, n, k)) 

~ m  5 u(e(s(d, n, k))) p(n, m) 

Proof Abb.: h.,k: = s(d, n, k), F(n): = {3ypny} u {pnm: m ~ N}. 
Then we obtain 
(1) h,, o e Z *  A b(h,. o) = 0 A e(h.. o) c= F(n) [by definition of b and e] 
(2) h.,k e Z*  Ab(h.,k)= 0 [(1), Theorem 3.7a), c), induction on k] 
(3) e(h., k) ~ r (n )  ~ r(h., k) e {Ax, R eoi,( W i, 3ypny)} [(2), Theorem 3.7b)] 
(4) e(h.. ~) c r (n)  = e(h.. ~ + ~) c= r (n)  E(3), Theorem 3.7b)] 
(5) e(h,,k)C=F(n) [(4), induction on k] 
(6) r(hn, k) = Ax =~ ~m(pnm ~ e(h,, k) & prim ~ TRUE)) [(5), Theorem 3.7b)] 
(7) r(h,, k) = Ax ~ 71Im =< U(e(h,,k))p(n, m) [(6)] 
From (7) the assertion follows by Lemma 4.2b). []  

4.5 Theorem. I f  Z+TI<i f -Vx3ypxy  then there are prim. rec. functions g, 
o " N 2--+~, q : ~ - - ~ Z ~ ,  g' : Z ~  - ~  and an a ~ d ,  such that, for all n ~ N:  

a) fp(n) = g(n, min{k: o(n, k + 1)4  o(n, k)}) and Vk(o(n, k)~a). 
b) fp(n)=~-(q(n)), where 

o~(h): = ~ff(sub(h)), /f a(sub(h))~(o(h)'<a 
(g'(h), otherwise 

Proof By assumption there exists a d e Z  ~ with e(d)~ {A}. 
a) We set o(n,k):=o(s(d,n,k)), g(n,k):=min{m<_u(e(s(d,n,k))): p(n,m)}, 

a: = o(d). By definition of o and Lemma 4.2b) we get "~n, k(o(n, k)~o(n, 0) = a). 
Since ~( is wellfounded, we have V nclk(o(n, k + 1)~o(n, k)). By Lemma 4.4 this 
yields the assertion. 

b) Let q(n): = s(d, n, 0) = I., aa and g'(h): = min{m < u(e(h)): p(n(h), m)}, where 

n, if h=I,,aho 
n(h): = 0, /f h has not the form l.,ah o" 

Obviously ~(q(n))=g'(h*) " * ' with h, = s(d, n, k,), k.: = min{ k: o(n, k + 1)-~ o(n, k)}. 
Since V i ~ N, h ~ Z~(~iI., ah = 1., asih), we have n(h*) = n and thus 

g'(h*) = min{m < u(e(h*)): p(n, m)} = g(n, k.). 

But g(n, k,) --- fp(n) by a ) .  []  

Now we assume that the elementary properties of (~ ,  ~(, 0),exp), i.e. 
(-<.1)-(~.4) on p. 280 and the transitivity of ~ ,  are provable in PRA. Then the 
proof of Lemma 4.4 can be formalized in PRA, and we obtain the following 
theorem. 

4.6 Theorem (PRAk-PR WO(-<)-~ H~ + TI < t))" There exists a primi- 
tive recursive function 5: N 2 ~ N  such that 

PRA]-- WF(5, ~()~(Provz + T~r(rc1)~ C), 

for each II~ C of L, where 

WF(6, ~(): -- Vx3y(6(x, y + 1) ~ 5(x, y)), 

0 C " and Prov z + ~'i~(r C1) formalizes the statement "~d  e Z <(End(d) = {C}) . 
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Proof Let 

~o(subtk)(h)), if j is the Gtdelnumber of h e Z *  
5(j, k): = [0 ,  otherwise 

Without loss of generality we may assume that C =-Vxqypxy. 
Then by Lemma 4.4 we have 

(*) Vj'-adk(6(], k + 1)-~ 6 (], k)) & ~ d  ~ Z~ c= {C}) => VnS~mp(n, m), 

and therefore the assertion is obtained by formalizing in PRA the proof of 4.4. [] 

Corollary. Z + TI .< r l/- W F( 6, -<). 

Proof By 4.6 

Z + TI.<r ~- WF(6, -<)~(Prov z + r1~r ( r0 = 1~) ~ 0  = 1), 
i.e. 

Z +  TI.<I ~-WF(6, ~ ( )~CON(Z  + TI.<O. 

Hence Z + TI.<I ~ WF(6, -<) by G6del's Second Incompleteness Theorem. [] 

5 Arbitrary notation systems for derivations 

In this section we analyze the construction of the system (Z<, e, r, ~) in a somewhat 
more general context. We introduce the notion of an arbitrary notation system (for 
elements of TREE) and define the *-extension Yg* of an arbitrary notation system 
Jr literally in the same way as we have defined (Z*, e, r, ~) from (Z ~ e, r, ~) in 
Sect. 3. This will then be used in Sect. 6 to give an alternative description of Minc's 
continuous cut-elimination operator #' for arbitrary (not necessarily wellfounded) 
proof-figures. 

5.1 Definition. A notation system consists of a nonempty set H and functions 
q: H ~ R  ULE x SEQ, ~ : g,I x H ~ H  such that T(n, h) ~ N x H(q(h) e Ax =~ ~,h = h). 

5.2 Definitions. Let ~ff = (H, q, ~) be a notation system and h e H: 
a) r(h): = q~ = r, e(h): = ql(h): = F, where (r, F): = q(h). 
b) [h, <n o ... . .  nk- 1 >] : = ~.k- ~'" "~.o h 
c) {h}:  N<~-~RULE x SEQ, {h} (a): = q([h, tr]) 
d) ~ is correct:c~(~rh ~H)LC~e(h), with LCjr(h):~LC(q(h), (e(~nh)),~N)- 
e) b: n ~ N  is a cut-bound for ~ : r  ~ n~n[fc(r(h)) < b(h) & b(~nh ) < b(h)]. 

5.3 Theorem. Let ~ = (H, q, ~) be a notation system. 
a) For all h ~ H, n ~ ~q, a ~ ~q < ~' we have {h} e TREE, End({h}) = e(h), 

Rule({h})=r(h), {~,h} = {h} [n], {[h, a]} - {h} ~a~. 
b) Jcf is correct r  is locally correct) 
c) I f  b is a cut-bound for ~ ,  then ~ h  ~ H(deg({h})< b(h)). 
d) h e H & q(h) e Ax ~ {h} = 0q(h). 

Proof a) 
(1) {h} (tr) ~ Ax ~ q([h, a]) e Ax ~ Vn(~n[h, a] = [h, a]) 

"~'n({h} (a * <n)) = q([h, a * <n>]) = q(~.(h, a]) 

= q([h, o']) = {h} (a)). Therefore {h} e TREE. 
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(2) (Rule({h}), End({h})) = {h} ( ( ) )  = q(h) = (r(h), e(h)). 
(3) {~,,h} (o) = q([~,,h, o3) = q([h, ( n )  * o-2) = {h}  ( ( n )  * o-) = ( {h}  I n l )  (tr). 
(4) {Eh, a3) = {h} ~o-~ follows from (3) by induction on the length of a. 
b) Using e(~,[h, t r])= {h}l(tr �9 (n ) )  we obtain 

T h. LC~e(h)~:~ ~'h. LC(q(h), (e(~nh)),~N) 

~.Th~Ytr . LC(q([h, a]), (e(~nHh, ~r] ) )~)  

,*~'vThVtr. CC({h} (tr), ({h} l(tr * (n))),~N) 

~ ,Vh({h} locally correct). 

c) {h}~ = (Cut, A) =~ r([h, a])  = (Cut, A) =,- f(A) < b(Eh, tr]) < b(h). 
d) {h} (a) = q(Eh, a])  = cl(h). [ ]  

5.4 Definition and Remark.  Let ocg = (H, q, ~) be a nota t ion  system. 
a) The mapping {. }: H--. TREE, h~--} {h} is called the canonical interpretation 

for ofF. If 

j: H ~  TREE with "~h �9 HYn(j(h)(())  = q(h) &j(~nh) =j(h) In]) 

t hen  

j(h) (tr) = (j(h) [ t r~)(())  =j(Eh, a ] ) ( ( ) )  = q(Eh, tr]) = {h} (tr) 

and therefore j = {. }. 
b) AP is called wellfounded iff ~rh �9 H({h} �9 WT). If ~ is wellfounded then 

II{h}ll �9  is defined for all he l l ,  and by 5.3a), we have r(h):#Ax =* "~n(Ll{~h}ll 
< [l{h}lL). 

5.5 Definition of the nota t ion  system Jet ~ Let  o~ = (H, q, ~) be a nota t ion  system. 

H * : =  ~set of all terms h generated from constants  d � 9  by the 
{funct ion symbols  Ik, a, R c, E ( k e N ,  A � 9  ~'A-FOR, C � 9  Wo-FOR ). 

For  h �9 H* we define f*(h) as in 3.3. 
Then the functions e=qI :H~SEQ,  r=q~  ~ : N x H ~ H  are 

extended to functions e: H*--}S EQ, r: H*--.R U LE, ~ : N x H*--.H* precisely as in 
Sect. 3, i.e. by Def. 3.7. 

g/g*: = (H ~', q, ~) with the extended functions q = (r, e) and ~. 

We call A~* the *-extension of o~f. 

5.6. Remark. The canonical interpretat ion {. }*: Ae*--. TREE, {h}*: = 2tr. q([h, tr]) 
is of course an extension of the canonical  interpretat ion {. }: ~f'--}TREE. So we 
may drop  the superscript * as we have already done for e, r, ~. 

5.7 Theorem 
a) o~F correct =*, Ar correct 
b) Every cut-bound b for ~ can be extended to a cut-bound for o~* by 

b(Ik, Ah): = b(h), b(Rchohl): = max {f(C), b(h0), b(hl)}, b(Eh): = b(h) -" 1. 

c) Jog wellfounded =~ J/g* wellfounded. 

Proof. a) and b) are proved by  (quantifierfree) induct ion on f*(h). The p roof  is just  a 
s traightforward verification. Nevertheless we carry it out  in full detail, since it is 
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one of the main proofs of this paper, and in addition we want to demonstrate that 
even such a detailed exposition is possible without excessive effect. 

a) Let 9.1(h, n) abbreviate the conjunction of (1)-(5). 
(1) r(h)=Ax => e(h)c3rRgE=t=O, 
(2) r(h) = (/'A, A) => A e e(h) & e(z,h) c= e(h)u A[n], 
(3) r(h) = ( Wk, A) ~ A e e(h) & e(%h)____ e(h)uA[k], 
(4) r(h) = (C ut, C) ~ e(~oh) __c e(h) w C & e(~ 1 h) __c e(h) u--q C, 
(5) r(h)= Rep, ~ e(%h)__c e(h). 
Obviously 

Wh e H[ LC..r(h) .r "Wn9di(h, n)] 
and 

"~h e H* [ LC ~.(h) ~ "Wng.l(h, n)]. 

So we have to prove Wh e H*gdi(h, n) under the premise "Wh e Hg~(h, n). 
This will be done by induction on ~*(h). 
If ~*(h) = 0 then h e H, and we are done. - Now let E*(h) > 0. 
I. h=I,,,,Bh i. - Then e(h)=(e(hi)kB)uB[m ] and ~,h=I,,,,B~.h 1. 
1.1 r(hi)= (A~, B): Then r(h)= Rep,, and (1)-(4) are trivially true. To prove (5) 

we assume that r(h)= Rep,. Then n =m and (by I.H.) e(Snhl)C__ e(hOwB[n]. This 
yields 

e(~,h) = (e(~,hl)\ B)w B[m] c___ (e(h 1)\B)u B[m] = e(h) . 

1.2 r ( h l ) = ( ~ , A )  with A ~ B :  Then r(h)=r(h~) and (by I.H.) 

Hence 
A e e(hl) & e(~,hl)C= e(hi)wA[n]. 

e(~,,h) = (e(s,,hl)kB)u B[m] c= (e(h,)kB)w B[m] wAin] 

= e(h)uA[n], 

and A e e(hl)\BC__ e(h). 

1.3 r(hl)=(Wk, A), (Cut, A), Repk: as 1.2. 
II. h = Rchohl. By definition e(h) = Fou(e(hl)\C) with Fo: = e(ho) \ -n C. 
ILl r(hl)= (Wk, C): Then r(h)= (Cut, C[k]), %h = Rcho%hl, ~lh = Ik-~cho, and 

(by I.H.) e(%hl)=c e(hOuC[k]. Hence 

e(%h) = e(Rcho%hl) = s C) s Fou(e(hl)k C)uC[k  ] 

= e(h)w C[k] 

and 
e(~l h ) = e(I,, ~cho) = (e(ho)\-7 C)w-n CEk] c= e(h)u ~ CEk] . 

II.2 r(hl)=(A~ , A): Then r (h)=( /~ ,  A), A ~ C ,  ~.h=Rcho~,h 1 and (by I.H.) 

A e e(hO & e(~,hl) c e(hl)wA[n]. 

Hence A e e(h) and 

e(~,h) = F o u(e(~,hO\ C) ~ Fou(e(hl)\ C)u A[n] = e(h)u A[n] . 

II.3 r(hl) = (Cut, A) or Rep,: Then r(h) = r(hi), and ~I(h, n) follows immediately 
from the I.H. 

II.4 r(hi)=Ax: Then also r(h)=Ax, and by I.H. we have e(hl)c~TRUE#O. 
From this we obtain e(h)c~TRUE#O, since Cr TRUE.  



Notation systems for infinitary derivations 293 

III.1 h=Ehl and r(hl)=(eut, C): w.l.o.g. Ce Wo-FOR. Then r(h)=Repo, 
%h = Rc(E~lhl)(E%hl) and 

e(%h 1)-c- e(h 1)\C & e(~ 1 h t) = e(h 1)\ --1C. 

Hence 
e(soh ) = (e(s I h 1 ) \  --'1 C) u(e(~ Oh I ) \C)  c e(h 1 ) = e(h). 

111.2 h=Ehl  and r(h0~ Cut: Then r(h)=r(hl) and e.h=Ee.hr This together 
with e(h)= e(hl), e(s.h)= e(e,hl) and the I.H. yields the assertion 9~(h, n). 

b) We prove 

b(s.h) < b(h) & (r(h) = (Cut, A) =~ f(A) < b(h)) 

by induction on ~*(h). 
I. h=lm, nh r By I.H. we obtain b(~.h)=b(~.hz)<b(hz)=b(h ) and 

r(h) = (Cut, A) =r r(hl) = (Cut, A) =~ f(A) < b(hl) = b(h). 

II. h = Rchohl . Then b(h) = max{#(C), b(ho), b(hl)} and (by I.H.) b(~,hl) < b(hl). 
ILl r(hl) = ( Wk, C): Then r(h) = (Cut, C[k]) and #(C[k]) < #(C) < b(h). 
II.1.1 n =  1: Then ~.h=Ik,=ch o and therefore b(~.h)=b(ho)<b(h ) 
11.1.2 n4:1: Then ~.h=Rcho~.h 1 and _therefore 

b(~.h) = max{E(C), b(ho), b(~.hl)} < max{e(C), b(ho), b(hl)} = b(h). 

I1.2 r(h 1) 4: ( W k, C): Then also ~.h = Rcho~,h i and thus b(~.h) < b(h) as in II. 1.2. 
Moreover: 

r(h) = (Cut, A) =~ r(hl) = (Cut, A) =~ ~(A) < b(h 1)--- b(h). 

I l i a  h=Eh I and r(hl)=(Cut, C): w.l.o.g. Ce Wo-FOR. Then r(h)=RePo, 
~,h = Rc(E~ lh~)(Esohl) and (by I.H.) f(C) < b(hl), b(~ih 1) < b(h 1) for i = 0, 1. Hence 

b(~.h) = max{#(C), b(Eslhl) , b(E%hl) } 

=max{#(C), b ( ~ h x ) -  1, b(%h0 "-- 1} 

< max{E(C), b (h l ) -  1)} = b (h l ) -  1 = b(h). 

r(hl)~Cut: Then r(h)=r(hl), ~.h=Es,hl, and (by I.H.) 111.2 h=Ehl and 
b(~nhl) < b(hl). Hence 

b(~,h) = b(s.hx)~ 1 < b (h , ) -  1 = b(h). 

c) By Remark 5.4b we have 
(1) Vh e H'@n(l[ {h} I] e On & (r(h) 4: Ax =~ II {~nh} II < II {h} II)). 

We define v(h)e On, for h e H*, by recursion on r as follows: 

v(h):=li{h}l[, if h e n ;  V(Ik, Ahl):=v(hl); 

v(Rchoh 1): = v(ho) + V(hl); v(Ehl): = co vchl) . 

Using (1) one obtains by induction on r 
(2) Vh e n*Vn(r(h) 4: Ax =~ v(~nh) < v(h)) (cf. proof of 3.7d). 
This gives 

Y(ni)i~tc-~k({ h} ((no .... , nk- t ) )= q(l-h, (n o .....  nk-l)]) e Ax), 

i.e. {h) e WT. []  
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5.8 Theorem. I f  ~,~ (and thus also :,5 ~*) is wellfounded then, for all h o, hl e H*, we 
have 

{Ik, ah~} =J~,a({ha}), {Rchoh~} =~c({ho}, {h~}), {Ehl} = 8 ( { h , } ) .  

Proof We define v: H * ~ W T  by recursion on :*(h) (as in Sect. 3): v(h): = {h}, if 
h e H; V(Ik, ah0: = Jk, a(v(h0): v(RchohO: = ~c(v(h0), v(h0); v(Eh0: = 8(v(h0) �9 
By Theorem 5.3a) we have, for all h e H, 

(.) v(h) ( ( ) )  = q(h) & V(~nh) = v(h) I-n]. 

But for h e H * \ H  we defined e(h), t(h), ~n h just in such a way that (.) also holds for 
all h s H* (cf. 3.7, 5.5). So by 5.4a) we obtain v =  {. } and thus 

{ Ik, Ah~ } = V(Ik, Ahl ) = Jk, A(v(hl )) = Jk, a({ h x } ) 
etc. []  

6 Continuous cut-elimination 

In this section we define an extension 8' : T R E E ~  TREE of 8:  W T ~  W T  such that 
"~q9 e TREE (q~ locally correct =~ 8'(~p) locally correct & deg(8'(~p))< deg(~p)"- 1). 
Moreover the functional 2~p2a. 8'(~p)(a) will turn out primitive recursive so that 
8 '  is automatically continuous. In fact we will prove a somewhat sharper result, 
namely 

V(p, ~p e T R E E V a  e N < ~'((p IN,, = ~p IN,, => 8'(:p) (a) = 8'(lp) (a)) , 

with 

N<,o ...... k_ 1>: = ((mo .. . .  , m e _ l ) : : < k & { m o ,  ..., me-x} ~ {0,1, no, . . . ,nk-1}}. 

6.1 Definition. H : = N  <'~ and, for each ~peTREE, ~ff~:=(H,~o,~) with 
~ : N x H ~ H ,  ~,(a):=a*(n) .  Obviously ~ is a notation system. Let rig* 
= (H*, q*, ~ )  be the .-extension of ~f~0 as defined in 5.5. Let {. }*: H * ~  TREE be 
the canonical interpretation for ~ * .  Then we define 

8': T R E E - - T R E E ,  8'(~o): = {E( )}*. 

6.2 Lemma. {z} ~ = (p~z~, for each z e H. 

Proof For every a = ( n  o .. . .  , n k _ l ) e H :  {z}*(a)=~p([z,a])=q)(%k_c..~,o(Z)) 
= @] [ ]  

6.3 Theorem. ~o e W T  ~ 8'(q))  = 8(q))  e WT. 

Proof Using Lemma6.2 and Theorem5.8 we obtain: ~peWT=>Ta({tr} ~' 
= ~p~a~ ~ WT) ~ j~o wellfounded ~ 8'(~p)= {E( )}~o =8({()}*)=8((p) .  []  

6.4 Theorem. (p locally correct ~ 8'(~p) locally correct and deg(8'((p)) <= deg(tp)-=- 1. 

Proof By assumption we have ~ a .  LC(q)(a), (~pl(a * (n))),~N), i.e. ,r is correct. 
Now by 5.7a) and 5.3b) we obtain that ~ *  is correct and thus 8'(~o) = {E( )}~o is 
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locally correct. Let m: = deg(q~) e N.  Then b(h): = m is a cut-bound for 9~,,. By 5.7b) 
this can be extended to a cut-bound b for g *  with b (E ( ) )  = b(( ) ) -  1 = m - '  1. By 
5.3c) we have deg(8'(~o))< b(E()) .  []  

6.5. Remark. One easily verifies that the functions qq' :H*~RULE x SEQ and 
~ : N x H * ~ H *  are uniformly primitive recursive in ~0. Together with 8'(tp) 
((no,..., nk- ~)) = q ~ k -  l " "~o (E( ) )  this yields that the functional (~0, a)~--~ r 
is primitive recursive and therefore continuous, i.e. ~ o , o ~ M ~ b l  <'~ (M 
finite & ~0(~0 FM = vg IM =*" r (o) = r (tr)) (*). In the following we establish 
(.) by a more direct argument. In fact we will prove more, namely 

6.6 Theorem. ~'q9, v2 ~ TREE'~70 ~ • < ~'(~o IN~ = ~p IN~ => g'(~o) (a) = r (tr)), with 
the above defined N,.  

Proof (informal). Let a = ( n  o . . . .  ,nk_l)  and a~:=(n  o . . . .  , n i _ l )  ( i=0  . . . . .  k). 
Then g'(q>)(tr)= q*~k_ 1"" "~o(E( ))" So r is obtained by computing succes- 
sively hi: = 6~o(E()), h2: = ~ o ( E ( ) ) ,  " -  ~ ~' .... h k. - ~ _  ~...s,o(E ( )), and q~(hk). - One 
easily verifies that for computing q~(h) and ~(h) (h e H*) one only needs to know 
tpIK(h ), where K(h):={aeH:  a occurs in h}. In addition K(hi)C=N,C__No for 
i=0 ,  ..., k. Hence for computing q~'(hk) (i.e. r we only need to know 
~o IN~. [] 

Formally the theorem is an immediate consequence of Lemmata 6.8, 6.9 below. 

6.7 Definitions 
(i) M , N : = { a . z : a ~ M , z ~ N }  (M,N~-H) 

(i.i) K ( h ) : = { a e n :  a occurs in h} (hen*)  
r  tp (iii) [h, (no,. . . ,nk-~)] .-~,~_~...~rh (hen*) 

6.8 Lemma 
a) h ~ n*  ~ K(~h) c= K(h) �9 N<n > 
b) h ~ H* & ~p I K(h) = o9 ~ K(h) ~ q~(h) = q~(h) & ~ h  = ~h .  

Proof  by induction on s 

6.9 Lemma 
a) K([E< ),a]r 
b) q~ IN,  = v2 rN, =~ [E(  >, 0 ] ' =  [E(  >, a ] ' .  

P roof  by induction on length(a) using Lemma 6.8. 

References 

1. Buchholz, W., Wainer, S.: Provably computable functions and the fast growing hierarchy. In: 
Simpsons, S.G. (ed.) Mathematical logic and combinatorics. AMS Contemp. Math. 65, 
179-198 (1987) 

2. Gentzen, G.: Die Widerspruchsfreiheit der reinen Zahlentheorie. Math. Ann. 112, 493-565 
(1936) 

3. Gentzen, G.: Neue Fassung des Widerspruchsfreiheitsbeweises ffir die reine Zahlentheorie. 
Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften. Neue Folge 4, 
pp. 1944 (1938) 

4. Gentzen, G.: Beweisbarkeit und Unbeweisbarkeit van Anfangsf~illen der transfiniten 
Indukfion in der reinen Zahlentheorie. Math. Ann. 119, 149-161 (1943) 

5. Girard, J.Y.: Proof theory and logical complexity. Studies in proof theory, Monographs 1. 
Napoli: Bibliopolis 1987 



296 W. Buchholz 

6. Gordeev, L.: Proof-theoretical analysis: weak systems of functions and classes. Ann. Pure 
Appl. Logic 38, 1-121 (1988) 

7. Kreisel, G.: Mathematical Logic. In: Saaty (ed.) Lectures on modem mathematics, vol. III, 
pp. 95-195. New York: Wiley 1965 

8. Kreisel, G.: A survey of proof theory. JSL 33, 321-388 (1968) 
9. Kreisel, G., Mine, G., Simpson, S.: The use of abstract language in elementary meta- 

mathematics: some pedagogic examples. In: Parikh, R. (ed.) Logic Colloqium, Boston. (Leer. 
Notes Math., vol. 453, pp. 38-131) Berlin Heidelberg New York: Springer 1975 

10. Mine, G.: Finite investigations of transfinite derivations. J. Sov. Mat. 1~4), 548-596 (1978), 
(translated from: Zap. Nauchn. Semin. LOMI 49 (1975)) 

11. Smith, R.L.: The consistency strengths of some finite forms of the Higman and Kruskal 
theorems. In: Harrington, L.A. (ed.) Harvey Friedman's research on the foundations of 
mathematics, pp. 119-136. Amsterdam: North-Holland 1985 

12. Schiitte, K.: Beweistheoretische Erfassung der unendlichen Induktion in der Zahlentheorie. 
Math. Ann. 122, 369-389 (1951) 

13. Schiitte, K.: Beweistheorie. Berlin Heidelberg New York: Springer 1960 
14. Schiitte, K.: Proof Theory. Berlin Heidelberg New York: Springer 1977 
15. Schwiehtenberg, H.: Proof theory: some applications of cut-elimination. In: Barwise, J. (ed.) 

Handbook of Mathematical Logic. Amsterdam: North-Holland 1977 
16. Schwichtenberg, H.: Ein einfaches Verfahren zur Normalisierung unendlicher Herleitungen. 

In: Bfrger, E. (ed.) Computation theory and logic. (Lect. Notes Comp. Sci., vol. 270, 
pp. 334-384) Berlin Heidelberg New York: Springer 1987 

17. Tait, W.W.: Normal derivability in classical logic. In: Barwise, J. (ed.) The syntax and 
semantics of infinitary languages. (Leet. Notes Math., vol. 72, pp. 204-236) Berlin Heidelberg 
New York: Springer 1968 

18. Takeuti, G.: Proof theory. 2nd edn. Amsterdam: North-Holland 1987 


