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A finite time-slice computational method has been developed 
to describe the effects of gravity on light rays passing close to 
the Sun by employing a theoretical approach introduced by L. 
Schiff in 1960.  One of the key assumptions in the latter study 
is that each local observer finds a given light ray to travel 
along the same straight line with the same constant speed c.  It 
is concluded that the observation of star image displacements 
during solar eclipses is primarily a verification of the fact that 
the speed of light for a stationary non-local observer located in 
a gravity-free region of space varies with the light ray’s lateral 
distance from the Sun.  This circumstance alone is enough to 
cause wave fronts to be rotated by exactly the amount 
predicted using Huygens’ principle in both Einstein’s general 
relativity and Schiff’s simpler theoretical treatment without 
assuming any curvature in the light path itself.  A light 
refraction experiment is outlined to test this conclusion, and it 
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is pointed out that the resulting procedure would provide a 
direct method for the measurement of group refractive indices 
of dispersive media. 

Keywords: Schiff’s method, gravitational coordinate scaling, 
wave front rotation, light refraction, black holes 

I. Introduction 
One of the most publicized events in scientific history was the 
discovery that the images of stars are displaced during solar eclipses 
[1].  Einstein had predicted this effect several years earlier [2] as a 
consequence of his general theory of relativity (GTR).  Since that 
time there have been numerous discussions in the literature about how 
the trajectories of light waves are bent when they pass near the Sun or 
other massive objects.  Soldner reported explicit calculations of the 
angle of curvature as early as 1803 [3] based on Newton’s universal 
theory of gravitation, but the value obtained by him was too low by a 
factor of two relative to Einstein’s result and the best inference from 
subsequent experimental observations.  The purpose of the present 
work is to demonstrate via explicit trajectory calculations that the 
above experiments can be successfully interpreted by merely 
assuming that the speed of light for a stationary observer varies with 
lateral distance from the Sun.  It will be shown that the observed 
angular displacement of star images is predicted quantitatively on this 
basis, and it is therefore concluded that the light rays themselves are 
actually not deflected as they pass near massive bodies, but rather are 
merely slowed down. 
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II. Assumptions in Schiff’s Computational 
Procedure 
In 1960 Schiff [4] reported a simple method for calculating the angle 
of deflection of light rays passing close to the Sun.  A key assumption 
was that local observers at the same gravitational potential always 
measure the speed of light to have a constant value of c.  Moreover, 
the light moves in the same perfectly straight-line trajectory for a 
succession of such observers, that is, the local light velocity is always 
constant in both direction and magnitude.  The calculations then 
proceed on the basis of arguments given much earlier by Einstein [5, 
6] that the unit of time varies in a well-defined manner [see eq. (5) of 
Schiff’s paper] with the position of the observer in a gravitational 
field.  Schiff also made an additional assumption that the unit of 
distance in the direction radial to the Sun varies in inverse proportion 
to the unit of time, whereas that in transverse directions is 
independent of gravitational potential [his eqs. (5) and (6), 
respectively].   

Although the latter approach gives results for the angle of light 
deflection by the Sun that are in quantitative agreement with 
Einstein’s predictions based on GTR [2], comparatively little 
attention was given to Schiff’s procedure.  Perhaps the main reason 
for this attitude of contemporary physicists was that a similarly 
uncomplicated method could not be presented for calculating the 
other key quantity obtained from Einstein’s theory, the relativistic 
contribution to the advancement angle of the perihelion of Mercury’s 
orbit around the Sun.  This situation has changed recently [7] with the 
discovery that Schiff’s ideas can be applied successfully for this 
phenomenon by introducing several assumptions regarding the way in 
which Newton’s inverse-square law needs to be employed within the 
framework of Einstein’s special theory of relativity (STR) [8].  On 
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this basis, results are obtained which are in agreement with 
experimental data for this type of relativistic effect (43”.0033/cy calc. 
vs. 43”.2±0.9/cy obs. [9] and Einstein’s value of 43”.0076/cy [2,10], 
for example).  The same dependence on mean radius and eccentricity 
of orbit as well as the gravitational mass of the source is found as is 
the case for GTR. 

The success of the latter approach [7] gives quantitative support to 
the key assumption on which it is based, namely that all observers, 
independent of their location in a gravitational field, who are not in 
relative motion to one another must agree on the magnitude of the 
distance between any two objects in the universe.  On the other hand, 
as already mentioned, it is assumed that the unit of velocity increases 
as the object moves to a higher potential, with the component parallel 
to the gravitational field changing faster than those in the 
perpendicular direction.  It will be seen in what follows, however that 
this distinction between the scaling of radial and transverse velocities 
in Schiff’s procedure is only a mathematical artifice whose sole 
purpose is to accurately compute the ratio of elapsed times observed 
locally and at infinity as the object changes its position in a 
gravitational field.  Finally, it is also assumed that the units of time 
and inertial mass are inversely proportional to the unit of 
perpendicular velocity, whereas that for gravitational mass is the same 
for all observers (more details of this gravitational scaling procedure 
are given elsewhere [11]). 

One of the main consequences of the above approach is that all 
observers who are not in relative motion to one another must agree on 
the path followed by any given object, which in turn must be the same 
as that measured by a series of local observers analogous to those 
employed in Schiff’s procedure [4] for computing the amount of 
gravitational deflection of light by the Sun.  They will only disagree 
on the time required to travel a given distance along it.  This result 
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leaves open only one possibility for the actual path followed by the 
light as it travels from the star to the observer on Earth: it must have 
travelled in a perfectly straight line.  Why this conclusion is perfectly 
consistent with the experimental observations made during solar 
eclipses by Eddington [1] and subsequently by others [12], as well as 
with the theoretical calculations of both Einstein [2] and Schiff [4], is 
the subject of the following section. 

III. Light Paths and Huygens’ Principle 
It is an interesting fact of history that a different criterion for 
computing the angle of deflection of light by gravitational forces was 
employed by Einstein [2] than was the case for Soldner [3] over a 
century earlier.  In the latter study Newton’s classical theory was 
applied for an object of small mass that passes close to the Sun, and 
the amount of deflection was obtained as the angle by which the 
direction of the object’s motion changes as it travels between the star 
and the Earth.  Both Einstein [2] and Schiff [4] employed a different 
measure for the amount of curvature, however, one that is based on 
Huygens’ principle.  There is a subtle distinction in these two 
methods.  In Soldner’s Newtonian approach the direction of the light 
velocity is used explicitly in the calculations, whereas Einstein and 
Schiff only employ the speed of the light, not its direction, in arriving 
at their result.  

To see this it is only necessary to examine the formula for the 
change in angle Θ that they used based on Huygens’ principle: 

 1   dcd dx
c dy

′⎛ ⎞
Θ= ⎜ ⎟′ ⎝ ⎠

. (1) 

In this expression dy is the change in lateral distance of the light from 
the Sun in a given time interval, dx is the corresponding total distance 
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travelled, and c′  is the speed of the light measured by a stationary 
observer on Earth over the same infinitesimal period.  In Soldner’s 
approach, the path of the light must be curved for there to be a 
nonzero result for the angle of deflection, whereas in that employed 
by Einstein and Schiff, all that is required is that the speed of light 
change with lateral distance from the Sun for the above observer. 

But can one obtain a nonzero value for dΘ in eq. (1) if the path is 
not curved?  The answer is clearly yes, as the diagram in Fig. 1 

shows.  To compute the derivative dc
dy
′
according to Huygens’ 

principle, it is necessary to compare the speeds of two different light 
rays separated laterally by an amount dy.  If we assume that the 
corresponding values of c′ differ by dc′ , it is clear that the respective 
distance travelled in the two cases over time dt will also differ, 

 

Fig. 1.  Schematic diagram 
showing light rays emitted 
by stars to follow straight-
line trajectories as they pass 
near the Sun.  Because of 
gravitational effects the 
speed of the light rays c′  is 
known to increase with 
gravitational potential, with 
the effect that the 
corresponding Huygens 
wave front gradually rotates 
away from the Sun.  As 
discussed in the text, the 
normal to a given wave front 
points out the direction from 
which the light appears to 
have come, causing the star 
images to be displaced by 
an angle Θ during solar 
eclipses. 
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namely by an amount dc dt′ .  As shown in Fig. 1, the angle which the 
line connecting the final positions of the two light rays makes with the 

corresponding one for their initial positions is thus dc dtd
dy
′

Θ = .  This 

result in turn can be used to obtain eq. (1) by simply noting that the 
total distance travelled is dx c dt′= , where c′  is just the average of 
the two infinitesimally differing light speeds used to obtain the 
derivative in eq. (1).  There is nothing in this derivation that assumes 
that either light path is curved, only that the speeds by which the light 
travels along them are different. 

There is a simple interpretation of this result.  The line connecting 
the current positions of the two light rays simulates a wave front in the 
terminology of Huygens.  When the light reaches the observer, the 
direction from which it has come is judged by extending the normal 
to this wave front backward in space.  Integration of dΘ in eq. (1) 
over the entire path therefore gives the amount by which the light 
appears to have been deflected from the straight-line path actually 
followed (Fig. 1).  Schiff’s work has shown that this angle has a value 
of 1”.7517 for light coming from infinity which grazes the outer edge 
of the Sun’s surface on its way to the Earth, identically the same value 
as obtained by Einstein [2] in 1916.  Numerical calculations have also 
been carried out for this purpose with the (finite time-slice) procedure 
mentioned above for obtaining the perihelion advancement angle for 
planetary motion [7], and quantitative agreement is obtained with the 
latter value on this basis as well.  A brief description of these 
calculations is given below. 

Two light rays are assumed to start out at the same distance (1012 
m in the present numerical example) from the Earth, as shown in Fig. 
1.  The lateral distance between them is yΔ , which can be varied in 
the computer program.  Both light rays travel in straight lines along 
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the x axis and eventually pass by the Sun on their way to an observer 
of the Earth’s surface.  In the specific example under discussion, one 
of them just grazes the Sun’s surface, while the other is slightly 
farther away from it.  The origin of the coordinate system employed is 
placed at the solar midpoint.  Since the radius of the Sun is taken to be 

90.696x10  sr =  m, this means that the path of the inner light ray is 
the straight line, sy r= , while that of the other is sy r y= + Δ , also a 
straight line.  There is a separate local observer for each of the light 
rays, following Schiff’s procedure [4].  Their trajectories are 
computed in a series of equal time intervals tΔ (0.01 s in the present 
example) as measured on the stationary clock on Earth in each case.   

At each step in the calculation the local velocity of light is 
assumed to be c along the x direction, and is resolved into its radial 
and tangential components relative to the solar midpoint.  These are 
then scaled by different amounts in order to obtain the corresponding 
values in the system of units employed by the observer on Earth 
(actually assumed to be located at an infinite distance from the Sun, as 
in Schiff’s original procedure [4]).  The corresponding speed of the 
light ( c′ ) from the latter observer’s perspective is then computed, 
which in the present application of the theory is always less than c.  It 
is assumed that the corresponding light ray has travelled a distance 
c dt′ in the -x direction.  The new position of the light ray is then 
computed on this basis and this is used as the starting point for the 
next time cycle (note that this position is always the same for both the 
local observer and his counterpart on Earth).  

Since the speed of light c′  is slightly different for the two light 
rays, it follows that they do not arrive on the Earth’s surface at the 
same time.  In the present example, with 1000 yΔ = m, the outer ray 
travels 0.008492807 xΔ = m farther than the one that just grazes the 
Sun’s surface (all computations are done in quadruple precision).  The 
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line connecting the two end points of the rays has thus rotated by an 

angle x
y

Δ
Θ =

Δ
(see Fig. 1), which is interpreted to be the amount of 

angular displacement of the star’s image.  The value obtained for Θ 
with the above values for Δx and Δy is found to be 1”.7517, in perfect 
agreement with both Einstein’s [2] and Schiff’s [4] result for this 
quantity, which in turn is well within the error bars of the 
measurements of this angle obtained during solar eclipses [1,12]. 

But if one assumes that observers at different distances from the 
Sun will not agree on the path followed by the light, is it not possible 
that the straight-line trajectory measured locally will appear bent to 
someone located near the Earth?  In attempting to answer this 
question, the first point that should be noted is that the gravitational 
scaling of time can have no effect of the direction of the light’s 
velocity.  Simply employing a faster clock only causes all velocity 
components to be decreased in the same proportion, so no change in 
direction can be expected on this basis.  The fact that the radial 
component of the speed of light is altered more than the transverse 
component near the Sun’s surface as a consequence of the 
gravitational scaling of units does have an effect, but closer analysis 
shows that this implies bending in a much different direction than 
what has previously been inferred from observations of star image 
displacements.  Since the radial component of the velocity is 
decreased more for the observer on Earth than the corresponding 
transverse component, he must therefore find a trajectory for the 
initial part of the light’s journey from infinity that is bent away from 
the Sun (see Fig. 2) relative to the straight-line path observed locally 
(Fig. 1).  After the light passes by the solar midpoint the radial 
component of its local velocity begins to point away from the Sun, 
however, so that the gravitational scaling implies that the 
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corresponding velocity observed on Earth is now directed more 
toward the Sun than is its local straight-line counterpart.  The result is 
a “Δ-shaped” trajectory (Fig. 2) quite unlike the purely concave path 
around the Sun that is normally assumed.  

In computing the angle of “curvature” via Huygens’ principle, 
however, the apparent direction of the light velocity from the 

observer’s vantage point on Earth is completely immaterial.  Instead, 
only the change in the speed of light with lateral distance from the 
Sun is taken into account [2,4].  Since the light speed increases with 
distance from the gravitational source, as indicated in Fig. 1, the result 
is that the wave front of the light is rotated away from the Sun, 

Fig. 2 Diagram illustrating the 
“pseudo-trajectory” inferred from the 
velocity vector computed for the 
observer on earth in Schiff’s 
procedure (see ref. [4]).  Note that on 
the initial approach the light appears 
to veer away from the Sun (convex 
trajectory) because the gravitational 
scaling reduces the magnitude of the 
radial component relative to the local 
straight-line path.  This result 
demonstrates that the direction of the 
latter velocity is ignored in Schiff’s 
method, which nonetheless obtains 
perfect agreement with Einstein’s 
value for the angle of displacement 
of star images during solar eclipses 
because of its reliance on Huygens’ 
principle to define this angle (see 
Fig. 1).  Einstein employed the same 
definition for the displacement angle 
in his original work (GRT).  
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causing the observer to have the illusion that the star’s image has been 
displaced in this direction.  In effect, the fact that the direction of the 
light’s velocity appears to differ from one observer to another on the 
basis of the gravitational scaling is totally ignored in the calculation; 
only the magnitude of the velocity (speed) observed on Earth is 
actually considered in applying Huygens’ principle.  The 
corresponding direction is always the same as for the local observer.  
Thus the Δ-shaped trajectory obtained in Schiff’s treatment [4] can 
simply be viewed as an artefact of the overall theoretical approach 
employed to compute the amount of star image displacement. 

The conclusion from the above analysis is that one should 
carefully distinguish between a change in the direction of the 
trajectory that light actually follows on the one hand, and the angle of 
deflection indicated by photographic images of the light source on the 
other.  Just the fact that light speed varies with lateral distance from a 
gravitational source, which is a clear assumption in Schiff’s procedure 
[4], is sufficient to lead to the quantitative prediction of the observed 
displacement of star images during solar eclipses.  The path that the 
light follows cannot be determined from application of Huygens’ 
principle alone, but the assumption employed by Schiff to obtain 
exactly the same amount of deflection as Einstein did by using GTR, 
namely that the velocity of light is always the same in both magnitude 
and direction for a series of local observers, speaks strongly for the 
conclusion that its trajectory is actually a straight line. 

IV. Experimental Test of the Above Interpretation 
It is clear from the outset that it is a practical impossibility to measure 
light paths with sufficient accuracy to obtain a definitive answer to the 
question of whether gravitational forces really deflect light or merely 
create the illusion that this has occurred.  One must therefore rely on 
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indirect evidence to decide this matter as objectively as possible.  One 
such experiment is outlined below. 

The main conclusion of the preceding section is that the shifting of 
star images during solar eclipses is caused solely by the fact that light 
travels with different speeds depending on its proximity to the Sun.  It 
is possible to make a close analogy with ordinary light refraction on 
this basis [13].  In conventional experiments the angles of incidence 
and refraction are measured by direct observation of the path of the 
light as it passes through an interface between two media.  The ratio 
of the sines of these two angles defines the refractive index n in 
accordance with Snell’s law.  It is well known, however, that the 
speed of light v is not determined by n alone but rather by gn , the 

group refractive index, specifically 
g

cv
n

=  and not c
n

. 

The diagram given in Fig. 3 illustrates the situation in detail for 
light entering from free space with an angle of incidence Φ relative to 
the normal to the interface of a dispersive medium of refractive index 
n.  The corresponding angle of refraction is ′Φ  such that 

 sinsin
n
Φ′Φ = . (2) 

The light ray on the left of the diagram enters the dispersive 

medium first, at which point its speed changes from c to 
g

c
n

, with 

 g
dnn n
d

ω
ω

= + , (3) 

where ω is the light frequency.  There is a delay before the light ray 
on the right enters the medium, during which time it continues to 
move with speed c.  After both light rays have entered the dispersive 
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medium, the line connecting them makes an angle ′′Φ with the 
interface, but this is generally not the same as ′Φ  (Fig. 3).  Using 
trigonometric identities one finds that 

 ( )g
sinn n cos
sin

′Φ⎛ ⎞ ′ ′′= Φ −Φ⎜ ⎟′′Φ⎝ ⎠
 (4) 

 cot tan
sin cos

gn
n

′′ ′Φ = − Φ
′ ′Φ Φ

. (5) 

 

Fig. 3.  Angles of incidence 
Φ and refraction ′Φ  as light 
enters water from free 
space.  The corresponding 
angle ′′Φ  which the wave 
front makes with the 
interface upon entering a 
dispersive medium can be 
determined by noting the 
direction from which the 
image of the light source 
appears to arrive inside the 
medium.  Note that ′′Φ  is 
generally different than ′Φ .  
As discussed in Sect. IV, 
measurement of all three 
angles enables the 
determination of both the 
normal refractive index n 
and the corresponding group 
refractive index gn  of the 
dispersive medium. 
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From these relations it is clear that the condition for ′Φ  to be equal to 
′′Φ  is that gn n= , which according to eq. (3) can only occur if the 

refractive index does not change with frequency. 
According to the arguments of Sect. III, the image of the light 

source when viewed from within the dispersive medium will appear to 
lie along the normal to the wave front, i.e., at an angle of ′′Φ  relative 
to the interface.  Measurement of this angle will therefore give a result 
that is generally different than the angle of refraction ( ′Φ ) obtained 
by observing the light path from outside the medium.  The above 
equations indicate that one can determine the group refractive index 
on the basis of separate measurements of both these angles.  The 
result should be the same as obtained for gn  on the basis of 
measurements of n at a series of light frequencies, which in turn 
should also agree with the value obtained by explicitly measuring the 
speed of light of the same ω in the dispersive medium [14-16]. 

In the present context, however, the most significant result of such 
an experiment would be to show that the angle of deflection of the 
light image is generally not the same as the angle by which the light 
trajectory itself deviates from its initial direction.  It would therefore 
lend strong support to the conclusion based on Schiff’s method [4] for 
computing the angle of gravitational deflection by the Sun that the 
path followed by the light on its way from the star to the observer on 
Earth is actually a perfectly straight line. 

V. Black Holes 
Even before Soldner [3] published his calculations on the 
gravitational bending of light, there was speculation [17] by Michell 
that an object might be so massive that it would become impossible 
for light to escape from its surface.  As discussed above, the 
argumentation in GTR is fundamentally different than in the 
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Newtonian approach to gravity, but the belief still persists that such 
“black holes” exist and that they do not allow light to pass from them.  
Hawking [18] has argued that high-energy radiation can still escape 
from the surface of a black hole, however. 

In the previous sections it has been shown that all known 
experiments regarding the phenomenon of gravitational light 
deflection can be explained quantitatively by assuming that light 
always travels in a perfectly straight line.  It is therefore of interest to 
see how the theory of black holes is affected by making this 
assumption.  First of all, it should be noted that this position is still 
consistent with Newton’s inverse-square law provided that one takes 
account of the fact that the acceleration due to gravity from the g field 
on an object varies with the state of motion of the observer.  Ascoli 
[19] has argued that when an object is moving with speed u relative to 
the local observer, its acceleration due to gravity is damped by a 

factor of 
2

21 u
c

− .  This relation has been used successfully in the 

calculations mentioned above for the advancement angle of 
Mercury’s perihelion [7].  In the case of light, for which the local 
value of u is always c, this damping factor is exactly zero, so that no 
acceleration is to be expected.  Thus this result is consistent with both 
Schiff’s approach [4] and the underlying theory of the present 
calculations. 

According to this view, light can pass as closely as possible to the 
surface of a black hole without being deflected.  The apparent shift in 
the position of the image of the light source will be very much larger 
than it is for the Sun, however.  Moreover, there is no gravitational 
effect keeping light from escaping the interior of a black hole, so γ 
rays are expected to be observed, and not only those originating 
outside the boundary of the black hole.  It should not be forgotten 
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thereby that there is a quite high probability for photons to be 
absorbed because of the high density of matter, however, so on this 
basis the description as a blackbody is certainly applicable.  It is also 
clear that the speed of light will be quite small in the interior of a 
black hole because of the gravitational time dilation, and a very large 
red-shift for light escaping from it is also expected for an observer 
located at a relatively high gravitational potential.  The key point 
remains, however, that none of these effects need involve true 
gravitational deflection, as they are all consistent with a perfectly 
straight-line trajectory.  The phenomenon of gravitational lensing is 
also expected on this basis, provided the light source is located 
directly behind the black hole.  The image of the light source would 
be significantly distorted relative to that which would be detected in 
the absence of the black hole (see Fig. 1). 

VI. Conclusion 
The present analysis and explicit calculations indicate that one must 
draw a clear distinction between the angle of deflection of a star’s 
image and the corresponding angle by which the emitted light 
deviates from its initial direction.  Huygens’ principle, which is used 
to define the angle of deflection in GTR, gives no information about 
the actual path the light follows.  In order for “curvature” to be 
observed on this basis, it is only necessary for adjacent light rays to 
travel at different speeds, something that is known to occur near 
massive objects.  This effect causes the wave front of the light 
emanating from the star to be rotated away from the Sun.  Simply 
demonstrating that the images of stars are displaced during a solar 
eclipse therefore tells us nothing about the actual path taken by the 
light on the way to the observer. 
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The work of Schiff [4] has demonstrated that one can obtain the 
same value for the deflection angle as in GTR by assuming that the 
trajectory of the light is actually a straight line.  The numerical 
calculations carried out in the present study show clearly that the 
wave front of light emitted by a star is rotated away from the Sun by 
exactly the latter angle, causing the star’s image to appear to be 
displaced by this amount (Fig. 1).  Since it is impossible to actually 
observe the path taken by the light from such a distant source, there is 
no direct way of either verifying or denying the hypothesis that it 
always travels in a straight line.  Nonetheless, an experiment has been 
outlined for testing the conclusion that the angle of displacement of 
the image of a light source is not the same as the angle of refraction in 
dispersive media.  Such a procedure should make it possible to 
measure the group refractive index ng directly, instead of relying on a 
series of measurements of the corresponding refractive index n for 
different frequencies of light, as is normally done for this purpose. 

The underlying basis for the present calculations of gravitational 
interactions is the fact that the units of time and velocity differ from 
one gravitational potential to another.  Nonetheless, it is assumed that 
the distance between any two objects is the same for all observers in 
the Universe as long as they are not in relative motion to one another, 
independent of both the position of the objects and that of the 
observer in a gravitational field.  The same relationship is assumed for 
gravitational masses.  Following Schiff [4], however, the unit of 
velocity is assumed to vary with gravitational potential.  It is assumed 
to be different for the component radial to the field than for that 
perpendicular to it.  Analysis shows, however, that the latter 
distinction is only an artifice of Schiff’s method whose sole purpose is 
to compute the ratio of elapsed times observed locally and at infinity 
(the Earth), respectively.  It leads to a velocity of light that has the 
correct magnitude but the wrong direction (see Fig. 2).  The true 
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direction is the same as for the local observer, which in turn is 
obtained by the reverse scaling procedure in Schiff’s procedure.  As a 
consequence, all observers not in relative motion to one another agree 
completely on the path taken by the light.  Once the speed of light for 
an observer at infinity is known, it is easy to compute its value for any 
other observer not moving with respect to the first simply by taking 
account of the difference in their respective clock rates. 

In the present application, the velocity of light is assumed to be 
constant in both magnitude and direction, also following Schiff.  A 
connection has been noted between this assumption and earlier work 
of Ascoli [19] in which he assumed that the acceleration due to 
gravity for an object moving with speed u relative to the observer is 

damped by a factor of 
2

2
21 u

c
γ − = −  relative to its local value, whereby 

γ = ∞  for light.  When applied to optics, the latter result leads to the 
conclusion that photons are not accelerated by gravitational forces 
and therefore must always travel in a perfectly straight line according 
to Newton’s First Law.  This result is also consistent with Newton’s 
Third Law because it indicates that the trajectories of photons are not 
affected by gravitational forces on the one hand, and on the other, that 
their null gravitational mass precludes their exerting a gravitational 
force on any other object.   

Finally, the computational method employed to compute the 
angular displacement of star images during solar eclipses has also 
been extended to the other key application in Einstein’s original work, 
calculation of the relativistic contribution to the advancement angle of 
the perihelion of planetary orbits.  This objective was discussed in 
Schiff’s original work [4], but apparently was never achieved by him.  
Quantitative agreement with Einstein’s closed expression for the 
perihelion advancement angle is obtained with the present 



 Apeiron, Vol. 15, No. 3, July 2008 356 

© 2008 C. Roy Keys Inc. — http://redshift.vif.com 

computational approach, however, thereby giving considerable 
support to its underlying assumptions.  
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