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Abstract. In this paper we extend the anodic systems introduced in
Bueno-Soler (J Appl Non Class Logics 19(3):291–310, 2009) by adding
certain paraconsistent axioms based on the so called logics of formal
inconsistency, introduced in Carnielli et al. (Handbook of philosophical
logic, Springer, Amsterdam, 2007), and define the classes of systems that
we call cathodic. These classes consist of modal paraconsistent systems,
an approach which permits us to treat with certain kinds of conflict-
ing situations. Our interest in this paper is to show that such systems
can be semantically characterized in two different ways: by Kripke-style
semantics and by modal possible-translations semantics. Such results are
inspired in some universal constructions in logic, in the sense that ca-
thodic systems can be seen as a kind of fusion (a particular case of fibring)
between modal logics and non-modal logics, as discussed in Carnielli et al.
(Analysis and synthesis of logics, Springer, Amsterdam, 2007). The out-
come is inherently within the spirit of universal logic, as our systems
semantically intermingles modal logics, paraconsistent logics and many-
valued logics, defining new blends of logics whose relevance we intend to
show.
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1. Introduction

The alliance between paraconsistent logics and modal logics is not new.
Indeed, to deal with contradictions that occur in certain discourses,
S. Jaśkowski already in 1948 used a sort of modal environment to try to explain
contradictions in dialogues by means of his discussive (or discursive) logics: the
well-known system D2 of Jaśkowski is, in fact, a legitimate Logic of Formal
Inconsistency (LFI), as shown in [7] (example 93). However, it was only in
1986 that the first modal paraconsistent system was proposed in [13], with the
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aim to deal with deontic paradoxes. That system was a modal extension of
da Costa’s C1.

This approach has being extended by means of deontic modalities com-
bined with LFIs, as developed in [10] and [12]. But the potentiality in com-
bining paraconsistency and modalities goes far beyond deontic conundrums or
norms: not only some problems described in [15] can be thought in paraconsis-
tent terms, but also certain problems and paradoxes in epistemic and doxastic
logics gain a new insight when regarded from the paraconsistent perspective.
For instance, Fitch’s paradoxes of knowability are treated in terms of para-
consistent epistemic logics in [8]; while other oddities of doxastic logics that
can in principle be treated in paraconsistent terms are explained in [11],
chapter 7.

The present paper introduces the classes PIk,l,m,n, mbCk,l,m,n,
bCk,l,m,n and Cik,l,m,n of modal paraconsistent systems, called here cathodic
logics, by extending the respective propositional paraconsistent systems PI,
mbC, bC and Ci through certain basic modal axioms plus the axiom schema
Gk,l,m,n of Lemmon and Scott (see [16]). In this way one can obtain modal
paraconsistent fragments of familiar modal systems as T, D, S4, S5 and so
on, from the classes PIk,l,m,n, mbCk,l,m,n, bCk,l,m,n and Cik,l,m,n. The care-
ful construction of these systems permit us to maintain the desired features of
the paraconsistent systems, as well as the character of the modal systems that
are being combined; this kind of procedure is relevant to understand universal
constructions used to combine logics.

Finally, we systematize the construction of classes of cathodic systems
(which we call cathodic classes) and show that these classes can be semanti-
cally characterized in two different ways: by means of Kripke-style semantics,
and also by means of modal possible-translations semantics.

The paper is divided into four sections (besides Introduction): Sect. 2
presents the basic notions on cathodic systems, while Sect. 3 defines the
cathodic classes PIk,l,m,n, mbCk,l,m,n, bCk,l,m,n and Cik,l,m,n. Section 4 dis-
cusses the semantic characterization of the classes of cathodic systems with
respect to Kripke-style semantics and Sect. 5 introduces a new semantics to
modal paraconsistent systems based on possible-translations semantics, also
showing that the cathodic systems are also characterized with respect to modal
possible-translations semantics.

2. Preliminaries

A propositional language for a system S is composed by a denumerable set V ar
of sentential variables p, q, r, . . . and operators in the set Σ = {⊃,∧,�,♦,¬, ◦}.
The special connective ◦ plays a crucial role in our systems, as it expresses the
notion of consistency of a formula in the object-language level (more details
in [7]). All of our systems contain ◦ in the language, with the exception of the
ones in PIk,l,m,n.

The collection of formulas or sentences of S is obtained from proposi-
tional variables, as usual in modal logic, and is denoted by For. The elements
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of For are represented by lowercase Greek letters α, β, γ, and subsets of For
are represented by uppercase Greek letters Γ,∆,Π. When necessary, the col-
lection of sentences will be denoted by ForS instead of For only. Consider
Γ ∪ {α} ⊆ For and let � ⊆ ℘(For) × For be a consequence relation, where
℘(For) is the power set of the set For. A consequence relation is taken to be
tarskian, finitary and structural as in [3], which is granted by the axioms, rules,
and the standard definition of proofs and derivations. In this way, a logical sys-
tem S is a pair 〈For,�〉 governed by certain axioms and rules. When necessary,
we shall write �S to denote a consequence relation in a specific system S.

We use the notation α(p) to indicate that p occurs in α, and α[p/β]
to express the substitution in α of each occurrence of p by β. Consider the
following stock of propositional axioms and rules:

(A1) p ⊃ (q ⊃ p)
(A2) (p ⊃ q) ⊃ [(p ⊃ (q ⊃ r)) ⊃ (p ⊃ r)]
(A3) (p ⊃ r) ⊃ [((p ⊃ q) ⊃ r) ⊃ r]
(A4) p ⊃ [q ⊃ (p ∧ q)]
(A5) (p ∧ q) ⊃ p
(A6) (p ∧ q) ⊃ q
(PI) (p ∨ ¬p)

(mbC) ◦p ⊃ [p ⊃ (¬p ⊃ q)]
(bC) ¬¬p ⊃ p
(Ci) ¬ ◦ p ⊃ (p ∧ ¬p)

(MP) α, α ⊃ β implies β
(US) � α(p) implies � α[p/β]

The system PC⊃ is a fragment of the propositional calculus PC, intro-
duced by L. Henkin in [14], and is composed by the axioms (A1)–(A3) and by
the rule (MP). The disjunction connective is defined as:

(α ∨ β) Def= (α ⊃ β) ⊃ β

From such definition we can obtain the expected propositional properties of
disjunction, such as: expansion, commutativity, associativity, Dummett’s law
and proof by cases. The completeness of PC⊃ was shown in [14] with respect
to classical valuations for implication.

The system PC⊃,∧ is obtained from PC⊃ by adding (A4)–(A7) and (US).
This new fragment can also be characterized by extending Henkin’s results,
adding to the proofs the cases involving conjunction. The main useful results
valid in PC⊃,∧ are the Deduction Theorem and the distributivity of ∨ over ∧.
All details about PC⊃,∧ appear in [5].

From PC⊃,∧ it is possible to obtain several well-known paraconsistent
systems: the system PI,1 introduced by Batens in [1], can be obtained from
PC⊃,∧ by adding (PI); the system mbC, introduced by Carnielli and Marcos
in [9], is obtained from PI by adding (mbC); the system bC is obtained from

1 The version of PI used here is an equivalent version of the original PI in [1]; the other
paraconsistent systems in this paper are also equivalent versions of LFIs in [7].
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mbC by adding (bC); and the system Ci is obtained from mbC by adding (Ci).
All these paraconsistent systems were introduced in [9].

PI is the only system treated here which fails to be an LFI, since its
language does not contain the consistency operator ◦, as discussed in [7]. It is
known that from mbC a form of classical negation can be defined, commonly
called strong negation, defined as:

∼ α
Def= α ⊃ [p ∧ (¬p ∧ ◦p)]

From this definition all the relevant properties of classical negation are deriv-
able, what is useful to show several natural results about cathodic systems
involving classical negation.

Let v : For −→ {0, 1} be a collection of bi-valuation functions, where 1
denotes the “true” value and 0 denotes the “false” value, defined as follows:

(Biv.1) p ∈ V ar implies v(p) = 1 or v(p) = 0;
(Biv.2) v(α ⊃ β) = 1 iff v(α) = 0 or v(β) = 1;
(Biv.3) v(α ∧ β) = 1 iff v(α) = 1 and v(β) = 1;
(Biv.4) v(α) = 0 implies v(¬α) = 1;
(Biv.5) v(◦α) = 1 implies v(α) = 0 or v(¬α) = 0;
(Biv.6) v(¬¬α) = 1 implies v(α) = 1;
(Biv.7) v(¬ ◦ α) = 1 implies v(α) = 1 and v(¬α) = 1.

A PI-valuation is a bi-valuation function subject to the clauses (Biv1)–
(Biv4); analogously an mbC-valuation, a bC-valuation and a Ci-valuation is a
bi-valuation function subject, respectively, to clauses (Biv1)–(Biv5), (Biv1)–
(Biv6) and (Biv1)–(Biv7).

Such conditions on valuations permit us to give a completeness result
w.r.t. bi-valuations for each paraconsistent system referred above (details can
be found in [7]). We denote the bi-valuation semantics by Biv, for short.

Another semantic characterization for the paraconsistent systems PI,
mbC, bC and Ci can be attained w.r.t. possible-translations semantics, as
discussed in Sect. 5.1.

The systems PI, mbC, bC and Ci will be used to define the classes of
cathodic systems, as shown in the next section.

3. Cathodic Modalities

From the viewpoint of combination of logics, the cathodic systems could be
seen as a result of fusion (a particular case of fibring) between modal logics
and non-modal logics. Several results about preservation of completeness in
fibring have been obtained (see [6]), but in all cases the classical negation is
involved, instead of a paraconsistent negation. As the method treated here to
obtain cathodic systems involve weak (paraconsistent) negation, such preserva-
tion results cannot be directly applied, which justifies the approach developed
here.

Each cathodic system can be obtained by extending an element of the
anodic class Kk,l,m,n by expanding the language (adding ¬ and ◦) and by
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adding specific paraconsistent axioms, as done in [5]. For simplicity we start
from paraconsistent systems and define cathodic systems more directly. It is
not difficult to see that both presentations are equivalent.2

The minimal normal3 cathodic modal systems PI�,♦, mbC�, bC� and
Ci� are obtained, respectively, from PI, mbC, bC and Ci by adding the
following modal axioms and modal rule:

(K) �(p ⊃ q) ⊃ (�p ⊃ �q)
(K1) �(p ⊃ q) ⊃ (♦p ⊃ ♦q)
(K2) ♦(p ∨ q) ⊃ ♦p ∨ ♦q
(K3) (♦p ⊃ �q) ⊃ �(p ⊃ q)

(Nec) � α implies � �α
It is to be remarked that the Deduction Theorem holds for all cathodic

systems; the proof is virtually the same as for the classical modal logics, as
cathodic systems do not require any new rules other than (MP), (US) and
(Nec).

Since from the system mbC it is possible to define a classical negation ∼,
then the possibility operator ♦ can be defined from the necessity operator �
as usual in modal logic.

♦α Def= ∼�∼α
In this way, the axioms (K1)–(K3) are innocuous in mbC�, bC� and Ci�,
as the reader can verify. Thus, only the system PI�,♦ is indeed a bi-modal
system.

The main interest in this paper is to consider classes of cathodic sys-
tems, and the specific modal axiom schema ♦k�lα ⊃ �m♦nα, introduced by
Lemmon and Scott in [16], and denoted by Gk,l,m,n, will be used. The systems
PI�,♦, mbC�, bC� and Ci� will be extended with Gk,l,m,n and the classes
PIk,l,m,n, mbCk,l,m,n, bCk,l,m,n and Cik,l,m,n will be defined.

Observe that when the indexes k, l,m, n in Gk,l,m,n are zero, we have the
systems PI�,♦, mbC�, bC� and Ci� as particular cases.

As PI�,♦ is a bi-modal system, then the class PIk,l,m,n requires also the
dual instance of the axiom schema Gk,l,m,n, i.e., the axiom ♦m�nα ⊃ �k♦lα,
denoted by Gm,n,k,l, because in PI no form of classical negation can be defined.

One of the interests of cathodic systems is the potentiality in avoid-
ing some modal paradoxes, as for instance Urmson’s paradox. Consider the
following sentence:

2 A different approach was taken in [5], where the cathodic systems are defined from anodic
ones, by adding the axioms:

(BP1) �∼α ⊃ ∼♦α
(BP2) ∼♦α ⊃ �∼α

From this it is possible to show that �α is equivalent to ∼♦∼α.
3 A modal system S is classified as normal if it contains the Distribution Axiom (K) and
the Necessitation Rule (Nec) among its axioms and rules, and as minimal if it has only (K)

as a modal axiom and only (Nec) as a modal rule.
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“It is optional that you attend or not to my talk, but your choice is
not indifferent”.

It is clear that the notions “optional” (Opt) and “indifferent” (Ind) are dis-
tinct in such sentence. If we interpret ♦ as “permitted” and � as “obligatory”,
then it is natural in modal logic to formalize Opt and Ind as:

Opt(q) = ♦q ∧ ♦∼q
Ind(q) = ∼�q ∧ ∼� ∼ q

In the standard modal systems a contradiction occurs because ∼ is a
classical negation and �α is equivalent to ∼♦∼α. Consequently, Opt and Ind
are equivalent, which entails the paradox.

As the cathodic modalities have degrees of negation, this leads to a pow-
erful expressivity gain in the language, permitting to express some aspects of
common sense reasoning. Of course we can use weak negation (¬w) to express
the notions Opt and Ind. In this no paradox occurs because

�α 
= ¬w♦¬wα

In the study of cathodic systems the alternative characterization, ob-
tained w.r.t. modal possible-translations semantics (see Sect. 5), permits us
to give an interesting interpretation to certain philosophical problems, as for
example to the theory of “impossible worlds” of [18], which seems to be new
and promising.

4. Kripke-Style Semantic Completeness

In this section the main points behind the completeness w.r.t. Kripke seman-
tics for cathodic systems are underlined. The formal treatment for the sys-
tems in the class PIk,l,m,n, in particular, is similar to the anodic case, as in
[4], with some modifications concerning negation. The other cases, namely
mbCk,l,m,n,bCk,l,m,n and Cik,l,m,n will be treated in more details.

We will concentrate here on the effects of negation on the completeness
proof. Since negation in the class PIk,l,m,n is very weak, it has to be treated in a
somewhat particular way. On the other hand, the classes mbCk,l,m,n, bCk,l,m,n

and Cik,l,m,n can be dealt with almost simultaneously, due to the possibility
of defining a form of classical negation within them.

One of our aims is also to obtain a semantic characterization by means
of modal possible-translations semantics (which will be done in Sect. 5.2).
We reserve the notation L to denote any paraconsistent system among
PI, mbC, bC and Ci, and Lk,l,m,n to denote any cathodic class among
PIk,l,m,n, mbCk,l,m,n, bCk,l,m,n and Cik,l,m,n.

A cathodic frame is a relational structure F = 〈W,R〉, where W 
= ∅ is a
universe and R is a binary relation on W .

Since each class of cathodic systems PIk,l,m,n, mbCk,l,m,n,bCk,l,m,n and
Cik,l,m,n contains the axiom schema Gk,l,m,n, the accessibility relations in the
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respective frame for each class of systems will satisfy the condition Ck,l,m,n

(as for classical modal logics), which is expressed in first-order logic by:

∀w1∀w2∀w3((w1R
kw2 ∧ w1R

mw3) ⊃ ∃w4(w2R
lw4 ∧ w3R

nw4))

where wR0w′ means that w = w′. The condition Ck,l,m,n specifies r-step acces-
sibility relations between worlds w and w′ for r ∈ {k, l,m, n}. Note that the
condition C0,0,0,0 imposes no restriction on the accessibility relations.

The following definition specifies what is a bi-valued relational model
(or bi-valued Kripke model) for the cathodic systems PIk,l,m,n, mbCk,l,m,n,

bCk,l,m,n and Cik,l,m,n.

Definition 4.1. A bi-valued relational model for a cathodic system Lk,l,m,n is
a pair MLk,l,m,n

Biv = 〈F, v〉 where F is a frame and v : V ar ×W −→ {0, 1} is a
two-valued modal assignment satisfying the conditions:

• For Lk,l,m,n = PIk,l,m,n:
(i) v(p,w)=1 or v(p,w)=0;
(ii) v(α ⊃ β,w) = 1 iff v(α,w) = 0 or v(β,w) = 1;
(iii) v(α ∧ β,w) = 1 iff v(α,w) = 1 and v(β,w) = 1;
(iv) v(α,w) = 0 implies v(¬α,w) = 1;
(v) v(�α,w) = 1 iff v(α,w′) = 1, ∀w′(wRw′);
(vi) v(♦α,w) = 1 iff v(α,w′) = 1, ∃w′(wRw′).

• For Lk,l,m,n = mbCk,l,m,n add:
(vii) v(◦α,w) = 1 implies v(α,w) = 0 or v(¬α,w) = 0;

• For Lk,l,m,n = bCk,l,m,n add:
(viii) v(¬¬α,w) = 1 implies v(α,w) = 1.

• For Lk,l,m,n = Cik,l,m,n add:
(ix) v(¬ ◦ α,w) = 1 implies v(α,w) = 1 and v(¬α,w) = 1.

When there is no need to specify a particular class, we shall write simply
MBiv instead of MLk,l,m,n

Biv .
Note that the sentence �2α is an abbreviation for ��α. By an iterated

process, we have that, in a bi-valued relational model, a valuation v applied
to sentences of the form �rα and ♦rα is expressed in the following way:

• v(�rα,w) = 1 iff v(α,w′) = 1 for all w′ ∈ W such that wRrw′.
• v(♦rα,w) = 1 iff v(α,w′) = 1 for some w′ ∈ W such that wRrw′.

A sentence α is said to be satisfied in a bi-valued relational model MBiv,
if there is a w ∈ W such that v(α,w) = 1 (notation: MBiv, w � α). A sentence
α is said to be valid in a bi-valued relational model MBiv, if v(α,w) = 1 for all
w ∈ W (notation: MBiv � α). A sentence α is said to be valid on a frame F,
if α is valid in all bi-valued relational models based on F (notation: F � α). F
is said to be a frame for an arbitrary system S if every theorem of S is valid
on F.

All these definitions will be opportunely extended to three-valued
relational models (cf. Definition 5.4).
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A sentence α is a semantical consequence of Γ with respect to a class F
of frames if F � Γ implies F � α, for each F ∈ F , where F � Γ means that F � γ
for all γ ∈ Γ.

Theorem 4.2. (Soundness for PIk,l,m,n, mbCk,l,m,n, bCk,l,m,n and Cik,l,m,n)
Each theorem of Lk,l,m,n is valid in the class of frames F = 〈W,R〉, where R
satisfies the condition Ck,l,m,n.

Proof. It is sufficient to check that all axioms are sound, and that all rules
preserve validity. For the positive and modal axioms and rules the argument
is routine. For the specific axioms, the argument is as follows:

For the axiom (PI) suppose, by Reductio, that there exists a bi-valued
relational model MLk,l,m,n

Biv based on F such that MLk,l,m,n

Biv � p ∨ ¬p. By using
the definition of ∨ and definition of validity, there exists w ∈ W such that
v((p ⊃ ¬p) ⊃ ¬p,w) = 0. By Definition 4.1 (ii) we have that: v(p ⊃ ¬p,w) = 1
and v(¬p,w) = 0 so, there are two possibilities:
1. v(p,w) = 0 and v(¬p,w) = 0. Since v(p,w) = 0 then, by Definition 4.1

(iv), follows that v(¬p,w) = 1. Absurd.
2. v(¬p,w) = 1 and v(¬p,w) = 0. Absurd.

Therefore, MLk,l,m,n

Biv � p ∨ ¬p for any model MLk,l,m,n

Biv based on F ∈ F .
For the axiom (mbC) the argument is analogous, by Reductio, by using

Definition 4.1 (vii); for the axiom (bC) use Definition 4.1 (viii) and for the
axiom (Ci) use Definition 4.1 (ix). �

Given a system S, a set ∆ of sentences is said to be non-trivial if ∆ �S α
for some α ∈ ForS; otherwise, ∆ is trivial (w.r.t. S).

To deal with cathodic systems, the usual notion of a saturated set (or
maximal non-trivial set with respect to a given sentence) is generalized in the
sense that the saturation is defined with respect to a collection of sentences
instead of a single sentence. This is adequate to handle the so called prime
theories (see definition below), used to deal with the specific class PIk,l,m,n.

Definition 4.3. Let S be a system and ∆ and Λ be non-trivial subsets of For
such that ∆ ∩ Λ = ∅. ∆ is non-trivial Λ-maximal if:
(i) ∆ � λ, for all λ ∈ Λ;
(ii) For each α ∈ For such that α /∈ ∆,∆ ∪ {α} � λ, for some λ ∈ Λ.

If the set Λ is not specified, the non-trivial Λ-maximal set ∆ will be
referred to as a maximal non-trivial set, for short.

A discussion about saturated sets versus maximal non-trivial sets in ab-
stract terms (for classical logic) is given in [2]. The author shows that such
notions are equivalent in classical logic and shows that the semantics of satu-
rated sets are minimal. In our case such notions are not coincident, and this
permits us to deal with systems with weak negations (and even with without
negation, see [4]) in a very natural way.

Let ∆ be a set of S-sentences; ∆ is called an S-theory if it satisfies: ∆ � δ
implies δ ∈ ∆; an S-theory ∆ is called prime if it is non-trivial and satisfies:
∆ � α ∨ β implies ∆ � α or ∆ � β.
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Lemma 4.4. Let ∆ be a non-trivial Λ-maximal set. If Λ is a singleton, then ∆
is a prime set.

Proof. A simple argument by Reductio. �

Now, consider the definition of the following particular sets: Den(∆) (the
denecessitation set of ∆) and Pos(∆) (the possibilitation set of ∆) defined as:

Den(∆) = {α : �α ∈ ∆} and Pos(∆) = {♦α : α ∈ ∆}
Fact 4.5. If ∆ is a Lk,l,m,n-theory, then Den(∆) is also an Lk,l,m,n-theory.

Proof. Suppose Den(∆) � α, then there exists a set {β1, . . . , βn} ⊆ Den(∆)
such that {β1, . . . , βn} � α so, by the Deduction Theorem, it follows that �
β1 ⊃ (β2 ⊃ . . . (βn ⊃ α) . . .). By (Nec), (K) and (MP) n-times it follows that
� �β1 ⊃ (�β2 ⊃ . . . (�βn ⊃ �α) . . .), and so ∆ � �β1 ⊃ (�β2 ⊃ . . . (�βn ⊃
�α) . . .). On the other hand, each βi ∈ Den(∆), for 1 ≤ i ≤ n, is such that
�βi ∈ ∆. Hence, applying (MP) n-times it follows that ∆ � �α. As ∆ is an
Lk,l,m,n-theory, then �α ∈ ∆. Therefore, α ∈ Den(∆). �

Definition 4.6. The cathodic canonical frame for mbCk,l,m,n, bCk,l,m,n and
Cik,l,m,n is the pair ̂F = 〈̂W, ̂R〉 where the universe ̂W is formed by the Λ-maxi-
mal non-trivial sets in mbCk,l,m,n, bCk,l,m,n and Cik,l,m,n, for all Λ ⊂ For, and
for ∆,∆′ ∈ ̂W,∆ ̂R∆′ iff Den(∆) ⊆ ∆′.

The canonical frame for the class PIk,l,m,n is more subtle and is defined
separately (in the end of the section).

Definition 4.7. The cathodic canonical model ̂M for mbCk,l,m,n, bCk,l,m,n and
Cik,l,m,n based on the cathodic canonical frame ̂F is the pair 〈̂F, ̂V 〉 where ̂V

is the collection of all modal valuations such that each v∆ ∈ ̂V is defined from
some ∆ ∈ ̂W as:

v∆(p) =
{

1 if p ∈ ∆
0 if p /∈ ∆

The following properties of maximal non-trivial prime sets hold in the
cathodic systems.

Lemma 4.8. Let Lk,l,m,n = 〈For,�〉 be a cathodic system, and ∆,Λ ∈ For. If
∆ is a non-trivial Λ-maximal set of sentences in Lk,l,m,n, then:

• For Lk,l,m,n = mbCk,l,m,n.
(i) ∆ is a Lk,l,m,n-theory;
(ii) If α ∈ ∆ and α ⊃ β ∈ ∆, then β ∈ ∆;
(iii) If ∆ is prime: α ⊃ β ∈ ∆ iff α /∈ ∆ or β ∈ ∆;
(iv) If ∆ is prime, then for each α ∈ For and each λ ∈ Λ, we have that

α ∈ ∆ or α ⊃ λ ∈ ∆, but not both;
(v) α ∧ β ∈ ∆ iff α ∈ ∆ and β ∈ ∆;
(vi) If ∆ is prime, then: α /∈ ∆ implies ¬α ∈ ∆;
(vii) ◦α ∈ ∆ implies α /∈ ∆ or ¬α /∈ ∆;
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• For Lk,l,m,n = bCk,l,m,n add:
(viii) ¬¬α ∈ ∆ implies α ∈ ∆;

• For Lk,l,m,n = Cik,l,m,n add:
(ix) ¬ ◦ α ∈ ∆ implies α ∈ ∆ and ¬α ∈ ∆.

Proof. (i) The argument follows by Reductio.
(ii) Consequence of reflexivity of � and item (i) above.
(iii) From left to right, it follows immediately by Reductio; from right to

left: suppose that α /∈ ∆ or β ∈ ∆:
• Case 1: consider α /∈ ∆, and suppose by Reductio that α ⊃ β /∈ ∆.

Since ∆ is a non-trivial Λ-maximal set, ∆ ∪ {α} � λ1, for some
λ1 ∈ Λ so, ∆ � α ⊃ λ1. As λ1 ⊃ (λ1 ∨ λ2) is a theorem of Lk,l,m,n

then, by transitivity, ∆ � α ⊃ (λ1 ∨ λ2). Analogously, since
α ⊃ β /∈ ∆ then ∆ � (α ⊃ β) ⊃ (λ1 ∨ λ2). From (A3) it follows that
∆ � λ1 ∨ λ2, and as ∆ is a prime set, ∆ � λ1 or ∆ � λ2 for λ1, λ2 ∈ Λ.
Absurd.

• Case 2: the argument follows from (A1) and item (i).
(iv) Suppose that ∆ is a prime set. The first case follows by Reductio; the

second case is also by Reductio, using an analogous argument as in Case
1 of (iii).

(v) The right-to-left direction follows from (A4) and item (i); the other
direction follows from (A5), (A6) and item (i).

(vi) Suppose by Reductio that α /∈ ∆ and ¬α /∈ ∆. By using an analogous
argument as in Case 1 of (iii) we have that ∆ � α ⊃ (λ1 ∨ λ2) and
∆ � ¬α ⊃ (λ1 ∨ λ2) thus, ∆ � (α ∨ ¬α) ⊃ (λ1 ∨ λ2) for some λ1, λ2 ∈Λ.
From (PI) if follows that ∆ � λ1 ∨ λ2. As ∆ is a prime set an absurd
follows.

(vii) The argument follows by Reductio by using the axiom (mbC).
(viii) Immediate by using the axiom (bC).
(ix) The argument uses the axiom (Ci) and Lemma 4.8 (i) and (v). �

The following result is a generalization of the well-known Lindenbaum’s
argument.

Theorem 4.9. Let S be a system, ∆ and Λ be non-trivial subsets of For such
that ∆ ∩ Λ = ∅. So, there is a prime set Π non-trivial Λ-maximal such that
∆ ⊂ Π and Π ∩ Λ = ∅.

Proof. By starting from an enumeration of For, define the following extensions
of Γ.

Γ0 = ∆

Γn+1 =
{

Γn ∪ {αn} if Γn ∪ {αn} � λ, for all λ ∈ Λ
Γn if Γn ∪ {αn} � λ, for some λ ∈ Λ

Consider:

Π =
⋃

i<ℵ0

Γi.
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It remains to be shown that Π is a non-trivial Λ-maximal prime set. The result
can in fact be easily obtained from a standard argument. �

In [5] the formal treatment of anodic systems required the concept of fac-
tual sets, that is, sets that are ♦-non-trivial in the sense of not containing all
sentences of the kind ♦α (♦-trivial sets are called hypothetical). In this way, the
concept of “it is possible” can be expressed in the anodic system independently
of the concept “it is necessary” even without any Falsum particle.

The notion of factual sets is inherent in systems containing a form of
classical negation, as proven below.

Lemma 4.10. Let Lk,l,m,n be a cathodic system that permit us to define a clas-
sical negation ∼. If ∆ is a non-trivial maximal extension of Lk,l,m,n, then ∆
is factual.

Proof. Indeed, for each axiom α of Lk,l,m,n we have ∆ � α so, by (Nec),
∆ � �α. By definition, ∆ � ∼♦∼α, i.e., ∼♦∼α ∈ ∆. As ∼ is a form of classical
negation, then ♦∼α /∈ ∆. Therefore ∆ is factual. �
Lemma 4.11. Let Lk,l,m,n be mbCk,l,m,n, bCk,l,m,n or Cik,l,m,n. If ∆ is a
Λ-maximal non-trivial set of sentences of Lk,l,m,n such that �α /∈ ∆, then
Den(∆) ∪ {∼α} is a non-trivial set.

Proof. Suppose by Reductio that Den(∆) ∪ {∼α} is trivial; then Den(∆) ∪
{∼α} � α, for any α. Thus, Den(∆) � ∼α ⊃ α. On the other hand, we have
that Den(∆) � α ⊃ α so, Den(∆) � (α ∨ ∼α) ⊃ α. As ∼ is a classical nega-
tion, then it holds in Lk,l,m,n that � α ∨ ∼α so, Den(∆) � α. By Fact 4.5 we
have that α ∈ Den(∆), therefore �α ∈ ∆. Absurd. �
Theorem 4.12. (Fundamental Theorem of Canonical Models) Let Lk,l,m,n be
mbCk,l,m,n, bCk,l,m,n or Cik,l,m,n. The valuation v∆ in the canonical model
for Lk,l,m,n defines an Lk,l,m,n-valuation.

Proof. The non-trivial cases are for valuations of Lk,l,m,n involving �, ¬
and ◦.
• For Lk,l,m,n = mbCk,l,m,n we need to show that:

(i) v∆(�α) = 1 iff vΓ(α) = 1, for each Γ ∈ ̂W such that ∆ ̂R Γ.
(=⇒) If v∆(�α) = 1 then �α ∈ ∆ so, α ∈ Den(∆). For each Γ ∈ ̂W

such that Den(∆) ⊆ Γ we have that ∆ ̂R Γ and α ∈ Γ. As vΓ is the
characteristic function of Γ it follows that vΓ(α) = 1 for each Γ ∈ ̂W

such that ∆ ̂R Γ.
(⇐=) If v∆(�α) = 0 then �α /∈ ∆ so, by Lemma 4.11, Den(∆) ∪
{∼α} is a non-trivial set. By Theorem 4.9, there exists Γ ∈ ̂W such
that Den(∆) ∪ {∼α} ⊆ Γ. As ∼ is a classical negation, then α /∈ Γ
and so, vΓ(α) = 0. Therefore, vΓ(α) = 0 for some Γ ∈ ̂W such that
∆ ̂R Γ.

(ii) v∆(α) = 0 implies v∆(¬α) = 1.
If v∆(α) = 0 then α /∈ ∆ so, by Lemma 4.8 (vi) it follows that
¬α ∈ ∆. Therefore, v∆(¬α) = 1.



148 J. Bueno-Soler Log. Univers.

(iii) v∆(◦α) = 1 implies v∆(α) = 0 or v∆(¬α) = 0.
Immediate from Lemma 4.8 (vii).

• For Lk,l,m,n = bCk,l,m,n add:
(iv) v∆(¬¬α) = 1 implies v∆(α) = 1.
Immediate from Lemma 4.8 (viii).

• For Lk,l,m,n = Cik,l,m,n add:
(v) v∆(¬ ◦ α) = 1 implies v∆(α) = 1 and v∆(¬α) = 1.
Immediate from Lemma 4.8 (ix).

Therefore, the function v∆ is an Lk,l,m,n-valuation. �

Corollary 4.13. Let ∆ and ∆′ be non-trivial Λ-maximal extensions of Lk,l,m,n,
where Lk,l,m,n is mbCk,l,m,n, bCk,l,m,n or Cik,l,m,n. Then:

Denn(∆) ⊆ ∆′ iff Posn(∆′) ⊆ ∆.

Proof. (=⇒) Consider ♦nα ∈ Posn(∆′) then α ∈ ∆′. As a form of classi-
cal negation ∼ is definable in Lk,l,m,n, then ∼α /∈ ∆′. From the hypothe-
sis Denn(∆) ⊆ ∆′ it follows that ∼α /∈ Denn(∆) so, �n∼α /∈ ∆ and thus,
∼�n∼α ∈ ∆. Therefore, as ∼�n∼α is equivalent to ♦nα it follows that
♦nα ∈ ∆.

(⇐=) Analogous, using the fact that ∼�nα is equivalent to ♦n∼α. �

We denote by Γ the set-theoretical complement of Γ, i.e., the set Γ = {γ :
γ /∈ Γ}. A theory T is said to be generated by ∆ if T = {α : ∆ � α}. Now, it
remains to be shown that the accessibility relations of the canonical model for
mbCk,l,m,n,bCk,l,m,n and Cik,l,m,n satisfy the condition Ck,l,m,n.

Theorem 4.14. Let Lk,l,m,n = 〈For,�〉 be mbCk,l,m,n,bCk,l,m,n or Cik,l,m,n.
The accessibility relation of the canonical frame for Lk,l,m,n satisfies the con-
dition Ck,l,m,n.

Proof. Suppose ∆1
̂Rk∆2 and ∆1

̂Rm∆3. By Corollary 4.13, we have:
(Hyp.1) Denk(∆1) ⊆ ∆2 iff Posk(∆2) ⊆ ∆1

(Hyp.2) Denm(∆1) ⊆ ∆3 iff Posm(∆3) ⊆ ∆1

Consider Λ = Depl(∆2) ∪Depn(∆3), where Depk(∆) = {α : ♦kα ∈ ∆} and
let T be the Lk,l,m,n-theory generated by the set:

H = {α : �lα ∈ ∆2} ∪ {β : �nβ ∈ ∆3}
First, notes that Λ 
= ∅. Indeed, if not, we would have that {ϕ : ♦lϕ /∈ ∆2} = ∅

and {ψ : ♦nψ /∈ ∆3} = ∅. In this case, Depl(∆2) and Depn(∆3) would be triv-
ial. Absurd, since by Lemma 4.10, ∆2 and ∆3 are factual sets. Clearly T 
= ∅

since ∆2 and ∆3 are non-trivial maximal extension of Lk,l,m,n. Now, we show
that:

T ∩ Λ = ∅ (1)

Suppose by Reductio that α ∈ T and α ∈ Λ so: (�lα ∈ ∆2 or �nα ∈ ∆3) and
(♦lα /∈ ∆2 or ♦nα /∈ ∆3). Hence, we have to show that in each of the four
possibilities a contradiction is derived.
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(a) �lα ∈ ∆2 and ♦lα /∈ ∆2;
(b) �lα ∈ ∆2 and ♦nα /∈ ∆3;
(c) �nα ∈ ∆3 and ♦lα /∈ ∆2;
(d) �nα ∈ ∆3 and ♦nα /∈ ∆3.

Case (a) If ♦lα /∈ ∆2 then, as ∼ is a classical negation ∼♦lα ∈ ∆2. So
�l∼α ∈ ∆2, hence ∼α ∈ Denl(∆2). As �lα ∈ ∆2 then α ∈ Denl

(∆2). Absurd, since Denl(∆2) is an Lk,l,m,n-theory.
Case (b) Suppose that ♦nα /∈ ∆3 then, by (Hyp.2), ♦nα /∈ Denm(∆1), so

�m♦nα /∈ ∆1. From Gk,l,m,n it follows that ♦k�lα /∈ ∆1. On the
other hand, if �lα ∈ ∆2 then, ♦k�lα ∈ Posk(∆2). By (Hyp.1) it
follows that ♦k�lα ∈ ∆1. Contradiction.

Case (c) Analogous to case (b).
Case (d) Analogous to case (a).

As T and Λ are sets of formulas in Lk,l,m,n, and T ∩ Λ = ∅, by Theo-
rem 4.9 it follows that there exists a maximal prime theory ∆4 of Lk,l,m,n such
that T ⊆ ∆4 and ∆4 ∩ Λ = ∅. Since T is generated by H, then Denl(∆2) ∪
Denn(∆3) ⊆ ∆4. Hence, Denl(∆2) ⊆ ∆4 and Denn(∆3) ⊆ ∆4. Therefore,
there exists ∆4 such that ∆2

̂Rl∆4 and ∆3
̂Rn∆4. �

Corollary 4.15. (Completeness for mbC k,l,m,n,bC k,l,m,n and Ci k,l,m,n) Let
Lk,l,m,n = 〈For,�〉 be mbC k,l,m,n, bC k,l,m,n or Ci k,l,m,n. If Γ � α, then
Γ � α.

Proof. Suppose that Γ � α, for some α ∈ For. Clearly α /∈ Γ and Γ ∩ {α} = ∅.
By Theorem 4.9, we can extend Γ to a non-trivial {α}-maximal set ∆ such
that ∆ � α, so α /∈ ∆. Therefore v∆(α) = 0. As Γ ⊆ ∆ then, v∆(γ) = 1 for each
γ ∈ Γ. Hence, α is falsified in the canonical model for Lk,l,m,n that validates
all element of Γ, so Γ � α. �

Since the negation of PI is too weak, the canonical frame for the class
PIk,l,m,n has to be defined in a special way.

The canonical frame for PIk,l,m,n is the pair ̂F = 〈̂W, ̂R〉, where the uni-
verse ̂W is formed by the maximal non-trivial prime sets of PIk,l,m,n and for
each ∆,∆′ ∈ ̂W, ∆ ̂R∆′ iff Den(∆) ⊆ ∆′ ⊆ Dep(∆), where Dep(∆) = {α :
♦α ∈ ∆}.

Justifying the intuition that PIk,l,m,n is “almost positive” (in the sense
that the only property of its underling negation is p ∨ ¬p) the completeness
proof for PIk,l,m,n w.r.t. bi-valued relational model, is basically the same of
the anodic (i.e., positive systems studied in [4]), but details are omitted here.

We have shown is that the cathodic systems are characterized w.r.t. a
Kripke-style semantics. This result in spite of its own interest, is also crucial
to give a second semantical approach to cathodic systems, by means of modal
possible-translations semantics, as shown in the next section. This alternative
semantics permit us to explain how the cathodic systems can support con-
tradictions, albeit avoiding deductive triviality.
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5. A New Semantics for Cathodic Systems

Since the connection between modalities and logics of formal inconsistency
(LFIs) is the constituent ingredient of cathodic systems, and considering how
expressive the possible-translations semantics (PTS) for paraconsistent logics
are, as explained below, it seems just natural to extend the possible-transla-
tions semantics to modal paraconsistent logics. Our purpose in this section is
to define possible-translations semantics for cathodic systems, which will be
referred to as modal possible-translations semantics.

The reason we start from logics such as PI, mbC, bC and Ci is that
those logics already dispose of the semantical machinery of possible-transla-
tions semantics. This kind of semantics permits the understanding of the role
of contradictory, but non-trivial situations in argumentation.

In the sequel the formal definition of a modal possible-translations seman-
tics structure will be presented for cathodic systems. We start from the stan-
dard definition of possible-translations semantics given for the paraconsistent
systems treated here, as in [7].

5.1. Possible-Translations Semantics

This section surveys the formal definition of possible-translations structure
(PTS) adequate for PI, mbC, bC and Ci, what attend our aims.

It is convenient, firstly, to exhibit the matrices that will be used
to define the possible-translations semantics for PI, mbC, bC and Ci.
These matrices are also used to define the three-valued relational models
MLk,l,m,n

Thv , used to give the modal possible-translations semantics for the clas-
ses PIk,l,m,n, mbCk,l,m,n, bCk,l,m,n and Cik,l,m,n of cathodic systems.

Consider M a family of three-valued matrices4 with truth-values
{F, t, T}, where the distinguished values are t and T , and whose language con-
tains the connectives �,�,�,¬1,¬2, ◦1, ◦2, ◦3 such that the connectives are
governed by the tables given in Table 4:

The translations from a paraconsistent system L into M consist of all
functions in the set TrL of mappings t : ForL −→ ForM subject to the
clauses in Table 3:

To each specific case we need to choose adequate translations to L. The
specific choices in each case are given in Table 2 below

From the restrictions on translations for L, one can determine the set
ML ⊆ M of the specific three-valued matrices given in the Table 1 able to
characterize L in terms of possible-translations semantics.

Definition 5.1. A possible-translations semantical structure for L is a pair
PT = 〈ML,TrL〉, where :
(i) ML is the collection of three-valued matrices for L described in Table 1;
(ii) TrL = {t : ForL −→ ForML} is a family of translations following the

restrictions given in Table 2.

4 Of course M can be also legitimately seen as a collection of three-valued logics.
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Table 1. Tables of ML

L ML is composed by the following tables

PI �, �, �, ¬ 1 and ¬ 2

mbC �, �, �, ¬ 1, ¬ 2, ◦2 and ◦3

bC �, �, �, ¬ 1, ¬ 3, ◦2 and ◦3

Ci �, �, �, ¬ 1, ¬ 3 and ◦1

Table 2. Restrictions on translations of L

Logic Restrictions on translations

PI (Tr.1), (Tr.2), (Tr.3), (Tr.4) e (Tr.5)
mbC (Tr.1), (Tr.2), (Tr.3), (Tr.4), (Tr.5) e (Tr.7)
bC (Tr.1), (Tr.2), (Tr.3), (Tr.4), (Tr.6) e (Tr.7)
Ci (Tr.1), (Tr.2), (Tr.3), (Tr.4), (Tr.6), (Tr.8) e (Tr.9)

The notion of (semantical) consequence relation in PTS is defined as
follows.

Definition 5.2. Let Γ ∪ {α} be a set of L-formulas and �ML the consequence
relation determined by ML. The consequence relation in PTS, denoted by �PT,
is defined as:

Γ �PT α iff t(Γ) �ML t(α), for each translation t ∈ TrL.

As standard in PTS, soundness is obtained by means of translations in
the following sense.

Theorem 5.3. (Soundness for PI, mbC, bC and Ci) Let Γ ∪ {α} be a set of
formulas of L. Then: Γ �L α implies Γ �PT α.

Proof. The proof is routine, and consists in showing that the translations of
each axiom of L are tautology in ML, and that the translations of the rules
preserve such tautologies. �

The strategy to obtain a characterization via possible-translations seman-
tics for a paraconsistent system L, is to show that the bi-valuation semantics
(denoted by BivL) can be simulated by means of a translation t and a three-
valued valuation v. This procedure is known as Representability Lemma (cf.
[17]). In a few words, what this shows is that for each bi-valuation v in L,
there exist a translation t and a three-valued valuation v satisfying:

v(t(α)) ∈ {T, t} iff v(α) = 1

The Representability Lemma for the systems PI, mbC, bC and Ci,
among others, is detailed in [17], and is the key ingredient in obtaining com-
pleteness w.r.t. possible-translations semantics.
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Table 3. Clauses on translations

(Tr.1) t(p) = p
(Tr.2) t(α ⊃ β) = t(α) � t(β)
(Tr.3) t(α ∧ β) = t(α) � t(β)
(Tr.4) t(α ∨ β) = t(α) � t(β)
(Tr.5) t(¬α) ∈ {¬1t(α), ¬2t(α)}
(Tr.6) t(¬α) ∈ {¬1t(α), ¬3t(α)}
(Tr.7) t(◦α) ∈ {◦2t(α), ◦3t(α), ◦2t(¬α), ◦3t(¬α)}
(Tr.8) t(◦α) ∈ {◦1t(α), ◦1t(¬α)}
(Tr.9) t(¬α) = ¬1t(α) implies t(◦α) = ◦1t(¬α)

5.2. Modal Possible-Translations Semantics

The same strategy used above defines modal possible-translations semantics for
the cathodic systems. The goal here is to extend this method to cathodic sys-
tems in order to obtain an alternative characterization for them w.r.t. modal
possible-translations semantics. The strategy is to extended the Representabil-
ity Lemma to the modal cases, proving in each case that valuation in MBiv

can be represented by modal possible-translations semantics in MThv.

Definition 5.4. A three-valued relational model MLk,l,m,n

Thv for a cathodic system
Lk,l,m,n is a pair 〈F, v〉 where F is a frame and v : V ar ×W −→ {T, t, F} is a
three-valued modal assignment (determined by ML) satisfying the conditions:

(i) v(p,w) ∈ {T, t, F}, for p ∈ V ar;
(ii) v(α 	
 β,w) = v(α,w) 	
 v(β,w), for 	
 ∈ {�,�,�};
(iii) v(¬ iα,w) = ¬ iv(α,w) for 1 ≤ i ≤ 3;
(iv) v(◦iα,w) = ◦iv(α,w) for 1 ≤ i ≤ 3;

(v) v(�α,w) =
{

t if v(α,w′) ∈ {T, t}, ∀w′(wRw′)
F if v(α,w′) = F, ∃w′(wRw′)

(vi) v(�· α,w) =
{

t if v(α,w′) = {T, t}, ∃w′(wRw′);
F if v(α,w′) = F, ∀w′(wRw′).

In order to define the notion of modal possible-translation structure it is
necessary to extend the conditions on translations, given in the Table 3, to the
modal case.

The translations from the cathodic systems Lk,l,m,n into MLk,l,m,n

Thv con-
sist of all functions in the set TrLk,l,m,n of mappings t : ForLk,l,m,n −→
For

MLk,l,m,n

Thv
subject to the clauses given in Table 3 plus the following:

(Tr.10) t(�α) = �t(α)
(Tr.11) t(♦α) = �· t(α)

Definition 5.5. A modal possible-translations structure for a cathodic system
Lk,l,m,n is a triple MPT = 〈MLk,l,m,n

Thv ,TrLk,l,m,n ,F〉 such that:

(i) MLk,l,m,n

Thv is a three-valued relational model;
(ii) F is a frame for Lk,l,m,n;
(iii) TrLk,l,m,n ⊆ TrL such that 〈ML,TrL〉 is a PT -structure for L.



Vol. 4 (2010) Two Semantical Approaches to Paraconsistent Modalities 153

Table 4. Tables of M

The notions of satisfiability and validity in a three-valued relational model
MLk,l,m,n

Thv , and validity on a frame F, are similar to those for the two-valued
case (given at page 10). The notion of validity on a frame, of course, forms a
consequence relation on a frame, denoted by �F.

Definition 5.6. Let Γ ∪ {α} be a set of Lk,l,m,n-formulas and �F be the con-
sequence relation on F. The consequence relation in MPT, denoted by �MPT, is
defined as:

Γ �MPT α iff t(Γ) �F t(α)

for all translations t ∈ TrLk,l,m,n .

We are now in position to prove the following:

Theorem 5.7. (Soundness w.r.t. MPT) Let Γ ∪ {α} be a set of Lk,l,m,n-formulas
and F be a class of frames for Lk,l,m,n. Then:

Γ �Lk,l,m,n α implies Γ �MPT α
Proof. We need to show that the translations t applied to the axioms of
Lk,l,m,n are valid in MLk,l,m,n

Thv . The non-modal portion of the proof is anal-
ogous to Theorem 5.3, since the valuations in this case are independent of the
accessibility relation among worlds. It remains to be shown that the transla-
tions of (K), (K1), (K2), (K3) and Gk,l,m,n are valid in MLk,l,m,n

Thv an the rule
(Nec) preserve validity.
• Axiom (K)

By (Tr.1), (Tr.2) and (Tr.10) we have that:

t(�(p ⊃ q) ⊃ (�p ⊃ �q)) = �(p � q) � (�p � �q).
Suppose, by Reductio, that there exists a model MLk,l,m,n

Thv based on a
frame F such that MLk,l,m,n

Thv � �(p � q) � (�p � �q). By using the def-
inition of validity in a three-valued relational model the absurd can be
easily obtained.

• The argument to the axioms (K1), (K2) and (K3) is similar.
• Axiom schema Gk,l,m,n

By (Tr.1), (Tr.2), (Tr.10) and (Tr.11) we have that:

t(♦k�lα ⊃ �m♦nα) = ♦·k �lα � �m♦·n α.
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Suppose, by Reductio, that there exists a model MLk,l,m,n

Thv based on a
frame F such that MLk,l,m,n

Thv � �·k �lα � �m �·nα. Then there is a world
w1 ∈ W such that:
(a) v(�·k �lα,w1) ∈ {T, t}
(b) v(�m �·nα,w1) = F

By using an analogous argument as in classical modal case for the
Lemmon-Scott axiom, see proposition 4.2.1 of [11], a contradiction can be
obtained.

• Rule (Nec)
By (Tr.10) we have to show that F � t(α) implies F � �t(α).

Suppose, by Reductio, that F � t(α) and that there exists MLk,l,m,n

Thv

based on some F ∈ F , such that MLk,l,m,n

Thv , w � �t(α) for some w ∈ W .
This means that v(�t(α), w) = F . By Definition 5.4 (v), it follows that
there exists w′ ∈ W such that wRw′ and v(t(α), w′) = F . Hence,
MLk,l,m,n

Thv , w′
� t(α) and so F � t(α), for some F ∈ F . Absurd. �

Our next step will be establish completeness. Taking into account that
valuations of the consistency connective ◦ take the valuation of negation ¬
into account, it is convenient to define a non-canonical measure of complexity
� of formulas including the modal ones as follows:

Definition 5.8. Let S be a system, and For be a set of sentences of S. The
function � : For −→ N denote the complexity length of sentences, and is defined
as:

(i) �(p) = 0, for p ∈ V ar;
(ii) �(¬α) = �(α) + 1;
(iii) �(α	
 β) = max{�(α), �(β)} + 1, for 	
 ∈ {⊃,∧,∨};
(iv) �(◦α) = �(α) + 2;
(v) �(�α) = �(α) + 1.

The next four lemmas prove the representability of the bi-valued rela-
tional models by means of appropriate translations and three-valued relational
models for PIk,l,m,n, mbCk,l,m,n, bCk,l,m,n and Cik,l,m,n.

Lemma 5.9. (PI k,l,m,n-Representability) Given a PI k,l,m,n-valuation v in
MPI k,l,m,n

Biv and a frame F = 〈W,R〉 for PI k,l,m,n it is possible to define a
translation t in TrPIk,l,m,n , a valuation v and a three-valued relational model
MPI k,l,m,n

Thv such that, for all formula α in PI k,l,m,n and all w ∈ W :

(i) v(t(α), w) = t iff v(α,w) = 1
(ii) v(t(α), w) = F iff v(α,w) = 0

Proof. Consider v : V ar ×W −→ {T, t, F} defined as:

(Val) v(p,w) =
{

F if v(p,w) = 0
t if v(p,w) = 1

Clearly v can be extended homomorphically to all formulas in the matrix
MPI k,l,m,n . Now define the intended translation in the following way:
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(T1) t(p) = p
(T2) t(α ⊃ β) = t(α) � t(β)
(T3) t(α ∧ β) = t(α) � t(β)
(T4) t(α ∨ β) = t(α) � t(β)

(T5) t(¬α) =
{¬1t(α) if v(¬α,w) = 0

¬2t(α) if v(¬α,w) = 1
(T6) t(�α) = �t(α)
(T7) t(♦α) = ♦· t(α)

Note that the choices are allowed by restrictions (Tr.1), (Tr.2), (Tr.3),
(Tr.4), (Tr.5), (Tr.10) and (Tr.11) that characterize translations of PIk,l,m,n.
The model MPI k,l,m,n

Thv is obtained by extending F with the valuation v defined
above. The result is proven by induction on �.

1. The atomic case follows from (Val) and (T1).
2. Consider that the induction hypothesis is valid for all formula α with

�(α) ≤ k, for some k:
(IHa) v(t(α), w) = t iff v(α,w) = 1
(IHb) v(t(α), w) = F iff v(α,w) = 0

3. The cases where α = β ⊃ γ, α = β ∧ γ and α = β ∨ γ the result follows
easily by induction hypothesis.

4. Consider α = ¬β:
• Part A: v(t(¬β), w) = t iff v(¬β,w) = 1.

(=⇒) Suppose v(t(¬β), w)= t. By (T5), we have that v(¬1t(β), w)= t
or v(¬2t(β), w) = t. By the tables of ¬1 and ¬2, it is easy to see that
the negation in question must be v(¬2t(β), w) = t. In this case, by
(T5), v(¬β,w) = 1.
(⇐=) Suppose v(¬β,w) = 1. By (T5), we have that t(¬β) = ¬2t(β)
so, v(t(¬β), w) = v(¬2t(β), w), and then, by Definition 5.4 (iii), it
follows that v(t(¬β), w) = ¬2v(t(β), w). The hypothesis (IHa) and
(IHb) imply that there are just two possibilities of valuation for
v(t(β), w):

- v(t(β), w) = t. From table of ¬2, it follows that ¬2v(t(β),
w) = t.

- v(t(β), w) = F . From table of ¬2, it follows that ¬2v(t(β),
w) = t.

Therefore, v(t(¬β), w) = t.
• Part B: v(t(¬β), w) = F iff v(¬β,w) = 0.

(=⇒) Suppose, by Reductio, v(¬β,w) = 1. Again, by (T5) and Def-
inition 5.4 (iii) it follows that v(t(¬β), w) = ¬2v(t(β), w). There-
fore, in both v(t(β), w) = t or v(t(β), w) = F it follows that
v(t(¬β), w) = t. Absurd.
(⇐=) Suppose v(¬β,w) = 0. From PIk,l,m,n-valuation it follows that
v(β,w) = 1 so, by (IHa), v(t(β), w) = t. Table of the negation ¬1

implies that ¬1v(t(β), w) = F ; thus, by Definition 5.4 (iii), it follows
that v(¬1t(β), w) = F . Therefore v(t(¬β), w) = F .

5. Consider α = �β:
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• Part A: v(t(�β), w) = t iff v(�β,w) = 1.
v(t(�β), w) = t iff(T6) v(�t(β), w) = t iffDef. 5.4 (v) v(t(β),
w′) = t for each w′ ∈ W such that wRw′ iff(IHb) v(β,w) = 1 for
each w′ ∈ W such that wRw′ iff v(�β,w) = 1.

• Part B: v(t(�β), w) = F iff v(�β,w) = 0.
Analogous to Part A.

6. The case where α = ♦β is analogous to the previous case. �

Lemma 5.10. (mbCk,l,m,n-Representability) Given a mbCk,l,m,n-valuation v in
MmbCk,l,m,n

Biv and a frame F for mbC k,l,m,n it is possible to find a translation
t in TrmbCk,l,m,n , a valuation v in a three-valued relational model MmbCk,l,m,n

Thv

such that every formula α in mbCk,l,m,n and for all w ∈ W :

(i) v(t(α), w) = T implies v(¬α,w) = 0
(ii) v(t(α), w) = F iff v(α,w) = 0

Proof. The argument is essentially similar to the previous lemma, but here
the language includes the connective ◦. We will only emphasize the subtleties
concerning ◦.

Consider v : V ar ×W −→ {T, t, F} defined as:

(V al) v(p,w) =

⎧

⎨

⎩

F if v(p,w) = 0
T if v(¬p,w) = 0
t if v(p,w) = 1

Clearly v can be homomorphicaly extended to all formulas in the matrix
MmbCk,l,m,n . The translations differ from the previous lemma in:

(T5) t(¬α) =
{¬1t(α) if v(¬α) = 0 or v(α) = 0 = v(¬¬α)
¬2t(α) if v(¬α) = 1

(T8) t(◦α) =

⎧

⎨

⎩

◦3t(α) if v(◦α) = 0
◦2t(¬α) if v(◦α) = 1 and v(¬α) = 0
◦2t(α) if v(◦α) = 1

The choices are allowed by restrictions (Tr.1), (Tr.2), (Tr.3), (Tr.4),
(Tr.5), (Tr.7), (Tr.10) and (Tr.11) that characterize the translations of
mbC k,l,m,n. The model MmbCk,l,m,n

Thv is obtained by extending F with the val-
uation v defined above. The statement is proven by induction on the length of
complexity of �.

1. The atomic case follows from (Val) and (T1).
2. Assume the induction hypothesis for all formulas α with �(α) ≤ k, for

some k:
(IHa) v(t(α), w) = T implies v(¬α,w) = 0
(IHb) v(t(α), w) = F iff v(α,w) = 0

3. For the cases where α = β ⊃ γ, α = β ∧ γ, α = β ∨ γ, α = ¬β, α = �β
and α = ♦β is analogous to the previous lemma.

4. Consider α = ◦β
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• Part A: v(t(◦β), w) = T implies v(¬(◦β), w) = 0
If v(t(◦β), w) = T then, by (T8), we have three possibilities for
the translations: v(◦3t(β), w) = T , v(◦2t(¬β), w) = T or v(◦2t(β),
w) = T . From the tables of ◦3 and ◦2 we can see that is impossible
to obtain such values; in this case the result follows by vacuity.

• Part B: v(t(◦β), w) = F iff v(◦β,w) = 0
(=⇒) Suppose, by Reductio, v(t(◦β), w) = F and v(◦β,w) = 0. From
the hypothesis v(◦β,w) = 0 we have, by mbCk,l,m,n-valuation, that
v(β,w) = 0 or v(¬β,w) = 0. We will analyze each possibility:
(a) If v(β,w) = 0 then, by (IHb) it follows that v(t(β), w) = F so,

by (T8), the only possibility of translation is t(β) = ◦2β. There-
fore, from the truth-table of ◦2, we have that v(◦2t(β), w) = t.
Since v(t(◦β), w) = F , by (T8), it follows that v(◦2t(β), w) =
F . Absurd.

(b) If v(¬β,w) = 0, as �(¬β) < �(◦β) then, by (IHb), it follows that
v(t(¬β), w) = F . On the other hand, recall that, by hypothesis,
v(t(◦β), w) = F . So, as v(◦β,w) = 1, the only possibility for
the translation is v(◦2t(¬β), w) = F . Definition 5.4 (v) implies
that ◦2v(t(¬β), w) = F so, by the table of ◦2, we have that
v(t(¬β), w) = t. Absurd.
(⇐) If v(◦α,w) = 0 then, by (T8), we have t(◦α) = ◦3t(α),
so v(t(◦α), w) = v(◦3t(α), w). Definition 5.4 (v), implies that
v(◦3t(α), w) = ◦3v(t(α), w). Therefore, from the table of con-
sistency operator ◦3, we have that v(t(◦α), w) = F . �

Lemma 5.11. (bC k,l,m,n-Representability) Given a bCk,l,m,n-valuation v in
MbC k,l,m,n

Biv and a frame F = 〈W,R〉 for bC k,l,m,n it is possible to find a trans-
lation t in TrbCk,l,m,n , a valuation v and a model MbC k,l,m,n

Thv such that, for
each formula α in bC k,l,m,n and for all w ∈ W :

(i) v(t(α), w) = T implies v(¬α,w) = 0
(ii) v(t(α), w) = F iff v(α,w) = 0

Proof. Consider v : V ar ×W −→ {T, t, F} defined as:

(V al) v(p,w) =

⎧

⎨

⎩

F if v(p,w) = 0
T if v(¬p,w) = 0
t if v(p,w) = 1

Again, v can be homomorphically extended to all formulas in the matrix
MbCk,l,m,n . The translations differ from the previous lemma in:

(T5) t(¬α) =
{¬3t(α) if v(α) = 1 = v(¬α)
¬1t(α) if v(α) = 0

(T8) t(◦α) =

⎧

⎨

⎩

◦3t(α) if v(◦α) = 0
◦2t(¬α) if v(◦α) = 1 and v(¬α) = 0
◦2t(α) if v(◦α) = 1
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Choices are allowed in this case by restrictions (Tr.1), (Tr.2), (Tr.3),
(Tr.4), (Tr.6), (Tr.7), (Tr.10) and (Tr.11) which characterize translations of
bCk,l,m,n. The model MbC k,l,m,n

Thv is obtained by extending F with the valua-
tion v defined above. The statement is proven by induction on the length of
complexity of �, with the same procedure used in Lemmas 5.9 and 5.10. �

Lemma 5.12. (Ci k,l,m,n-Representability) Given a Cik,l,m,n-valuation v in
MCi k,l,m,n

Biv and a frame F = 〈W,R〉 for Ci k,l,m,n it is possible to define a trans-
lation t in TrCik,l,m,n , a valuation v and a Kripke model MCi k,l,m,n

Thv such that,
for every α in Ci k,l,m,n and for all w ∈ W :

v(t(α), w) = T implies v(¬α,w) = 0
v(t(α), w) = F iff v(α,w) = 0

Proof. Consider v : V ar ×W −→ {T, t, F} defined as:

(V al) v(p,w) =

⎧

⎨

⎩

F if v(p,w) = 0
T if v(¬p,w) = 0
t if v(p,w) = 1

Once more, v can be homomorphically extended to all formulas in the
matrix MCik,l,m,n . The translations differ from the previous lemma in:

(T5) t(¬α) =
{¬3t(α) if v(α) = 1 = v(¬α)

¬1t(α) if v(α) = 0

(T8) t(◦α) =
{◦1t(¬α) if v(◦α) = 1

◦1t(α) if v(◦α) = 0

In this case, choices are allowed by restrictions (Tr.1), (Tr.2), (Tr.3),
(Tr.4), (Tr.6), (Tr.8), (Tr.9), (Tr.10) and (Tr.11) that characterize the admis-
sible translations of Cik,l,m,n. The model MCi k,l,m,n

Thv is obtained by extending
F with the valuation v defined above. As expected, the statement is proven
by induction on the length of complexity � with the same procedure used in
Lemmas 5.9 and 5.10. �

Now, from the Representability Lemma for each class PIk,l,m,n,
mbCk,l,m,n, bCk,l,m,n and Cik,l,m,n, showed in Lemmas 5.9–5.12, completeness
w.r.t. modal possible translations semantics, can be obtained in each case, as
done below.

Corollary 5.13. (Completeness w.r.t. MPT) Let Γ ∪ {α} a set of formulas of
Lk,l,m,n. Then:

Γ � MPT α implies Γ �Lk,l,m,n α

Proof. Suppose that Γ 
�Lk,l,m,n α; then, since Lk,l,m,n is sound and complete
w.r.t. ML k,l,m,n

Biv (see Corolary 4.15), there exists w ∈ W and a L-valuation
v such that v(γ,w) = 1 for all γ ∈ Γ and v(α,w) = 0. By the Represent-
ability Lemma specific for each Lk,l,m,n (Lemmas 5.9–5.12), it is possible to
find a translation t in TrLk,l,m,n and a valuation v in ML k,l,m,n

Thv such that,
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v(t(Γ), w) ∈ {T, t} and v(t(α), w) = F so, t(Γ) �
ML k,l,m,n

Thv
t(α). Therefore, by

Definition 5.6, Γ � MPT α. �

As argued in [7], possible-translations semantics offer an immediate deci-
sion procedure for any system that is complete with respect to a possible-trans-
lations semantical structure PT = 〈M ,Tr〉, provided M is decidable and Tr
is recursive. In this way, our modal possible-translations semantics immedi-
ately provide a decision procedure for the cathodic logics and constitute, in
this way, an alternative to the well-known method of finite model property.
Although a precise relationship between modal possible-translations seman-
tics and finite model property is still to be clarified, it is very likely that both
could be seen as expressions of a more universal construction.

A particularly interesting application of the modal possible-translations
semantics is to give a modal interpretation to the theory of “impossible worlds”
(cf. [18]) where E. Zalta proposes a metaphysical theory of genuine impossi-
ble worlds and argues that impossible worlds are coherent and can be a valid
alternative for the analysis of philosophical questions. As an impossible world
is one that does not derive all classical truths, and the paraconsistent worlds
in the MPT do not validate all classical truths, it seems natural to take such
worlds as legitimate impossible worlds, and, moreover, constructed upon sound
mathematical foundations (as we have seen). All this, we believe, is universal
logic at work.
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