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Abstract
The authors provide an object-theoretic analysis of two paradoxes
in the theory of possible worlds and propositions stemming from
Russell and Kaplan. After laying out the paradoxes, the authors
provide a brief overview of object theory and point out how syntac-
tic restrictions that prevent object-theoretic versions of the classical
paradoxes are justified philosophically. The authors then trace the
origins of the Russell paradox to a problematic application of set
theory in the definition of worlds. Next the authors show that an
object-theoretic analysis of the Kaplan paradox reveals that there is
no genuine paradox at all, as the central premise of the paradox is
simply a logical falsehood and hence can be rejected on the strongest
possible grounds — not only in object theory but for the very frame-
work of propositional modal logic in which Kaplan frames his argu-
ment. The authors close by fending off a possible objection that ob-
ject theory avoids the Russell paradox only by refusing to incorpo-
rate set theory and, hence, that the object-theoretic solution is only
a consequence of the theory’s weakness.
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Introduction

Paradoxes deriving from Russell (1903) and Kaplan (1995) show that
paradoxes can arise quickly in an ontology that includes both sets and ei-
ther propositions or possible worlds. Potent versions of these paradoxes
arise for particular philosophical theories that identify worlds with sets
of propositions (Adams 1981, Plantinga 1974,1 and Pollock 1984) or propo-
sitions with sets of worlds (Lewis 1986). Moreover, these paradoxes
threaten to arise as well for semantic theories that assume a certain amount
of set theory and take worlds as primitive, e.g., in the interpretation of
modal languages (Lewis 1970, Montague 1974). The paradoxes suggest
that the foundations for such assumptions are not secure.

In sorting through these issues, important questions arise, for exam-
ple, whether to take possible worlds as primitive and define proposi-
tions, or take propositions as primitive and define worlds. On the issue
of possible worlds and propositions, Stalnaker (1976) comes down in fa-
vor of taking possible worlds as primitive and defining propositions. As
part of his argument for this claim, Stalnaker notes:

Whatever propositions are, if there are propositions at all then there
are sets of them, and for any set of propositions, it is something
determinately true or false that all the members of the set are true.2

(ibid., 73)

Our argument in what follows, if correct, shows that the first sentence
is in error. We develop a metaphysical theory that can do the work one
expects of a foundational theory but that asserts the existence of propo-
sitions, and derives the existence of worlds, without requiring that there
are sets of any of these entities. We try to show that it is better to take
propositions as primitive 0-place relations, axiomatize them (as part of
a general theory of n-place relations), and then define worlds in terms
of a background theory of objects. At least, we will show that one can
do all this in a way that is paradox-free and which provides a metaphys-
ical foundation for using possible worlds when doing the semantics of
modal logic.

1Plantinga defines worlds to be complex states of affairs but also claims that there is, for
each world w, the book on w, i.e., the set of propositions that would be true if w were actual.

2This passage is preserved in Stalnaker 1984 (55) and Stalnaker 2003 (36).
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The argument in what follows also undermines a claim of Sider’s
(2002, 307) concerning world theories and cardinality problems:

Every theory of worlds encounters trouble in this area. The linguis-
tic ersatzist, for example, may admit arbitrarily large worlds, but
cannot admit a world with so many individuals that they cannot
all be members of a set (except in special cases where the objects
display symmetries allowing simpler description); for a linguistic-
ersatz world is a maximal consistent set of sentences, and sentences
themselves are also sets. That is a limitation on possibility, although
a bit less severe than an upper bound on world size. Similar prob-
lems confront other views that identify possible worlds with ab-
stract entities other than sets of sentences.

We shall be defending a view that identifies possible worlds as abstract
entities, but we shall establish that no obvious size-based argument that
places limits on possibility affects our theory. Moreover the view we
shall defend avoids a similar problem that arises for Lewis (1986, 101–
104) that forces him to restrict his principle of recombination in such a
way that there must be a cardinal upper bound on the number of worlds
and possibilia.

In §1 below, we lay out the Russell and Kaplan paradoxes in detail. In
§2, we present the formal theory of objects, propositions, and worlds and
describe why the classical paradoxes, as well as object-theoretic versions
of them, do not arise. In §3, we trace the origins of Russell’s 1903 para-
dox to the identification of possible worlds with sets of propositions and
point out how the paradox simply cannot arise in the object-theoretic
analysis of possible worlds, which does not rely upon the apparatus of
set theory. In §4, we show that the Kaplan paradox does not arise for
object theory — despite the fact that the allegedly paradoxical principle
K, introduced in §1.2 below, can be formulated in it. We then argue that
K is not paradoxical and, indeed, that the reason it is not paradoxical
can be adopted even for friends of possible world semantics who define
propositions as sets of worlds. Moreover, we argue, the reason K is not
paradoxical is obscured when the paradox is analyzed from within the
set-theoretic framework of possible world semantics itself. Finally, in §5,
we address a potential objection, namely, that object theory avoids the
1903 paradox at the cost of eliminating set theory.

Our moral is that an uncritical introduction of sets into the founda-
tions of metaphysics is perilous. It can lead, in the worst case, to outright
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paradox and, even when it does not, it can lead to a perception of para-
dox where, in fact, none exists. As we demonstrate, object theory pro-
vides an alternative framework that allows the formulation of a rigorous
logic of properties, relations, and propositions and a comprehensive the-
ory of possible worlds without invoking sets and, hence, without the
corresponding perils. Worlds and propositions can be set free.

1 The Paradoxes

1.1 Worlds as Sets of Propositions: Russell’s PoM Para-
dox

Not long after Russell discovered the famous set-theoretic paradox that
now bears his name, he discovered another paradox involving proposi-
tions that he published in 1903 in Appendix B (§500) to The Principles of
Mathematics (hereafter, PoM).3 The premises are as follows:

(1) There is a set P of all propositions.

(2) For every set S of propositions, there is a uniquely identifiable
proposition pS.4

(3) For sets S, S′ of propositions, if pS = pS′ , then S = S′.

Now, for any set S of propositions, since pS is a proposition, we have
either pS ∈ S or pS /∈ S. Let R ⊆ P consist of exactly those of the latter
sort, that is:

B q ∈ R↔ ∃S ⊆ P(q = pS ∧ q /∈ S).

Since R ⊆ P, by (2) we have a corresponding proposition pR and the
obvious question: pR ∈ R? Suppose so. Then by B, for some S ⊆ P,
pR = pS and pR /∈ S. By (3), R = S. Hence, pR /∈ R. So suppose not,
i.e., that pR /∈ R. Then by B once again, for any S ⊆ P, if pR = pS, then

3Today the latter paradox is usually taken to show that there can be no set of all propo-
sitions although, at the time, prior to Zermelo’s axiomatization of set theory and his own
ramified type theory, Russell did not fix upon a single premise as particularly problematic.

4Russell identifies pS with S’s “logical product”, i.e., the proposition that every member of
S is true, but this is entirely incidental to the proof. All that matters is that the propositions
pS satisfy (3).
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pR ∈ S. So, in particular, since R ⊆ P and, obviously, pR = pR, it follows
that pR ∈ R. Contradiction. Call this Russell’s PoM paradox.

Say that a set of propositions is maximal if it contains, for every propo-
sition p, either p or its complement ¬p. The set P of all propositions,
if it exists, is of course maximal. It is, moreover, obviously inconsis-
tent, in the sense that it is impossible that its members be simultane-
ously true. Interestingly, however, replacing ‘proposition’ with ‘truth’
uniformly throughout the above argument yields a corresponding para-
dox for the set of all truths which, of course, if it exists, is just as obviously
consistent as P is inconsistent.

This is significant, of course, as it shows that there are serious prob-
lems with the otherwise intuitive idea of defining possible worlds as
maximal, consistent sets of propositions — a definition proposed initially
by Adams (1974, 225) that persists in modern expositions, e.g., Stalnaker
and Oderberg (2009, 48). The argument above shows that, given min-
imal assumptions, postulating a particularly significant instance of one
such world — the actual world, the world that contains all and only true
propositions — leads to contradiction.

The PoM paradox cannot be generalized to arbitrary possible worlds
without introducing irreducibly modal notions into the proof.5 How-
ever, with a bit of additional set theory and a somewhat stronger ac-
count of propositions, a variation on the paradox can be formulated that
applies to any maximal set of propositions and hence, in particular, to
any possible world in the sense at hand. The premises of this paradox
are as follows:

(4) There is a maximal set of propositions.

(5) Every proposition q has a complement ¬q.

(6) For every set S of propositions, there exists a uniquely identifiable
proposition pS.

(7) If S and S′ are distinct sets of propositions, then pS, pS′ , and their
complements are pairwise distinct.

(5)–(7) seem reasonable on any “fine-grained” understanding of proposi-
tions. Indeed (6) is rather weak, for all that is required for its truth is that

5For example, one can alter (2) to stipulate that, for every S ⊆ P, there is a necessarily
true proposition pS.
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every set be correlated with only one proposition, say, the proposition
that S has at least one member. Intuitively, this proposition is specifically
about S and, hence, is distinct from the proposition that S′ has at least one
member, when S 6= S′. However, assuming some basic set theory, these
premises are inconsistent.

By (4), let S∗ be a maximal set of propositions. By (5), (6), and the def-
inition of maximality, for every member S of the power set ℘(S∗) of S∗,
either qS ∈ S∗ or ¬qS ∈ S∗ (perhaps both). By the axiom of Separation,
let R consist of all such propositions, that is, let

R = {p ∈ S∗ : ∃S ∈ ℘(S∗)(p = qS ∨ p = ¬qS)}.

Since R ⊆ S∗, it follows that R is no larger than S∗. However, R contains,
for every S ∈ ℘(S∗), qS or ¬qS and, by (7), all such propositions are
pairwise distinct. Hence, we can map ℘(S∗) one-to-one6 into R and,
hence, ℘(S∗) is no larger than R. It follows that ℘(S∗) is no larger than
S∗, contradicting Cantor’s theorem that, for all sets S, ℘(S) is strictly
larger than S.7

Call this the generalized PoM paradox. This paradox challenges a
number of other theories of possible worlds. Plantinga (1974) defines
worlds to be states of affairs of a certain sort, but also postulates that, cor-
responding to each possible world w is the book on w, that is, the set of all
propositions true at w (ibid., 44–46).8 It is easy to demonstrate that every
such book is a world in exactly the sense of Adams (1974) and, hence,
that it is subject to the paradox above.9

Adams (1981) provides a more sophisticated version of his earlier the-
ory. In this account, he first defines a possible world (or “world story”) as
above to be a maximal consistent set of propositions (ibid., 21ff). He then

6The preceding fact guarantees a one-to-many mapping from ℘(S∗) into R. To derive
a one-to-one mapping f it is necessary only that, for S ∈ ℘(S∗), f “choose” qS or ¬qS in
those cases where R contains both. For example, by the Powerset and Separation axioms,
we can define the mapping f : ℘(S∗) −→ R such that f (S) = qS if qS ∈ R and f (S) = ¬qS,
otherwise. This mapping “chooses” qS when both it and ¬qS are in R.

7This is a somewhat tighter and more general version of the paradox in Bringsjord
(1985). See also follow-up discussions by Menzel (1986), Grim (1986), and Menzel (2012).

8Where a proposition p is true at a world w just in case, had w obtained, p would have
been true.

9See also Chihara (1998, 126-7), who reconstructs basically the paradox here directly in
terms of Plantinga’s states of affairs.
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proceeds to qualify the definition so as to reflect his “existentialism”, that
is, his view that singular propositions are ontologically dependent on the
individuals they are about.10 Specifically, worlds in which an individual
a fails to exist (that is, worlds lacking the proposition that a exists) contain
no propositions involving a as a “constituent”. Given this qualification,
some possible worlds turn out not to be maximal in the sense above.
However, it has no effect on the nature of worlds containing the same
individuals as the actual world — notably, of course, the actual world
itself, that is, the set of true propositions. Such worlds are still maximal
in the sense above and, hence, the paradox above still applies to Adams’
account.

Another theory that also faces the paradox has been developed by
Lycan and Shapiro (1986). The theory explicitly identifies worlds with
sets of propositions (ibid., 345). There are constraints, however, on the
language in which the theory is formulated so that the identification of
worlds with sets of propositions cannot be made in the object language.
No such constraints are found in the metalanguage, and the paradox
immediately arises. Alternatively, at the object level, by extending the
language so that sets are included, the paradox can be immediately for-
mulated. Additional restrictions would then need to be included, but it
is unclear how that could be done in a principled way.

1.2 Propositions as Sets of Worlds: Kaplan’s Paradox

Paradoxes deriving from Kaplan (1995) concern those theories — no-
tably, David Lewis’s theory of concrete worlds — that follow possible
world semantics in defining propositions to be sets of worlds.11 Ka-
plan expresses the paradox in terms of the unsatisfiability of a certain
intuitively possible sentence in a modal language L+ with propositional
quantifiers and nonlogical sentence operators, viz.:

K ∀p3∀q(Eq↔ q = p).

Intuitively, K implies that there is a property E of propositions such that,
for every proposition p, it is possible that p, and only p, has E. The

10See Menzel (2008, §4.2.2) for a detailed exposition of Adams’ account.
11The 1995 publication date is much later than Kaplan’s actual discovery of the paradox,

which he had communicated to a number of philosophers in the late 1970s. See, e.g., Davies
(1981, 262).
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problem is that, if, as in standard possible world semantics (PWS), the
modal operators are quantifiers over worlds and every set of worlds is a
proposition, K is unsatisfiable, as there will not be enough worlds to go
around; there will always be a proposition that falsifies K.

Following the sketch in Davies (1981, 262), Lewis (1986, 104-5) ex-
presses the paradox in more informal terms with, in particular, a definite
example of the property E — the property of being entertained (at some
fixed time t). On this interpretation, then, K says — not implausibly, on
the face of it — that every proposition could be uniquely entertained, i.e.,
every proposition could be the only proposition that is entertained by
anyone (at the given time t). However, as Kaplan argues, whether or
not we can identify a “natural” property to play the role of E shouldn’t
matter:

[I]f PWS is to serve for intensional logic, we should not build
[any] metaphysical prejudices into it. We logicians strive to
serve ideologies not to constrain them. Thus, insofar as pos-
sible, our intensional logic should be neutral with respect to
such issues.12

Thus, as there seems to be nothing logically amiss with K, that is, with the
idea of a property such that any proposition could be the only thing that
has it, Kaplan appears to be arguing that a proper semantics for modal
logic should not render it logically false and any semantics that does must
therefore exhibit some built in metaphysical prejudices. Unfortunately,
given a bit of set theory, the unsatisfiability of K in standard PWS follows
directly.

To see this, note first that the following are standard principles of
PWS, extended to languages like L+ (ibid., 43):

(8) There is a set W of all possible worlds.

(9) p is a proposition =df p ∈ ℘(W).

(10) Modal operators are quantifiers that range over W.

12Lewis’s response to the paradox only addresses the particular instance that arises on
his informal interpretation of the property E. See Lewis 1986, 106–107, where he in effect
argues that, on that interpretation, and given his functionalist theory of mind, KW , the
formulation of K in terms of possible worlds (discussed below), is implausible. Perhaps so,
but it is clear from the passage quoted here that Kaplan would take no comfort whatever
in this response.
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(11) Propositional quantifiers range over ℘(W).

(12) Sentence operators O are assigned properties of propositions, that
is, functions mapping each world w ∈ W to a set Ow of proposi-
tions.

With some innocuous abuse of notation, the PWS truth condition for K
is spelled out explicitly in terms of (8)–(12) as follows:

KW ∀p ∈ ℘(W)∃w ∈W ∀q(q ∈ Ew ↔ q = p).

But, given some set theory, this condition cannot hold. Kaplan him-
self does not provide a detailed proof but instead (as in Davies’ and
Lewis’s reconstructions) sketches the following simple cardinality argu-
ment (ibid., 44). Understood as KW , K asserts that, for every proposition
p, there is at least one world where p alone has property E. So there
have to be at least as many worlds as propositions, i.e., at least as many
members of W as ℘(W), in violation of Cantor’s Theorem.

We can express this argument a bit more formally so as to make the
underlying set-theoretic machinery involved in this argument explicit.
Let P be the set ℘(W) of propositions. By the Union and Powerset axioms
and an instance of Separation, the Cartesian product W × P exists13 and
hence, by Separation, we have the relation f = {〈w, p〉 ∈W × P : ∀q(q ∈
Ew ↔ p = q)} that holds between a world w and a proposition p just in
case p alone has E in w. It is easy to show that f is a function mapping
its domain U ⊆ W onto P = ℘(W),14 which is of course impossible, by
Cantor’s Theorem.

So Kaplan’s sobering concern “that there is a problem in the concep-
tual/mathematical foundation of possible world semantics” (ibid., 41)
appears to be validated.

13Assuming Kuratowski ordered pairs: W × P = {z ∈ ℘(℘(W ∪ P)) : ∃w ∈ W ∃p ∈
P(z = {{a}, {a, b}})}. Alternatively, the existence of W × P follows from Pairing, Union,
and Replacement.

14To see that f is a function, suppose 〈w, p〉 ∈ f . Then, by definition of f , ∀q(q ∈ Ew ↔
p = q) and, hence, as p = p, p ∈ Ew. Suppose then 〈w, p′〉 ∈ f . Then we have ∀q(q ∈
Ew ↔ p′ = q) and hence, as p ∈ Ew, it must be that p′ = p. To see f is onto, suppose
p ∈ P = ℘(W). By KW , there is at least one world w such that ∀q(q ∈ Ew ↔ p = q) and,
by definition of f , 〈w, p〉 ∈ f , i.e., f (w) = p.
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2 Object Theory and the Classical Paradoxes

Our diagnosis will trace the source of the above paradoxes to the volatile
interplay of worlds and propositions with sets, particularly when the for-
mer entities are identified with sets of one sort or another. The framework
of our analysis is a basic version of object theory as developed in Zalta
1983, 1993, and elsewhere. We begin with a relatively brief presentation
of the theory so that the paper is self-contained. Readers familiar with
the basic theory may skip ahead to the next subsection.

2.1 Review of Object Theory

The Language of Object Theory. The theory of objects, propositions
and worlds (henceforth ‘object theory’) that we shall be discussing is
couched in a syntactically second-order modal language.15 Thus, it uses
primitive variables ranging over objects (x, y, z, . . .) and primitive vari-
ables ranging over n-place relations (Fn, Gn, Hn, . . ., for n ≥ 0), where
properties are identified as 1-place relations and propositions are identi-
fied as 0-place relations. A simultaneous definition of term and formula
is given so that the language includes two atomic forms of predication
(Fnx1 . . . xn and xF1) and complex predicates ([λx1 . . . xn ϕ], for n ≥ 0).16

The second atomic formula, xF1 (hereafter xF) is to be read: x encodes
F. These encoding formulas express a second mode of predication that
has been motivated and applied in a variety of other publications. As
we shall see, such formulas, and the axioms stated in terms of them, will
make up for the loss of the notion of set membership and the axioms of
set theory. For reasons to be discussed below, the complex predicates (λ-
expressions) of the language, may not contain any encoding subformu-
las in ϕ. Finally, the language of object theory includes a distinguished
predicate E!x (‘x is concrete’). This predicate used to define a critical dis-
tinction between ordinary objects and abstract objects, i.e., between objects
that are possibly concrete and those that are not:

15We say ‘syntactically second-order’ because the theory doesn’t require full second-
order logic. Although we won’t pursue the matter here, it should suffice to mention that
the theory can be interpreted using general models, in which the domain of properties is
not the full power set of the domain of individuals.

16The complete language of object theory also includes definite descriptions, ıxϕ. As
these expressions are not relevant for purposes here, we omit them.
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O! O!x =df 3E!x

A! A!x =df ¬3E!x.

Basic Logic: Modality, Identity, and λ-Conversion. The basic logic of
object theory builds upon a classical second-order S5 quantified modal
logic.17 Thus, both the first- and second-order Barcan formulas are theo-
rems.

Identity is not a primitive in object theory but rather defined: x and y
are identical iff they are both ordinary objects and necessarily exemplify
the same properties, or they are both abstract objects and necessarily en-
code the same properties. In other words, we may define:

Id x = y =df (O!x∧O!y∧2∀F(Fx ↔ Fy)) ∨ (A!x∧ A!y∧2∀F(xF ↔ yF)).

Moreover, identity is defined for properties, relations, and propositions
as well. We present here only the definition of identity for properties
and propositions, where F, G range over properties and p, q range over
propositions:

Id0 p=q =df [λx p] = [λx q]

Id1 F=G =df 2∀x(xF ↔ xG).

In other words, properties F and G are identical whenever they are nec-
essarily encoded by the same objects, and propositions p and q are iden-
tical whenever the property of being such that p is identical to the property
of being such that q. This reduces proposition identity to that of property
identity. Identity for n-place relations (n ≥ 2) is also reducible to iden-
tity for properties, but we shall not present the details here.18 Though
the above definitions allow us to prove α = α, for any object variable
or relation variable α, object theory takes the traditional principle of the
indiscernibility of identicals as an axiom:

Ind α = β → (ϕ → ϕ′), where α and β are variables of the same type,
β is free for α in ϕ, and ϕ′ is the result of replacing one or more free
occurrence of α in ϕ with an occurrence of β.

17The full theory also includes axioms for rigid definite descriptions.
18The definition of relations asserts that Fn and Gn are identical (n ≥ 2) iff all of the

pairwise 1-place relational properties that result from the various ways of ‘plugging’ n− 1
arbitrarily chosen objects into Fn and Gn are identical.

O. BUENO, C. MENZEL, AND E. ZALTA 12

Finally, the usual logical axioms governing λ-predicates apply. For
purposes here, we highlight only the λ-conversion principle:19

LC [λy1 . . . yn ϕ]x1 . . . xn ↔ ϕx1,...,xn
y1,...,yn .

This principle yields comprehension principles for properties, relations,
and propositions.20 Note that we have now identified the most impor-
tant principles of our theory of properties, relations and propositions,
namely, their existence and identity conditions. This theory asserts the
existence of a wide variety of complex properties, relations, and propo-
sitions, including complex propositional properties of the form [λy p]
(being such that p) and complex propositions of the form [λ p] (that p),
where p is a proposition. These latter are governed by special instances
of the 0-place case of λ-conversion, namely, [λ p] ↔ p, which assert: the
proposition that p is true iff p.

The Logic of Encoding. The encoding axioms of object theory include
two axioms and an axiom schema:

Enc 3xF → 2xF

O! O!x → 2¬∃F xF

OC ∃x(A!x ∧ ∀F(xF ↔ ϕ)), where x is not free in ϕ.

The first axiom Enc guarantees that encoded properties are rigidly en-
coded; the properties that an abstract object encodes are not relative to

19The other usual axioms for λ-predicates will be assumed: namely that inter-
change of bound variable makes no difference to the denotation of the λ-predicate
([λy1 . . . yn ϕ] = [λy′1 . . . y′n ϕ′]) and elementary λ-expressions denote the governing rela-
tion ([λy1 . . . yn Fny1 . . . yn] = Fn).

20For example, after n applications of universal generalization, an application of the rule
of necessitation, and an application of existential generalization, we derive the following
comprehension principle for relations:

∃Fn2∀x1 . . . ∀xn(Fnx1 . . . xn ↔ ϕ), where ϕ has no free occurrences of Fn and no
encoding subformulas

As special cases, we have comprehension for properties and propositions:

∃F2∀x(Fx ↔ ϕ), where ϕ has no free occurrences of F and no encoding subformu-
las

∃p2(p↔ ϕ), where ϕ has no free occurrences of p and no encoding subformulas
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any circumstance. The second axiom O! tells us that ordinary objects
necessarily fail to encode properties. Finally the schema OC is a com-
prehension principle that tells us the conditions under which abstract
objects exist. More specifically, OC asserts that, for every condition on
properties, there is an abstract individual that encodes just the proper-
ties satisfying the condition. Given the principle of identity for objects
described earlier, we can derive a strengthened version of this principle
as a theorem:

(13) ∃!x(A!x ∧ ∀F(xF ↔ ϕ)), where x is not free in ϕ.

That is, for any condition ϕ, there is a unique abstract object that encodes
exactly the properties satisfying ϕ. There couldn’t be two distinct ab-
stract objects encoding exactly the properties satisfying ϕ since distinct
abstract objects must differ by one of their encoded properties.

2.2 How Object Theory Avoids Classical Paradoxes

To see that object theory is immune to the classical paradoxes, it suffices
to note that since the theory is formulated in the language of second-
order logic, which types the relation and argument places of atomic sen-
tences, Russell’s classic paradox does not arise: one cannot assert of
properties that they can or cannot exemplify themselves, nor formulate
a property that is exemplified by all and only those properties that do
not exemplify themselves. However, it is also important to explain: (i)
why the syntactic restrictions on the formation of λ-expressions block an
object-theoretic version of Russell’s paradox, and (ii) why those restric-
tions are justified by the underlying conception of properties, relations,
and propositions. For without at least a reasonably compelling justifica-
tion, object theory’s avoidance of the PoM and Kaplan paradox would be
a rather hollow victory.

Recall that λ-expressions may not be constructed from formulas ϕ

with encoding subformulas. The reason for this restriction concerns a
Russell-style paradox (the “Clark paradox”) that arises in the founda-
tions of object theory.21 This paradox is unrelated to the Russell-Kaplan

21This paradox was first reported in the literature in Clark 1978 (184), rehearsed in Rapa-
port 1978, and formulated more precisely in object theory in Zalta 1983. It was developed
independently in Boolos 1987 (17).
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paradoxes with which we began our paper, and so it would serve well
to rehearse it briefly here.

Suppose we could form the λ-expression ‘[λx ∃G(xG ∧ ¬Gx)]’ ex-
pressing, intuitively, the property being an object that encodes a property it
does not exemplify. Then we could formulate the following instance of the
comprehension principle for abstract objects:

(14) ∃z(A!z ∧ ∀F(zF ↔ ∀y(Fy↔ [λx ∃G(xG ∧ ¬Gx)]y))).

With a little bit of reasoning, a contradiction follows.22 So by banish-
ing encoding formulas from the formation of λ-expressions and relation
comprehension, we forestall the Clark paradox.

A related paradox was discovered by Alan McMichael.23 Suppose
that identity (‘=’) were taken as a primitive. Then one could formu-
late the λ-expression ‘[λy y = z]’ expressing, intuitively, the property
being identical with z. Call such a property a ‘haecceity of z’. If such λ-
expressions were legitimate, then so would be the following simplified
instance of comprehension for abstract objects:

M ∃x∀F(xF ↔ ∃z(F=[λy y= z] ∧ ¬zF)).

M asserts the existence of an object that encodes exactly those haecceities
that are not encoded by their instances. But as with (14), from M a con-
tradiction quickly ensues.24

22Let L be the property [λx ∃G(xG ∧ ¬Gx)] and let b be a witness to the existential claim
(14). Then b encodes all and only the properties F which are materially equivalent to L.
Either Lb or ¬Lb. Suppose the former. Then by λ-conversion, ∃G(bG ∧ ¬Gb), i.e., there is
some property, say Q, such that bQ and ¬Qb. But from the former, it follows that ∀y(Qy↔
Ly), by definition of b. But from ¬Qb, it then follows that ¬Lb, contrary to hypothesis.
So suppose ¬Lb. Then by λ-conversion once again it follows that ∀G(bG → Gb), and in
particular, bL → Lb. But, by the definition of b, we know that bL ↔ ∀y(Ly ↔ Ly). Since
the right-hand side of the biconditional is derivable from logic alone, it follows that bL.
Hence, Lb. Contradiction.

23This paradox was first reported in McMichael and Zalta (1980). It was discovered
independently and reported in Boolos (1987, 17).

24Let b be a witness to this existential claim M. By definition of b, we know:

M′ ∀F(bF ↔ ∃z(F=[λy y= z] ∧ ¬zF))

Now consider the property [λy y= b] and suppose b[λy y= b]. Then by M′, it follows that
∃z([λy y= b] = [λy y= z] ∧ ¬z[λy y= b]). Call such an object c. So, [λy y= b] = [λy y= c] ∧
¬c[λy y = b]. Note independently that b = b by the laws of identity, from which it follows
by λ-conversion that [λy y= b]b. Since [λy y= b] = [λy y= c], it follows that [λy y= c]b. So
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Now, the same restriction provided earlier in the context of the Clark
paradox, namely, the banishment of encoding subformulas from λ-ex-
pressions and comprehension, also solves the McMichael paradox. For
in object theory, in the above definition of object identity, the defined no-
tation ‘x=y’ is given in terms of a definiens containing encoding subfor-
mulas. Thus, ‘[λxy x=y]’, ‘[λy y= z]’, and ‘[λy z=y]’ are all ill-formed, as
are the corresponding instances of comprehension.25 The paradox does
not get off the ground.26

The fact that banishing encoding formulas from λ-expressions avoids
the Clark paradox and the McMichael paradox provides a strong, practi-
cal justification for the proscription. However, we believe there are pow-
erful theoretical justifications for the move as well.

First, the fact that proscribing the occurrence of encoding subformu-
las provides a unified solution to both the Clark and the McMichael para-

by λ-conversion, it follows that b = c. But since ¬c[λy y = b], it follows that ¬b[λy y = b],
contrary to hypothesis. So suppose instead ¬b[λy y = b]. Then, by M′, it follows that
¬∃z([λy y= b]= [λy y= z] ∧ ¬z[λy y= b]), i.e., ∀z([λy y= b]= [λy y= z] → z[λy y= b]). By
instantiating the universal claim to b, we get [λy y=b]= [λy y=b]→ b[λy y=b]. And since
the antecedent is true by the laws of identity, it follows that b[λy y=b]. Contradiction.

25Note, however, that the classical, Leibnizian definition of indiscernibility can still be
treated as a bona fide relation. For the λ-expression ‘[λxy ∀F(Fx ↔ Fy)]’ is well-formed.
Moreover, in object theory, indiscernibility plays a role in the definiens of the notion of
identity for ordinary objects, x =E y, which is defined as: O!x ∧ O!y ∧ 2∀F(Fx ↔ Fy).
Thus, the λ-expression ‘[λxy x=E y]’ is also well-formed. It denotes a relation that is well-
behaved on the ordinary objects — it is provably an equivalence relation on the ordinary
objects. So object theory does allow for a relation of identity, but as with all other relations,
one can prove that there are abstract objects that are indiscernible with respect to x=E y, as
explained in the next footnote.

26It is to interesting note that object theory yields the theorem that some distinct ab-
stract objects can’t be distinguished by the traditional notion of exemplification. It is prov-
able that for any relation R, there are at least two distinct abstract objects a, b such that
[λx Rxa] = [λx Rxb]. Consider the following instance of comprehension:

∃x(A!x ∧ ∀F(xF ↔ ∃y(F=[λz Rzy] ∧ ¬yF)))

Call such an object k. From the assumption that k doesn’t encode the property [λz Rzk],
one can prove that k does encode that property. Then, from the definition of k, the fact
that k does encode this property yields that there is a distinct object, j, such that [λz Rzk]=
[λz Rzj].

Now from this result, by letting R be [λxy ∀F(Fx ↔ Fy)], one can prove that there are
distinct abstract objects a, b such that ∀F(Fa↔ Fb). This establishes that there are too many
abstract objects for the traditional notion of exemplification to distinguish. Readers who
wish to see the reasoning spelled out in detail should consult Zalta (1999, 626 and footnote
16).
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doxes itself offers theoretical warrant. Object theory thereby helps to
illuminate and unify two paradoxes that may otherwise seem to be im-
portantly different. The paradoxes differ in their formulation but are
fundamentally similar in their solution. And by categorizing paradoxes
in terms of the way in which they can be solved, object theory offers an
understanding of what these paradoxes challenge.

Second, a solution to a theoretical problem accrues some theoretical
justification if it has no detrimental impact on the power and applicabil-
ity of the theory. An illustrative case is set theory itself. With set theory
beset by paradox, Zermelo (1908) endeavored to axiomatize the theory
in a way that preserved its already impressive array of extraordinary re-
sults (see, e.g., Kanamori 1996, 2004). Although it would be some twenty
years before it was sufficiently understood how the fine structure of the
cumulative hierarchy explained the effectiveness of the restrictions on
naive comprehension that Zermelo had introduced in the axiom schema
of Separation, the power of the theory even with those restrictions pro-
vided some warrant for believing that they reflected deeper structural
facts about sets. The proscription on encoding subformulas in object the-
ory is analogous — it avoids the paradoxes without compromising the
breadth and power of the theory.

However, this analogy is not perfect, as we believe that we can al-
ready identify a deeper structural justification for the proscription on
encoding subformulas in λ-predicates. We begin with an informal ob-
servation about the basic philosophical idea of object theory, namely, that
there is a domain of abstract objects that encode properties with which
we are already familiar. The underlying intention is simply to assert the
existence of new objects that are constituted by familiar properties; it is not
to assert the existence of new and unfamiliar “encoding properties” —
properties that, if anything, emerge solely as artifacts of the increased ex-
pressive power that encoding predication brings to the language. On this
basis alone one is led to disallow encoding formulas from λ-expressions
and comprehension.

But there is an even deeper theoretical justification underlying this
basic idea. Object theory introduces a special type of connection — en-
coding — between properties and objects of a special sort. This connec-
tion is indeed often considered akin to exemplification — most fruitfully,
perhaps, in applications where a philosophical problem can be solved by
appealing to an ambiguity in the copula between encoding and exempli-
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fication.27 Parallels aside, however, encoding is completely distinct from
exemplification. Encoding is a unique connection between objects (of a
special sort) and properties (not n-place relations generally) whose the-
oretical role is to provide a mechanism whereby properties satisfying
certain conditions are unified into a single conceptual object. There is no
independent reason to think this metaphysical connection plays a role in
the logical structure of fine-grained relations. There is, in fact, reason to
think it does not.

On object theory’s fine-grained conception of relations, to be a rela-
tion is to be either a structurally simple n-place universal or to be built
up from such by means of a series of natural logical operations: predica-
tion, negation, conjunction, quantification, etc. The effect of these oper-
ations is reflected in the syntactic structure of λ-predicates (though not
necessarily exactly reflected). Structurally simple n-place relations cor-
respond to primitive n-place predicates such as ‘R’. Now the relation R
that this predicate expresses just is the property exemplifying R (or stand-
ing in R) and this is reflected in an object theoretic axiom that governs
elementary λ-expressions, namely, [λx1...xn Rx1...xn] = R. The argu-
ment places in the predicate reveal, as Frege (1891) put it, the unsaturated
(ungesättigt) or “gappy” nature of relations, which indicates their predi-
cability of any n or fewer objects. No separate operation is needed for a
property to be suitably “prepared” for combining logically with objects
or other relations: Given F, i.e., [λx Fx], we have its negation [λx¬Fx];
given [λy Gy] we then have the conjunctive relation [λxy¬Fx ∧Gy]; and
given an object b, a (2-place) predication operation yields the proposition
[λ¬Fb ∧ Gb] (the proposition that b is not F but G); and so on.

By contrast, by virtue of what would an encoding property be suit-
ably prepared to combine logically in the same sort of way with ob-
jects and other relations? In order to provide a general semantics for
λ-predicates containing encoding formulas involving free variables, one
must initially have, for properties F, atomic encoding properties [λx xF],
i.e., properties of the form encoding F.28 But unlike F itself, as [λx xF] 6=

27For example, in the analysis of fiction, object theory analyzes ordinary natural lan-
guage claim such as “Holmes is a detective” as ambiguous between an exemplification
reading (Dh), which is false, and an encoding reading (hD), which is true. See Zalta 2000a.

28Thus, in particular, if there were such a property as encoding F, [λx xF], the predication
operation applied to that property and an object b would reasonably be thought to return
a proposition, viz., that b encodes F.
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F, [λx xF] must be a complex property; that is, its existence must be due
to some sort of transformation on F — specifically, a primitive transfor-
mation that takes F as input and yields the encoding property [λx xF] as
output. But unlike all the other operations that yield complex properties,
the proposed transformation is not a logical operation; unlike predica-
tion, negation, conjunction, etc, it is a purely metaphysical transforma-
tion corresponding to no logical intuition whatsoever.

To be clear, then, what is being denied here is that there is a logical
operation that transforms the property F — that is, the property exem-
plifying F — into the property encoding F, as such a transformation, we
claim, corresponds to no natural logical operation. There is, therefore,
simply no philosophical warrant for postulating such a transformation
and, hence, no syntactic warrant for permitting encoding formulas to oc-
cur in the λ-predicates of object theory. Indeed, the reflections here sug-
gest that permitting them so to occur, and thereby enabling encoding to
bleed into the logical structure of relations, would be a type of category
mistake.

Far from an ad hoc maneuver introduced to avoid paradox, then, the
proscription on encoding subformulas in λ-predicates is independently
and antecedently motivated by object theory’s account of fine-grained
relations.

3 Object Theory and the PoM Paradoxes

To show that object theory is immune to the PoM paradox and its gener-
alization we have to review its theory of possible worlds. In Zalta 1993,
worlds are defined as situations, where these in turn are defined as ab-
stract objects that encode only propositional properties:

Sit Situation(x) =df A!x ∧ ∀F(xF → ∃p(F=[λy p])).

If we let s range over situations, then to say that p is true in s (‘s |= p’) is
to say that s encodes the propositional property being such that p:

TI s |= p =df s[λy p].

Finally, possible worlds are defined as situations s that might be such
that all and only true propositions are true in s:29

29In the definiens of the following definition, the symbol ↔ dominates |=. So the
definiens is to be parsed as ∀p((s |= p)↔ p), not as ∀p(s |= (p↔ p)).
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PW World(s) =df 3∀p(s |= p ↔ p).

In what follows, when s is a world w, we read w |= p as p is true at w.
These definitions, plus the definitions of maximal, consistent, actual,

etc., allow one to derive the basic principles of world theory as theorems
(Zalta 1983, 1993). It is provable that worlds are maximal, consistent,
modally-closed, that there is a unique actual world at which all and only
the truths are true, that a proposition is necessarily true iff true at all
possible worlds, and that a proposition is possible iff it is true at some
world. The latter theorem constitutes a conditional existence principle
for worlds: whenever we add to the theory a proposition p such that 3p
and ¬p, the principle ensures that there exists a possible world distinct
from the actual world at which p is true.30 Indeed, the definition of iden-
tity here is crucial to this latter fact, for it is provable that if there is a
proposition, say p, that is true at w and not at w′, then w 6=w′.31

Moreover, in contrast to those that would model worlds as sets of
propositions, the worlds of object theory are not ersatz worlds. The propo-
sitions true at a world are the ones they encode. But encoding is a mode
of predication, and as such, the predicate in encoding formulas charac-
terizes the subject. Given that object theory treats both encoding and ex-
emplification forms of predication as ways of disambiguating the copula
‘is’, the definiens of ‘p is true in w’ (namely, w[λy p]), can be understood
as asserting that w is such that p. So the propositions true at a world do
in fact characterize those worlds.

Given this analysis of possible worlds, and the underlying theory of
propositions, we can see why object theory is immune to the Russell
paradox. Object theory doesn’t employ any set theory in its theory of
propositions. In particular, it is not committed to the existence of max-
imal consistent sets of propositions. So neither the PoM paradox nor its
generalization can even get started.

Because object theory (a) does not have primitive sets, and (b) does
not reconstruct worlds as sets of propositions, it is immune to the rea-
soning in the PoM paradoxes. Propositions are instead axiomatized, as a

30See Menzel and Zalta 2014 for a study of the smallest models that are required to make
this principle, and the axioms used to derive it, true.

31Suppose w |= p and w′ 6|= p (to show that w 6= w′). Then by the definition of |=, w
encodes a property, namely, [λy p], that w′ doesn’t encode. Since worlds are situations,
they are both abstract. So by the definition of identity for abstract objects, w and w′ are
distinct.
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subtheory of the theory of relations, and worlds are defined as abstract
objects. No paradoxical set-theoretic correlations between worlds and
propositions can be established. So no similar paradoxes by way of set-
theoretic considerations threaten to arise.

4 Object Theory and Kaplan’s Paradox

Turning to the Kaplan paradox, note that object theory is also not com-
mitted to sets of possible worlds or to the analysis of propositions as sets
of worlds. So it is not committed to two of the principles used to derive
the paradox in §1.2:

(8) There is a set W of all possible worlds.

(9) p is a proposition =df p ∈ ℘(W).

Hence, the Kaplan paradox too might appear to fall by the wayside.
But the full object-theoretic analysis of Kaplan’s paradox is both more
subtle and more interesting than this. For an argument to the falsity
of (an object-theoretic version of) K can be given within object theory no
less than in PWS, showing thereby that matters here do not depend upon
an ontology of sets, primitive worlds, or upon a reduction of proposi-
tions to sets of worlds. But, as we will now argue, the object-theoretic
argument reveals that there is no actual paradox, not even for the de-
fender of PWS.

4.1 Principle K is Inconsistent with Object Theory

Recall Kaplan’s contradictory principle:

K ∀p3∀q(Eq↔ q = p).

The most natural argument to a contradiction from K is blocked in ob-
ject theory. The reason for this is that the argument requires the con-
struction of a λ-predicate derived from K involving identity between
propositions.32 However, identity between propositions is not primi-
tive in object theory but rather is defined in terms of encoding (see Id0

32See fn 36 for further detail.
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and Id1), and the presence of encoding formulas in λ-predicates is pro-
scribed, for reasons defended at length in §2.2. As it happens, however,
we can squeeze a contradiction from a weaker principle suggested by Kit
Fine,33 viz.,

K* ∀p3(Ep ∧ ∀q(Eq→ 2(q↔ p)).

On our informal interpretation of ‘E’ (which we will continue to use
for expository purposes), K* says that every proposition could be such
that it, and perhaps some propositions necessarily equivalent to it, are
the only propositions that are entertained — for short, that every propo-
sition could be almost-uniquely entertained.34 Moreover, it should be
clear that, under any interpretation of ‘E’, K entails K* and, indeed, K*
is derivable from K in object theory by a simple bit of reasoning in its
underlying modal predicate logic.35 Hence, a contradiction follows from

33Fine pointed this out in conversation with one of the present authors at the Aus-
tralasian Association of Philosophy Conference in Melbourne, Australia, in July 2009.

34As Kaplan (1995, fn 9) notes, on the assumption that propositions are identical if nec-
essarily equivalent, K can be re-expressed as

K′ ∀p3∀q(Eq↔ 2(q↔ p))

and essentially the same PWS argument as the one we have laid out in §1.2 will still go
through. Of course, we do not make the assumptions involved in that argument, as just
pointed out above, nor do we assume that necessarily equivalent propositions are identi-
cal. Nonetheless, a contradiction is still derivable from K′ in object theory — essentially the
one given for K*. But, under the informal interpretation of E as the property of being en-
tertained (at some given fixed time t), K′ expresses the proposition that every proposition
could be such that all (and only) propositions necessarily equivalent to it are entertained
— a proposition that friends of fine-grained propositions, who reject the thesis that neces-
sarily equivalent proposition are identical, will find much less plausible than either K or
K*. However, as K* is obviously derivable from K′, the object-theoretic analysis of K will
apply no less to K′.

35 By Ind and the theorem 2(p↔ p), we have

(A) p = q→ 2(p↔ q).

By (A) and some basic predicate logic we have:

(B) ∀q(Eq→ p = q)→ ∀q(Eq→ 2(p↔ q))

and hence also

(C) (Ep ∧ ∀q(Eq→ p = q))→ (Ep ∧ ∀q(Ep→ 2(p↔ q))).

So, by some basic modal predicate logic, we have

(D) ∀p3(Ep ∧ ∀q(Eq→ p = q))→ ∀p3(Ep ∧ ∀q(Ep→ 2(p↔ q))).

The antecedent of (D) is easily shown to be logically equivalent to K and the consequent is,
of course, K*.
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K in object theory no less than in possible world semantics, albeit by a
different route.

To show this, we begin by simplifying the expression of K* by means
of the following definition:

(15) Up =df Ep ∧ ∀q(Eq→ 2(q↔ p)).

This yields the following abbreviated expression of K*:

K* ∀p3Up

Now define the proposition q0 as follows:

(16) q0 =df [λ ∃p(¬p ∧Up)].36

So, informally understood, q0 is the proposition that there exists a false
proposition p that is almost-uniquely entertained. But from K* and the
existence of q0 a contradiction quickly ensues. For the claim that q0 is not
almost-uniquely entertained, i.e.,

(17) ¬Uq0,

is a theorem of object theory. By Necessitation, so is 2¬Uq0, i.e., ¬3Uq0.
But the latter proposition is obviously inconsistent with K*.

To show that (17) is indeed a theorem of object theory, let us note first
that, by the definition (16) of q0, (0-place) λ-conversion, and Ind, we have

(18) q0 ↔ ∃p(¬p ∧Up).

Assume (for reductio) that (17) is false, i.e., assume Uq0. Unpacking the
latter according to (15), we have:

(19) Eq0 ∧ ∀q(Eq→ 2(q↔ q0)).

Now, either q0 or ¬q0. Suppose the former. Then from (18) it follows that
∃p(¬p ∧Up). Let s be such a p; then we have

(20) ¬s ∧Us.

36It is at this point that a direct, analogous argument for the inconsistency of K in object
theory is blocked, as the definition (15) of ‘Up’, which would instead have been extracted
from K instead of K*, would have involved identity (hence encoding formulas) rather than
necessary equivalence and, hence, could not be used to construct the λ-predicate in (16).
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By unpacking Us, it follows from (20) that ∀q(Eq→ 2(q↔ s)) and so, in
particular, Eq0 → 2(q0 ↔ s). By (19) we have Eq0 and hence 2(q0 ↔ s).
By the T schema (2ϕ → ϕ), we have q0 ↔ s and, by (20) once again, ¬s.
Hence, ¬q0, contradicting our assumption that q0.

So suppose instead that ¬q0. By (18), it follows by a bit of predicate
logic that ∀p(Up → p) and hence, in particular that Uq0 → q0. But we
assumed at the outset that Uq0, so it follows that q0, contradicting our
assumption ¬q0. Either way, we get a contradiction from the assumption
that Uq0.

So our theorem (17) shows that a contradiction can be derived from
K* in object theory and, hence, as K* is derivable from K, K is inconsis-
tent with object theory.

4.2 Analysis: Principle K is Logically False

The crux of Kaplan’s argument that K leads to a genuine paradox is that,
on the face of it, there is nothing logically amiss with K. And, indeed,
under the informal interpretation we’ve been considering, prima facie, K
seems, at the least, logically consistent, perhaps even plausible: intu-
itively, for any given proposition p, p alone could have been the only
proposition entertained by any rational agent. Thus, Kaplan’s argument
appears to reveal a genuine paradox, a genuine inconsistency between,
on the one hand, the (modal) logical intuitions that ground K and, on the
other, the set-theoretic assumptions and semantic intuitions that ground
the framework of possible world semantics: the intuitions in question
are all intuitively compelling and the set-theoretic assumptions are, at
the least, theoretically necessary; but not all of them can be true.

However, as the early history of set theory has shown us, intuitions
are not always a reliable guide to consistency. Prima facie, the Naive Com-
prehension principle of naive set theory is extremely compelling:

NC ∀G∃y∀x(x ∈ y↔ Gx).

What could be more obvious than the principle that the things satisfying
some condition jointly constitute a set of things satisfying that condition?
If you have the things, how do you not have the set? However, by instan-
tiating ∀G to [λz z 6∈ z] in NC and performing λ-conversion, we have that
Russell’s set of all non-self-membered sets exists:

R ∃A∀x(x ∈ A↔ x /∈ x).
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However, the problem here was not so much with the notion of set —
though, of course, there was a problem, later resolved (in the minds of
many) with the development of Zermelo-Frankel set theory (ZF) and,
subsequently, its natural iterative models (Zermelo 1930, Boolos 1971) —
but rather with the fact that framing matters in term of sets obscured the
more fundamental problem, viz., that NC is in fact a logical falsehood.
Intuitions about sets notwithstanding, the falsity of NC is an instance of
a general theorem of second-order logic:37

(21) ∀R∃G¬∃y∀x(Rxy↔ Gx).

The object theoretic analysis reveals that the situation with regard to
K is analogous. For note that, although we have framed the argument
in the preceding section as an argument for K’s inconsistency with object
theory, K is in fact logically inconsistent — the argument is given entirely
in object theory’s underlying second-order modal predicate logic. No
distinctively object-theoretic principles are involved. Rather, it is simply
a theorem of the second-order modal logic underlying object theory that,
for any property F of propositions, there will be a proposition p that can’t
possibly be the only proposition that has F,38

(22) ∀F∃p¬3∀q(Fq↔ q = p),

Hence, there is in particular a proposition that can’t possibly be the only
proposition that has property E, under any interpretation and, hence,
that K, like NC, is logically false — a fact initially obscured, perhaps,
by framing matters in terms of a naive notion of entertainment that en-
dowed K with an initial measure of plausibility, just as the logical falsity
of NC was obscured by framing matters in terms of a naive notion of set.

Now, importantly, note that, not only is the proof of K’s logical falsity
not in any way distinctively object theoretic, the full framework of object

37To see this is a theorem, suppose its negation, for reductio. Then ∃R∀G∃y∀x(Rxy ↔
Gx). Let S be an arbitrary such R. Then ∀G∃y∀x(Sxy↔ Gx). Now instantiate to [λz¬Szz]
and perform λ-conversion to obtain: ∃y∀x(Sxy ↔ ¬Sxx). Let a be such a y: ∀x(Sxa ↔
¬Sxx). By instantiating to a, we get: Saa↔ ¬Saa.

38Since we have derived a contradiction from K* in the preceding section and have
shown (see fn 35) that K* follows from K, it follows that ¬K — i.e., ¬∀p3∀q(Eq ↔ q = p)
— is a theorem and, hence, by some elementary quantifier logic, so too is ∃p¬3∀q(Eq ↔
q = p). Since we’ve assumed no special facts about ‘E’, it can be regarded as arbitrary and
so we have our theorem (22) by universally generalizing on ‘E’.
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theory’s underlying second-order modal predicate logic is far more ap-
paratus than is necessary. Notably, the proof can be reconstructed in a
simple proof theory for the very framework of modal logic on which Ka-
plan himself bases his alleged paradox: one needs only the simple modal
logic that includes a quantified version of the T axiom ∀p(2p→ p), stan-
dard axioms for propositional quantifiers and identity, and an obviously
valid comprehension schema for propositions:39

C ∃r(r ↔ ϕ)

for any formula ϕ of the language L+ of the framework in which r does
not occur free.40

This realization casts an entirely different light on Kaplan’s alleged
paradox. For one is saddled with a paradox only if there are no com-
pelling grounds for rejecting any of the jointly inconsistent propositions
that drive it. But the preceding analysis reveals that there are in fact
the most compelling grounds imaginable: K is false as a matter of logic
alone — its initial intuitive plausibility notwithstanding, its falsity is
completely and satisfyingly explained by its refutability from compelling
logical principles of (extended) modal propositional logic.41 Hence, there
simply is no genuine paradox.

39The requisite proposition r for each instance of C will of course simply be the set of
worlds in which ϕ is true.

40The proof of K’s inconsistency runs as follows. As an instance of C, we have:

(E) ∃r(r ↔ ∃p(¬p ∧ ∀q(Eq↔ p = q))).

Let q0 be one such proposition r (the only such, of course, in the context of PWS). Then we
have:

(F) q0 ↔ ∃p(¬p ∧ ∀q(Eq↔ p = q)).

It can now be shown by a reductio argument very similar to the one in the previous section
(starting with proposition (18)) that

(G) ¬∀q(Eq↔ q = q0)

is a theorem of the logic in question and, hence, by necessitation and existential general-
ization that

(H) ∃p2¬∀q(Eq↔ q = p),

which, of course, is equivalent to the negation of K.
41Anderson (2009) similarly points out that the negation of K (which he calls anti-(A),

ibid., 92) is a theorem in an extended modal propositional logic like the one we have
sketched here and concludes as we do that the issue at root has nothing to do with PWS per
se. Curiously, however, he does not draw any parallels with the lessons of naive set theory
but, rather, seems to agree with Kaplan that K’s initial plausibility under some interpreta-
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Why might one miss this simple analysis? The answer, we contend,
is that by analyzing the situation within the set-theoretic framework of
PWS instead of a logical framework, one can easily overlook the intrinsic
inconsistency of K and, instead, rely upon naive intuitions and conclude
Kaplan’s argument poses a genuine paradox. The fact that the logical
analysis we have provided extends to Kaplan’s own framework shows
that the problem does not have anything to do with PWS per se — given
that K is internally inconsistent, a “paradox” would be expected. But, at
the least, an overreliance upon that framework — notably, the assump-
tion that there is a set of all worlds and the identification of propositions
with sets of worlds — led to a misdiagnosis regarding the true source of
the problem.

5 PoM Paradoxes Redux: Whither Set Theory?

Our analysis has defused the Kaplan paradox by revealing the intrin-
sic, if not intuitively transparent, logical inconsistency of principle K.
This, in turn, has shown that the “paradox” has nothing essentially to
do with either set theory in general or possible world semantics in par-
ticular. However, it might be objected that our solution to Russell’s PoM
paradox and its generalization is unsatisfying: it avoids brewing a para-
dox simply by removing the essential ingredient of set theory. The “solu-
tion”, then, according to this objection, only comes courtesy of a crippled
object theory incapable of supporting a robust theory of sets.

In response to this objection we note that nothing prevents one from
taking membership as a primitive and adding the axioms of, say, ZFU
(i.e., ZF+Urelemente) to object theory. But note that sets of propositions
aren’t guaranteed to exist in this setting. The reason for this is that propo-
sitions in object theory are not in the range of the first-order quantifiers
of ZFU. Hence, the axioms of ZFU wouldn’t entail the existence of sets
of propositions. So this response allows for set theory, but without the
problematic sets of propositions needed for the PoM paradox.

tions of ‘E’ means that there is some cost involved in taking K to be logically false (ibid.).
For our part, the provability of K’s inconsistency from obviously valid logical principles is
simply yet another reminder that naive intuitions are unreliable indicators of the logical
properties of propositions, particularly when they rest upon such non-logical notions as set
and entertainment.
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That noted, there is no obvious reason why one could not formu-
late a typed version of ZFU that quantifies over sets of each logical type
of entity in the range of the object-theoretic quantifiers, notably, sets of
propositions. Still, however, there would be no PoM paradox. For the
premises of the PoM paradox entail that, for every set S, there is a propo-
sition pS corresponding uniquely to S. Hence, it is provable in ZFU that
premise (1) of the original paradox is false, that there is no set P of all
propositions (or alternatively, all truths). For otherwise, by correlating
each proposition pS ∈ P with its corresponding set S, the members of a
subset of P could be correlated one-to-one with the members of the class
V of all sets. Hence, by the axiom of Replacement, it would follow that
V is a set, which would of course lead quickly to contradiction. Simi-
lar reasoning applies to premise (4) of the generalized paradox, i.e., the
premise that there is a maximal set of propositions.42

This of course raises the possibility of a modification of ZFU — no-
tably, of Replacement — so as to allow proper-class-sized sets as in, for
example, the set theories ZFCU′ and ZFCU∗ of Menzel 2014. However,
the arguments for the PoM paradoxes will not necessarily survive such
modifications — in particular, in ZFCU′ and ZFCU∗ they do not.43 Ab-
sent an actual modification of ZFU in which the PoM paradoxes can be
reconstructed, the mere possibility of such a modification is a toothless
speculation.

So the object theorist can meet this objection; there is no reason that
ZFU cannot be adjoined to object theory. Of course, this leaves open the
question of the consistency of doing so. Object theory itself is known to
be consistent relative to a weak fragment of Z set theory, as models by

42The idea that the incompatibility of ZFU with set-theoretic worlds provides a satisfying
dissolution of the PoM-style paradoxes is of course not new. See, in particular, Grim 1991,
Ch. 4.

43Even though ZFCU′ allows proper-class-sized sets, it is still a theorem of that theory
that there are no sets the size of the entire universe and, hence, given (2) and (3), that
there is no set P of all propositions, contrary to premise (1). (Hence, in ZFCU′, unlike ZFU
(with classes), “proper class sized” is not equivalent to “as large as the universe”.) And
given premises (5), (6) and (7) it is for the same reason a theorem of ZFCU′ that there is
no maximal set of propositions, contrary to premise (4). By contrast, while the premises of
both PoM paradoxes appear to be consistent with ZFCU∗, that theory adopts a generalized
Powerset axiom that will not do as a substitute for ZFU’s Powerset axiom in the arguments
for both paradoxes.
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Scott, Aczel, and Menzel & Zalta show.44 The consistency of full ZFU, of
course, can only be proved in systems that are even stronger than ZFU.
But, given that object theory is consistent (in Z) and the fact that almost
no one doubts the consistency of ZFU after over a century of fruitful, un-
problematic use, there is no reason to think that adding (some version
of) ZFU to object theory would lead to any problems. So, assuming that
some combination of set theory and object theory is consistent, it should
be clear that the PoM paradoxes do not arise. This, we claim, fully ad-
dresses the objection.

However, we think we can develop our response to this objection
further. The objection presupposes that sets must be assumed among
the philosophical primitives of a correct ontology; that without set the-
ory, object-theoretic foundations are somehow compromised or crippled.
Such a presupposition seems to underlie Stalnaker’s claim, quoted at the
outset, that if there are propositions, then there are sets of them. If we can
successfully challenge this assumption, and argue that object-theoretic
foundations have no need for set theory, then the PoM paradoxes might
be seen to be based on the mistaken idea that sets are required in a foun-
dational ontology.

We can’t hope to develop a full argument here, but the idea is clear
in the following observations. Object theory’s perspective is that the ax-
ioms of set theory need not be taken as fundamental ontological princi-
ples, but rather can be analyzed. The object-theoretic analysis allows
mathematicians, scientists, linguists, and philosophers to use the lan-
guage and axioms of set theory for their theoretical and applied pur-
poses, but identifies the sets they use as abstract objects that encode their
set-theoretic properties.45 Although the details would take us too far
afield, the object-theoretic analysis doesn’t endorse the set-theoretic exis-
tence principles per se needed to formulate the paradoxes, but rather en-
dorses them prefaced by the operator In the theory T (for the relevant the-
ory T).46 If the set-theoretic principles are consistent, the abstract objects

44A model by Dana Scott was presented in Zalta 1983; a model by Peter Aczel was de-
scribed in Zalta 1999, and another model was developed in Menzel and Zalta 2014.

45This object-theoretic analysis of the language and axioms of set theory has been devel-
oped in Zalta 2000b, 2006, Linsky & Zalta 1995, 2006, Bueno & Zalta 2005, and Nodelman
& Zalta 2014.

46The object-theoretic analysis is that the axioms and theorems of mathematical theories
are not simply true, but have a true reading and a false reading. They are false as bald
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that encode set-theoretic properties encode consistent properties. If the
set-theoretic principles are inconsistent, say because they include princi-
ples that lead to the problematic maximal sets of propositions, then the
abstract objects that encode set-theoretic properties encode inconsistent
properties. The bottom line is that the object-theoretic analysis doesn’t
endorse any objects that exemplify the properties of the problematic max-
imal sets of propositions.

Thus, if the object-theoretic analysis of set theory is correct, there is no
longer any philosophical motivation for taking the axioms of set theory
as basic, or accepting sets as sui generis objects of our ontology (as op-
posed to abstract objects that encode their set-theoretic properties). Such
an analysis is sufficient for theoretical needs, and avoids mathematical
objects as philosophically unarticulated primitives in our ontology. No-
tably, we don’t need sets of propositions to reconstruct possible worlds
or situations. Maximal, consistent sets of propositions are unnecessary
given that we have possible worlds (in the object-theoretic sense defined
in Section 2) that are are maximal and consistent. Arbitrary sets of propo-
sitions are also unnecessary, given that we have situations (also defined
in Section 2) that are governed by the principle: for any condition ϕ on
propositions p, there is a situation that encodes just the properties F of
the form [λy p] constructed out of propositions satisfying ϕ (Zalta 1993,
Theorem 1). So not only does object theory allow us to theorize about
worlds and propositions without sets, but gives us a set-free background
ontology of abstract objects within which sets can be identified.

6 Conclusion

We have examined a number of paradoxes from the perspective of ob-
ject theory. We have argued that object theory provides a framework in
which (a) restrictions that avoid object-theoretic versions of the classical
Russell paradox are philosophically justified and (b) worlds and propo-
sitions are robustly characterized without invoking sets. We have argued
further that defining worlds as sets of propositions is the source of the

statements of fact, but true when read as prefixed by the In the theory T operator. Thus, to
take an example, ∅ZF (the null set of ZF) is identified as the abstract object that encodes
exactly the properties F such that in ZF, F∅ZF. Consequently, it becomes a theorem that
∅ZF encodes a property F if and only if in ZF, F∅ZF.
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PoM paradoxes and, hence, no similar paradoxes arise in object theory.
Moreover, we have shown that, even if set theory is added to object the-
ory, the falsity of at least one premise of each of the PoM paradoxes falls
out as a theorem, further highlighting the volatility of set-theoretic defi-
nitions of worlds. Finally, regarding Kaplan’s “paradox”, while no com-
parable problem arises for possible world semantics when propositions
are defined as sets of worlds, we have argued that such definitions ob-
scure the logical falsity of principle K and, as a consequence, have led to
a (mis)perception of paradox where none actually exists.

The pernicious effects of hitching one’s modal wagon to set theory
should thus be clear. Without invoking sets, object theory offers an inte-
grated account of worlds and propositions that assigns them clear exis-
tence and identity conditions without any threat of paradox. In the end,
worlds and propositions can be set free.
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———, 1981, “Actualism and Thisness”, Synthese, 49: 3–41.

Anderson, C. A., 2009, “The Lesson of Kaplan’s Paradox about Possible
World Semantics”, in J. Almog and P. Leonardi (eds.), The Philosophy of
David Kaplan, New York: Oxford University Press, 85–92.

Boolos, G., 1971, “The Iterative Conception of Set”, The Journal of Philoso-
phy, 68(8): 215–231.

———, 1987, “The Consistency of Frege’s Foundations of Arithmetic”, in
On Being and Saying, J. Thomson (ed.), Cambridge, MA: MIT Press,
3–20; reprinted in Boolos 1998, 183–201.

———, 1998, Logic, Logic, and Logic, Cambridge, MA: Harvard University
Press.

Bringsjord, S., 1985, “Are There Set Theoretic Possible Worlds?”, Analy-
sis, 45(1): 64.

Bueno, O., and E. Zalta, 2005, “A Nominalist’s Dilemma and its Solu-
tion”, Philosophia Mathematica, 13: 294–307.



31 WORLDS AND PROPOSITIONS SET FREE

Chihara, C., 1998, The Worlds of Possibility, Oxford: Clarendon Press.

Clark, R., 1978, “Not Every Object of Thought Has Being: A Paradox in
Naive Predication Theory”, Noûs, 12: 181–188.
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