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A theoretical approach proposed by Schiff in 1960 to 
determine the angle of displacement of star images during 
solar eclipses has been extended to enable calculation of 
planetary trajectories around the Sun. A key assumption in 
Schiff’s method is the concept of the gravitational scaling of 
physical units implied by Einstein’s equivalence principle. In 
the present work, the same scaling procedure has been 
employed for the radial and perpendicular velocity 
components of an object moving at a different gravitational 
potential than the observer. Rather than follow Schiff’s 
suggestion that an equation of motion for the planet be 
provided as input for the calculations, however, it has been 
assumed instead that the required information about the 
acceleration due to gravity can be obtained directly from a 
relativistic modification of Newton’s inverse square law (ISL) 
with appropriate scaling for an observer on Earth. Numerical 
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calculations of the relativistic contribution to the precession of 
the perihelion of planetary orbits around the Sun are carried 
out on this basis, and the results are found to agree with 
observed values to within experimental error (43”.0033/cy 
calc. and 43”.2±0.9/cy obs. for Mercury, for example; 
Einstein’s value is 43”.0076/cy), and to vary in the same 
manner with mean radius and eccentricity of orbit and 
gravitational mass of the Sun as is predicted by Einstein’s 
general theory of relativity (GTR). (Style: Abstract text) 

Keywords: gravitational scaling of units, planetary orbits, 
Schiff’s method, Newton’s inverse-square law, general 
relativity, trajectory calculation. 

I. Introduction  
The Universal Gravitation Theory of Newton stood unchallenged for 
over two centuries, and led to many spectacular advances in the 
understanding of astrophysical phenomena. After Einstein [1] 
introduced his special theory of relativity (STR), he quickly turned his 
attention to its extension for gravitational forces [2]. Three main 
applications were considered: the gravitational red shift, the 
displacement of star images by massive objects, and the precession of 
the perihelion of Mercury’s orbit around the Sun. Early attempts to 
adapt Newton’s inverse-square law (ISL) to the requirements of STR 
were only partially successful, as for example in Sommerfeld’s [3] 
treatment of planetary motion. Einstein [4] ultimately succeeded in 
obtaining a quantitative description of all three of the above 
phenomena with his development of the general theory of relativity 
(GTR). 

It is often said that GTR grew out of the failure to find a suitable 
means of combining Newton’s ISL with STR [5]. In its final form 
GTR has been described as one of the greatest achievements of the 
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human mind [6], and the elegance of its mathematical formulation has 
inspired generations of theoretical physicists. Nonetheless, over the 
years there have been a number of attempts to find alternative 
gravitational theories, but subsequent experimental tests have 
invariably come down on the side of GTR [7]. Indeed, the very 
success of GTR has led to the view, held by Einstein himself [8], that 
STR is a flawed theory, and that the ISL is only a good approximation 
whose validity does not extend beyond weak gravitational fields. 

Yet both the latter theories have enjoyed remarkable success in a 
variety of applications, which at least raises the theoretical possibility 
that a viable synthesis may indeed exist, but has simply never been 
found. In the following report, this possibility will be explored in 
detail, beginning with consideration of Einstein’s prediction of the 
gravitational red shift [2]. A computational method introduced by 
Schiff [9] to compute the angle of displacement of star images in the 
gravitational fields of the Sun and stars will prove quite useful in this 
discussion. 

II. Gravitational Scaling of Units 
The gravitational red shift can be explained without the full GTR 
apparatus, and is thus not really a test of the latter. Einstein [2] argued 
on the basis of his equivalence principle that the magnitude of a given 

light frequency increases by a factor of 21
c

gdh
+ as the source is raised 

by a distance dh in a gravitational field of local magnitude g (c is the 
speed of light in free space). The derivation of this result assumes [2, 
10] that the gravitational mass mG of an object is equal to its inertial 
mass mI (weak equivalence principle), and otherwise makes use of the 
ISL and the well-known result of STR for the energy E of an object,  
 ( ) 22 cucmE I μγ== , (1) 
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where μ is its proper mass, u is its speed and ( )
0.52

21 uu
c

γ
−

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

. 

When an object falls between the above two potentials, respective 
local observers measure different energies, an effect which in 
classical physics is regarded as the conversion of gravitational 
potential energy mGgdh into an equal amount of kinetic energy. 
Einstein instead explained it as resulting from the change in the unit 
of energy as the distance from a gravitational source is varied [11]. He 
went on to argue [2] based on the Doppler effect [10] that the unit of 
light frequency ω changes in exactly the same proportion as the 
energy, which in turn is consistent with Planck’s radiation law of 
quantum mechanics [12]. Terrestrial experiments by Pound and 
Rebka [13] have verified Einstein’s result to an accuracy of 5%, and 
subsequent work has lowered the possible discrepancy to at most 1% 
[14]. 

Einstein extended this result to other temporal processes such as 
reaction rates (jeder physikalische Prozess [2]), concluding that the 
unit of time decreases with gravitational potential by the same factor 
as the energy increases. He also gave an argument [2, 10] indicating 
that the unit of distance measured parallel to the gravitational field 
increases by the same factor, while that for distances measured 
perpendicular to the field is unchanged. The above results are only 
valid for infinitesimal variations in gravitational potential, but it is a 
simple matter to eliminate this restriction by carrying out an 
appropriate integration between any two distances from the 
gravitational source. A convenient means of incorporating this 
extension into the theory is to define a factor Ap, such that 

 ∫
∞

+=+=
pR p

s
p Rc

GM
c

gdRA 22 11 , (2)  
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where G is the universal gravitation constant, Ms is the gravitational 
mass of the source, and Rp is the distance of the object from the 
source. Accordingly, the ratio of the radiative frequency/energy 

observed at Ro to that generated at Rp is 
p

o

A
A . 

If one assumes that eq. (1) holds locally at both Ro and Rp, it 
follows from the energy conservation principle that for macroscopic 

bodies the exact ratio is ( )
( )

o

p

u
u

γ
γ

, where uo and up are the respective 

speeds of the object measured locally as it falls (rises) between Rp and 
Ro. In other words, the exact definition of Ap must ensure that  

 ( ) ( )p o

p o

u u
A A

γ γ
=  (3) 

as the object’s distance from the gravitational source is varied 
(assuming that no other forces are present). One can conveniently 
summarize the above discussion by giving the exponent n of 

o

p

AS
A

= by which the units of various quantities vary with 

gravitational potential (Table 1).  
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Table 1. Gravitational scaling factors employed in the present study. For a given 
quantity X, Xp is its value when the object is at rest at the same gravitational 
potential as the observer P. The value given in the second column for each quantity 
is for an observer O who in general is located at a different gravitational potential 
than the object but is also at rest with respect to it. The corresponding power n of 

the scaling factor = o
p

A
S

A
is given the third column [the Ap, Ao factors are defined in 

eq. (2)]. 
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III. Analysis of Schiff’s Method: Scaling of 
Distance and Velocity 
To consider further how these units vary with gravitational potential, 
it is instructive to analyse Schiff’s method [9] for computing the 
angular displacement of the images of stars that occurs during solar 
eclipses. Following Einstein [10], it is assumed that the units of time 
and distance vary with gravitational potential. A Cartesian coordinate 
system is chosen with the Sun at its origin. A series of observers co-
moving with the Sun are to measure the location and velocity of a 
light ray that starts at infinity and passes close to the Sun on its way to 
the Earth. One of these observers (O) is located at infinity, and it is his 
objective to map out the trajectory of the light ray employing his set 
of units. He is always in communication with that observer (P) who is 
momentarily at the same gravitational potential as the light ray. The 
latter is conveniently referred to as the local observer. Note that the 
identity of observer P is constantly changing from one period to 
another, however. 

A key assumption in Schiff’s approach is that the speed of the light 
ray observed by P is always equal to c and he finds that it is travelling 
in a straight line in all cases. For an infinitesimal period while the 
light is at his gravitational potential, P resolves its velocity into its 
radial (vlr) and transverse (vlt) components relative to the Sun. This 
information is eventually passed on to O at infinity [with Ao=1 
according to eq. (2)], who then employs a scaling procedure along the 
lines discussed in the previous section to obtain the corresponding 
values for each of these velocity components from his perspective. 
For this purpose he also needs to know P’s momentary distance from 
the Sun, Rp. The latter is assumed to be constant throughout the 
current time interval. He employs this value to compute Ap according 
to eq. (2) and then obtains the gravitational scaling ratio 
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1o

p p

AS
A A

= = which he uses to determine his own values for the light 

velocity components by multiplying vlt with S and vlr with S2 (see 
Table 1). This is sufficient information for O to compute the speed 'c  
of the light ray in his units at P’s gravitational potential.  

In order to compute the angle by which the light ray appears to be 
bent by the gravitational field of the Sun, more information is 
required, however. This is because the criterion employed to 
determine this angle (dΘ), both by Einstein [10] and Schiff [9], is 
Huygens’ principle: 

 'dc dxd
dy c

⎛ ⎞
Θ = ⎜ ⎟

⎝ ⎠
, (4) 

where y is the lateral distance from the Sun and dx is a distance 
interval along the light path itself (the total angular displacement is 
obtained by integrating over dx). Schiff was able to obtain the various 
quantities in this equation analytically and his result is in perfect 
agreement with the GTR expression originally given by Einstein [4].  

It is interesting to implement Schiff’s approach by employing a 
finite time-step procedure. First of all, it is clear that two light beams 
are needed, separated by a small distance dy. More importantly, one 
has to have a definite location for each of them at every stage of the 
computation. The question thus arises: whose coordinates do we use, 
O’s or P’s? Because of the gravitational scaling, the trajectory 
calculated by P is not the same as that found by O using the above 
procedure. Moreover, since the location of P changes continuously 
throughout, including his position in the gravitational field of the Sun, 
this fact introduces some uncertainty as to how to correctly define the 
“local” trajectory of the light ray over its entire path.  
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Despite these questions, it seems clear that one should be able to 
devise a computational procedure that obtains the same result as 
Schiff for the angular displacement of star images. It was therefore 
decided to simply use the same path for each of the local observers 
for this purpose. This means that each light ray travels along a straight 
line and the local observers always agree on its current location, 
including its distance from the Sun. But the observer at infinity (O) 
must find a different trajectory according to the gravitational scaling 
procedure employed in Schiff’s method. The deviation between the 
corresponding paths computed by O and P, respectively, becomes 
considerable when the light approaches quite closely to the Sun. The 
situation is illustrated in the schematic diagram shown in Fig. 1.  

 

Fig. 1.  Diagram illustrating the 
“pseudo-trajectory” inferred from the 
velocity vector computed for the 
observer on Earth in Schiff’s 
procedure (see [9]).  Note that on the 
initial approach the light appears to 
veer away from the Sun (convex 
trajectory) because the gravitational 
scaling reduces the magnitude of the 
radial component relative to the local 
straight-line path.  This result 
demonstrates that the direction of the 
latter velocity is ignored in Schiff’s 
method, which nonetheless obtains 
perfect agreement with Einstein’s 
value for the angle of displacement of 
star images during solar eclipses 
because of its reliance on Huygens’ 
principle to define this angle.  General 
relativity employs the same definition 
for the displacement angle. 
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The trajectory computed by O using Schiff’s method directly is not 
concave to the Sun, contrary to what is concluded in the original 
paper [9], but rather is Λ-shaped. It veers away from the Sun on its 
initial approach because the ratio of the radial and transverse 

components of the light velocity, 
r

t

vl
vl , observed by P is reduced upon 

scaling for O (Ao=1<Ap, S<1). This trend continues until the radial 
component vanishes as it passes the solar midpoint (see Fig. 1). 
Thereafter, the direction of the trajectory turns back toward the 
straight line assumed for the local observers because the radial 
component of the light velocity is now pointed away from the Sun. It 
is important to note, however, that this result actually has no bearing 
on the computation of the angle of displacement in Schiff’s procedure 
because only the magnitude of the light velocity (i.e, the speed 'c ) is 
required in eq. (4), not its direction.  

Results that are consistent with Schiff’s analytical value for Θ are 
obtained when one uses the local trajectory exclusively to obtain the 
required value of Rp at each point along the trajectory. The distance 
travelled along this trajectory from O’s perspective is then obtained 
by multiplying the elapsed time dt(O) with his observed light speed 

'c (O). Since the latter value is always less than c, this procedure leads 
to a decrease in the distance the light travels in a given time interval 
on O’s clock relative to what he would have found in the absence of a 
gravitational field. The effect increases as the lateral distance from the 
Sun is reduced. The result is that the light ray farther from the Sun 
arrives at O’s position on Earth sooner than the other, but that both 
travel along a perfectly straight-line trajectory. One can interpret this 
as a rotation of the wave front of the light that left the star, whereby 
the direction of the rotation is always away from the Sun, in 
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agreement with observation (more details concerning the above 
numerical calculations may be found elsewhere [15]). 

In the present context, however, the most important observation 
from the above discussion is that radial distance is actually not scaled 
in Schiff’s procedure. Instead, the transverse and radial velocity 
components, tvl and rvl are scaled as S and 2S , respectively (they are 
smaller for O at infinity than for P near the Sun; see Table 1). The 
former result is consistent with the scaling of time, that is, 

( ) ( )dt P
dt O

S
= if one assumes that the distance ( ) ( )t tl O l P= . The 

latter is at least not inconsistent with the corresponding relation for 
radial distances. It simply indicates that O must scale the radial 
velocity component with an additional factor of S in order to obtain 
timing results that agree with experiment (note that the value of Ap 
changes with radial motion, unlike the case in a direction transverse to 
the field). If this is not done, a value for the total angular displacement 
is predicted that is only half of that observed, as shown explicitly in 
Schiff’s work [9]. Indeed, this was the result obtained in Einstein’s 
1911 paper [10] that was later corrected by him on the basis of GTR 
[14]. As shown in Fig. 1, however, if one tries to rationalize this 
difference in scale factors for the two velocity components by 
claiming that radial distances observed by O are S times as large 
(recall that S<1) than for P, the conclusion is that O’s observed 
trajectory is Λ-shaped, not always concave to the Sun as usually 
assumed. More importantly, basing O’s measurement of Rp on this 
trajectory no longer produces a result for Θ that is consistent with 
experiment and GTR. In summary, Schiff’s scaling procedure 
ultimately provides the ratio of the speeds of light observed by P and 
O, respectively. The direction is always the same for both, however, 
namely in a straight line. They also always agree on the current 
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position of the light ray. The computed difference in speeds simply 
translates into a distinction in the elapsed times required for the light 
to traverse a given portion of this trajectory based on their respective 
clocks. 

IV. Scaling of the Acceleration Due to Gravity 

In the above calculations it is assumed that the speed of light is equal 
to c for a local observer. As Schiff pointed out in his work [9], the 
situation is not so simple when dealing with the motion of planets 
moving at variable speeds that are much smaller than c. In classical 
gravitational theory Newton’s ISL is employed to compute g, the 
acceleration due to gravity, and the motion of the planets is then 
computed on this basis. As noted in the Introduction, this approach 
has been quite successful historically and it has been shown to give 
results of high accuracy in many applications. At the same time, it is 
clear that relativistic effects are not adequately accounted for in the 
classical theory and thus to further improve accuracy, this deficiency 
must be removed, at least to a very good approximation. If one 
attempts to exploit Schiff’s method for this purpose, it is necessary to 
consider how the gravitational acceleration varies with both the state 
of motion of the object and its relative position in a gravitational field. 
This approach will be pursued below. 

The first step is to assume that the ISL is directly applicable when 
the object (passive mass) is not moving relative to the observer and is 
located at the same gravitational potential. In this case the 
acceleration due to gravity is given as 

 2
SGMa g

R
= = , (5) 

in the radial direction, exactly as Newton stated in the 17th century 
[see eq. (2) for definitions of the symbols]. In Schiff’s approach, 
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however, an observer (P) who is co-moving with the Sun and is at the 
same gravitational potential as the object must provide information 
about its current location and velocity. It is therefore necessary to 
know how an object’s acceleration varies with its velocity relative to 
the observer. 

According to the special theory of relativity (STR), the transverse 
component of the acceleration vector is damped by a factor of 

2
2

2= 1  u
c

γ − ⎛ ⎞
−⎜ ⎟

⎝ ⎠
when the object is moving at speed u relative to the 

observer [16]. This result is a consequence of Einsteinean time 
dilation, that is, because clocks run more slowly on the moving 
object, the local acceleration is larger by a factor of 2γ  than for a 
stationary observer. Ascoli [17] has argued that the same relationship 
holds for the radial component. His position is based on the Einstein 
velocity addition formula [18] for motion in a direction radial to a 
gravitational field [19], although it is clear that the same argument 
does not hold for motion in other directions. In a companion paper, 
[20] it is shown that a generally valid derivation of Ascoli’s result can 
be given, however, by simply taking account of the way the variables 
in eq. (5) vary with u. Specifically, the distance r varies in direct 
proportion to γ , whereas the gravitational mass Ms is completely 
independent of u, so that g must vary as 2γ − . 

On this basis it has been assumed in the computational procedure 
to be described below that the acceleration due to gravity for the 
stationary observer P at the same gravitational potential as the object 
is  
 ( ) ( ) ( )puMgPg 2−= γ , (6) 
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where g(M) at the location of the object is computed from the ISL in 
eq. (5), up is the speed of the object relative to P, and the acceleration 
is radial toward the active mass (Sun). Implicit in the above procedure 
is the assumption that the gravitational mass of the Sun is the same for 
all observers, independent of both their position in the gravitational 
field and their state of relative motion [20]. In other words, observer P 
employs the same values for both Ms and R in eqs. (5, 6) that O 
measures for these quantities at the gravitational potential of the 
Earth, consistent with Schiff’s approach [9]. It is interesting to note 
that eq. (6) is also consistent with Schiff’s assumption that light 
always travels at a constant velocity for a local observer. This follows 
from the fact that up=c in this case, so that the acceleration due to 
gravity observed for light is always equal to zero [17]. A more 
extensive discussion of this point is given elsewhere [15, 20, 21]. 

It is important to see that eq. (6) is consistent with Galileo’s unicity 
principle (Eötvös experiment), since this only requires that the inertial 
and gravitational masses of all objects always be in the same 
proportion for any given observer. The proportionality constant is 
simply γ. One consequence of this relationship is that the gravitational 
mass of a photon (or any other system with null proper mass) is zero 

for all observers, even though its inertial mass ( 2

hv
c

in free space) 

varies with the relative speed of the observer to the light source 
(Doppler effect). This result is thus consistent with Newton’s Third 
Law, since it indicates that a photon is incapable of exerting a 
gravitational force on any other object on this basis. Since photons 
always move with speed c for a local observer, according to Ascoli’s 
result of STR [17] their local acceleration due to a gravitational field 
is also always zero. Thus, there is neither action nor reaction in this 
case.  
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A conceivable means of employing g(P) to compute the trajectory 
of the object would be to simply use it to compute the change in 
velocity in a given time slice for the observer P at the local 
gravitational potential. The final velocity could then be scaled 
according to the scheme employed in Schiff’s computation of the 
angular displacement of star images to obtain the corresponding result 
observed by O. This procedure does not give satisfactory results, 
however, and must be rejected. The latter scheme implicitly assumes 
that the values of the distance Rp and gravitational mass Ms that O 
uses to evaluate g with the ISL are the same as for P. There is 
precedence for this not being the case, however, namely in the scaling 
of the radial component of the velocity discussed in the preceding 
section. In that case the scaling is done in such a manner as if the 

radial distance itself needs to be scaled by a factor of 1

p

S
A

= . If the 

analogous procedure is employed to evaluate g(O), it would mean 
multiplying g(P) in eq. (6) by a factor of 2S − .  

Once one decides that Rp must be scaled differently in the ISL than 
in computing the actual location of the object, however, another 
possibility emerges, namely that Ms also needs to be scaled to obtain g 
(O) from g(P). For this purpose it is instructive to consider how the 
inertial mass mI scales with the gravitational potential of the observer 
[20]. This can be done by assuming that eq. (1) holds for all 
observers. Since both the energy E and the speed of light c scale as S, 
it therefore follows that mI must scale as 1S − , the same as elapsed 
times (see Table 1). If one assumes that the gravitational mass Ms in 
eq. (6) must be scaled in the same manner, the result is 
 ( ) ( )3

pg O A g P= , (7) 
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that is, O measures the acceleration due to gravity to be 3S − times 
larger than P (Table 1, 1p oA A> = ). Altogether then, the value of g 
that O needs to use in his computation of the object’s trajectory is [20] 
 ( ) ( ) ( )2 3

p pg O u A g Mγ −= , (8) 

where g(M) is the value obtained directly from the ISL in eq. (6). 
Employing this scaling procedure leads to results for planetary 
trajectories that are in quite good agreement with both experiment and 
GTR, similarly as for the angular displacement of star images in 
Schiff’s original work [9]. 

V. Calculation of Planetary Orbits 

A. Computational Procedure 
The following procedure has been adopted to compute the trajectories 
of objects moving in a gravitational field based on the above 
considerations. It is assumed that the initial velocity uo and position P 
of the object are known relative to a primary (stationary) observer O 
located at infinity (Ao=1). A coordinate system is adopted such that 
the Sun (in the general case, the gravitational source) is at the origin 
and it is assumed that O is co-moving with the Sun. The value of the 
scaling quantity Ap is calculated according to eq. (2), from which the 

key ratio 1

p

S
A

= is obtained. This allows O to compute the local 

velocity up measured by another observer (P) who is also co-moving 
with the Sun but is located at the same gravitational potential as the 
object (planet). Based on the discussion in the previous Section, O 
simply has to take into account the difference in clock rates for the 
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two observers. Since P’s clock runs p
p

o

A
A

A
=  times slower than O’s 

(see Table 1), his value of the object’s velocity is Ap times greater 
(Ap>1), i.e., up=Apuo. This conversion is only made to obtain an initial 
value for up. In succeeding time cycles, the value of up obtained at the 
end of the previous cycle will be used for this purpose.  

The next step is to compute the acceleration exerted on the object 
by the gravitational field of the source. To this end it is assumed that 
the ISL is valid for an observer M who is at the same gravitational 
potential and is at rest with respect to the object. The corresponding 
value used by O is given by eq. (8), i.e. by using the current value of 
up in conjunction with the ISL value at the location of the object, 
g(M). 

The above information allows one to compute the change of 
velocity of the object over a small time interval Δt in O’s system of 
standard units. To do this, however, he must use Schiff’s procedure to 
convert up to the corresponding value in his units (uo), as indicated in 
Table 1. This means he must first resolve up into its transverse and 
radial components, up

t and up
r, and then divide these values by Ap and 

2
pA , respectively. It should be noted that this is not just the inverse of 

the scaling procedure used above to obtain the initial value of up from 
uo, in which case we would simply divide all components uniformly 
by Ap. The reason for making this distinction will be discussed below, 
but first let us compute the change in the object’s velocity from O’s 
perspective as: 
 ( ) ( )O t OΔ = Δou g ,  (9) 

with g(O) radial to the gravitational field. The velocity at the end of 
the time interval is then obtained by vector addition employing the 
velocity addition rule of STR [18]. This is an important point since 



 Apeiron, Vol. 15, No. 4, October 2008 526 

© 2008 C. Roy Keys Inc. — http://redshift.vif.com 

use of simple vector addition of Δuo to the original value of uo in each 
time cycle causes significant accumulation of error over a complete 
orbital period.  

The final velocity 'ou  is then scaled using Schiff’s procedure 
(Table 1) to obtain the corresponding local value 'pu , that is, by 

multiplying the radial component by 2
pA and the transverse by Ap. The 

distance Δso travelled by the object in the current time cycle from O’s 
perspective is computed by multiplying the average velocity 

( ) '
2
+

= o oa
o

u u
u by Δt(O). The direction taken is that of the average 

local velocity 
( )'

2
+

= p pa
p

u u
u , however, not that of a

ou . Note that 

since there is no gravitational acceleration of light in Schiff’s method 
for computing the angular displacement of star images [9], the 
magnitude of a

pu  is always equal to c in this case and its direction is 
constant as the light passes by the Sun. Taking the direction the light 
follows to be the same as that of a

ou  in that application leads to 
inaccuracies in both the trajectory and the displacement angle, as 
discussed in Sect. III. The final location of the object 'P  at the end of 
the cycle is thus computed as 

 ' oa
p

s
u

⎛ ⎞
= + Δ⎜ ⎟⎜ ⎟

⎝ ⎠

a
pu

P P . (10)  

It is important to see that all observers who are co-moving with O 
must measure exactly the same value for 'P  according to Table 1. 
They will only disagree on the amount of elapsed time for this portion 
of the object’s trajectory because their respective clocks run at 
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different rates depending on their position in the gravitational field 

[Δt(P)= ( )
p

t O
A

Δ
]. In essence, O’s location at infinity makes him the 

ideal neutral observer. He and he alone can apply Schiff’s scaling 
procedure to obtain the object’s trajectory in his system of units 
(Ao=1), and this information can then be converted to the units of any 
other observer simply by knowing the latter’s value of Ap. 

In the specific computational approach adopted in the present 
work, there is another matter that needs to be clarified, however. Both 
uo and up are continuous functions of time, but only one of them can 
remain the same in going from the end of one time cycle to the 
beginning of the next. This is because the distance of the object from 
the source is constantly changing, and therefore the value of the 
scaling parameter Ap generally varies between successive cycles. In 
view of the success of Schiff’s approach to the calculation of the 
displacement of star images caused by the gravitational field of the 
Sun, in which case both the magnitude and the direction of the local 
light velocity up are held constant throughout, it seems preferable at 
the beginning of each cycle to set up equal to the value of 'pu at the 
end of the previous one, as already mentioned. In so doing, one must 
accept the fact that this choice generally precludes the existence of a 
similar equality between the corresponding values of uo and 'ou  for 
the primary observer in going from one time cycle to the next, but this 
is inconsequential because in the last analysis these quantities as 
defined are only an artefact of Schiff’s method. 

B. Results of the Calculations 
The above procedure has been applied to the calculation of the 
relativistic contribution to the advancement angle of the perihelion of 
planetary orbits around the Sun. At the start of the calculation the 
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position and velocity of the planet are taken from experiment (based 
on the observed values for the mean radius r and eccentricity e of a 
given orbit). The solar mass is taken to be 1.99x1030 kg and the mass 
of the planet is not required, consistent with the unicity principle. The 
time interval Δt(O) for each cycle in the numerical procedure has 
been varied in all cases to insure that a proper degree of convergence 
is obtained for the calculated results (quadruple precision has been 
used in all computations). 

The value of the precession angle Θ of the perihelion of Mercury’s 
orbit around the Sun obtained from the present treatment is 
43”.0033/cy, in good agreement with both the currently accepted 
experimental value for this quantity of 43”.2 ± 0”.9/cy [22] and that 
computed by Einstein from GTR of 43”.0076/cy [4, 23]. In the latter 
work he obtained a closed expression [23, 24] which indicates that the 
precession angle in general is proportional to Ms and inversely 
proportional to both r and (1−e2). Tests have therefore been carried 
out for different values of the latter three quantities, and very good 
agreement with the predictions of GTR has been found in all cases. 
Indeed, since the amount of computer time required increases with r, 
most of the tests carried out are for a hypothetical planet with one-
thousandth of Mercury’s radius and therefore a period of revolution 
around the Sun of only 240 s. When the solar mass is increased by a 
factor of 10.0, it is found that the value of Θ is 10.0012 times greater. 
If the mean radius is cut in half, Θ is found to increase by a factor of 
1.9990. Similarly good agreement with GTR is obtained if the radius 
is changed by factors of 10 and 100. Finally, when e is changed from 
its experimental value of 0.2056 for Mercury to 0.10, the value of Θ is 
found to be 0.9677 times smaller, as compared to the predicted factor 
of 0.9674.  

The Ap factors have been computed in the present treatment in two 
different ways: by means of eq. (2) in each time-step, or by making 
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use of the proportionality relationship of eq. (3) after using eq. (2) to 
obtain an initial value only. The corresponding two values of Θ agree 
to within a factor of 1.000093, with that obtained with the latter 
definition being higher. This result thus clearly supports the 
conclusion that the whole concept of gravitational scaling is rooted in 
the conservation of energy principle (see Sect. II).  

One can summarize the above results as follows. The present 
theoretical approach obtains results that are consistent with all known 
measurements of perihelion precession angles, including those of 
Earth and Venus. They are also in nearly quantitative agreement with 
the predictions of GTR for the same quantities. The procedure 
employed can be viewed as a generalization of Schiff’s method [9] 
for computing the displacement angle of star images during solar 
eclipses (strictly speaking, what is actually calculated via Huygens’ 
principle is the angle by which the wave front of the light rotates 
relative to its starting orientation at the star [15, 21]). Corresponding 
tests have been carried out with the present procedure for an object 
moving with local speed c, and excellent agreement with Schiff’s 
(and therefore Einstein’s) result has been obtained, including the 
dependence of this angle on the mass of the gravitational source and 
the distance of closest approach by the light. A more detailed 
discussion of these results for the displacement of star images is given 
elsewhere [15].  

VI. Conclusion 
For nearly an entire century physicists have held steadfastly to the 
belief that it is impossible to construct a viable gravitational theory 
based on Newton’s ISL and Einstein’s STR. The present work has 
investigated this position anew by assuming that all observers who are 
not in relative motion to one another must agree on measurements of 
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distance and gravitational (but not inertial) mass independent of their 
respective positions in a gravitational field. On this basis, one can 
obtain accurate predictions of trajectories so long as one assumes 
further that the ISL must be applied locally to obtain the correct 
acceleration due to gravity. The latter result simply needs to be 
converted to the system of units of an observer located at infinity. 
There is an additional complication, however, due to the fact that the 
object is generally in relative motion to the primary observer O. 
Ascoli [17] has argued that this circumstance implies that the g-field 
calculated with the ISL must therefore be damped by a factor of 

( )2
puγ − , where up is the speed of the object relative to a local 

observer P at the same gravitational potential as the object but at rest 
with respect to O. A more general derivation of this result has been 
give above, however, and is discussed elsewhere [20].  

The conversion of the local acceleration due to gravity to the units 
of the primary observer requires that one also know how the inertial 
mass of an object varies with distance to the gravitational source. In 
the present work, it is argued that this information can be deduced by 
assuming that Einstein’s E=mc2 relation is universally valid. It is 
shown in Sect. IV that this leads to the conclusion that inertial mass 
must scale in the opposite direction with distance from the source as 
both energy and the speed of light. In addition, it is assumed that the 
radial distance between masses needs to be scaled in the same way as 
energy to obtain the gravitational scaling factor for g. The 
acceleration due to gravity in the units of the stationary observer O 
(located at infinity in Schiff’s procedure) is thus obtained from the 
corresponding value measured by the local observer P by multiplying 

this value by a factor of 
3

3p
p

o

A
A

A
⎛ ⎞
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⎝ ⎠

. The various components of 
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velocity (transverse and radial) are scaled in the same manner as 
proposed by Schiff in his original work [9]. The present calculations 
have demonstrated that the relativistic contribution to the precession 
angle of the perihelion of planetary orbits can be accurately obtained 
on a quite general basis by applying this procedure for the 
gravitational scaling of physical units. There is also an interesting 
qualitative conclusion that can be drawn on this basis, namely that for 
strong fields a purely Newtonian description of the motion can greatly 
underestimate the effects of gravity on a given object by failing to 
adjust the local g-field by the above factor.  

The trajectory calculations provide a justification for employing a 
coordinate system in Euclidean space in which all objects of the 
universe can be located uniquely. All observers who are not in 
relative motion to one another [20] must agree on this basis with 
regard to the instantaneous position of each of these objects. As long 
as one takes proper account of the fact that the units of time, velocity 
and acceleration vary with one’s position in a gravitational field, it is 
then possible to carry out trajectory calculations exclusively in 
Euclidean space. The necessary adaptation can be accomplished by 
inserting a small number of statements in a comparatively simple 
computer program which otherwise treats planetary motion strictly on 
the basis of Newton’s ISL. 

The development of a comprehensive gravitational theory that 
relies on the local validity of the ISL inevitably raises questions about 
whether such forces can be transmitted instantaneously across long 
distances. Newton himself rejected such an interpretation in the 
strongest terms, but this did not keep him from using the ISL to solve 
longstanding problems in astrophysics. The fact remains, however, 
that the above computer program uses time intervals as small as 10−4 s 
to calculate the change in velocity of a planet caused by the Sun 
which is as much as 7x1010 m distant. It is a matter of opinion 
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whether GTR succeeds in eliminating the need for “action at a 
distance” by introducing the concept of “curved space-time.” The 
present work indicates that the units of physical quantities vary in a 
precisely predictable manner with the distance of a given location 
from the gravitational source, suggesting that something like a 
distance-dependent stationary field exists at all times and therefore 
does not need to be transmitted to have its effect on any object that is 
located at that point in space. It has demonstrated that, with proper 
attention to detail, it is possible to obtain a level of accuracy in 
trajectory calculations that is comparable to that of GTR by merging 
the ISL with STR through the gravitational scaling of the above 
physical units. This experience speaks for the validity of the 
assumptions that form the basis for arriving at this synthesis, and at 
least underscores the practicality of the ISL that Newton so skillfully 
exploited during his lifetime. 
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