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Abstract

If non-human animals experience wellbeing and suffering, such welfare conse-
quences arguably should be included in a social welfare evaluation. Yet economic
evaluations almost universally ignore non-human animals, in part because axiomatic
social choice theory has failed to propose and characterize multi-species social welfare
functions. Here we propose axioms and functional forms to fill this gap. We provide
a range of alternative representations, characterizing a broad range of possibilities
for multi-species social welfare. Among these, we identify a new characterization
of additively-separable generalized (multi-species) total utilitarianism. The multi-
species setting permits a novel, weak species-level separability axiom with important
consequences. We provide examples to illustrate that non-separability across species
is implausible in a multi-species setting, in part because good lives for different
species are at very different welfare levels. Finally, we explore the consequences for
evaluating climate policy and understanding speciesism and non-climate environ-
mental goals, such as biodiversity.
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1 Introduction

If non-human animals experience wellbeing and suffering, such welfare consequences
arguably should be included in a social welfare evaluation. Welfarists from Bentham
(1780) to Singer (1975) have recognized that welfarist social evaluation must incorporate
animal welfare. Yet exactly how to do so is a deeply open question—even compared
with the many open question in human welfare economics (Blackorby, Bossert and
Donaldson, 2005). Economic evaluations almost universally ignore non-human animals,
in part because axiomatic social choice theory has failed to propose and characterize
multi-species social welfare functions. Which multi-species social welfare functions are
consistent with attractive normative principles? Finding an answer is important for many
economic policy questions including climate change, food policy, and medical research.

We contribute the first axiomatic characterization of a multi-species social welfare
function, using explicitly multi-species axioms. Some prior studies, including Blackorby
and Donaldson (1992), the pioneer welfare economics research to incorporate non-human
animals, as well as Clarke and Ng (2006), Budolfson and Spears (2019), and Espinosa and
Treich (2021), articulate a multi-species social welfare function without characterizing it
and then use it to address economic or ethical questions. Others, including Cowen (2006)
and Fleurbaey and Van der Linden (2021), build upon the observation that animal welfare
has implications for welfarist social evaluation if some humans care about animals.

We characterize social orderings of variable-population, multi-species vectors of in-
dividual lifetime utilities. We focus particularly on the arguments for, possibilities for,
and alternatives to cross-species separability (even while, in some characterizations,
permitting within-species non-separability). It is well-known in welfare economics that
assuming individual-level independence yields a fully additively-separable, general-
ized utilitarian social welfare function. We show that weaker, species-level separability
achieves the same utilitarian outcome, in the context of individual-level anonymity.
This result adds to the debate about separability in the welfare economics literature
and increases the theoretical cost of choosing a non-separable form. The possibility
of welfare-relevant non-human animals, this result suggests, offers a reason for social
evaluation to be additively-separable across individuals, even when comparing a policy
choice that would only have consequences for humans. Moving away from separability
or anonymity, we show, permits other functional forms.

In the next section we offer simple numerical examples. We intend these to motivate
the intuition for cross-species separability. The next, main sections of the paper present
our characterization results. In addition to separability and anonymity, we explore a
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complementarity axiom which proposes that, in allocating two species population sizes
between two species, each with a different perfectly-egalitarian per-person welfare level,
it is better to assign the larger population size to the species with better-off individuals.
We conclude with a discusion of possible implications, including for climate policy and
measures of biodiversity.

2 Motivating examples

Here we propose that species-level independence is attractive in a multi-species, variable-
population setting, in part because different species have very different utilities for
individuals living a good life. As a result, there is no clear “denominator” that a non-
separable evaluation could use to combine individuals of very different species.

First consider generalized, multi-species average utilitarianism of the form:
∑

s Ξs
n×n(s)∑
s n(s)

,

where s indexes species, Ξs
n is the equally-distributed-equivalent utility of species s of

size n, and n(s) is the size of species s. Average utilitarianism is separable across species
for fixed-population cases but non-separable for variable population cases because of its
denominator. Assume the world consists of:

• 1 million mammals, each living great lives for a mammal at utility 10;

• 400,000 birds, each living great lives for a bird at utility 5; and

• 300,000 lizards, each living great lives for a lizard at utility 3.

Would it be an improvement or a worsening to add 10 birds each at utility 6? Assume that
this utility level, although lower than that of the mammals (perhaps because it represents
a shorter life), is an excellent life for a bird. According to average utilitarianism, adding
these birds, which lower average welfare, would be a worsening — so it would be better
to slightly worsen the lives of each mammal and lizard in order to prevent these birds
from being born. We find this implausible.

Averagism is not unique in these implications. Consider the following example of
species-blind, rank-dependent (and therefore non-separable) utilitarianism:

∑
r β

rur,

where r is an individual’s wellbeing rank from the worst-off, ur is the individual’s lifetime
utility, and β is a constant between 0 and 1. For simplicity, imagine a world containing:

• 1 mammal, living a great mammal life at 10;

• 1 bird, living a great bird life at 5; and
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• 1 lizard, living a great lizard life at 3.

Would it be an improvement or a worsening to improve the bird’s life to 5.1, add a
second bird also at 5.1, and leave the mammal and the lizard unchanged? If β = 1

3
,

then such an improvement-and-addition would make the population worse — again
recommending harming the mammal and the lizard, if necessary, to prevent it. In this
case, the same recommendation — rejecting the improvement-and-addition — could be
made by species-blind, number-sensitive egalitarianism of the form nα × g−1

(
1
n

∑
g(ui)

)
for a concave g such as g(u) = ln(u), even with some positive values for the constant α.

Should there be no happy dogs in a world of happy humans, merely because the dogs’
lives are shorter? Should there be no humans in a galaxy of blissful aliens? Perhaps not,
according to average utilitarianism, rank-dependent utilitarianism, and egalitarianism.

A multi-species setting offers a new version of classic arguments for independence,
such as by Blackorby, Bossert and Donaldson (2005). What these examples reveal is a
consequence of the fact that different species can have very different welfare profiles,
even in good lives. A life can be good for a species without being good relative to the full,
multi-species population. But it strikes us as normatively implausible — and arguably
speciesist — to consider an extra individual a worsening when its own life is worth
living, is excellent by the distribution of its species, and has a highly favorable balance of
pleasure and suffering. This speciesist outcome is not escaped merely by a social welfare
function being species-blind. The fact that these and other implausible implications can
be avoided by assuming independence across species motivates our novel axioms.

3 Framework

The set of positive integers is denoted by N. The set of all real numbers is denoted by R.
The set of non-negative (resp. positive) real numbers is denoted by R+ (R++).

There is a finite set of species S. For simplicity, we assume that S = {1, · · · , T} for
some T ∈ N with T ≥ 3. For each species, a variable number of individuals may exist.
If population size is n ∈ N, the wellbeing vector for individuals is u = (u1, · · · , un),
where ui is individual i’s the lifetime utility. The set of all possible wellbeing vector is
U =

⋃
k∈NRk. For u ∈ U , we write n(u) the population size, that is n(u) = k if u ∈ Rk,

and N(u) = {1, · · · , n(u)}. For k ∈ N and x ∈ R, we denote x · 1k = (x, · · · , x) ∈ Rk.
An alternative will give a wellbeing vector for each species. This can be modeled as a

mapping a : S → U , where for each s ∈ S a(s) ∈ U is the wellbeing vector in species s.
We denote A the set of all possible mappings a : S → U , so that A is the set of alternatives.
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When a(s) = u ∈ U , we denote ai(s) = ui for each i ∈ N(a(s)) the wellbeing of individual
i of species s in alternative a.

For a subset of species S̄ ⊂ S and for two alternatives a, a′ ∈ A, we denote aS̄a′ the
alternative â ∈ A such that â(s) = a(s) for all s ∈ S̄ and â(s) = a′(s) for all s ∈ (S \ S̄).
When S̄ = {s}we write asa′ instead of a{s}a′.

For any a ∈ A, let us denote n(a) =
(
n(a(1)), · · · , n(a(T ))

)
the vector of species

population sizes. For n = (n1, · · · , nT ) an element of NT , we denote An the set of
alternatives in A such that n(a) = n. These are alternatives with a given population size
ns for each species s.

3.1 Basic principles

We study a social ordering % on A. We assume two basic principles throughout. The first
is a Pareto principle applied to situations where population size is fixed for each species.
It says that if all individuals of each species is at least as well off and all individual of some
species are better off, then the situation is socially better. Hence we do not necessarily
judge that an improvement for one individual is enough to increase social welfare, but
an improvement for all individuals in a species is enough.

Pareto. For all a, a′ ∈ A, if n(a(s)) = n(a′(s)), a(s) ≥ a′(s) for all s ∈ S and a(t) � a′(t)

for some t ∈ S, then a � a′.

For any n ∈ NT , we can associate to any a ∈ An an element in
∏T

s=1 Rns , that is a
can be viewed as a collection (a(1), · · · , a(T )) ∈

∏T
s=1 Rns . We can therefore define the

topology of An based on the product topology on
∏T

s=1 Rns to define the following notion
of continuity.

Extended continuity. For any n, n̂ ∈ NT and a ∈ An, the sets {a′ ∈ An̂|a % a′} and
{a′ ∈ An̂|a - a′} are closed.

All the orderings we will consider satisfy those two properties. We describe any
ordering that does as “regular”:

Definition 1 (Regularity). A social welfare ordering % is regular if it satisfies Pareto and
Extended continuity.
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4 Separable ethics

Social welfare economics has long debated the normative attractiveness of individual-
level independence. The core of our paper is a weakening of this classic axiom that
only assumes independence across species, while permitting non-separability among
individuals within a species.

Species separability. For all a, a′, â, â′ ∈ A and for all S̄ ⊂ S, aS̄ â % a′
S̄
â if and only if

aS̄ â
′ % a′

S̄
â′.

Given Species separability, the following axiom is normatively minimal (we can assess
egalitarian paths within a species independently of what happens to other species):

Within-species egalitarian dominance. For all a, a′, â ∈ A,

(1) if there exists real numbers x > y ≥ 0 and natural numbers k > l and a species
s ∈ S such that a(s) = x · 1k and a′(s) = y · 1l then asâ � a′sâ.

(2) if there exists real numbers x < y ≤ 0 and natural numbers k > l and a species
s ∈ S such that a(s) = x · 1k and a′(s) = y · 1l then asâ ≺ a′sâ.

The examples in Section 2 are violations of Species separability and Within-species
egalitarian dominance. Species separability and Within-species egalitarian dominance
are enough to obtain an additive representation, when % is regular. To state our first
result, we need additional definitions. For any k ∈ Rk, a function F : Rk → R is said to
be non-decreasing if F (u) ≥ F (v) whenever u, v ∈ Rk and u ≥ v. A function F : Rk → R
is said to be normalized if F (x · 1k) = x for all x ∈ R.

Proposition 1. If % is a regular social welfare ordering that satisfies Within-species egalitarian
dominance and Species separability, then there exists continuous non-decreasing normalized
functions Ξs

n : Rn → R and functions V s : N× R→ R that are continuous and increasing in
their second argument such that, for all a, a′ ∈ A

a % a′ ⇐⇒
∑
s∈S

V s
(
n
(
a(s)

)
,Ξs

n(a(s))

(
a(s)

))
≥
∑
s∈S

V s
(
n
(
a′(s)

)
,Ξs

n(a′(s))

(
a′(s)

))
.

Furthermore V s(k, 0) = 0 for all k ∈ N and s ∈ S, and for all k > l and s ∈ S V s(k, x) ≥
V s(l, x) if x > 0 and V s(k, x) ≤ V s(l, x) if x < 0.

Proof. See the Appendix.

5



We interpret Ξs as a within-species equally-distributed-equivalent function that ag-
gregates individual lifetime utilities into one representative utility. Notice that this
function could be different for each species: utilitarian for cows, rank-dependent for pigs,
prioritarian for cats.

Remark 1. The proof of Proposition 1 depends on the existence of an indifferent expansion at zero
for each species and on equivalent egalitarian distribution for larger populations: for a species
with equal wellbeing level x > 0 (resp. x < 0) and size k, and for any l > k, there exists a level of
wellbeing y > 0 (resp. y < 0) such that the population with l people and wellbeing y is equivalent
to the original one. This is guaranteed by Within-species egalitarian dominance (and continuity).
But we could use other principles, for instance a combination of Priority for lives worth living
(Blackorby, Bossert and Donaldson, 2005) and Existence of a critical-level.

5 Complementarity

Here we introduce a new axiom that assumes that, in allocating two species population
sizes between two species, each with a different perfectly-egalitarian per-person wel-
fare level, it is better to assign the larger population size to the species with better-off
individuals.

Complementarity for species size and well-being. For all a, a′, â ∈ A, if there exists
real numbers x > y and natural numbers k > l and two species s, t ∈ S such that
a(s) = x · 1l, a(t) = y · 1k, a′(s) = x · 1k and a′(t) = y · 1l then a{s,t}â ≺ a′{s,t}â.

The property implies restrictions on the form of the V s functions used in the additive
representation of Proposition 1.

Proposition 2. If % is a regular social welfare ordering that satisfies Within-species egalitarian
dominance, Species separability and Complementarity for species size and well-being, then there
exists functions Θs : R++ → R and a function V : N× R→ R, continuous and increasing in
its second argument, such that, for each s ∈ S, the function V s of Proposition 1 can be written
V s(k, x) = V (k, x) + Θs(x) for all k ∈ N and x ∈ R.

Furthermore, for any x > y and natural numbers k > l:

V (k, x) + V (l, y) > V (k, y) + V (l, x).

Proof. Given that % is a regular social welfare ordering that satisfies Within-species
egalitarian dominance and species separability, we know by Prop 1 that there exists
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continuous non-decreasing normalized functions Ξs
n : Rn → R and functions V s : N×R→

R, continuous and increasing in their second argument and with V s(n, 0) = 0 for all
n ∈ N and s ∈ S, such that, for all a, a′ ∈ A

a % a′ ⇐⇒
∑
s∈S

V s
(
n
(
a(s)

)
,Ξs

n(a(s))

(
a(s)

))
≥
∑
s∈S

V s
(
n
(
a′(s)

)
,Ξs

n(a′(s))

(
a′(s)

))
.

Let us prove that for all s ∈ S, n ∈ N, x ∈ R, we have V s(n, x)− V 1(n, x) = V s(1, x)−
V 1(1, x). Suppose that it is not the case and for instance that V s(n, x) − V 1(n, x) >

V s(1, x) − V 1(1, x) for some s ∈ S, n ∈ N and x ∈ R.1 Then, by continuity of V s in its
second argument, there exists ε ∈ R++ small enough so that V s(n, x − ε) − V 1(n, x) >

V s(1, x − ε) − V 1(1, x). Let a, a′, â ∈ A, be such that a(s) = (x − ε) · 1n, a(1) = x · 11,
a′(s) = (x − ε) · 11 and a′(1) = x · 1n. V s(n, x − ε) + V 1(1, x) > V s(1, x − ε) + V 1(n, x)

implies a{s,t}â � a′{s,t}â, a violation of Complementarity for species size and well-being.
Therefore, for all s ∈ S, n ∈ N, x ∈ R, we have V s(n, x) = V 1(n, x) + V s(1, x) −

V 1(1, x) = V (n, x) + Θs(x), where Θs(x) = V s(1, x)− V 1(1, x) for all x ∈ R.
Remark that using the representation above, using the definition of Complementarity

for species size and well-being, we must have

V (k, x) + V (l, y) > V (k, y) + V (l, x)

for all x > y and natural numbers k > l.

This complementarity axiom has the effect of ruling out number-insensitive species-
specific representations of the form V s(n,Ξs) = Ξs, such as, for example, within-species
average utilitarianism or maximin.

6 Replication invariance

For any l, k ∈ N and any vector u ∈ Rl we say that v ∈ Rkl is a k-replica of u if for all
i ∈ {1, · · · , l} and m ∈ {1, · · · , k} we have v(i−1)k+m = ui. We denote k ? u a k-replica of u.
Similar, for any a ∈ A we say that a′ is a k-replica of a, denoted k ? a, if for each s ∈ S we
have a′(s) = k ? a(s).

We introduce the following property, familiar in the population ethics literature, that
guarantees that judgements are invariant to replications.

1The case V s(n, x)− V 1(n, x) < V s(1, x)− V 1(1, x) can be dealt with similarly.
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Strong replication invariance. For all a, a′ ∈ A, for all k ∈ N, a % a′ if and only if
k ? a % k ? a′.

With this property we obtain the following characterization.

Proposition 3. If % is a regular social welfare ordering that satisfies Within-species egalitarian
dominance, Species separability and Strong replication invariance, then there exists α ≥ 0 and
continuous and increasing function Ψs : U → R such that Ψs(0) = 0 and Ψs(u) = Ψs(k ? u) for
all k ∈ N and u ∈ U , such that,

a % a′ ⇐⇒
S∑
s=1

[
n(a(s))

]α
Ψs(a(s)) ≥

S∑
s=1

[
n(′a(s))

]α
Ψs(a′(s)).

If in addition % satisfies Complementarity for species size and well-being, then α > 0 and there
exists a continuous and increasing function F : R→ R such that F (0) = 0 and for each s ∈ S a
continuous non-decreasing normalized functions Ξs : Rn → R such that Ξs(u) = Ξs(k ? u) for
all k ∈ N and u ∈ U and Ψs(u) = F ◦ Ξs(u) for all s ∈ S and u ∈ U .

Proof. See the Appendix.

The social orderings characterized in Proposition 3 are the sum of the social valuation
for each species. This social value for a species is itself the product of population size to
the power α ≥ 0 and of a function of an equally-distributed equivalent for the species.
This form is reminiscent of number-dampened utilitarian social welfare criteria proposed
by Ng (1989). Specifically, Ng (1989) proposed a value function V (u) = f(n(u))

n(u)

∑
i∈N(u) ui.

Here we have f(n(u) = n(u)α: the case α = 1 is similar to the so called total utilitarian
case, while α = 0 is similar to the so called average utilitarian case. The difference is that
equally-distributed equivalent is not necessarily average utility.

Remark also that the addition of Complementarity for species size and well-being
rules out the average case.

7 Anonymity

The last step in our characterization of generalized total utilitarianism is to assume
individual-level anonymity. Implicitly, this axiom assumes that lifetime utilities are
not only interpersonally comparable but also are comparable across species. If so, it is
normatively attractive to assume that it does not matter, for example, whether a life of 3
is lived by a chimpanzee and a life of 4 is lived by a dog or the other way around.
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Anonymity. For all n ∈ NT and all a, a′, â ∈ An, if there exists two species s, t ∈ S and
i ∈ {1, · · · , ns}, j ∈ {1, · · · , nt}, such that ai(s) = a′j(t), a′i(s) = aj(t), ak(s) = a′k(s)

for all k 6= i and a`(t) = a′`(t) for all ` 6= j, then a{s,t}â ∼ a′{s,t}â.

Proposition 4. If % is a regular social welfare ordering that satisfies Within-species egalitarian
dominance, Species separability and Anonymity, then there exists a continuous and increasing
function φ : R→ R such that φ(0) = 0 and, for all a a′ ∈ A,

a % a′ ⇐⇒
S∑
s=1

n(a(s))∑
i=1

φ(ai(s)) ≥
S∑
s=1

n(a′(s))∑
i=1

φ(a′i(s)).

Proof. See the Appendix.

Although none of our axioms directly assume individual-level independence, the
intuition of the proof is that individual-level anonymity can be combined with species-
level separability to construct individual-level independence, by hypothetically cycling
people in and out of alternative species.

Note that contrary to our other characterization results, we obtain a very specific form
of the value function for each species, namely a generalized total utilitarian one with a
critical-level equal to zero. Although the other results allow for variable critical-level
within a species this is not true when Anonymity is added. Therefore, the combination of
Anonymity and Species separability has strong normative implications.

8 Discussion of possible extensions

8.1 Weakening separability or continuity

More social welfare functions become possible if we weaken Species separability to
require separability only when one species is concerned.

Weak species separability. For all a, a′, â, â′ ∈ A and for all s ∈ S, asâ % a′sâ if and only
if asâ′ % a′sâ

′.

In that case, we can find other social welfare criteria that satisfy Complementarity for
species size and well-being, Within-species egalitarian dominance and Strong replication
invariance. A first example uses a rank-dependent aggregator across species. Let Π be
the set of permutations from S to S.
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Example 1: Rank-dependence across species. Let β1 > · · · > βn, preferences % are rep-
resented by the following social welfare function:

W (a) = max
π

∑
s∈S

βπ(s) ×
[
n
(
a(s)

]α × F(Ξs
(
ai(s)i∈N(a(s))

))
with F any continuous and increasing functions, and Ξs : Rn → R continuous
non-decreasing normalized functions such that Ξs(u) = Ξs(k ? u) for all k ∈ N and
u ∈ U .

The rank-dependent aggregator assigns the highest weight β1 to the species with
highest welfare as measured by

[
n
(
a(s)

]α × F(Ξs
(
ai(s)i∈N(a(s))

))
, and generality assigns

weights in decreasing order of welfare. This is exactly the opposite of the standard
rank-dependent case where we give more weight to worse off people. This suggests an
anti-egalitarian feature of the aggregation. We conjecture that this anti-egalitarian feature
is embedded in Complementarity for species size and well-being (we prefer to give more
to better off species).

It is also possible to weaken Extended continuity. using a leximax aggregator, we
could satisfy Species separability without additivity. For a vector v = (v1, · · · , v|S|) ∈ R|S|,
we denote ṽ ∈ R|S| the re-ordering of v in a non-increasing fashion, so that there exists
π ∈ Π such that ṽs = vπ(s) for all s = 1, · · · , |S| and ṽs ≥ ṽs+1 for all s = 1, · · · , |S| − 1.
For two vector v, v′ ∈ R|S|, we write v >lexmax v

′ if there is s ∈ {1, · · · , |S|} such that
ṽt = ṽ′t for all t = 1, · · · , s− 1 and ṽs > ṽ′s. We write v =lexmax v

′ if ṽ = ṽ′. And we write
v ≥lexmax v

′ if either v >lexmax v
′ or v =lexmax v

′.

Example 2: Leximax across species. There exist continuous and increasing function F ,
and continuous non-decreasing normalized functions Ξs such that, for all a, a′ ∈ A,
a % a′ if and only if([
n
(
a(s)

]α×F(Ξs
(
ai(s)i∈N(a(s))

)))
s∈S
≥lexmax

([
n
(
a′(s)

]α×F(Ξs
(
a′i(s)i∈N(a′(s))

)))
s∈S

.

8.2 Biodiversity

Between now and the SITE conference, we will explore extensions that represent measures
of biodiversity. Interestingly, if both welfare and biodiversity are valued, then they would
trade off against one another.

For example, one measure in the biodiversity literature is “evenness,” which prefers
an even number of members of different species (two cats and two dogs is better than
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three cats and one dog, or vice-versa). A multi-species social welfare function that valued
both evenness and welfare would, in some cases, prefer an animal to be created that,
on welfarist grounds alone, would live a life too full of suffering to be worth living,
because the impersonal benefit of greater evenness outweighs the cost to the added
individual of the suffering-filled, avoidable life. This example may strike some readers
as reflecting another argument against non-welfarist biodiversity and in favor of cross-
species separability.

8.3 Climate change

Between now and the SITE conference, we will show how our social welfare functions
can be used as the objective function in standard climate-economy models to evaluate
climate policies. An interesting implication is that climate change is expected to increase
the size of some species, such as some insects. If there are enough insects, for example,
and if their lives are valuable enough, it is possible, in principle, for these benefits to
outweigh some other costs of climate change.
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A Appendix

A.1 Preliminary

Let E be a set of factors and for each e ∈ E Xe be an open connected and separable space.
Let % be a complete and transitive relation on

∏
e∈E Xe. An element of x ∈

∏
e∈E Xe is

a collection x = (xe)e∈E . Let J ⊂ N . We say that J is %-separable if for any x, x̂, y and
ŷ ∈

∏
e∈E Xe such that (i) xe = x̂e and ye = ŷe for all e ∈ J ; and (ii) xe′ = ye′ and x̂e′ = ŷe′

for all e′ ∈ (E \ J); we have x % y⇐⇒ x̂ % ŷ. We say that J is strictly %-essential if, for
any y ∈

∏
e∈E Xe, there exist x, x̂ ∈

∏
e∈E Xe such that ye = xe = x̂e for all e ∈ (E \ J) but

x � x̂.
We say that % is totally separable if every subset J ⊂ N is %-separable. We have the

following well-known result.

Lemma 1 (Debreu, 1960). If % is a continuous, totally separable preference order on
∏

e∈E Xe,
and every coordinate e is strictly %-essential, then % has a fully additive utility representation:
there exists continuous functions φe : Xe → R such that

x % y⇐⇒
∑
e∈E

φe(xe) ≥
∑
e∈E

φe(ye).

Proof. See Theorem 3 in Debreu (1960).

We also have the following well-know result.

Lemma 2 (Gorman, 1968). If % be a continuous preference order on
∏

e∈E Xe. Let J , K ⊂ E

be two %-separable subsets, such that J ∩K 6= ∅. Suppose that J , K, and J ∩K are all strictly
%-essential. Then:

1. J ∪K is %-separable.

2. J ∩K is %-separable.

Proof. See Gorman (1968) for the initial statement and Stengel (1993) for a general proof.

A.2 Proof of Proposition 1

Step 1: An additive representation for each n ∈ NT . For each n ∈ NT , let us define the
ordering %n on

∏T
s=1 Rns as follows. An element u ∈

∏T
s=1 Rns is u = (u1, · · · , uT ), where

us = (us1, · · · , usns
) ∈ Rns for each s ∈ S. For all u, û ∈

∏T
s=1 Rns , we define that u %n û if

12



and only if there exist a and â ∈ An such that for each s ∈ S a(s) = us and â = ûs, and
a % â.

Given that % is complete, transitive and continuous, so is %n. By species Separability,
the T factors of

∏T
s=1 Rns are %n-separable. By Pareto, each of the T factors of

∏T
s=1 Rns is

%n-essential. Hence, by Lemma 1 there exists T continuous functions φsn : Rns → R such
that, for all u, û ∈

∏T
s=1 Rns :

u %n û⇐⇒
∑
s∈S

φsn(us) ≥
∑
s∈S

φsn(ûs).

By Pareto, each function φsn must be non-decreasing. By Pareto and continuity, for each
s ∈ S and each us ∈ Rns , there exists a unique x ∈ R such that φsn(us) = φsn(x · 1ns); and
for all x > y: φsn(x · 1ns) > φsn(y · 1ns). We can find a continuous and increasing function
f sn : φsn(R) → R such that f sn(φsn(x · 1ns)) = x for all x ∈ R. Denote Ξs

n : Rns → R the
function Ξs

n = f sn ◦ φsn: Ξs
n is normalized, continuous and non-decreasing. Denoting V̄ s

n

the inverse function of f sn, we obtain that for any a and â ∈ An:

a % â⇐⇒
∑
s∈S

V̄ s
n

(
Ξs
n

(
a(s)

))
≥
∑
s∈S

V̄ s
n

(
Ξs
n

(
â(s)

))
.

Step 2: A representation of %. Let us define the ordering %̂ on NT × RT as follows: for any
n, n̂ ∈ NT and for any x, x̂ ∈ RT , (n,x)%̂(n̂, x̂) if and only if there exist a, â ∈ A such that
a(s) = xs · 1ns and â(s) = x̂s · 1n̂s for all s ∈ S and a % â.

Using Pareto and Extended Continuity, we can mimic the proof of Theorem 2 in
Blackorby, Bossert and Donaldson (1984) to show that there exists a function W : NT ×
RT → R such that for any x, x̂ ∈ RT , (n,x)%̂(n̂, x̂) if and only W (n,x) ≥ W (n̂, x̂), and W
is continuous and increasing in the vector in RT .

By Step 1 and the definition of %̂, we know that for any n ∈ NT , and any x, x̂ ∈ RT ,
(n,x)%̂(n̂, x̂) if and only

∑
s∈S V̄

s
n (xs) ≥

∑
s∈S V̄

s
n (x̂s). So, for each n ∈ NT there must

exist an increasing function Φ̄n such that for all x ∈ RT :

W (n,x) = Φ̄n

(∑
s∈S

V̄ s
n (xs)

)
.

Given that, W is continuous and increasing in the vector in RT , Φ̄n must be continuous.

13



Writing Ṽ (xs) = V̄ s
n (xs)− V̄ s

n (0) and Φ̃n(z) = Φ̄n

(
z +

∑
s∈S V̄

s
n (0)

)
, we thus have:

W (n,x) = Φ̃n

(∑
s∈S

Ṽ s
n (xs)

)
.

By Step 1, we also know that for any n and a ∈ An, if a′ ∈ An such that a′(s) =

Ξs
n

(
â(s)

)
· 1n(a(s)) for all s ∈ S then a ∼ a′. So we end up with the following form for the

social ordering: for all a, â ∈ A,

a % â⇐⇒ Φ̃n(a)

(∑
s∈S

Ṽ s
n(a)

(
Ξs
n(a)

(
a(s)

)))
≥ Φ̃n(â)

(∑
s∈S

Ṽ s
n(â)

(
Ξs
n(â)

(
â(s)

)))

Denote a0 ∈ A the allocation such that a0(s) = 0 for all s ∈ S. For any s ∈ S, for any
k ∈ N, consider a, â ∈ A such that n(a(s)) = n(â(s)) = k, and a(t) = â(t) for all t 6= s.
By species separability, a % â if and only if asa0 % âsa

0. By our representation above,
this means that Ξs

n(a)

(
a(s)

)
≥ Ξs

n(â)

(
â(s)

)
if and only if Ξs

n(asa0)

(
a(s)

)
≥ Ξs

n(âsa0)

(
â(s)

)
.

Denoting Ξs
n(a) by Ξs

k when n(a(s)) = k and n(a(t)) = 1 for all t 6= s, we get that
Ξs
n(a)(x) = Ξs

k(x) for all x ∈ R whenever n(a(s)) = k (because each Ξs
n(a) is normalized).

To sum up, there exists continuous non-decreasing normalized functions Ξs
n : Rn → R,

functions Ṽn : N × R → R, continuous and increasing in their second argument, and
continuous and increasing functions Φ̃n(a) such that for all a, â ∈ A,

a % â⇐⇒ Φ̃n(a)

(∑
s∈S

Ṽ s
n(a)

(
Ξs
n(a(s))

(
a(s)

)))
≥ Φ̃n(â)

(∑
s∈S

Ṽ s
n(â)

(
Ξs
n(â(s))

(
â(s)

)))
. (A.1)

Step 3: Indifferent expansion at 0. Consider any s ∈ S, and any positive integers l > m. For
any a′ ∈ A and any ε > 0, Within-species egalitarian dominance implies that asa′ � âsa

′

whenever a(s) = ε · 1l and â(s) = 0 · 1m. By Extended continuity, this implies that
asa
′ % âsa

′ whenever a(s) = 0 · 1l and a(s) = 0 · 1m.
Symmetrically, for any s ∈ S, any positive integers l > m, any a′ ∈ A and any ε < 0,

Within-species egalitarian dominance implies that asa′ ≺ âsa
′ whenever a(s) = ε · 1l and

â(s) = 0 · 1m. By Extended continuity, this implies that asa′ - âsa
′ whenever a(s) = 0 · 1l

and a(s) = 0 · 1m.
Combining those results, this implies that for any s ∈ S, any positive integers l > m,

any a′ ∈ A, and any a and â such that a(s) = 0 · 1l and â(s) = 0 · 1m, we have asa′ ∼ âsa
′.

By a similar reasoning, we obtain that, for each x ∈ R++ (resp. x ∈ R−−) there exists
y ∈ R++ such that y ≤ x (resp. y ∈ R−− such that y ≥ x) such that, for any positive

14



integers l > m, any a′ ∈ A, and any a and â such that a(s) = y · 1l and â(s) = x · 1m, we
have asa′ ∼ âsa

′.
Step 4: Link between the V s

n representations. For any n ∈ NT , denote a0
n ∈ A the allocation

such that a0
n(s) = 0 · 1ns for all s ∈ S.

Consider any s ∈ S, k, l ∈ N with l ≥ k and n, n̂ ∈ NT such that ns = k, n̂s = l. By
Step 3 and species separability, we know that for each x ∈ R there exists y ∈ R such
that, if a, â ∈ A are such that a(s) = x · 1k and â(s) = y · 1l, then asa

0
n ∼ âsa

0
n̂. By our

representation above, we must have:

Φ̃n

(
Ṽ s
n (x)

)
= Φ̃n̂

(
Ṽ s
n̂ (y)

)
. (A.2)

In particular if l = k, we must have x = y for all x ∈ R.
Consider any n, n′ ∈ NT such that n′ > n. For any x ∈ RT , by a reasoning similar

to the one above, there exists x̂ ∈ RT such that for each s ∈ S we have Φ̃n

(
Ṽ s
n (xs)

)
=

Φ̃n′

(
Ṽ s
n′(x̂s)

)
and, if a, â ∈ A are defined by a(s) = xs · 1ns and â(s) = x̂s · 1n′

s
then a ∼ â.

By our representation above, this implies that:

Φ̃n

(∑
s∈S

Ṽ s
n

(
xs
))

= Φ̃n′

(∑
s∈S

Ṽ s
n′

(
x̂s
))

.

We can write it:

Φ̃−1
n′ ◦ Φ̃n

(∑
s∈S

Ṽ s
n

(
xs
))

=
∑
s∈S

Φ̃−1
n′ ◦ Φ̃n

(
Ṽ s
n

(
xs
))
.

Given that each Ṽ s
n is continuous, Ṽ s

n (R) = Xs
n is a connected open set, and denoting

Fn,n′ := Φ̃−1
n′ ◦ Φ̃n we obtain the following functional equation on

∏T
s=1 X

s
n:

Fn,n′

(
T∑
s=1

xs

)
=

T∑
s=1

Fn,n′(xs).

This is a Cauchy function equation. Given that Fn,n′ is continuous, we know (Aczél, 1966,
Chap. 2) that Fn,n′ must be linear. Hence, there exists γn,n′ such that

Fn,n′(x) = γn,n′ × x (A.3)

for all x ∈ Xn, where Xn = {x ∈ R|∃x ∈
∏T

s=1X
s
n, x =

∑T
s=1 xs}. Remark that Xs

n ⊂ Xn
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for each s ∈ S.
Let n1 ∈ NT be n1 = 1T (a population with 1 individual in each specie). For each

s ∈ S and x ∈ R, Equation A.2 tells us that for each n ∈ NT there exists y ∈ R such
that Φ̃n1

(
Ṽ s
n1(x)

)
= Φ̃n

(
Ṽ s
n (y)

)
. By the result in the previous paragraph, we have that

Ṽ s
n (y) = γn1,n × Ṽ s

n1(x). Let us denote Y s
n = {y ∈ R|∃x ∈ R, Ṽ s

n (y) = γn1,n × Ṽ s
n1(x)}.

Again, this is an open connected subset in R that includes 0.
Denote nk,s ∈ NT such that nk,ss = k and nk,st = 1 for all t 6= s. For each s ∈ S, x ∈ R,

k ∈ N, n such that ns = k, Equations A.2 and A.3 imply that:

Ṽ s
n (x) = γnk,s,n × Ṽ s

nk,s(x)

for all x ∈ R. Furthermore, for any x ∈ R, and any n′ ≥ n, Equations A.2 and A.3 imply
that there exists y ∈ R such that:

Ṽ s
n′(y) = γn,n′ × Ṽ s

n (x) = γn,n′ × γnk,s,n × Ṽ s
nk,s(x), (A.4)

and such that, if a, â ∈ A are such that a(s) = x · 1k and â(s) = y · 1n′
s , then asa0

n ∼ âsa
0
n̂.

Gathering those results, we find that, for each k ∈ N, any n, n′ ∈ NT such that ns = k

and n′ ≥ n, for any y ∈ Y s
nk,s , there exists x ∈ R and z ∈ R such that Ṽ s

n (y) = γn1,nk,s ×
Ṽ s
n1(x), Ṽ s

n′(z) = γn,n′ × γnk,s,n × Ṽ s
nk,s(y), so that, if a, a′, â ∈ A are such that a(s) = y · 1k,

a′(s) = z · 1n′
s

and â(s) = x, then asa
0
n ∼ asa

0
n1 ∼ a′sa

0
n′ and asa

0
n ∼ asa

0
n1 ∼ âsa

0
n1 . Thus,

a′sa
0
n′ ∼ âsa

0
n1 , and we must have Ṽ s

n′(z) = γn1,n′ × Ṽ s
n1(x). Hence:

γn1,n′ × Ṽ s
n1(x) = Ṽ s

n′(z) = γn,n′ × γnk,s,n × Ṽ s
nk,s(y) = γn,n′ × γnk,s,n × γn1,nk,s × Ṽ s

n1(x).

We can write such an equation for any x ∈ R. Therefore, we must have:

γn,n′ × γnk,s,n =
γn1,n′

γ
n1,nk,s

.

For any n′ ∈ NT , denote θn′ := γn1,n′ and for any k ∈ N and s ∈ S, denote V s
k :=

1
γ
n1,nk,s

× Ṽ s
k . We obtain that any n′ ≥ n, and for any x ∈ R, there exists y ∈ R such that:

Ṽ s
n′(y) = θn′ × V s

k (x), (A.5)

and such that, if a, â ∈ A are such that a(s) = x · 1k and â(s) = y · 1n′
s , then asa0

n ∼ âsa
0
n̂.

Step 5: Conclusion.
Consider any a and â ∈ A. Let n′ ∈ NT be such that n′s = max

{
n(a(s)), n(â(s)

}
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for each s ∈ S. Using the representation in Equation A.1, let x, x̂ ∈ RT be such that
xs = Ξs

n(a(s))

(
a(s)

)
and x̂s = Ξs

n(â(s))

(
â(s)

)
for each s ∈ S. Let y, ŷ ∈ RT be such that

Ṽ s
n′(ys) = θn′ × V s

n(a(s))(xs) and Ṽ s
n′(ys) = θn′ × V s

n(â(s))(x̂s) for each s ∈ S. Given that, for
any a ∈ A and s ∈ S, asa0

n ∼ ãsa
0
n̂ when ã(s) = Ξs

n(â(s))

(
â(s)

)
· 1n(a(s)), and given the result

is Step 4 and species separability, if we define a′ and â′ ∈ An′ by a′(s) = ys · 1n′
s

and
â′(s) = ŷs · 1n′

s
for each s ∈ S, we obtain a ∼ a′ and â ∼ â′.

Thus a % â⇐⇒ a′ % â′. But using Equation A.1 and the definitions of a′ and â′:

a′ % â′ ⇐⇒ Φ̃n′

(∑
s∈S

Ṽ s
n′(y′s)

)
≥ Φ̃n′

(∑
s∈S

Ṽ s
n′(ŷ′s)

)
⇐⇒

∑
s∈S

θn′ × V s
n(a(s))(xs) ≥

∑
s∈S

θn′ × V s
n(â(s))(x̂s)

⇐⇒
∑
s∈S

V s
n(a(s))

(
Ξs
n(a(s))

(
a(s)

))
≥
∑
s∈S

V s
n(â(s))

(
Ξs
n(â(s))

(
â(s)

))
.

A.3 Proof of Proposition 3

Given that % is a regular social welfare ordering that satisfies Within-species egalitarian
dominance and species separability, we know by Prop 1 that there exists continuous
non-decreasing normalized functions Ξs

n : Rn → R and functions V s : N × R → R,
continuous and increasing in their second argument such that, for all a, a′ ∈ A

a % a′ ⇐⇒
∑
s∈S

V s
(
n
(
a(s)

)
,Ξs

n(a(s))

(
a(s)

))
≥
∑
s∈S

V s
(
n
(
a′(s)

)
,Ξs

n(a′(s))

(
a′(s)

))
.

Furthermore V s(n, 0) = 0 for all n ∈ N and s ∈ S, and for all k > l and s ∈ S V s(k, x) ≥
V s(l, x) if x > 0 and V s(k, x) ≤ V s(l, x) if x < 0.

Consider any s, t ∈ S, l, m and k ∈ N and x, x̂, y and ŷ ∈ R. Let a, a′ and â ∈ A be such
that a(s) = x ·1l, â(s) = x̂ ·1l, a(t) = y ·1m, â(t) = ŷ ·1m. By Strong replication invariance,
a{s,t}â % a′{s,t}â if and only if k ? a{s,t}k ? â % k ? a′{s,t}k ? â. By the representation above,
this means that for all x, x̂, y and ŷ ∈ R:

V s(l, x)+V t(m, y) ≥ V s(l, x̂)+V t(m, ŷ)⇐⇒ V s(kl, x)+V t(km, y) ≥ V s(kl, x̂)+V t(km, ŷ).

By the unicity of additive representations up to a positive affine transformation
(Debreu, 1960), there must exist γl,mk > 0 and βl,mk such that: V s(kl, x) = γl,mk V s(l, x) +βl,mk
and V t(km, x) = γl,mk V t(m,x) + βl,mk for all x ∈ R. Given that V s(n, 0) = 0 for all n ∈ N
and s ∈ S, we must have βl,mk = 0. Remark also that, if we pick m′ 6= m, we should have
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by a similar reasoning V s(kl, x) = γl,m
′

k V s(l, x) for some γl,m
′

k > 0 so that γl,m
′

k = γl,mk for
all m,m′ ∈ N. Similarly, if we pick l′ 6= l, we should have V t(km, x) = γl

′,m
k V t(m,x) for

some γl
′,m
k > 0 so that γl

′,m
k = γl,mk for all l, l′ ∈ N.

Given that species s, t ∈ S are taken arbitrarily and we can combine any pairs, and
given that the constant γl,mk does not depend on l and m, we obtain that for any s ∈ S,
any x ∈ R and any l and k ∈ N we have V s(kl, x) = γ1,1

k Vs(l, x). Denote ρ : N → R
the function such that ρ(k) = γ1,1

k for each k ∈ N. Hence Vs(kl, x) = ρ(k)Vs(l, x), which
implies that Vs(kl, x) = ρ(k)ρs(l)V

s(1, x) and also that V s(kl, x) = ρ(kl)V s(1, x). Therefore
ρ(kl) = ρ(k)ρ(l) for all l and k ∈ N. By Within-species egalitarian dominance, we must
also have that ρ is non-decreasing. By Theorem A in Howe (1986), we know that there
must exist α ∈ R+ such that ρ(k) = kα. And therefore V s(k, x) = kαV s(1, e) for all k ∈ N
and x ∈ R.

For any s ∈ S, k ∈ N, u, v ∈ U such that n(u) = n(v), considering a, a′ and â ∈ A such
that a(s) = u and â(s) = v, Strong replication invariance implies that asâ % a′sâ if and
only if k ? ask ? â % k ? a′sk ? â. By the representation results, this means that:

V s
(

1,Ξs
n(u)(u)

)
≥ V s

(
1,Ξs

n(v)(v)
)
⇐⇒ V s

(
1,Ξs

kn(u)(k ? u)
)
≥ V s

(
1,Ξs

kn(v)(k ? v)
)
,

for all u, v ∈ U such that n(u) = n(v). Denoting Ψs : U → R such that Ψs(u) =

V s
(

1,Ξs
n(u)(u)

)
for all u ∈ U , given that Ξs

n is normalized, we must have Ψs(u) = Ψs(k?u)

for all k ∈ N and u ∈ U . By definition, we also have Ψs(0) = 0.
Last assume that % satisfies Complementarity for species size and well-being. By

our result above we have V s(k, x) = kαV s(1, x) for all x ∈ R. By Proposition 2, we have
V s(k, x) = V 1(k, x) + Θs(x) for all x ∈ R. Combining those results, we necessarily have
Θs(x) = 0 for all x ∈ R.

A.4 Proof of Proposition 4

Step 1: A fully additive and symmetric representation for each n ∈ NT .
Given that % is a regular social welfare ordering that satisfies Within-species egalitar-

ian dominance and species separability, we know by Prop 1 that there exists continuous
non-decreasing normalized functions Ξs

n : Rn → R and functions V s : N × R → R,
continuous and increasing in their second argument such that, for all a, a′ ∈ A

a % a′ ⇐⇒
∑
s∈S

V s
(
n
(
a(s)

)
,Ξs

n(a(s))

(
a(s)

))
≥
∑
s∈S

V s
(
n
(
a′(s)

)
,Ξs

n(a′(s))

(
a′(s)

))
.
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Furthermore V s(n, 0) = 0 for all n ∈ N and s ∈ S, and for all k > l and s ∈ S V s(k, x) ≥
V s(l, x) if x > 0 and V s(k, x) ≤ V s(l, x) if x < 0.

For n = 1 · 1T , we thus have that for all a, a′ ∈ A1·1T
:

a % a′ ⇐⇒
∑
s∈S

φs(a(s)) ≥
∑
s∈S

φs(a′(s)),

with φs(x) = V s(1, x) for all x ∈ R. By Anonymity, the φs function must all be the same
function φ, with φ(0) = 0.

For each n ∈ NT such that ns ≥ 2 for some s ∈ S, let us denoteE(n) = {1, · · · ,
∑

s∈S ns},
Xe = R for each e ∈ E(n). Let us define the ordering %̃n on

∏
e∈E(n) Xe as follows. We

say that a ∈ An is associated to x if for each s ∈ S and i ∈ {1, · · · , ns} we have ai(s) = xe

where e =
∑s−1

t=1 nt + i.2 For each x, y ∈
∏

e∈E(n)Xe, we define that x%̃ny if there exist a
and â ∈ An such that a is associated to x, â is associated to y and a % â.

By Anonymity, a permutation of two components in e and e′ is indifferent for %̃n

provided there exists s, t ∈ S with s 6= t, i ∈ {1, · · · , ns} and j ∈ {1, · · · , nt} such that
e =

∑s−1
t=1 nt + i and e′ =

∑t−1
t=1 nt + j. But by chains of such permutations (and transitivity

of %̃n), it is clear that the permutation of any two components if indifferent for %̃n.
Also, by chains of two components permutations, any permutations (of more than two
components) is indifferent for %̃n.

For each n ∈ NT , by species separablity, any subset of components ES(n){
∑s−1

t=1 nt +

1, · · · ,
∑s

t=1 nt} ⊂ E(n) with s ∈ S is %̃n-separable. So, by Anonymity, any subset of
component of size ns is %̃n-separable. Also, by Pareto (% is regular), there must be at least
one component in each ES(n), which is %̃n-essential. By Anonymity, any component
must be %̃n-essential. By definition, this implies that any subset of components is %̃n-
essential.

Let us proof that any subset of components of size 2 is %̃n-separable. There are three
case:

Case 1: There exists s ∈ S such that ns = 2. Then the proof immediate.

Case 2: There exists s, t ∈ S such that ns = nt = 1. By species separability, the subset
{
∑s−1

k=1 nk + 1,
∑t−1

k=1 nk + 1} is %̃n-separable. So, by Anonymity, any subset of
components of size 2 is %̃n-separable.

Case 3: In other cases, there must exist s, t ∈ S such that ns > 2 and nt > 2. The subset
{
∑s−1

k=1 nk + 1, · · · ,
∑s

k=1 nk − 1,
∑t−1

k=1 nk + 1} has size ns and is %̃n-separable. The

2We use the conventtion that
∑0

t=1 ns = 0.

19



subset {
∑t−1

k=1 nk + 1, · · · ,
∑t

k=1 nk − 1,
∑s−1

k=1 nk + 1} has size nt and is %̃n-separable.
The interaction of those two sets is {

∑t−1
k=1 nk + 1,

∑s−1
k=1 nk + 1} and has size 2. By

Lemma 2, {
∑t−1

k=1 nk + 1,
∑s−1

k=1 nk + 1} is %̃n-separable. Given that this set has size 2,
Anonymity implies that subset of components of size 2 is %̃n-separable.

By unions of subset of components of size 2 and with a non-empty intersection, we
can obtain any subset of components. By Lemma 2, then, any subset of components is
%̃n-separable. Therefore %̃n is totally separable and continuous. Then, by Lemma 1, there
exists there exists continuous functions φn

e : Xe → R such that

x%̃ny⇐⇒
∑
e∈E

φn
e (xe) ≥

∑
e∈E

φn
e (ye).

By Pareto, each φn
e must be increasing, and by Anonymity they must be the same function

φ̃n. We can normalize the function so that φ̃n(0) = 0.
Using the definition of %̃n, we obtain that for any a, a′ ∈ An:

a % a′ ⇐⇒
T∑
s=1

ns∑
i=1

φ̃n(ai(s)) ≥
T∑
s=1

ns∑
i=1

φ̃n(a′i(s)).

But we also know that

a % a′ ⇐⇒
T∑
s=1

V s
(
ns,Ξ

s
ns

(
a(s)

))
≥

T∑
s=1

V s
(
ns,Ξ

s
ns

(
a′(s)

))
.

By the unicity of additive representations up to a positive affine transformation (Debreu,
1960), there must exist χ1

n ∈ R++ and χ2
n ∈ R such that, for each s ∈ S and a ∈ An

V s
(
ns,Ξ

s
ns

(
a(s)

))
= χ1

n ×

(
ns∑
i=1

φ̃n(a′i(s))

)
+ χ2

n.

Given that V s(ns, 0) = 0 and φ̃n(0) = 0, we must have χ2
n = 0, so that, denoting φn =

χ1
nφ̃n:

V s
(
ns,Ξ

s
ns

(
a(s)

))
=

ns∑
i=1

φn(a′i(s)).

Gathering all our results so far, we obtain that there exist continuous increasing
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function φn : R→ R such that φn(0) = 0 and for all a, a′ ∈ A

a % a′ ⇐⇒
T∑
s=1

ns∑
i=1

φn(a)(ai(s)) ≥
T∑
s=1

ns∑
i=1

φn(a′)(a
′
i(s)).

Consider any x ∈ R and n ∈ NT . Let a, â ∈ A be such that a(1) = x, â(1) = 0 and
â(2) = (x, 0, · · · , 0︸ ︷︷ ︸

n2−1 times

). By Step 3 of the proof of Proposition 1 and species separability,

a1a
0
n1 ∼ a1a

0
n. By Anonymity, a1a

0
n ∼ â{1,2}a

0
n. But again, by Step 3 of the proof of

Proposition 1 and species separability, â{1,2}a0
n ∼ â2a

0
n. So, by transitivity, a1a

0
n1 ∼ â2a

0
n.

By our representation above, this means that φ(x) = φn(x). This is true for any x ∈ R and
n ∈ NT .
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