\

HaPoC 2013
Maarten Bullynck, Jean-Baptiste Joinet

» To cite this version:

Maarten Bullynck, Jean-Baptiste Joinet. HaPoC 2013: History and Philosophy of Computing. HaPoC
2016, Oct 2013, Paris, France. Ecole normale supérieure, pp.93, 2013. hal-01510891

HAL Id: hal-01510891
https://hal.science/hal-01510891
Submitted on 20 Apr 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01510891
https://hal.archives-ouvertes.fr

HaPoC 2013

History and Philosophy of Computing

October 28th-31st 2013
Paris France

Ecole Normale Supérieure

ENS

Organised by
Centre Cavailles — CIRPHLES

fE-}\?TRE
‘ L]






Conference Aims and Scope

Computing has pervaded our everyday lives. Beginning with the democrati-
sation of the computer in the 1980ies to the ubiquitous embedded computing
entities of today, the spread of computing on all levels of our societies and
our lives, both private and professional, does not seem to have come to a halt
yet. Despite this, the knowledge and know-how on computing is for most
hidden behind intricate imprints of microprocessors, layers of programming,
processed by specialised knowledge and finally made acquaintable by a vari-
ety of user-friendly interfaces. Given the impact of computing, not only on
our scientific work, but also on our mundane experience, it is a task of utmost
importance to make the nature and characteristics of computing available
for reflection, not only by experts, but by a broad community of researchers
and thinkers.

Historically, the computer is born from the complex convergence of many
traditions: Scientific calculating machines, business machines, electrical cir-
cuit design, war related research on communication systems, etc. The com-
puter’s appearance almost immediately sparked off the regimentation of an
important body of mathematical and logical results (of which many were
essentially an outgrowth of Hilbert’s metamathematical programme) into
parts of what was to become (theoretical) computer science. Later on, a
similar process happened in the development of conceptual approaches to
programming. Moreover, the computer has had and is having a considerable
influence on all sciences and has made it possible to put quite some new
research questions on the agenda, often resuscitating older questions, e.g.
research on algorithms in mathematics. This multiform origin of comput-
ing (informatique) is still very much a living part of the discipline and can
still be the basis of a meeting ground for philosophers, logicians, historians,
mathematicians, computer scientists, programmers, sociologists, artists, etc.
to talk and reflect about computing. This conference wants to bring all these
researchers together to stimulate a dialogue of ideas and to facilitate an in-
terplay of methods and concepts to help form and nurture the emerging and
exciting field of history and philosophy of computing. On a more systematic
level, the topics of the conference include (but are not restricted to):

1. History and Philosophy of Computability (E.g., interpretation and ac-
tuality of the Church- Turing thesis; other models of computability

)

2. History and Philosophy of Computing and Programming (E.g., Mod-



els of computing; logical and mathematical foundations of computer
science; information theory; classes of programming languages...)

3. Epistemology of the use of computing in the sciences (E.g., simulation
vs. modelisation; computer-assisted proofs; exploration...)

4. History and Philosophy of the Computer (E.g., from calculating ma-
chines to the future of the computer; abstract architectures...)

5. Social, ethical and paedagogical issues of Computing (E.g., education
of informatics; algorithms and copyright; internet, culture and society;
web philosophy...)

6. Art and Informatics

This conference History and Philosophy of Computing (HaPoC 2013) is the
follow-up conference to the first History and Philosophy of Computing that
was organised in Gent (Belgium) November 2011. Tts success and the en-
thusiasm it generated among its participants vouch for a successful second
edition. The participation of many institutions in the organisation of the
conference, the presence of many personalities in the field to the programme
committee and the list of invited speakers testify of the general import that
is expected from the conference. The planning of several special issues is a
guarantee that the results of the conference will be translated as a series of
articles that will serve as references for the future of the field.



Chairs

Maarten Bullynck (Paris 8 & SPHERE UMR 7219 CNRS)
Jean-Baptiste Joinet (Lyon 3, IRPhil EA 4187 & Centre Cavaillés, Cirphles
USR 3308 CNRS)

Local Organising Committee

Dominique Hoarau, secrétariat Cirphles (ENS)

Iro Bartzia (Paris 8)

Florent Franchette (docteur, Paris 1)

Baptiste Mélés (post-doc, Archives Poincaré Nancy)
Alberto Naibo (doctorant, Paris 1)

Magl Pégny (doctorant, Paris 1)

Patrice Pereira (doctorant, Paris 8)

Mattia Petrolo (doctorant, Paris 7)

Laurent Ungerer (Ecole Nationale Supérieure des Arts Décoratifs)

Scientific and Programme Committee

Gerard Alberts (Amsterdam) Sergei Artemov (New York)
Gérard Berry (Paris) Cristian Calude (Auckland)
Martin Campbell-Kelly (Warwick) Leo Corry (Tel Aviv)

Liesbeth De Mol (Lille) Marie-José Durand-Richard (Paris)
Helena Durnova (Brno) Jean-Louis Giavitto (Paris)
Marie Hicks (Chicago) Benedikt Loewe (Amsterdam)
Simone Martini (Bologna) Pierre-Eric Mounier-Kuhn (Paris)
Gualtiero Piccinini (Missouri) Giuseppe Primiero ()

William Rapaport (Buffalo) Sonja Smets (Groningen)

Julian Rohrhuber (Diisseldorf) Raul Rojas (Berlin)

Jérome Ségal (Vienna) Wilfried Sieg (Carnegie Mellon)

Raymond Turner (Essex)



Organization and Support

HaPoC 2013 is supported by
rE-f?TRE
§

Centre Cavailles

Cirphles (USR 3308 CNRS, ENS)

e

0
ENS

Ecole Normale Supérieure

PSL*

SEARCH
UNIVERSITY

PSL (Paris, Sciences et Lettres)

SOPHERE

SPHERE (CNRS, UMR 7219)



Ecole
nationale
supérieure
des Arts
Décoratifs

Ecole Nationale Supérieure des Arts Décoratifs

rd

INVENTORS FOR THE DIGITALWORLD

INRIA (Institut National de Recherche en Informatique et Automatique)

GDR 3398

GDR 3398 Histoire des mathématiques

Ircam
== (entre
Pompidou
Equipe “Sciences et Technologies de la Musique et du Son” (UMR 9912 IR-

CAM/CNRS)

@

dépasser les frontieres

CNRS (Centre National de Recherche Scientifique)



Schedule

Monday 28th October

9h00-9h45 Inscription + coffee break

9h45-10h00 Welcome and Introduction

10h00-11h00 Invited Talk: Janet Abbate, Is Computer Science a Science? A Half-
Century Debate

Contributed Session 1: Fundamental Questions
11h00-11h30 Marcello Pelillo , Teresa Scantamburlo and Viola Schiaffonati . Computer Sci-

ence between Science and Technology: A Red Herring?

11h30-12h00 Edgar Daylight. On the Difficulties of Writing about the History of Comput-
ing

12h00-12h30 Valérie Schafer, Francesca Musiani and Benjamin Thierry. Is Networking
computing ?

12h30-14h30 Lunch

14h30-15h30 Invited Talk: Gilles Dowek, Informatics and the classification of sci-
ences

Contributed Session 2: Epistemological, ethical and paedagogical as-
pects of Computing

15h30-16h00 Julie Jebeile. Verification € Validation of Computer Simulations: A Philo-
sophical Analysis

16h00-16h30 Luca Gasparri and Jacopo Tagliabue. We don’t want to miss a thing. Ob-
jecthood in a digital universe

16h30-17h00 Coffee break

17h00-17h30 Harry Halpin. The Logical and Philosophical Foundations of the Open World
Assumption

17h30-18h00 Elisabetta Mori. Tomds Maldonado and the Sign System for Olivetti ELEA
9003

18h00-18h30 Fabio Gadducci and Giovanni Cignoni. A syllabus for the Fifties. Teaching
computer science on the first Italian computers.

18h30-19h00 Yann Secq. 40 years of computer science PhD in Lille University



Tuesday 29th October

9h00-10h00 Invited Talk: Walter Dean, Algorithms and ontology
10h00-10h30 Coffee break

Contributed Session 3: History and Philosophy of the Computer
10h30-11h00 Robert Dennhardt. The term ‘digital’ and ‘Digital Computer’ by George
Robert Stibitz 1942

11h00-11h30 Mark Priestley. Computers and obedience: defining machine autonomy in
the 1940s

11h30-12h00 Camille Paloque-Berges, Haud Guegen and Claire Scopsi. What network
computing does to communication. A retrospective analysis of early debates
confronting and inventing online communication ethics

12h00-12h30 Wolfgang Brand. Weaving the Net: Places of Computing and their Political,
Social and Technical Interconnections

12h30-14h30 Lunch
14h30-15h30 Invited Talk: Jean-Yves Girard, Logic revisited through informatics

Contributed Session 4: History and Philosophy of Computability
15h30-16h00 Guido Gherardi. The applications of Turing (in)computability to classical
mathematics

16h00-16h30 Teresa Numerico. Cybernetics, control and Big data
16h30-17h00 Coffee break

17h00-17h30 Mate Szabo. Kalmdr’s Argument Against the Plausibility of Church’s Thesis

17h30-18h00 James Power. Exploring Thue’s 1914 paper on the transformation of strings
according to given rules

18h00-18h30 Christopher Porter. Von Mises, Church, and the Birth of Algorithmic Ran-
dommness

18h30-19h00 Mirko Tavosanis. Back to the (Libraries of the) Future



Wednesday 30th October

9h00-10h00 Invited Talk: Nathan Ensmenger, The multiple meanings of a flowchart:
visual representations of complexity in computer programming

10h00-10h30 Coffee break
Contributed Session 5: History and Philosophy of Programming
10h30-11h00 Federico Gobbo and Marco Benini. The epistemology of programming lan-
guage paradigms
11h00-11h30 Baptiste Mélés. Philology of Programming Languages

11h30-12h00 Andrea Valle and Alessandro Mazzei. Towards a Semiotic Framework for
Programming Languages

12h00-12h30 Alexandre Hocquet. RTFM! Scientific modeling and the generification of
software

12h30-14h30 Lunch

14h30-15h00 Introduction and welcome at Ecole Nationale Supérieure des Arts Dé-
coratifs

15h00-16h00 Invited Talk: Margit Rosen, A Technological Difference, Not a Differ-
ence Of Method. On the Notion of Programming in the Arts of the
1960s

Contributed Session 6: Computing and the Arts : historical and con-
ceptual issues
16h00-16h30 Mario Verdicchio. Can Computing in Art Renew the Debate on Art?

16h30-17h00 Joanna Walewska. Computer art or art of computing? Farly debates revis-
ited.

17h00-17h15 Break

17h15-17h45 Jean-Marc Wolff. An historical perspective on informatics language and mu-
sic composition

17h45-18h45 Performance by IRCAM-members Moreno Andreata, Gérard Assayag
and Jean-Louis Giavitto, “Sciences et Technologies de la Musique et
du Son” (SMTS, UMR 9912 IRCAM / CNRS) in the Amphithéatre

19h00-22h00 Performance ‘The Great C’ organised by ENSAD-Lab, curators: An-
toine Schmitt, Jean-Jacques Birgé (in the Amphi Bachelier). In paral-
lel there is the walking dinner (in the ‘Rotonde’)



Thurday 31st October

9h00-10h00 Invited Talk: Barry Cooper, Types of Thinking
10h00-10h30 Coffee break
Contributed Session 7: History and Philosophy of Networking

10h30-11h00 Federica Russo and Silvia Crafa. Causality in concurrent systems

11h00-11h30 Felice Cardone. Computers as communication machines — Highlights of a
forgotten program

11h30-12h30 Invited Talk: Bernard Chazelle, Computation as a conceptual tool for
modern science

12h30-13h00 Closing Remarks and Goodbye
13h00-15h00 Lunch



List of Invited Talks

Is Computer Science a Science? A Half-Century Debate

Janet Abbate (abbate@computer.org)
Science and Technology in Society, Virginia Tech, USA

From the 1950s to the present, computer scientists have debated whether
their field is a science or not. Many have lamented that they are not recog-
nized as scientists by other scientists, funding agencies, or the public. Why
have computer scientists debated this question for so long, and what might
their answers tell us about the nature of computing and the nature of sci-
ence itself? This paper surveys how the meaning of computer science has
changed over time and connects these evolving definitions with social and
material contexts including changes in technology, the institutionalization
of computer science within universities and professional societies, industry
demand for computer experts, and funding opportunities. I then focus on
debates over the scientific status of computing. Which elements of computer
science are identified as “scientific,” and what do these claims reveal about
how science itself is perceived and valued? And what is at stake in this de-
bate? The paper will focus mainly on US but will incorporate comparative
examples from Europe and the USSR.

Types of Thinking

Barry Cooper (pmt6sbc@maths.leeds.ac.uk)
School of Mathematics, University of Leeds, United Kingdom

Early work on artificial intelligence was predicated on the assumption that
the digital computer might emulate what had been thought of as distinctively
human modes of thinking. Turing himself at Hanslope Park in 1944 was
quoted as saying he was “building a brain”. On the other hand, there is a
long history of recognition of different kinds of thinking, described variously
as: head versus heart; logical versus intuitive; scientific versus artistic; left
brain versus right brain, etc. Jacques Hadamard’s essay on ‘Psychology of
Invention in the Mathematical Field’, drawing extensively on the thinking of
Henri Poincare (as outlined in his famous lecture on mathematical invention,

10



in Paris in 1908), came just after Turing’s 1939 paper bringing mathematical
logic to bear on the relationship between ingenuity and intuition.

The theme running through all this work, and through later work of Turing
and others, is that the differences between kinds of thinking emerging from
observation, introspection and the mathematics are puzzlingly real. And
that these might be the basis for an essentially cooperative conjunction of
modes. Related to this were earlier attempts — for instance those of the
so-called ‘British emergentists’ of the 1920s — to place this in a broader
scientific context. AzWork on the relationship between descriptive and more
clearly computational characterisations of phenomena can be traced through
such early work as that of Hans Reichenbach and more recent contributions,
including that of Reichenbach’s one-time student Hilary Putnam.

In the more hermetic recursion theoretic context, we have Stephen Kleene
and his successors developing notions of computation over objects of different
type. And recently we have Luciano Floridi’s book on the “Philosophy of
Information”, describing an information-based approach to structural realism
- a key ingredient of which is the notion of ‘Level of Abstraction’. In this
talk we try to draw together these various strands, outlining the formative
thinking and historical background, and point the way towards a clarifying
mathematics.

Computation as a conceptual tool for modern science

Bernard Chazelle (chazelle@CS.Princeton.EDU)
Princeton University, USA

It was the singular genius of Alan Turing to capture the essence of comput-
ing with a machine: to compute, logicians were told to become engineers.
Today, the favor is being returned. With the indispensability of the com-
puter firmly established among scientists, we are now witnessing the rise of
“computational thinking.” This more ambitious phase of Turing’s visionary
program will see the algorithmic paradigm get woven ever more tightly into
the fabric of modern science, especially biology. This (self-contained) talk
will discuss this phenomenon with concrete examples.

11



Algorithms and ontology

Walter Dean (W.H.Dean@warwick.ac.uk)
Department of Philosophy, University of Warwick, Coventry, United
Kingdom

The broad goal of this paper is to bring to the attention of philosophers of
mathematics and computation the concept of algorithm (e.g Euclid’s algo-
rithm, Strassen’s algorithm, the Grobner basis algorithm) as it is studied in
contemporary theoretical computer science, and at the same time address
several foundational questions about the role this notion plays in mathe-
matical practice. A variety of considerations such as the need to prove cor-
rectness and provide running time analyses suggest that algorithms ought
to be assimilated to mathematical objects such as models of computation
or recursion schemes — a view which is embodied by the well-known propos-
als of Yiannis Moschovakis and Yuri Gurevich. I will suggest instead that
a variety of considerations grounded in complexity theory and algorithmic
analysis serve as in principle obstacles to making such an identification.

Informatics and the classification of sciences

Gilles Dowek (gilles.dowek@inria.fr)
INRIA, Paris, France

The apparition of a new science poses different kinds of questions: What is
this new science and how is it different from others? Can this new science
be integrated in existing classifications of the sciences before its appearance,
or do these classifications have to be modified? How does the apparition
change our vision of what the sciences are as a whole? In this talk I will
try to present some elements of an answer for the specific case of computer
science.

The multiple meanings of a flowchart: visual representations of complez-
ity in computer programming

Nathan Ensmenger (nensmeng@indiana.edu)
School Of Informatics And Computing, Indiana University, USA

A well-written computer program is, in theory at least, self-documenting;
that is to say, the computer code itself contains its own complete written

12



specification. And yet despite the computer scientist Donald Knuth’s famous
claim that computer programs, like literature, were meant to be read by
humans as much as machines, for the most part computer programs are too
arcane and idiosyncratic to serve as a useful function as a design document.

From the very earliest days of electronic computing, “flow diagrams” (later
“flowcharts”) have been used to represent the conceptual structure of com-
plex software systems. In much of the literature on software development,
the flowchart serves as the central design document around which systems
analysts, computer programmers, and end-users communicate, negotiate,
and represent complexity. And yet the meaning of any particular flowchart
was often highly contested, and the apparent specificity of such design doc-
uments rarely reflected reality. In fact, some of the first software “packages”
(commercial applications that could be purchased off-the-shelf) were used
to reverse-engineer the flowchart specification from already developed com-
puter code. In other words, the implementation of many software systems
actually preceded their own design! Drawing on the sociological concept of
the boundary object, I will explore the material culture of software devel-
opment, with a particular focus on the ways in which flowcharts served as
political artifacts within the emerging communities of practices of computer
programming.

Logic revisited through informatics

Jean-Yves Girard (girard@iml.univ-mrs.fr)

CNRS, CIRM Luminy, France

The climateric date in recent logic is 1931 : incompleteness puts an end to
XIXth century, scientist logic. However, XXth century logic, which starts
with Gentzen, Herbrand and Kolmogorov was still relying on XIXth century
schemes: Hilbert’s formalism and Russell’s logicism, until computer science,
through its multiple connections with logic, provided a fresh grid.

Indeed, the logical universe can be enlightened by three basic oppositions :

1. What is an answer (implicit/explicit) ?
2. What is a question (formatted/informal) ?

3. What conveys certainty (epidictic/apodictic) 7

13



A Technological Difference, Not a Difference Of Method
On the Notion of Programming in the Arts of the 1960s.

Margit Rosen (margitrosen@gmx.de)
ZKM Karlsruhe, Germany

When electronic computers caught the attention of artists and art theorists
in the 1960ies, the idea of a “rational”, “scientific” or “programmable” art was
in the focus of interest. The technology seemed to offer a way out of the
much criticized arbitrariness of post war abstract art and its alleged social
irrelevance. This paper explores the use of the concept of “programming”
both on the base of historical theoretical texts as well as of the actual han-
dling of computers by the artists. The consideration of the use of self-built
analog or hybrid devices to which artists referred to as “computers” not only
allows for deepening the discussion of the idea “programming” in the artis-
tic context, but for adressing the methodological problem of approaching so
called “computer art”.

14



Special Session on “Computing and the Arts”

The afternoon of Wednesday, 30th October, HaPoC 2013 will take place at
the Amphithéatre Bachelier in the Ecole Nationale Superieure des Arts Dec-
oratifs, 31 rue d’Ulm, a few steps away from the Ecole Normale Superieure
(ENS, rue d’Ulm 45) where the conference takes place.

This afternoon features

e an invited talk by Margit Rosen (ZKM Karlsruhe)

e a Contributed Session on ‘Computing and the Arts : historical and
conceptual issues’

e a performance by members of the research group ‘Sciences et Technolo-
gies de la Musique et du Son’ (SMTS, UMR 9912 IRCAM / CNRS),
Moreno Andreata, Gérard Assayag and Jean-Louis Giavitto, in the
Amphithéatre of the Ecole Nationale Supérieure des Arts Décoratifs
(17h45-18h45)

e and a performance/exhibition with the title The Great C, organ-
ised by the ENSAD-lab under the direction of Antoine SchmittAntoine
Schmitt and Jean-Jacques Birgé (19h-22h).

Synchronously to the exhibition and performance in the Amphithéatre, a
walking dinner will also take place at la Rotonde, immediately next to the
Amphithéatre.

15



Abstracts of Contributed Talks

Weaving the Net: Places of Computing and their Political, Social and
Technical Interconnections

Wolfgang Brand (wolfgang.brand@ims.uni-stuttgart.de)
Universitdt Stuttgart, Historisches Institut, Abt. fiir Geschichte der
Naturwissenschaften und Technik, Stuttgart, Germany

Today, most people carry with them an enormous amount of computing
power in their mobile devices. Historically, substantial amounts of comput-
ing power were concentrated in computer centres where large calculation
machines consumed a lot of resources and had - compared with today -
rather limited capabilities.

The first computers were solitary machines located in laboratories and oper-
ated mostly by their creators. During the 1950s and 1960s computer centres
were established to house these machines and specially trained operators
were running these devices filling the gap between the constructors and the
users of these artefacts. But what processes and boundary conditions formed
these computing centres? What kind of people worked at these places of
computing and how did these centres interconnect or not?

This historical case study will examine the development of high-performance
computer centres in the German state of Baden-Wiirttemberg from the 1960s
to the end of the last century. It will cover the political, social and techni-
cal aspects of their development. The developments in Baden-Wiirttemberg
were chosen as the field of study because right from the beginning this region
spearheaded the quest for high-performance computing in Germany. Created
from two rivalling states after the Second World War, Baden-Wiirttemberg
has a political culture where a delicate balance of power between its two
constituents has to be maintained. This is reflected in the allocation of re-
sources and the formation of (super)- computing centres in this state. Start-
ing in the late 1970s a sometimes painful process started where the existing
scientific computing centres began to collaborate more closely and a hierar-
chical structure regarding the size and technical potentials of these centres
emerged. This structure was reflected by the interconnection, both on a
structural and a technical level (communication networks), between these
centres which led to a two tier structure of high performance computing in
the whole of Germany with a small group of three centres at the top.

16



Baden-Wiirttemberg was one of the first places in Germany where large-
scale computers were deployed in scientific computation. After John Argyris,
the co-inventor of the Finite Elements Method (FEM), came to Stuttgart
University in the late 1950s substantial efforts were made to establish a state-
of-the-art computing environment in Stuttgart. These efforts were echoed
by the other universities such as Karlsruhe, Tiibingen and Heidelberg who
established their own computing centres. Especially Karlsruhe University,
a university with a strong engineering tradition, tried to position itself for
a long time as a potential host of the most powerful computing centre in
Baden-Wiirttemberg. In the late 1970s, when a political decision by the
state government was prepared to buy one of the first Cray 1 supercomputers
available, an open rivalry between the computing centres broke out. This
conflict, also fueled by the main protagonists, threatened to paralyze the
whole processes to establish top computer capabilities.

During summer 1981 it became evident that an arrangement had to be found
to end (or at least channel) the rivalry between Stuttgart and Karlsruhe to
make any progress. This resulted in the “Konstanzer Seefrieden” (peace
treaty at the Lake of Konstanz) where the leaders of the computing centres
agreed to meet on a regular basis (four times a year) to discuss the relevant
topics in a “peaceful atmosphere”. The small town of Achern was selected
as a neutral place to meet and the participants named themselves “Acherner
Kreis” (Achern circle). Finally, the computer centre at Stuttgart Univer-
sity was selected as the main supercomputer centre in Baden-Wiirttemberg
and all other university computer centres had to limit their ambitions to
somewhat less powerful computers. This strategic decision also promoted
the early interconnection between the computing centres and in 1987 the
BelWii, the first non-US TCP /IP-based scientific network became opera-
tional.

The contribution is mainly based on materials never used before in a his-
torical study. A major part of the material is based on oral interviews with
those who participated in these developments. First-hand accounts are given
on the development of high performance computer centres, their structure
and interconnections.

This study is part of the author’s PhD thesis project on the history of high
performance computing and the contributions of the Stuttgart and Karl-
sruhe areas at the Department for the History of the Natural Sciences and
Technology at the University of Stuttgart.

17



References

Held, Wilhelm et. al.: Geschichte der Zusammenarbeit der Rechenzentren
in Forschung und Lehre vom Betrieb der ersten Rechner bis zur heutigen
Kommunikation und Informationsverarbeitung, ZKI, Manuscript 2009

Original material from the archives of Stuttgart and Karlsruhe University

Oral interviews with participants and witnesses of these developments

Computers as communication machines — Highlights of a forgotten pro-
gram

Felice Cardone (felice@di.unito.it)
Dipartimento di Informatica, Universita di Torino, Italy

Issuing a purchase order in a large company, transferring rights by deliv-
ery of a promissory note, making a motion in a deliberative assembly under
Robert’s Rules of Order, are example of coordination patterns among hu-
man activities that rely upon disciplined communication among participants
playing formally defined roles. Although much effort has been invested of
late into exploiting computers in these situations, the conventional metaphor
of computer as a calculating machine fails to provide the rationale behind
such effort.

Motivated by this observation, we rediscover an approach to the conceptual
role of computers pioneered by Carl Adam Petri (1926-2010) and Anatol
W. Holt (1927-2010), who regarded the computer as a “general medium for
strictly organized information flow” (Petri 1976), a “communication machine”
(Holt 1975) in the context of a specific organized activity. Our reconstruction
is mostly based on the work of Holt, whose lifelong research interests were the
construction of a theory explaining the role of computers in the coordination
of human activities, and the realization of computational artifacts in support
of organized activity (Holt 1997).

Through his acquaintance with Gregory Bateson, Anatol Holt inter- acted
with cyberneticians and systemically oriented thinkers' and, viewing a sys-
tem as a means to establish certain relations of communication among a set
of role players,? he set the foundations for

1See (Bateson 1972). Holt was one of the main characters of that conference which
included as participants Barry Commoner, Warren McCulloch and Gordon Pask among
others.

2For reasons of space we omit full reference to unpublished material. This commu-

18



a theory about the mechanical aspects of communication — i.e.,
those aspects that have to do with the rules, insofar as these can
be formalized, which define the relations among a set of commu-
nicating parts [. . . ] We regard the words ‘organization’ and
‘system’ as referring to such bodies of rules.

Around the end of the 1960s, Holt’s ideas contributed to spread sys- temic
notions like concurrency, conflict and causality, and the formalism of Petri
nets (Holt & Commoner 1970), influencing in particular the research on asyn-
chronous hardware, where the absence of a global clock makes it necessary
to achieve coordination among components by means of suitable signaling
schemes.

The vision of computer as a communication machine essentially situated
within the context of human organizations gave rise to an unconvential re-
search program. Communication here does not just mean, as in Shannon’s
seminal work, “reproducing at one point either exactly or approximately a
message selected at another point”: the reception via fax of a perfect repro-
duction of a 100 dollar bill does not count as a successful money transfer. In
place of a theory of signal transmission like classical communication theory
we rather need a formal pragmatics providing the conceptual tools for the
analysis and synthesis of patterns of communication. While applying com-
munication mechanics to the design of electronic coordination environments,
Holt introduced examples of disciplines to be imposed on message-handling
capabilities within a computer-based information system, like delegation of
authority, addressing of messages and their identification and cancellation.
Petri (1976) compiled a list of such communication disciplines classifying the
functions of computer as a general medium for strictly organized information
flow,

disciplines of a science of communication yet to be created, and
disciplines in the sense of keeping to a set of rules to be followed
if communication is to be successful (Petri 2001).

While only a few fragments of such a new science of communication have
been developed, work toward this goal has provided valuable insights. On
the one hand, we have the beginnings of a theory of coordination based on
notions like role, activity, state, behavior and interaction, exploiting a graph-
ical formalism for expressing coordination patterns (Grimes et al. 1983).

nication mechanics later developed into a theory of coor- dination whose formalization
instantiated the elements of the bipartite ontology of Petri nets as roles and activities
(Grimes et al. 1983) or, later, as bodies and operations (Holt 1985, 1997).

19



On the other hand, considerations on the relations between discrete and
continuous models stimulated by this formalism have led to a refor- mu-
lation of (Dedekind-)continuity via non-transitive similarity relations, like
concurrency and indistinguishability by measurement, admitting continuous
structures of countable size (Petri 1982, (C5) p. 985).

It is our conviction that a systematic account of these insights will contribute
to revive a research program which is not just of historical interest.

References

Bateson, M. C. (1972), Our Own Metaphor. A Personal Account of a Confer-
ence on the Effects of Conscious Purpose on Human Adaptation, Smithsonian
Institution.

Grimes, J. D., Holt, A. W. & Ramsey, H. R. (1983), ‘Coordination sys- tem
technology as the basis for a programming environment’, Electrical Commu-
nications 57(4), 301-314.

Holt, A. W. (1975), Formal methods in system analysis.,
in Shaw, B., ed., ‘Computers and the Educated Individ-
ual’, University of  Newcastle upon  Tyne, pD- 135-179.
http://www.ncl.ac.uk/computing/about /history /seminars/.

Holt, A. W. (1985), Coordination technology and Petri nets, in G. Rozen-
berg, ed., ‘Advances in Petri Nets’, Vol. 222 of Lecture Notes in Com- puter
Science, Springer-Verlag, pp. 278-296.

Holt, A. W. (1997), Organized Activity and its Support by Computer, Kluwer.

Holt, A. W. & Commoner, F. (1970), Events and conditions, in J. B. Den-
nis, ed., ‘Record of the Project MAC conference on concurrent systems and
parallel computation’, ACM, New York, NY, USA, pp. 3-52.

Petri, C. A. (1976), Communication disciplines, in B. Shaw, ed., ‘Comput-
ing System Design’, University of Newcastle upon Tyne, pp. 171-183.
http://www.ncl.ac.uk/computing/about /history /seminars/.

Petri, C. A. (1982), ‘State transition structures in physics and computa- tion’,
International Journal of Theoretical Physics 21(12), 979-992.

Petri, C. A. (2001), ‘Cultural aspects of net theory’, Soft Computing 5, 141—
145.

20



On the Difficulties of Writing about the History of Computing

Edgar Daylight (egdaylight@yahoo.com)
Eindhoven University of Technology, Netherlands

My mentor has advised me not to use technological concepts, like ‘program’,
‘compiler’; and ‘universal Turing machine’, as subjects of my sentences. In-
stead, I should use historical actors. For example, I should not write

During the 1950s, a universal Turing machine became widely
viewed as a conceptual abstraction of a computer.

Instead, I should write

By 1955, Gorn viewed a universal Turing machine as a conceptual
ab- straction of a loop controlled computer.

If T stick to sentences of the first kind, my exposition will, at best, cap-
ture a de- velopment of ideas that is detached from the people who shaped
the technology in the first place. As a result, my readership, and myself
included, won’t realize that a universal Turing machine had different mean-
ings for different actors, nor will it become apparent that the meaning of a
universal Turing machine changed over time for each individual actor. Gorn,
for example, viewed a universal Tur- ing machine quite differently in 1955
than a year or two prior.

Sentences of the first kind can lead to more pitfalls. They sometimes go along
with expositions in which one line of thought dominates the entire narrative.
For example, if I choose as subject matter the connection between Turing’s
1936 universal machine and modern computers, then it becomes tempting to
view the history of computing in terms of those few people who grasped that
connection early on. Turing already saw it around 1946 but this observation
alone does not make him an influential historical actor. By following my
mentor’s advice, the historian loses the temptation to paint the history of
computing as a beautiful road from logic to practice; that is, as a stream from
Turing’s 1936 paper to the stored-program computer. The historian will fail,
and this is for the good, in explaining every technological advancement in
terms of Turing machines.

The late Mahoney warned his colleagues not to fall into the trap of viewing
everything with the same glasses. “The computer”, Mahoney said specifi-
cally, “is not one thing but many different things, and the same holds true

21



of com- puting” Mahoney 2011, p.25-26). Instead of taking a ‘machine-
centered’ view of history, we should examine actual computing practices,
including programming practices — as Haigh elaborated in the introduction
of Mahoney’s collected works (Mahoney 2011, p.5,8). In my words, then,
the multitude of programming styles should come to the fore. Terms like
‘general purpose’ and ‘universal’ had different meanings for different histor-
ical actors and I thus take Mahoney’s challenge to mean that we, historians,
need to handle each and every term with great care. Using ‘general purpose’
as a synonym for ‘Turing universal’ is only justified if it conforms to the
historical context.

Unfortunately, Mahoney ‘never took up his own invitation’, said Haigh. Men
like McCarthy, Scott, Strachey, Turing, and von Neumann appear in almost
every chapter in Mahoney’s collected works, but, as Haigh continued,

[W]e never really learn who these people are, how their ideas were
formed and around what kind of practice, what their broader
agendas were, or whether anything they said had a direct in-
fluence on the subsequent de- velopment of programming work.
(Mahoney 2011, p.8)

Mahoney did occasionally provide insights about the aforementioned men.
Co- incidentally or not, the rare passages in which he did also comply with
my mentor’s writing style, as the following excerpt illustrates.

Christopher Strachey had learned about the A-calculus from Roger
Pen- rose in 1958 and had engaged Peter J. Landin to look into
its application to formal semantics. (Mahoney 2011, p.172)

These words inform the reader about some historical actors, their social
net- works, and research objectives. However, instead of using historical
actors as subjects, Mahoney often used technological concepts. The following
paragraph, published in 2002, illustrates Mahoney’s typical writing style:

The operating system became the master choreographer in an
ever-more complex dance of processes, coordinating them to move
tightly among one another, singly and in groups, yet without col-
liding. The task required the development of sophisticated tech-
niques of exception-handling and dynamic data management, but
the possibility of carrying it out at all rested ultimately on the
computer’s capacity to rewrite its own tape. (Mahoney 2011,
p.83-84, my emphasis)

22



Mahoney chose ‘the operating system’ and ‘the task’ at hand as subject mat-
ters. And, although his prose is exceptional, it is not clear to me who abode
with ‘the task’ and who did not. Or did Mahoney intend to convey that
ev- eryone shared a common technological point of view? Moreover, did
everyone explain their technology in terms of a tape? a ‘Turing tape’? Or
was this solely Mahoney’s personal interpretation?

In my talk I will elaborately compare the writing styles of Mahoney (2011),
Ceruzzi (2012), Copeland (2012), and Priestley (2011), with the sole pur-
pose of obtaining a better understanding on how to effectively document the
history of computing.

References

P.E. Ceruzzi. Computing: A Concise History. MIT Press, 2012.

B. Jack Copeland. Turing: Pioneer of the Information Age. Oxford Univer-
sity Press, 2012.

M.S. Mahoney. Histories of Computing. Harvard University Press, 2011.

M. Priestley. A Science of Operations: Machines, Logic and the Invention of
Programming. Springer, 2011.

The term ‘digital’ and ‘Digital Computer’ by George Robert Stibitz 1942

Robert Dennhardt (robert.dennhardt@web.de)
Platanus School, Berlin, Germany

Why do the terms digital and therefore digital computer seem to be so prob-
lematic? In all literature dealing with computer history, there is a certain
indifference concerning the differently scaled function descriptions and termi-
nologies of individual parts or the entire computer and its analogue, discreet
or digital properties. For example, in Williams Aspray’s Computing Before
Computers (1990) Paul Ceruzzi compared the terms analogue and digital by
juxtaposing the technical term ‘analogue’ with another one to initiate a tech-
nological or epistemological opposition. “Indeed, Atanasoff was the first to
use the word ‘analogue’ to describe that type of computer (Atanasoff-Berry-
Com- puter ABC, 1939); ‘digital’ and ‘digital computer’ was first used by
George Robert Stibitz in 1942.” 1 So far, no author was able to state a direct
source.

23



MULTIVIBRATOR ~ COUNTERS

Figure 1. Stibitz does not mention the origin of the term multivibrator counter any-
where. The function ‘counter’ means one-bit shift register. The astable multivibrator
by Abraham and Bloch from 1917 therefore remains unquoted. The only difference be-
tween multivibrator and flip-flop merely exists in the selection of the feedback elements,
meaning capacitors with the multivibrator, resistors with the flip-flop or bistable trigger
element, as well as one capacitor and resistor each with the monostable trigger element
or monoflop. The capacitors here merely serve to accelerate switching. The multivibrator
counter therefore corresponds to Turner’s Kallirotron.

Tlustration 1 originates from the closing report Report on electronic predic-
tors for anti-aircraft fire control about a computer-assisted anti-aircraft sys-
tem from Stibitz’ estate dating back to the beginning of April 1942, in which
he pointed out the fundamental advantages of merely having to program and
compute two discreet voltage levels contrary to the exclusive programming
of analogue voltage signals or many discreet voltage levels so far.

© NUMBER TRAIN

Meticulousness, intuition and coincidence joined forces when aAS based
solely on a re- mark in Friedrich Wilhelm Hagemeyer’s publication Die
Entstehung von Information- skonzepten in der Nachrichtentechnik (1979)
— I assumed that the author could be in possession of a copy of the decisive
memorandum Digital Computation For A.(nti) A.(ircraft) Directors dating
back to the end of 1942. Once I pointed this out to Hagemeyer, he was

24



surprised to own such a treasure. It may well be that he was the only one
to have made a copy in June 1977. He handed me a copy of the cover page
(fig. 2) and let me copy the important passage on page three.

DIGITAL COUFUTATION FOR

CULASSTPICATICN CANCELLED A.A. DIRECTORS W

per memoTar Gu=, hcting Secretary of

2 rug. 2, 1960
‘fﬁjw;i 5ad-17 April 23, 1942

Introduction

Computing mechanisms have been classified as

*analog" or as ss® gomputers. The letter term seems
to me less desoriptive then the term "digitsl®, Al
directors in use now are of the formsr type; that is the
value of each varieble in the computation is rerresented
in the mechanism by the magnitude of e physicel quantity
such as length, voltage, speed, eto. It has been ested
from time to tims that tal’oalouletion, such as that
g;rtcrua by adding end caloulating msachines might be used

the A. A. director, with adventage.

Figure 2. “Digital computers introduce a consideration not found in kinematic analogue
computers, namely, the ordering of computation steps in time [number train, see fig. above
text] In a vague sense, therefore, digital computation is dynamic in character, but so far
as I know no theory exists. [...]”

Based on this document, we can safely assume that the term ‘digital com-
puter’ was invented by Stibitz approximately three years before the com-
pletion of the first electronic digital computers COLOSSUS and ENTAC. A
sufficient prerequisite for the unambiguous property of the digital computer
can only be defined negatively with Stibitz’ elaborations: A digital computer
does not have any analogue properties regarding interfaces and computing
in any systemic scaling.

With the prehistory of the computer analysed in my work and Stibitz’ doc-
uments, it is possible to word a larger media history context as genesis of
digital saving parallel to the genesis of binary discreet pulsing, because the
flip-flop was the genesis of this synchronisation technology as well. This
means that the clear dynamic addressing of any number of binary flip-flop
memories was first made possible by the synchronisation of buffered com-
puting data and/or the computing of ones and zeros from partially exter-
nal program memories and internal main memories. John von Neumann’s
document First Draft Report on the EDVAC dating back to the middle of
1945 is also a part of this genesis. The calculator EDVAC, developed at
the end of 1945, emerged from the ENTAC dating back to the beginning of

25



1945. ENTAC computed fully electronically in several parallel working units,
meaning it had no punch tape command memory. For new programs, how-
ever, many tube connections of the main memory had to be interchanged
manually. Although the COLOSSUS (end of 1943) was the first computer
to compute binary electronic, it had to be partially re-cabled for new com-
puting programs. In addition, certain data was provided on punch tape for
both computers.

To summarise this essay, the answers to both initial questions concerning the
origin of the flip-flop and the problems with the term ‘digital’ are inseparably
linked with each other inasmuch as it was not possible to detect the problem
with the term ‘digital’ or only word it very vaguely, because its technical
and discursive genealogy lay in the dark. As a kind of circle, this in turn
was one of the reasons why there was no technical or scientific need to
follow up on the assumption that Stibitz may have left behind a document
containing basic statements about the technological status and technological
mode of the digital with reference to the digital computer. It was possible
to clear up the origin of the term ‘digital computer’ and expand the content
of the term ‘digital’ or word it more precisely. Still, with respect to common
linguistic usage and scientific jargon, the following questions still remain
virulent, because analogue is not the opposite of digital: Why do we have
electronic music on the one hand, but digital media on the other hand?
And if there are electronic media, what is the possible difference? A lot
of scientific, technological and cultural-historical studies could be based on
this.

References

P. E. Ceruzzi, ‘Electronic Calculators’, in: W. Aspray, Computing Before
Computers, Iowa State University Press, Ames 1990.

G. R. Stibitz, Digital Computation For A. A. Directors, 23. April 1942, p.
3. One copy is in possession of Friedrich Wilhelm Hagemeyer. The original is
probably lying in some box at the Library of Congress in Washington. It is,
however, not among Stibitz’ estate, administered by the Dartmouth College
Library in Hanover, New Hampshire, USA.

26



A syllabus for the Fifties. Teaching computer science on the first Italian
computers.

Fabio Gadducci (gadducci@di.unipi.it)
Department of Informatics & Museum of the Computing Instruments of
the University of Pisa, Italy

Giovanni Cignoni (giovanni@di.unipi.it)
Department of Informatics & Museum of the Computing Instruments of
the University of Pisa, Italy

The earliest master degrees for computer science have been established by
the mid- Sixties, with ample discussions on which should be the syllabi for
their courses. At the same time, many teaching activities had already been
established by the simple need of providing the reuired expertise for the ma-
chines built since the Forties. Concerning e.g. Italy, we know of the network
established by Olivetti for allowing technicians to program and interact with
its ELEA series. Less information is available e.g. for the courses taught
at an academic level. At least for the early Italian computers, though, we
are in a privileged position, having available both the original notes and the
current reminiscences of the protagonists of these courses at the University
of Pisa in the late Fifties. The CEP project is one of the founding myths
of Italian computer science. Hosted by the University of Pisa, supported
by the counties of Livorno, Lucca, and Pisa and sponsored financially and
technically by Olivetti, in the years 1955-1961 it produced the first Italian
computer, called Macchina Ridotta (MR, 1957) and on the basis of such an
accomplishment it later delivered the long-running Calcolatrice Elettronica
Pisana (the eponymous CEP, 1961). The project can be considered the seed
from which the first Italian master degree on computer science (1969) will
develop. Moreover, it implicitly contributed to the development of the first
Italian transistored computer, one of the earliest in Europe: the ELEA 9003
by Olivetti. The most recent and accurate reconstruction so far of the CEP
project is (Cignoni and Gaducci 2012).

The original designers apparently undervalued the costs and required times
for software development on their machines (Cignoni and Gaducci 2012).
However, since the beginning they clearly understood the need of teaching
the basics of programming, and its relevance in the spread of the soon-to-
be-build machine. What was designed and tested in the project was to
be immediately used for the benefit of the transfer of knowledge. Indeed,
the activity report of July 1956 also documents the educational activities

27



that were carried out during the first semester for a dozen of graduating
engineering students.

The 1956 course was held between March and May. It was split in a few
modules, taught by the MR designers, according to their role in the project.
While the engineers supported by Olivetti, Giuseppe Cecchini and Sergio
Sibani, focussed on the electronic design, the physicists working for the Uni-
versity, Alfono Caracciolo and Elio Fabri, focussed on the architectural and
programming aspects, respectively. Concerning the latter, we have an un-
dated technical report containing the notes of the module, most likely the
first written text devoted to teaching computer science in Italy (Fabri 1958).
Eight lessons, transcribed and published by Centro Studi Calcolatrici Elet-
troniche (CSCE), the managing body of the CEP project (fully subsided by
the University of Pisa) (Fabri 1958). The title “Introduction to the program-
ming of a calculating machine” clearly shows its applied approach, and its
tight connection with the actual programming of the first version of MR.

The first lesson indeed introduces the basic of Von Neumann architecture,
even if it explicitly states that each word in 18 bits long (as in MR). The
second lists the commands available for MR, and illustrates some simple
programs. The third and fourth explains in details the (assembly) program
for calculating the max of a series of numbers. Most interestingly, lessons
5 through 7 illustrate the use of flow diagrams for program specification,
in particular for cycles of possibly undetermined length. The final lesson
discusses instead some practical issues: the need of an entry device (in this
case, the tape) and of a stored program for the boot, activated by a Manual
Control Desk. After a detour on the difference between permanent and
temporary memories, the lesson is rounded up by the introduction of the
concept of subprogram: its usefulness for programming, and the way to
store them.

For the Fifties, among the surviving documents of the CEP projects (scattared
among the Pisa archives) we found traces of just another course, held during
the academic year 1958/59. This was a fully-fledged course, though, even
if only the professor register (briefly annotating the contents of each lesson)
was preserved (Bohm 1958/59). However, it is remarkable the range of the
topics the course deals with in its 45 lessons. A most important aspect is the
professor himself: Corrado Béhm, one of the founding father of Italian theo-
retical computer science, who was by then collaborating with CSCE through
Centro Calcoli Numerici of the Technical University in Milan.

The course started in December, 2, 1958, and by then the MR was already
disassembled, in order to be cannibalized for the 1961 machine: with the

28



exception of Caracciolo, its designers had already left the project. This rea-
son likely contributed to the less hands-on structure of the course: after
laying down the basics of information theory, it moves to binary arithmetic
and logics. It offers an introduction on function interpolations, but mostly
importantly, at least for the modern viewers, the central lessons deal with
Moore automata and Turing machine, as well as adopting a “simplified cal-
culator” (“calcolatrice semplificata”) for illustrating some programs.

These two “syllabi” illustrate the attention to the state of the art. For ex-
ample, the seminal work by Moore on Gedanken-experiments was published
just in 1956. Indeed, the course by Bohm (more than the one by Fabri,
clearly with a more hands-on attitude) can be considered as one of the first
witnesses of a certain idea of the completeness of training: attention to the
technological challenges of the moment, but based on a solid conceptual basis
to provide the ability to continue to study. One of the basis of the soon-to-be
established undergraduate degree in Computer Science.

References

Giovanni A. Cignoni, Fabio Gadducci. Rediscovering the Very First Italian
Digital Computer. Proceedings of 3rd IEEE History of Electro-technology
Conference (HISTELCON), IEEE, 2012.

Elio Fabri. Appunti delle lezioni di “Introduzione alla programmazione di una
calcolatrice elettronica” (raccolte e redatte da Luigina Bosman Fabri). Tech-
nical Report CSCE 35, 1958. Available http://hmr.di.unipi.it/DocCEP/
1958\ _NI1-35-Appunti.pdf

Corrado Béhm. Registro delle lezioni di calcoli numerici e grafici det-
tate dal Sig. Prof. C. Béhm. University of Pisa, Faculty of Science, aca-
demic year 1958/59. Available at http://hmr.di.unipi.it/DocCEP/1959\
_RegistroBoehm.pdf

We don’t want to miss a thing. Objecthood in a digital universe

Luca Gasparri (1cgasparri@gmail.com)
Vita-Salute San Raffaele University, Italy

Jacopo Tagliabue (tagliabue.jacopo@gmail.com)
Vita-Salute San Raffaele University, Italy

The notion of object is a basic and fundamental concept in philosophy of
language, formal semantics, cognitive psychology, ontology: objects are the

29



references of our names, the values of our variables, the content of our propo-
sitional attitudes, the building blocks of our universe.

In the psychological literature on vision, the label object perception is used
to refer to four different kinds of processes (Mather 2006, Goldstein 2010):

i) the integration and segregation of elements in the visual input according
to the detection of salient contours;

ii) the assignment of shape and structure to some of those elements;
iii) the categorization and the semantic labeling of shaped contours;
iv) the concentration of attention on shaped contours.

Let us focus on (i). How do observers determine that a region of space is
occupied by an object, i.e., by a complex entity that ‘can be introduced into
discussion by means of a singular, definitely identifying substantival expres-
sion’ (Strawson 1959: 137)? Evidence suggests that integration, segregation
and object grouping are early visual processes that occur independently from
semantic categorization and attentional location. Research has also shown
that the likelihood that a set of spatial regions will be grouped together, seg-
regated from other spatial regions, and taken to host an object, is dependent
on a regular set of parameters, such as similarity, proximity, convexity, com-
mon movement, and smallness relative to the ground area (Peterson 2001).
However, our most basic intuitions about the requirements that a given por-
tion of space has to satisfy in order to be represented as occupied by an
object are often unclear and still at the heart of a vivid philosophical and
scientific debate. Thus, a question arises naturally: can we provide a neutral,
precise metrics to analyze objecthood judgments and devise a taxonomy of
different conceptions of objecthood within a unified framework?

This work presents a preliminary proposal in this direction by exploiting
digital, computational devices known as cellular automata (hence CA). In
particular, we shall use CA as “toy universes” in which to investigate the
complex interplay between cognitive processes and conceptual issues in ob-
ject detection. CA are paradigmatic examples of complex systems (Mainzer,
Chua 2012): although their structure is incredibly simple, they are capable
of amazingly complex behavior (Ilachinski 2001, Wolfram 2002). CA can be
simply implemented in a PC as n-dimensional digital universes satisfying
the following constraints:

CA,) space is discrete and made of fundamental atoms (cells);

CA,) time is discrete and made of instants;

30



CAj) cells have one property at each instant of time (a state), chosen from
a finite set of possibilities;

CA,) at each instant of time, each cell updates its state through a transi-
tion function defined over the states of its neighboring cells (e.g., ‘If all my
neighbors were in state S; at time ¢, assume state Sy at time ¢ + 1°).

CA are entirely defined by (and entirely reducible to) these four elements:
everything that happens in such worlds is completely determined by the
arrangement, of cells’ states in the space-time, which in turn is completely
determined by the initial conditions of the system (the "Big Bang”) and the
local transition function.

As vividly shown by the snapshots collected below from the CA Life (Berlekamp,
Conway, Guy 1982), CA support the existence of “complex patterns”, “emer-
gent objects moving through the universe”, “causal histories”. However, the
complexity of the behavior of the universe can always be reduced to the lo-
cal application of a simple deterministic rule: we can vary all the basic and
emergent, features of the universe just by changing the arrangement of cells’
states in the lattice.

For the purposes of the present work, CA are interesting because they can
be studied at three different levels:

1) a "logico-philosophicus” level: the ontology of the universe allows for a very
neat, transparent formalization using standard tools from mereotopology and
formal ontology (Casati, Varzi 1999). Philosophical accounts of objecthood
(Laycock 2010) can be easily tested, compared and evaluated in the proposed
framework.

2) a cognitive level: the amazing emerging behavior of CA provides the basis
for rigorous and repeatable experiments on objecthood judgments in human
subjects. In particular, given the computational nature of the universe, the
experimenter is free to vary at will any condition in the universe and measure
the cognitive and linguistic responses in the subjects.

3) a computational level: thanks to their digital structure, CA allow for
precise calculations on the amount of information generated by the universe
evolution: following a suggestion by Daniel Dennett (Dennett 1991, Ross

31



2000), we can calculate an "informational” notion of objecthood, according
to which objects are statistically informative patterns in the space-time.

Our goal is to provide a rigorous theoretical and methodological framework
for an investigation of objecthood judgments in CA universes. We shall ar-
gue that a study of the algorithmic conditions under which groups of cells
in a CA universe are assigned the status of object promises to provide in-
teresting insights on the nature of the psychological processes of objecthood
assignment, as well as a well-behaved and regimented basis to investigate
the philosophical status of the notion of object.

A crucial part of the proposal is to combine conceptual analysis with ex-
perimental data. By exploiting the digital nature of CA we can test (for
example):

i) the dependence of objecthood judgments on the underlying CA rule;
ii) the top-down inference from emergent objects to the updating rule;

iii) the difference and interplay between intuitive assignments of objecthood
and the "informational” account of objecthood.

Given the centrality of things in human everyday cognition, conceptual in-
quiry and scientific enterprise, a thorough bottom-up investigation of the
philosophical, computational, psychological foundations of objecthood judg-
ments is needed to shed some new light on this important issue.

References

Berlekamp, E., Conway J., Guy R., 1982, Winning Ways for Your Mathemat-
ical Plays (Vol. 2), London: Academic Press.

Casati, R., Varzi A., 1999, Parts and Places, Cambridge, MA: MIT Press.
Dennett, D., 1991, 'Real Patterns’, Journal of Philosophy, 88: 27-51.
Goldstein, E. B., 2010, Sensation and Perception, 8" ed., Belmont, CA:

Wadsworth.
Tlachinski, A., 2001, Cellular Automata, Singapore: World Scientific Publishin
Laycock, H., 2010, ”Object”, The Stanford  Encyclope-

dia  of Philosophy (Fall 2010  Edition), E. N.Zalta (ed.),
http://plato.stanford.edu/archives/fall2010/entries/object/.

Mainzer, K., Chua L., 2012, The Universe as Automaton. From Simplicity
and Symmetry to Complexity, Heidelberg: Springer.

Mather, G., 2006, Foundations of Perception, New York, NY: Psychology
Press.

32



Peterson, M. A., 2001, ’Object Perception’, in E. B. Goldstein (ed.), Blackwell
Handbook of Sensation and Perception, Oxford: Blackwell, pp. 169-203.

Ross, D., 2000, 'Rainforest Realism: A Dennettian Theory of Existence’, in D.
Ross, A. Brook, D. Thompson (eds.), Dennett’s Philosophy A Comprehensive
Assessment, Cambridge, MA: MIT Press, pp. 147-168.

Strawson, P. F., 1959, Individuals: An Essay in Descriptive Metaphysics,
London: Methuen.

Wolfram, S., 2002, A New Kind of Science, Champaign, IL: Wolfram Media.

The applications of Turing (in)computability to classical mathematics

Guido Gherardi (guido.gherardi@unibw.de)
Inst. fiir Informatik, Universitit der Bundeswehr, Miinchen, Germany

It is well known that Turing’s celebrated work on abstract computing ma-
chines (Turing 1936) provides a foundation for computability theory alter-
native to Church’s A-calculus. But if the latter is scarcely known outside
the computer science com- munity, Turing machines benefit of an ample
degree of familiarity even by the larger audience of non-experts as one of
the most important scientific achievements of the last century. A primary
reason for their great appeal lies in their simple definition: no preliminary
mathematical knowledge is required to understand what they are and what
they do.

But 77 years after their introduction, what role do Turing machines really
play today in science?

While Church’s A-calculus, or functional programming languages in general,
constitutes a concrete tool for algorithmic design, Turing machines seem
to have primarily “theoretical applications”. In fact their programming lan-
guage is very inefficient and their hardware contains infinite components that
cannot be constructed in reality. Vice versa, they simulate computational
processes in such an informative way that they provide a very natural model
for the solution of questions about the decidability of problems or about
the spatial /temporal complexity of algorithms. This is not surprising, as
these machines had been originally ideated by Turing himself to understand
the notion of computability and its limits rather than to execute “actual
computations”.

Correspondingly, the substantial difference between A-calculus and the Tur-
ing machine model has a deep impact in the foundations of mathematics.

33



Via the Curry-Howard isomorphism, A-calculus is particularly appreciated
for its successful applications in the extraction of computational content
from constructive proofs. In contrast, the rejection of Markov’s principle
in Bishop’s standard foundation for constructivism has relegated the use of
Turing machines primarily to the domain of classical mathematics.

Fortunately Turing machines have found in the latter field very significant
applications, although still regarded by most classical analysts as “external”
objects to pure mathematics. Such old-fashioned opinion should be chal-
lenged by the results recently obtained in topology and analysis through the
use of oracle Turing machines. These well-known and more sophisticated
versions of Turing machines can store and manipulate incomputable objects
and hence they amplify the use of the notion of Turing computability in the
realm of incom- putability. For topological reasons, their tape-based model
allows us to evaluate in a relatively easy way how discontinuity phenom-
ena make some information transformation process over the real continuum
incomputable, and this would be probably hardly achieved within the \-
calculus. Therefore they are nowadays commonly used in fields of computer
science where incomputability play a major role, such as recursion theory or
Weihrauch’s approach to computable analysis (Weihrauch 2000). In partic-
ular they guarantee the existence of those real computable functions whose
domains contain non computable numbers.

Several examples of their meaningful mathematical applications come from
descriptive set theory, as a part of classical topology, in particular those re-
garding the relations between Borel measurability and Weihrauch redicibility
(Brattka 2005) (for instance, Borel measurable functions can be character-
ized as those functions that are topologically Weihrauch reducible to the
closed choice operator on the Baire space (Brattka 2012)).

Some even more significant examples concern one of the core concepts of
analysis, differentiability (and could be summarized under Nies’s Motto
“Ran- domness = Differentiability”). Classically, by saying that a property
holds for a random real z € [0, 1] we mean that the reals failing that property
form a null set. But computability theory provides us with finer definitions
of randomness with respect to that “naive” classical notion (and in each of
such computational notions a random real is always non computable, i.e. it
has a classical but not constructive existence). For instance, by a theorem
of Lebesgue every nonde- creasing function f : [0;1] — R is differentiable at
all reals z outside a null set depending on f . Recently, Brattka et al. have
proved that a real number is computably random iff every nondecreasing
computable function f : [0,1] — R is differentiable at z. This statement is
really an improvement of the original Lebesgue Theorem: it formulates that

34



result not only through a technically well-determined notion of randomness,

but the considered randomness class is also independent from the choice of
f.

Already in the 70’s Demuth (1975) had proved that a real z is Martin-Lof
random iff every computable function of bounded variation is differentiable
at z. Recently, Bienvenu et al. (2012) have worked on the classical Denjoy-
Young-Sacks Theorem, according to that for every function f : [0,1] — R and
almost all z, either f/(z) exists or the upper (lower) derivative at z diverges
to 0o (- 00). In particular they have proved that a real z is computably
random iff every computable function f : [0,1] — R satisfies the Denjoy
alternative at z.

Finally Pathak et al. (to appear) have re-formulated the Lebesgue Differ-
entiation Theorem as follows: every real z € [0,1]? is Schnorr random iff
limg_,, — zﬁ /. Y exists for every Lebesgue-integrable computable func-

tion g : [0,1]¢ — R, where Q is an open cube containing z with volume
AMQ) — 0.

These results are remarkable, because all randomness notions involved were
already available and fundamental in the literature; hence they are not new
ad-hoc inventions. Therefore these theorems show that intrinsic connections
between core notions of computability theory and real analysis actually exist.

References

L. Bienvenu, R. Ho6lzl, J. Miller, A. Nies: The Denjoy alternative for com-
putable functions. Proc. 29th Symposium on Theoretical Aspects of Computer
Science: 543-554 (2012)

V. Brattka: Effective Borel measurability and reducibility of functions. MLQ
51:19-44 (2005)

V. Brattka, M. de Brecht A. Pauly: Closed Choice and a uniform Low Basis
Theorem, APAL 163:986-1008 (2012)

V. Brattka, J. Miller, A. Nies: Randomness and Differentiability. Submitted.

O. Demuth: The differentiability of constructive functions of weakly bounded
variation on pseudo numbers. Comment. Math. Univ. Carolinae 17:583-599
(1975)

N. Pathak, C. Rojas, S. Simpson: Schnorr randomness and the Lebesgue
Differentiation Theorem, Proc. Amer. Mathem. Society, to appear.

A. Turing: On computable numbers, with an application to the “Entschei-
dungsproblem”, Proc. London Math. Society 42:230-265 (1936)

35



K. Weihrauch: Computable Analysis. Springer (2000)

The epistemology of programming language paradigms

Federico Gobbo (federico.gobbo@univag.it)

DISIM - University of L’Aquila, Italy

Marco Benini (marco.benini@uninsubria.it)

DICOM - Department of Computer Science and Communication, Uni-
versity of Insubria, Varese, Italy

The history of modern computer programming languages can be traced back
to the struc- tured program theorem by Bém & Jacopini (1966) and the
j’accuse against the goto statement by Dijkstra (1968). In October of the
same year, the conference organised by the NATO Science Committee in-
troduced the concept of ‘software engineering’, and an IFIP Working Group
on ‘Programming Methodology’ was established. As recalled by Dijkstra
(2001): ‘[IBM] did not like the popularity of my text; it stole the term
“Structured Pro- gramming” and under its auspices Harlan D. Mills trivi-
alized the original concept to the abolishment of the goto statement.” It
became evident that computer programming ought to be more solid, both
theoretically and practically, also because software projects were becoming
more complex, involving an increasing number of programmers, as for in-
stance the IBM System /360 family and in particular the OS/360 (Brooks
1995).

One of the strategies adopted by computer scientists to cope with this grow-
ing complexity was to design new programming languages, at different Levels
of Abstraction (LoAs). The method of LoAs—fully explained and defended
in Floridi (2008)—can be used to describe programming in terms of infor-
mational organisms (inforgs): the programmer is the infor- mational agent,
while the computing machinery is the artificial artifact. A software project
is an infosphere, including processes and mutual relations among the inforgs
directed to the same goal. Under this perspective, the source code, i.e., the
observable, is the main LoA acting with the Levels of Organisations (LoOs)
of the machinery, i.e., the hierarchical structure of hardware de re. There-
fore, the choice of the programming language is crucial, as it determines the
epistemological approach sustaining the programmers’ goals, which is iden-
tified as a Level of Explanation (LoE) by Floridi (2008). Unlike LoAs and
LoOs, LoEs do not really pertain to the system, rather they are an episte-
mological lens through which the informational agent(s) approaches the goal
of programming.

36



Examining computational inforgs-where the artificial artifact is a Von Neu-
mann Machine (VNM)-Gobbo & Benini (2013) propose to look at the his-
tory of modern computing in terms of information hiding. Here, the scope
is narrower, the choice of the programming language in terms of LoEs be-
ing the research question; however, the concept of informa- tion hiding can
be usefully applied straightforwardly. In the early days, there was only a
machine-tailored assembler letting programmers write one-to-one machine-
readable in- structions. Afterwards, a fundamental LoA was introduced by
Backus during the design of Fortran (Backus 1978) and its implementation
via a compiler, i.e., the computer program that translates the source code
into machine code. In fact, he provided a formal nota- tion that became the
standard to describe programming languages: the Backus-Naur Form (BNF)
abstracts over the language, allowing to compute on its structures, and thus
it is a new LoA of computational inforgs. The next LoA in programming has
been introduced after Bém & Jacopini (1966), a result that permitted to hide
the way the machine interprets the flow of control, and to change it to some-
thing which can be easily analysed mathematically. This result opened the
door to the construction of a plethora of programming languages, each one
adding LoAs to hide or change the behaviour of some aspect of the machine.
In fact, to cope with the growing complexity of the problems throughout the
history of computing (Ceruzzi 2003), computer scientists (on the theoretical
side, e.g., McCarthy’s Lisp) and informaticians (on the practical side, e.g.,
Cobol) construed languages in order to facilitate the modelling the possible
solutions of a given family of problems. We can classify programming lan-
guages in few major paradigms, according to the information got hidden.
Paraphrasing the three layered description of programming by Hofstadter
(1979), we can consider the source code as the novel, the programmer being
the novelist, while the programming language is the literary genre of the
novel.

If the VNM should be step-by-step programmed, procedural languages such
as C or Pascal, the direct descendants of structural programming, are apt to
the goal: as underlined by White (2004) in Floridi (2004): ‘most program-
ming languages allow programs to perform actions that change the values
of variables, or which have other irreversible effects (input or output, for
example); we say that these actions have side-effects’.

On the contrary, if the problem is better conceived as a formal entity, the
classical paradigm of mathematics can be used. In functional programming,
the modelled world is described in terms of pure functions, taking as the LoE
the tradition of computation as application of mathematical operations.

Another approach is by the introduction of the concept of object, which is

37



conceived originally on a different LoE, philosophically based on Leibniz’s
monads and the notions of 20th century physic and biology (Kay 1993). It’s
a more sophisticated world, as the problem is split into different (virtual)
VNMs that communicate one to the other by messaging and changing the
local state of the object.

Finally, the fourth approach completely hides the VNM under a logical the-
ory, so to let the program forget the algorithmic details—covered by the ar-
tificial reasoner—and modelling the problem in logical terms. Prototypically,
this is the strategy followed by the Prolog language, based on the Horn
clauses and unification. In practice, the procedural side of programming
cannot be eliminated completely (Lloyd 1984).

It is evident that each programming language envisages a ‘vision of the
world’ which is suitable for some classes of problems. When dealing with
really complex problems, which happens in most contemporary software de-
sign, rarely a single language has the right fea- tures to model the whole
problem. In this paper, we wanted to contribute to clarify the epistemologi-
cal statements behind the major classes of programming languages, together
with their mutual relations. By providing a taxonomy, it becomes possible
to implement notions from one language into another, simulating the LoAs
and the features not originally present.

References

Backus, J. (1978), ‘The history of FORTRAN I, 11, and TIT’, SIGPLAN Not.
13(8), 165-180.

Bohm, C. & Jacopini, G. (1966), ‘Flow diagrams, turing machines and lan-
guages with only two formation rules’, Communications of the ACM 9(5),
366-371.

Brooks, Jr., F. P. (1995), The mythical man-month (anniversary ed.),
Addison-Wesley Long- man Publishing Co., Inc., Boston, MA, USA.

Ceruzzi, P. (2003), A history of modern computing, History of computing,
MIT Press.

Dijkstra, E. W. (1968), ‘Letters to the editor: go to statement considered
harmful’, Commun. ACM 11(3), 147-148.

Dijkstra, E. W. (2001), What led to “notes on structured programming”.
circulated privately. URL: http://www.cs.utexas.edu/users/EWD/ewd13xx/
EWD1308.PDF

Floridi, L. (2008), ‘The method of levels of abstraction’, Minds Mach. 18,
303-329.

38



Floridi, L., ed. (2004), The Blackwell guide to the philosophy of computing
and information, Blackwell, London.

Gobbo, F. & Benini, M. (2013), ‘From ancient to modern computing: A
history of information hiding’, IEEE Aunnals of the History of Computing
99(PrePrints).

Hofstadter, D. R. (1979), Gddel, Escher, Bach: An Eternal Golden Braid,
Basic Books, New York.

Kay, A. C. (1993), ‘The early history of smalltalk’, SIGPLAN Not. 28(3),
69-95.

Lloyd, J. W. (1984), Foundations of logic programming, Springer-Verlag New
York, Inc., New York, NY, USA.

White, G. (2004), The Philosophy of Computer Languages, in Floridi (2004),
chapter 18.

The Logical and Philosophical Foundations of the Open World Assump-
tion

Harry Halpin (hhalpin@ibiblio.org)
World Wide Web Consortium/MIT, USA

There has long been a debate between procedural and logical formalisms in
knowledge representation in the history of artificial intelligence, and this de-
bate has recently returned on the Web in the form of a conflict between pro-
cedural scripting languages and the logical formalisms of the Semantic Web.
The earliest work in digital knowledge representations was spear-headed by
Hayes and McCarthy’s attempts to formalize elements of human knowledge
in first-order predicate logic, where the primary vehicle of intelligence was
to be considered some form of inference (Hayes and McCarthy 1969). While
many researchers took up the grand challenge in various domains, soon a
large number of insidious problems were encountered in terms of the ex-
pressivity of first-order logic as exemplified by the Frame Problem as well
as technical issues such as decidability. Despairing of logic, a faction of Al
researchers led by Winograd championed a procedural view of intelligence
that regarded the logical properties of the representation as itself irrelevant if
the program could successfully solve some task given some input and output
(Winograd 1972). In practice, this led to the programming language code
itself as being thought of as the model for human knowledge. Thus, a chasm
was opened between the scruffy practice of AI modelling and logical formal-
ists that insisted on well-structured foundations. Although the Web lacks the
grand pretensions of Al and is simply looking for a usable representational

39



structure for external human knowledge, current application developers are
using Javascript and JSON rather than the logically well-founded formalisms
of the Semantic Web such as the family of OWL description logics.

This entire debate may indeed be a red herring. As shown by the history
of language development, one of the deepest findings in programming lan-
guage theory given by the Curry-Howard isomorphism: procedural program-
ming languages can, if properly designed, correspond to logical formalisms
(Wadler 2000). Although there was much two-way traffic between logical
proof-proving in mathematics as established by Frege and the lambda calcu-
lus of Church, it was a number of years before a correspondence was actually
determined. One key contribution was the invention of the subformula prop-
erty by Gentzen that allowed for the simplifications of proofs. Although the
correspondence was informally noticed by Curry, the formalization between
Gentzen’s natural deduction and the lambda calculus was formalized only
in 1969 by Howard, which leads one to think that for every kind of well-
formed programming language based on the lambda calculus in theory has
a corresponding logic with a proof-theoretic semantics (Wadler 2000).

The unique contribution of the Web to this history is a firm commitment
of Web architects like Tim Berners-Lee to what is called the Open World
Assumption (Berners-Lee 1998). Informally, in an open- ended space of in-
formation like the Web one can never assume a statement is false without
direct proof. Logically, this means that statements that cannot be proven to
be true cannot be assumed to be false. This assumption also has a rich lin-
eage in computer science, as it contrasts with the Closed World Assumption
that states that logically statements that cannot be proven to be true can
be assumed to be false. Intuitively, the Closed World Assumption means
that somehow the world can be bounded and has often been phrased as an
appeal to the Law of the Excluded Middle in classical logic (Dummett 1982).
For example, negation as failure is a version of the assumption where the
failure for the program to prove a statement is true implies the statement is
false. The Semantic Web attempts to banish this assumption from the Web
in the form of new kinds of databases without this assumption, but so far
the Semantic Web has failed to attract programmers as they tend to prefer
programming languages that appear to be procedural.

Could the informal Open World Assumption find adequate grounding in
both logic and programming via the Curry Howard Isomorphism? Indeed,
it can as the removal of the Law of the Excluded Middle naturally leads one
to endorse intuitionistic logic. Furthermore, the Girard-Reynolds isomor-
phism has been proven between second-order intuitionist predicate logic and
the second-order polymorphic lambda calculus (Wadler 2001). In this way,

40



there is indeed a rich, if not yet connected to the Web, logical foundation
for Berners-Lee’s endorsement of the Open World Assumption that could
save the Semantic Web, as it raises the possibility of transforming func-
tional languages like Javascript into typed functional languages that would
preserve the Open World Assumption. Unknown to Berners-Lee, the Open
World Assumption also underwrites the anti-realist philosophy of Dummett,
in particular Dummett’s interpretation of late Wittgenstein’s rule-following
(Dummett 1982). This rule-following also finds a strange parallel in Berners-
Lee’s foundations of the Web and Semantic Web in the form of rule-following
specifications by standards bodies like the IETF and W3C. On a more specu-
lative note, could the logic of intuitionism be itself a formalization of a much
deeper principle, namely our inability on metaphysical grounds to limit the
number of possible ontological objects and so always leaving open the possi-
bility of the proof-by-construction of a new object? This metaphysical stance
may very well underwrite the technical generativity of the Internet. Thus,
the full philosophical ramifications of the arguments over intuitionism need
to be revisited in light of the Web.

References

Berners-Lee, T. (1998) What the Semantic Web can represent. http://www.
w3.org/DesignIssues/RDFnot.html

Dummett, Michael. Realism. Synthese 52.1 (1982): 55-112.

McCarthy, J. and Hayes, P. (1969). Some philosophical problems from the
standpoint of Artificial Intelligence. In Meltzer, B. and Michie, D., editors,
Machine Intelli- gence, volume 4, pages 463-502. Edinburgh University Press.

Wadler, P. (2000). Proofs are programs: 19th century logic and 21st century
computing. Dr Dobb’s Journal, 313.

Wadler, P. (2001). The Girard-Reynolds Isomorphism. In International Sym-
posium of Theoretical Aspects of Computer Software.

Winograd, T. (1972). Procedures as a Representation for Data in a Computer
Program for Understanding Natural Language. Cognitive Psychology, 3(1).

RTFM! Scientific modeling and the generification of software

Alexandre Hocquet (alexandre.hocquet@univ-lorraine.fr)
Université de Lorraine, France

Taking computational chemistry as an example, the aim of the present study

41



is to emphasize the pivotal role of software, and above all, software distribu-
tion, on the epistemological status of modeling in computational sciences.

Computational chemistry (which could be defined as the use of computer re-
sources to solve problems in chemistry) is a scientific discipline that emerged
at the same time that computers became available in research laborato-
ries (Bolcer and Hermann 1994), and developed with the graphics terminal
(Francoeur 2002), in the 70s and 80s. When computers became personal, ie a
device in the research lab accessible to non specialists, an upheaval appeared
in the scientific community: the scientists who were designing the molecu-
lar modeling software (the developers) were not any more the same people
than those who performed the calculations (the users). Thus, in the 80s
and 90s, the problem of the distribution of the software arose, and tensions
appeared in the community. Should the software be shared freely? Should it
be sold? Should the code source be open? Could (and should) academic in-
stitutions benefit from a "technology transfer"? Depending on what kind of
licensing? The computational chemistry community was also involved with
two major industries: the computer manufacturers and the pharmaceuti-
cal industry, the latter becoming a potential market for the former through
modeling software (Boyd 2007). In a context of changing times (of science
fundings, of market opportunities, of academic technology transfers), com-
putational chemistry software turned from user oriented software to market
oriented software. To account for the strategies, tensions, and changes over
time in the community, this work explores The Computational Chemistry
List (CCL), a mailing list created in 1991 to provide a discussion board to
the fledgling community (Labanowski 2007). For twenty years, it has been
used as an opinions forum and a platform for scientific exchange. Since its
inception, through the archives of its thousands of threaded conversations,
the mailing list is a valuable corpus from a Goffmanian perspective of the
presentation of self (Grier and Campbell 2000), with its "trolls" and "flame
wars" particularly helpful in revealing the tensions and controversies within
the community (Coleman 2012).

The main topics of these tensions and controversies were the issue of software
and the scientific modeling activity. From an epistemological point of view,
an “epochal break” (Nordmann 2011) of scientific modeling activities, from a
culture of explanation to a culture of prediction (Johnson and Lenhard 2011),
has been linked to the availability of the ubiquitous desktop computer, thus
empowering computational science practitioners with respect to expert com-
puting scientists, equipped with supercomputing facilities. I hereby argue,
following previous work on organizational software (Pollock and Williams
2008) that the scientific modeling software concomitantly turned into the

42



process of “generification” (Pollock et al. 2007), unveiling the mutual shap-
ing of the modeling scientific activity and the technological device, thus
provoking many tensions in the scientific computational community.

References

John D. Bolcer and Robert B. Hermann, ‘The Development of Computational
Chemistry in the United States’, in Reviews in Computational Chemistry, ed.
by Kenny B. Lipkowitz and Donald B. Boyd (John Wiley & Sons, Inc., 1994),
V, 1-63.

Eric Francoeur, ‘Cyrus Levinthal, the Kluge and the Origins of Interactive
Molecular Graphics’, Endeavour, 26 (2002), 127-131.

Donald B. Boyd, ‘How Computational Chemistry Became Important in the
Pharmaceutical Industry’, in Reviews in Computational Chemistry, ed. by
Kenny B. Lipkowitz and Thomas R. Cundari (John Wiley & Sons, Inc., 2007),
XXIII, 401-451.

Jan K. Labanowski, ‘Free Speech, Quality Control, and Flame Wars’,
Academe, January 2007.

D.A. Grier and M. Campbell, ‘A Social History of Bitnet and Listserv, 1985-
1991’, IEEE Annals of the History of Computing, 22 (2000), 32—41.

Gabriella Coleman, ‘Phreakers, Hackers, and Trolls: The Politics of Transgres-
sion and Spectacle.’, in The social media reader, ed. by Michael Mandiberg
(New York: New York University Press, 2012), pp. 99-119.

Alfred Nordmann, Science Transformed? Debating Claims of an Epochal
Break (University of Pittsburgh Pre, 2011).

Ann Johnson and Johannes Lenhard, ‘Toward a New Culture of Prediction:
Computational Modeling in the Era of Desktop Computing.’, in Science Trans-
formed?: Debating Claims of an Epochal Break, ed. by Alfred Nordmann,
Hans Radder, and Gregor Schiemann (University of Pittsburgh Pre, 2011),
pp- 189-200.

Neil Pollock and Robin Williams, Software and Organisations: The Biography
of the Enterprise-Wide System or How SAP Conquered the World, 1st edn
(Routledge, 2008).

Neil Pollock, Robin Williams and Luciana D’Adderio, ‘Global Software and
Its Provenance: Generification Work in the Production of Organizational Soft-
ware Packages’, Social Studies of Science, 37 (2007), 254-280.

43



Verification € Validation of Computer Simulations: A Philosophical
Analysis

Julie Jebeile (julie.jebeile@gmail.com)
IHPST, Paris, France

It is commonly admitted that the sanctioning of scientific theories or models
is based on two distinct steps. The first step consists in testing whether
the mathematical equations of models are correctly solved. It boils down to
checking if the solutions we find to the equations are exact or almost exact.
The second step consists in confirming or invalidating theories or models by
verifying that the exact solutions to their equations fit with the experimental
data on the natural or social systems under study. In general, philosophers
focus on the second step, but the first one is also very important in the
process of sanctioning scientific representations.

When these two steps are not performed distinctively, one after the other,
we can face two typical problems. First, it can be difficult to assess the
suitability of a model. We assess the suitability of a model by measuring
the discrepancy between the calculated solutions and the experimental data.
This measured discrepancy can integrate, at least partially, the discrepancy
between the calculated solutions and the principled exact solutions. In such a
situation, when a model provides us with wrong predictions, we do not know
whether to blame the model, or the resolution of equations. Conversely, when
a model provides us with good predictions, it might be because of calibrations
introduced in the model to obtain better agreement with experimental data.
Therefore a second problem emerges, that is the risk to take for correct
numerical solutions which actually deviate from the empirical world because
of their latent divergence from the model. Because of these two hypothetic
problems, a clear separation of the two steps is required in the process of
sanctioning scientific representations. Let us now see what it actually is in
the sanctioning of simulation models.

How do engineers concretely sanction simulation models? One of their re-
cent approaches, the Verification & Validation approach (V&V), has proven
itself, notably by ruling the sanctioning of simulation models in the nuclear
engineering sector (Oberkampf, Trucano, Hirsch, 2004). As its name sug-
gests, V&V has two phases, i.e. the verification phase and the validation
phase, which roughly correspond to the two steps of sanctioning represen-
tations described above. The verification phase aims to quantify the shift
between the computer code and the theoretical model of which the code is
the implementation. This shift corresponds to discrepancies between the ap-

44



proximate solutions provided by the computer code and the solutions that
would have been ideally obtained if one had been able to perform the calcu-
lations exactly. As for the validation phase, it consists mainly in comparing
a target set of numerical results, either directly with a database of exper-
imental measurements, or with a set of results obtained with other codes
which have already been validated. These latter are known as benchmarks
and are useful to overcome the lack of experimental measurements. In this
paper, I first show that the verification and the validation phases are hardly
distinguishable in sanctioning simulation models. Furthermore, I contend
that the entanglement between these two phases leads not only to the two
already mentioned problems, but also to new problems specific to computer
simulations that I shall present.

In the first part of the paper, I argue that the verification and validation
phases are not two separable processes. This idea has already been empha-
sized by Winsberg (2010) but my argumentation here is different from his.
For me, mainly, the entanglement of the two phases relies on the fact that,
generally, in the verification phase, no precise assessment of discrepancies
between the approximate solutions provided by computer and the principled
exact solutions can be done. Concretely, the verification phase consists in
proving the consistency, stability, and robustness of computer simulations
which can not lead to any precise measurement of discrepancies. First, con-
sistency is proven if the discretized equations approach the corresponding
differential equations when space and time steps tend to zero and if the dis-
cretized equations have the same symmetry properties than the differential
equations (Farge, 1986, p. 163). Discretizing the differential equations con-
sists in turning them into approximate algebraic equations and is required
in order to integrate them numerically.

Secondly, the stability of computer simulations is verified by checking that
the simulation process does not amplify computer round-off, and further,
does not risk diverging. Then, robustness is proven when the solutions of
the computer simulations converge to the exact solutions of the partial differ-
ential equations. Proving consistency, stability and robustness of computer
simulations is neither a rigorous way nor a precise way of quantifying the
shift between the computer code and the model. The reason is, on the one
hand, that all-

encompassing proofs of correctness, such as those developed in mathematical
analysis and logic, do not exist in complex computer code (Oberkampf, Tru-
cano, Hirsch, 2002). The sources of error and uncertainty in the computer
simulations, related to the problems of consistency, stability, convergence,
but also to the problems of existence, uniqueness of mathematical solutions,

45



and accuracy (computer round-off, insufficient discretization, truncation er-
rors), can hardly be assessed formally (Farge, 1986). On the other hand,
computer simulations are not open to direct inspection: they are epistemi-
cally opaque (Humphreys, 2004, p. 147). We cannot examine or justify every
step of the computational processes that produce the outputs of computer
simulations.

In the second part of the paper, I show that the entanglement of the ver-
ification and the validation phases not only makes more difficult to blame
whether the model or the resolution is responsible for wrong predictions. But
also this entanglement can favor the risk of being abused by wrong simula-
tions for reasons that are specific to computer simulations. Take the example
of discretization errors, defined as the differences between the exact solutions
to the discretized equations and the exact solutions to the original partial
differential equations. These errors are often poorly characterized or even
ignored because they can hardly be assessed formally (Roy, 2010). However,
the discretization errors can impact the physical behavior of the system ob-
served on screen. Thus, for example, discretization errors in hydrodynamics
models sometimes damp out the turbulent fluid motions. In such case, it can
be very difficult to separate out modeling effects from discretization errors.
This is generally the case when the physical model is connected with the
choice of meshing, and especially the mesh size (e.g. large eddy simulation
of turbulence).

In the third part of the paper, I show that the entanglement of the two phases
brakes the “predictive turn” in computer-assisted sciences. It is commonly
admitted that computer simulations extend our ability to investigate vari-
ous natural and social systems in that they overcome our lack of empirical
data. However, this claim ought to be weakened given the entanglement of
the verification and validation phases. Indeed, the reliability of the results
to simulations performed beyond the physical domain covered by the bench-
marks is generally said to be warranted by theoretical extrapolations. But
the accuracy of these extrapolations depends on the accuracy of the numer-
ical scheme. It seems that, today more than yesterday, the reliability of new
results drawn from our models narrowly depends on the benchmarks at our
disposal, and thereby on our progress in empirically probing the world.

References

Farge, M. (1986) L’approche numérique en physique. Philosophia Scientiae,
7(2), 155-175.

46



Humphreys, P. (2004) Extending Ourselves. Computational Science, Empiri-
cism, and Scientific Method. OUP.

Oberkampf, W. L., Trucano, T. G., Hirsch, C. (2004) Verification, validation
and predictive capacity in computational engineering and physics. Applied
Mechanics Review, Volume 57, Issue 5, 345.

Roy, C. (2010) Review of Discretization Error Estimators in Scientific Com-
puting. 48th ATAA Aerospace Sciences Meeting, Orlando, FL, Jan. 4-7, 2010.

Winsberg, E. (2010) Science in the Age of Computer Simulation. University
of Chicago Press.

Instruments of Control: Political Institutions and Information Technol-
ogy at War

Jon Lindsay (jonrlindsay@gmail.com)
University of California San Diego, USA

Computer technology is everywhere in practical politics, but it receives com-
paratively less attention in political thought. Modern government and cor-
porate bureaucracies are pervasive users and shapers of computing infras-
tructure, and they heavily depend on information technology (IT) to exert
control over political behavior. There is a large and uneven popular litera-
ture on the impact of the information age on economic affairs, democracy,
and warfare; this has fostered niche debates among scholars on the political
impact of IT. Another family of research treats IT as a dependent rather
than an explanatory variable in order to explain the effects of political econ-
omy on information systems and internet behavior. This work has deepened
understanding of a critical technology, yet it tends to understate the intimate
historical relationship between IT and political institutions.

This paper presents a participant-observer study of information work in a
military special operations unit deployed in Iraq in 2007-8. By combin-
ing ethnographic methods with insights from the sociology of technology, 1
use this case to construct both applied and general political theory: in the
first instance to understand the organizational implications of military de-
pendence on IT; and in the second to articulate a more general theoretical
account of how sociotechnical institutions can both enhance and degrade po-
litical control. In tracing the processes used by this organization to gather
and analyze intelligence about insurgents in order to attack them, I describe
the ways in which humans and machines jointly implement core institutional
functions of measurement, coordination, and enforcement to achieve organi-
zational goals. I then identify general conditions under which sociotechnical

47



institutions, which will be defined further herein, are more likely to improve
or undermine control.

Military organizations and ideas about their effectiveness are important to
study in their own right because of the significant political and economic
costs of waging and preparing for war. They are also, furthermore, useful
sites for exploring more general political and organizational phenomena. In
this case, the ability to perform effectively on the battlefield is one extreme—
and extremely coercive—type of political control. In the 1990s and early
2000s there was vigorous debate in American defense policy circles about
whether advances in information technology (IT) created a revolution in
military affairs (RMA). Proponents argued that IT required militaries to
undergo an ambitious program of “defense transformation” in order to im-
plement a potent new doctrine of network centric warfare (NCW). These
technological visions have found renewed expression in contemporary debate
over the role and effectiveness of remotely piloted weapons (drones) and
the risk of cyberwarfare to internet-dependent societies. A common theme
across these is that IT improves military effectiveness by enhancing percep-
tion of enemy vulnerabilities and the ability to act from a distance quickly
upon them to achieve very specific effects. In the classic RMA vision this
is accomplished through networks of battlefield reconnaissance sensors and
long-range precision-strike weapon systems. Armed drones with long loiter
times and high acuity—and without humans aboard—are a natural elaboration
of the classic vision. Cyber weapons are now thought to offer, through the
global reach and readily available tools on the internet, an even more radical
form of long-range reconnaissance and precision attack. These related ideas
about the efficacy of IT in future war continue to foster debate within the
security studies field.

Another commonality across these new forms of warfare has attracted far less
attention by contrast. For network-centric forces, drone operators, and cy-
ber warriors alike, warfare is increasingly experienced remotely through the
mediation of digital data rather than through bodily presence on the battle-
field. Personnel spend an increasing amount of their time, and an increasing
proportion of the military labor force works exclusively, in bureaucratic set-
tings located at some distance from combat action. Their work within offices
and in front of computer screens can, nevertheless, still exert tangible effects
on combat action, but this action is indirect through organizational distri-
bution and technological mediation. One important question is whether this
increasing immersion in technology enables personnel to perceive the envi-
ronment more or less accurately and prosecute their missions more or less
effectively.

48



Participant-observation offers a methodology to observe such phenomena in
situ. While deployed in Iraq with a special operations unit for seven months,
I was able to observe its measurement, coordination, and enforcement mech-
anisms in action, implemented with both human and technological means.
In contrast to the conventional belief that technology can ‘lift the fog of
war,” I found that the unit used its information systems to construct and
act upon a world consistent with its deeply ingrained heroic commando iden-
tity. The “unblinking eye” of high-tech intelligence, surveillance, and recon-
naissance (ISR) did not just reveal an objective “battlespace” but rather
reflected and reinforced prior institutional preferences for killing “bad guys.”
Coupled with relative organizational autonomy for picking and prosecuting
targets, this situation promoted behavior at odds with ostensible national
counterinsurgency objectives focused on “winning the hearts and minds” of
the indigenous population.

Close attention to the ways in which this one particular community used
IT to exert control, in the context of sociological and historical studies of
computer users elsewhere, suggests that more information about the environ-
ment and more computational processing power may not necessarily improve
understanding of the world. In contrast to popular expectations about im-
proved transparency and effectiveness through IT, the organizational context
in which IT is embedded strongly biases the way it is used. Institutionalized
goals and practices shape the types of problems technology is used to solve
and a community’s capacity to use technology to solve them. In cases where
an organization can agree internally about how to use technology and when
that use is congruent with real constraints in the environment (i.e., when
people agree on the solution to a problem and that problem is solvable in
technical principle), then performance can be enhanced. If, however, or-
ganizations suffer from some pathology, such as a mismatch of warfighting
preferences with the demands of the warfighting problem, then technology
will simply amplify that pathology.

Philology of Programming Languages

Baptiste Mélés (baptiste.meles@normalesup.org)
Archives Henri-Poincaré, Université de Lorraine, France

Programming languages are often considered as mere formal languages, i.e.
as languages which are only defined by a set of rules of formation and trans-
formation. This is why abstract tools such as Turing machines, lambda
calculus and their variations can be — very fruitfully — used to modelize

49



them. This modelization is a simplification, which deliberately drops some
features, considered as unessential to programming languages as such. But
are these “unessential” properties so unessential 7

“Real-life” programming languages such as assembly, C, Perl and Java indeed
have many characteristics which nobody would want in a honest formal
language :

1. Their syntax has many irregularities. For instance, in C language, all
functions must have an explicit type — except void functions, which,
for historical reasons, do not need to be declared as such. In a formal
language, no exception like that should be accepted without a loss of
clarity.

2. Their syntax is often widely redundant : they often have as well for as
while loops, and many signs of “syntactical sugar.” Perl even has an
until loop, which is exactly the same as a while followed by a negation.
In a formal language, the principle of economy should force us to choose
between equivalent structures ; otherwise, the language would loose
every conceptual purity.

3. They even have historical residues : C-like syntax is still used in many
younger languages, such as C+-+, Java, Perl and JavaScript ; the ob-
solete register keyword still belongs to the C language. Formal lan-
guages are expected to derive only from conceptual considerations,
and should not be weighed down by historical contingences.

4. Their abstract and complete formal definition (as given in Backus-
Naur normal Form) usually comes long after their first definition and
their current use. ANSI C and XHTML came long after C was used
to program operating systems, and HTML to encode web pages.

5. They are not learned through their abstract definition, but with “Hello
world”s, examples and practice. Even worse : most of their users —
those who do not write compilers — do not even care about their formal
definition.

Real-life programming languages are thus quite far from their abstract mo-
delization. This fact should draw our attention.

Are these properties really so uninteresting 7 They unexpectedly make these
languages similar to natural languages, such as Russian or Spanish. Natural
languages indeed have many syntactical irregularities ; they have syntactical

50



redundancies ; they are usually learned without any complete formal defini-
tion, just with practice and examples. And they are full of his- tory : one
must learn Latin to understand where Italian and French struc- tures come
from, and know rudiments of Ancient Chinese to understand where Chinese
characters and words come from.

Moreover, nobody complains about these features of natural languages : they
make languages interesting, and even give way to style and idioms. Men are
not bees : they can choose between several ways of expressing the same
meaning.

Programmers are not bees either. They can choose between several ways of
writing the “same” program. Programming have styles. Programmers even
have grammarians which warn them against the use of programming struc-
tures such as goto. A program must not only be efficient : it must be elegant.

We will thus try to show some concrete examples of linguistic and phi- lo-
logical concepts which can be fruitfully applied to the concrete study of
programming languages.

This will lead us to reverse Chomsky’s perspective : while he probably
thought he honoured English by describing it as a formal language, we intend
to show that C++ and Perl, far from being failed formal languages, possess,
in their structure as well as in their history, some of the most beautiful and
exciting properties of natural languages.

Tomds Maldonado and the Sign System for Olivetti ELEA 9003

Elisabetta Mori (bettygorf@gmail . com)
Universita degli Studi di Firenze, Italy

In this contribution we present a paradigmatic case study in the relation
between Computer Science and Design History. The overall aim is to prove
that the integration of different areas may result in a more comprehensive
approach to the development of early computing machines. ELEA 9003 is
the acronym for Elaboratore Elettronico Automatico. Together with Calco-
latrice Elettronica Pisana (CEP) - presented to the public later, in 1961 -
it was one of the earliest Italian Computers, produced serially by Olivetti
beginning in 1959 (Cignoni 2012). The interest in this mainframe computer
spans several fields, as its history lies at the intersection of the birth of Ital-
ian information science, the ergonomic design of computing machines, and
Adriano Olivetti’s ideals and philosophy about industry and society (Mori

o1



2013).

The machine, one of the first transistorized mainframe computers in the
world, was built by a team of engineers and physicists led by Mario Tchou,
a Chinese electronic engineer, born in Italy but trained in the United States
(Rao, 2005). The architect Ettore Sottsass Jr., in collaboration with the
Dutch industrial designer Andries Van Onck, was in charge of the aesthetic
and ergonomic design of the machine (Sottsass 1983; Van Onck 2005). The
architect reversed the relationship between man and machine, putting the
user instead of the computer at the center of the project, resulting in an
innovative design. Fragments of this story have already been told: ELEA
9003 was a paradigm of excellence in Italian research (Soria 1979; Rao 2005;
Filippazzi 2006). What is still mostly unknown is that Tomés Maldonado,
in 1960, developed a symbols system for the console of Olivetti ELEA 9003
(Anceschi 2009).

The console was made of a keyboard and a display: the indicators were
identified by Italian words. Ambitiously, Olivetti aimed to launch its brand
new mainframe computer in the international market together with IBM,
Ferranti, Siemens, Bull, and the like. Instead of translating Italian abbrevi-
ations into English, Olivetti thought of a brand new ‘international’ solution.
In order to export this machine to foreign countries, Olivetti asked Mal-
donado to elaborate a sign system, which could be easily learned by any
operator, regardless of his mother tongue — a novel language to be used to
communicate between man and machine (Riccini 2010).

At the time Tomas Maldonado was the director of the Ulm School of Design
(Hochschule f iir Gestaltung Ulm), Germany, one of the most progressive
educational institutions of design in the Fifties and Sixties and a pioneer in
the study of semiotics. Together with Gui Bonsiepe, Maldonado designed a
system of logograms, corresponding to nouns, verbs, and adjectives. He chose
logograms because they are non-spoken characters, surpassing any national
language. They were designed so that they could be learned by means of
a language, but at the same time they were not tied to any particular one
(Bonsiepe 1961; Krampen 1965). The project was interesting but complex
and ambitious: the sign system was designed with more than a hundred
logograms but in the end they had never been applied to ELEA 9003 (Riccini,
2010).

The Olivetti Electronic Department (Divisione Elettronica Olivetti - DEO)
eventually lost its leaders and supporters in the company: both Adriano
Olivetti and Mario Tchou died suddenly in 1960 and 1961, respectively. Due
to the lack of leadership in the company - together with bad administration,

92



several political issues, and the wrong evaluation of the future business of
computers - the Olivetti Electronic Department was entirely sold to General
Electric in 1964, stopping Italian research in the field (Soria 1979). All this
effort put into the elaboration of a sign system for the interaction of man
and machine - with both a grammar and a syntax, through a visual code -
vanished upon the quick development of electronics and computers with ever
simplified man-machine interfaces. It was, however, Olivetti who understood
the importance of a logogrammatic communication system - independent of
speech words - applied to computers, several years in advance, as stated by
Maldonado in a recent interview (Riccini 2010).

Our aim will be to present the importance of design and semiotics to the
early development of computing machines in Italy, through rare or unknown
facts, as well as graphics and unpublished original photos, all from various
archives, systematically ordered for the first time.

References

Anceschi, G. (2009). Maldonado semiotico della conoscenza. E|C Serie Spe-
ciale, III - 3/4, 207-214. www.ec-aiss.it

Bounsiepe, G., Maldonado, T. (1961). Sign System Design for Operative Com-
munication. Uppercase, 5, 11-18.

Cignoni G.A., Gadducci F. (2012). Rediscovering the Very First Italian Digital
Computer. In 3rd IEEE History of Electro Technology Conference, IEEE.

Filippazzi, F. (2006). Quel computer nato tra i cavalli. In L. Dadda (ed.) La
nascita dell'informatica in Italia, Milano: Polipress.

Krampen, M. (1965). Signs and Symbols in Graphic Communication. Design
Quarterly, 62, 1-31.

Mori, E. (2013). Ettore Sottsass Jr. e il design dei primi computer Olivetti.
AIS/Design Storia e ricerche, 1. www.aisdesign.org

Rao, G. (2005). Mario Tchou e I’Olivetti Elea 9003. PRISTEM Storia, 12-13,
85-119.

Riccini, R. (2010). Un’impresa aperta al mondo. Conversazione con Tomas
Maldonado. In G. Bigatti & C. Vinti (ed.) Comunicare I'impresa. Cultura e
strategie del’immagine nell’industria italiana (1945-1970). (134-152). Milano:
Guerini e Associati.

Soria, L. (1979). Informatica: un’occasione perduta. La divisione elettronica
dell’Olivetti nei primi anni del centrosinistra. Torino: Einaudi.

Sottsass, E. (1960). Forme nuove per i calcolatori elettronici. Notizie Olivetti,
68, 27- 29.

93



Sottsass, E. (1983). Storie e progetti di un designer italiano. Quattro lezioni
di Ettore

Sottsass Jr. A. Martorana (ed.). Firenze: Alinea Editrice. Toméas Maldonado
(2009). Catalogo della mostra. Milano: Skira.

Van Onck, A., Takeda, H. (2005). Avventure e disavventure di design. Firenze:
Alinea Editrice.

Cybernetics, control and Big data

Teresa Numerico (teris@mclink.it)
University of Rome 3, Ttaly

The advent of “Big data” (Mayer-Schonberger, Cukier 2013) raises new ques-
tions about the cyber-utopia of a brave new open cyberspace. In this talk
I propose a genealogy of the network starting from cybernetics: the idea of
concentrating on the special case of communication represented by control—
suggested by Norbert Wiener in his seminal book of 1948 — left only a little
hope that cyberspace could allow a special freedom experience, with respect
to real life.

Wiener played an ambivalent role in the shaping of communication technolo-
gies: he allowed the idea of obtaining control tools by developing communi-
cation devices, while suggesting that these machines could be very dangerous
because they can favor concentration of power, and mechanization of human
behavior. Cybernetics’ crucial point suggested that there was no boundary
and no relevant difference between a biological organism and a mechanical
device as far as they shared a similar structure to interact with the en-
vironment. The interaction structure, common to both fields of research
was negative feedback, and the black box assumption which included the
orientation toward a purpose (teleological behavior) and the capability of
being affected by the external context by transforming the agent behaviors
to "adjust future conduct" to the requests of the environment.

As acknowledged by the famous paper Behavior, purpose and teleology:
"The methods of study for the two groups [living organisms and machines]
are at present similar. Whether they should always be the same may depend
on whether or not there are one or more qualitatively distinct, unique char-
acteristics present in one group and absent in the other. Such qualitative
differences have not appeared so far" (Rosenblueth, Wiener, Bigelow 1943, p.
22). If there is no difference between machines and human beings and if we
limit communication to the special case of control, a machine and a human

o4



being who is in charge to obey orders (in the military or in other similar con-
texts) are perfectly equivalent interlocutors. Wiener was also concentrated
on the struggle against the secrecy policy on scientific knowledge and on the
excess of patent law in protecting the wrong actors of the innovation process.
According to him "information is more a matter of process than of storage"
(Wiener 1950/1954, p. 121). His approach to management and organization
of knowledge was guided by the awareness that scientific discovery depended
on the availability of the information on which new achievements were based.
That is why he was strongly in favor of what would be called today ’open
science’.

However things have changed radically from the times he was writing, com-
munication technologies now include the ability of preserving data as dy-
namic entities, as in Big data management. There is now no opposition
between storage and process and we can pretend to store the process in its
dynamics. Moreover if it is true that the collectivity would not benefit from
the emergence of the ’enclosures’ of knowledge productions, there are a lot
of business agents who will exploit the intellectual property regulations.

Wiener was rather worried about the consequences of cybernetics approach
that allowed the breach of boundaries between human beings and machines,
as he was well aware of the possible use of communication technologies as
tools for the concentration of power. While in 1960, J.C.R. Licklider intro-
duced the concept of “man-computer symbiosis” under the influence of the
cybernetic notions of communication and feedback, which was the model
for the interaction between the machine and its user. In a famous letter
to the ’intergalactic network’, written in 1963, he connected military com-
mand and control techniques with the requests of scientists for the inclusion
of the computer in the formulative thinking process: computers would help
scientists, as new colleagues, in suggesting scientific models to make sense of
data, not only in dealing with calculations. In order to achieve this goal he
thought that it was necessary to define a language which was at the same
time easy to understand for human beings and adequate to interact with
the machine. The model of this language was anticipated by Leibniz early
theory: the creation of a ’Calculus Ratiocinator’ that could calculate all
the proofs needed using the language of a ’Lingua Characteristica’, in which
each notion possessed an unambiguous label. This mirage, perfectly embod-
ied by the computer as a Laplacian machine, seemed temporary defeated by
the network as an interactive tool, whose protocols were open, transparent,
and impossible to govern by a single authority. However, as suggested by
Wiener, the idea of communicating with or by a machine, while the machine
can substitute human beings in terms of production of meanings, creation

%)



of discourse and storage of propositions about behavior habits risks to in-
crease control over the network. Interacting with and by the machine implies
inevitably both controlling and being controlled by the interface device.

Big data represent the realization of Licklider’s dream and Wiener’s night-
mare: obtaining patterns of correlations between data without a theory and
only by algorithmic analysis of the quantitatively enormous amount of in-
formation. The availability of such a big amount of data on people so-
cial habits is made possible by the advent of Content Management System
(CMS), which was one of the crucial technologies of the so-called Web 2.0.
It represented the key feature for organizing all the users’ free content in the
rigidity of a database, whose data set now constitutes the gist of the Big
data “revolution". This structured organization of information reproduced
the Laplacian machine within the network, with the aid of cloud computing.

References

Licklider, J.C.R. (1960): “Man-computer symbiosis” in IEEE Trans-
actions on human factors in Electronics, Vol. HFE-I, March 4-11.
http://memex.org/licklider.pdf.

Licklider J.C.R. (1963) Memorandum for members of the affiliated of the
Intergalactic Computer Network. http://packet.cc/files/memo.html.

Mayer-Schonberger V., Cukier K. (2013) Big Data: A Revolution That Will
Transform How We Live, Work, and Think, Eamon Dolan/Houghton Mifflin
Harcourt, Boston.

Rosenblueth A., Wiener N., Bigelow J. (1943) “Behavior, Purpose and Tele-
ology”, in Philosophy of science, Vol. 10, pp. 18-24.

Wiener, N. (1948/1961): Cybernetics: or Control and Communication in the
Animal and the Machine. MIT Press, Cambridge (Mass).

Wiener, N. (1950/1954) The human use of human beings, Houghton Mifflin,
Boston.

96



What network computing does to communication
A retrospective analysis of early debates confronting and inventing online
communication ethics

Camille Paloque-Berges (camille.paloque_berges@cnam. fr)
CNAM, Paris, France

Haud Guegen (haud.gueguen@cnam.fr)

CNAM, laboratoire DICEN, Paris, France

Claire Scopsi (claire.scopsi@cnam.fr)

CNAM, laboratoire DICEN, Paris, France

In the field of network and digital communication technologies, the fast pace
of innovation should be questioned in critical terms about how they change
rules and practices of communication. The meeting of the social and the
technical in Internet communication has been interrogated in various disci-
plines such as sociology and information sciences. We would like to ask how
the technical meets the ethical in online communication. What is the rela-
tionship between the instrumentality of computer-mediated communication
and the norms of network interaction and exchange ? How does one behave
online when communication does not rely only on verbal codes but also on
the formal techniques of computer languages and the double bind of network
computing and interfaces ?

We take up the discussion suggested by James H. Moor in his essay “What
is Computer Ethics ?” so as to ask how network computing can change the
nature and the rules of human communication. We confront the relevance of
two theories about the ethics of communication, discourse ethics (Habermas
1991) and recognition theory (Honneth 1996), in the context of computer-
mediated communication for collective, forum-type discussions. Thus, we
would like to contribute from a transdisciplinary standpoint, at the frontier
between philosophy and communication sciences, to these social and human
sciences debate : what does the Internet do to communication ? What kid
of rules and politics emerge from these new forms of communication ? To
what extent these rules are different from face-to-face communication, and
how can they be interpreted both in continuity and alteration ?

An retrospective look on digital networked communication We
think it would be useful to go back to studying online exchanges in elec-
tronic forums in the first half of the 1990’s in order to shed a light on the
present. We chose to analyze French speaking newsgroups on Usenet, which

o7



were born in 1993 in a crucial transition period named "Eternal September"
in Internet folklore, that is the moment when an afflux of new users came to
know and participate in online discussions whilst the Internet is discovered
through new protocols, software and interfaces brought about by Web tech-
nologies. As the Internet becomes more popular, the relationship between
the network medium and its use becomes more sensitive and noticeable as
new converts look for answers to solving problems in network communication
uses and confront their own frames of references and norms to those devel-
opped by experienced users way before the Web came to be. These real-time
interactions happen at a moment when network communication is far from
being stabilized, and undergo a transitional process : digital networks as a
communication medium is being reinvented to accomodate both new uses
and new techniques.

We will question this interaction by studying socio-technical mediations in
non-web forums under the predicate that the architecture of forum-type
communication systems, even if instable, carry normative social and rela-
tional models (Voirol 2010). This retrospective on a historical standpoint in
Internet communication seems relevant in order to study closely the "mal-
leability" associated with computing ethics according to Moor.

Forums as witnesses to online discursive exchanges We analyze a
set of Usenet newsgroups, whom users used to discuss Internet and network
computing themes from 1993 (French newsgroup on Usenet opened this year)
t0 1995 (year when the 95/46/CE directive on personal data use was adopted
by the European Parliament, with a notable reference to network electronic
telecommunications). We attend to show how moral issues appear while
collective exchanges are being regulated (these issues are related to the way
a person, considered a network user, is connected to a group in a set of
good practices of communication). On the other hand we show how these
issues are linked to ethical problems needing to be ruled on an upper level
and formalized by laws, and social norms (censorship vs free expression for
example). This will lead us to also analyze the negative side of these moral
issues : how communication is contaminated by pure instrumental actions
(Habermas) and phenomena as disrespect and denial of recognition (Hon-
neth, Voirol, Granjon). Examples of case-studies will range to conflicts about
how to present oneself or one’s ideas in the Usenet newsgroups by instru-
menting network communication to how a group of users exchange technical
tips to block unwanted users or information.

We will first perform a discourse analysis on the interlocutors’ statements,

98



including specifically a semantic study of the lexical fields of ethics and an
analysis of their evolution in time. In order to do so, we use qualitative and
quantitative methods adapted for network forum studies (including a soft-
ware tool called Calico). We will compare our results with grey literature’s
contents devoted to the regulation of the “netiquette” (charters, “FAQ”) in
groups. We supplement the analysis of themes related to ethics with a close
study of the affordances and appropriation of forum tools by users from the
point of view of the semiotics of technical communication. Our focus will
be the “device of enunciation” (Jeanneret, Souchier, 2005), by listing in par-
ticular the technical operations proposed or performed by the interlocutors
in order to put into practice their understanding of communication rules.
We will be aiming especially at the way users technically operate in order
not only to deal with the ergonomic of the mailing system, and the virtual
communication but also with the hardware and software capabilities in the
network (servers, storage..).

From the premise that some ethical issues in communication are due to
network-mediated computing, we state that network-mediated communica-
tion frameworks, just as their social and technical regulation is called into
question, make the promise of a discursive space driven by a communicative
action (which thus allows to negotiate rules). However, in these frameworks,
actual relationships are also seemingly driven by “instrumental rationality”
which constantly redefine the shape of the moral rules being assigned to the
communication behavior of the group, and thus permeates the negociations
driven by “communicative action (or rationality)” (Habermas 1983). In or-
der to solve this dichotomy and perceive the ethical malleability of these
frameworks, we will try to present the idea of “technical argument” as a
speech act (in the Austin sense), performative in a symbolic sense as much
as in an operational sense, which takes place in both technical gestures and
discursive action performed in network communication. As an outcome, we
will ask if the ethical questions linked to network-mediated communication
devices in the middle of the 90’s are discourses accompanying innovation in
order to enhance an ideological imaginary of Internet (Flichy 2007) or if they
are more widely the expression of a revolution in communication.

At last, we will put into perspective the analysis produced during this histor-
ical period of the growth of Internet with ethical reflections about network-
mediated communication applied to contemporary social media. Current
writing reagrding the ethics of recognition will lead us to ask whether net-
work computing gives a push to mutual recognition amongst social actors
or, on the contrary, helps new forms of disrespect and domination to be
expressed (Granjon 2012).

99



References

Patrice Flichy (2007). The Internet Imaginaire. Translated by Liz Carey-
Libbrecht. Cambridge :MIT Press
Fabien Granjon (2012). Reconnaissance et usages d’Internet. Une sociologie

critique des pratiques de 'informatique connectée, Paris, Presses des Mines,
2012.

Jiirgen Habermas (1991). Moral Consciousness and Communicative Action.
Cambridge: MIT Press

Jiirgen Habermas (1984). Theory of Communicative Action, trans. Thomas
McCarthy, Boston: Beacon Press

Axel Honneth (1996).The Struggle for Recognition: The Moral Grammar of
Social Conflicts. Polity Press

Jeanneret Yves et Souchier Emmanuél (2005). “L’énonciation éditoriale dans

les écrits d’écran”, in Communication et langages. No145, 3éme trimestre, pp.
3-15.

Olivier Voirol (2010). “Digitales Selbst: Anerkennung une Entfremdung”, Wes-
tEnd : Neue Zeitschrift fiir Sozialforschung, pp. 106-120.

Computer Science between Science and Technology: A Red Herring?

Marcello Pelillo (pelillo@dais.unive.it)

Ca’Foscari University of Venice, Italy

Teresa Scantamburlo (scantamburlo@dais.unive.it)
Ca’Foscari University of Venice, Italy

Viola Schiaffonati (schiaffo@elet.polimi.it)
Politecnico di Milano, Italy

Computer science has been plagued since its beginnings by the elusiveness of
its very nature, being halfway, as the name itself implies, between science and
technology. Dijkstra, for example, insisted on de-emphasizing the role of the
machine stressing the intrinsic abstract character of the field; others held that
the ‘science’ in computer science is a misnaming, given its engineering nature.
The debate still goes on but, in time, the interdisciplinary nature of computer
science has been widely recognized and, accordingly, it is now defined partly
as scientific, partly as mathematical, and partly as technological (Denning
2005). There are some subfields, however, in which the mutual exclusiveness
of the scientific and technological paradigm is still dominant. This is quite
evident in some areas of artificial intelligence, such as machine learning and
pattern recognition, where only few systematic attempts to understand the

60



interplay between technological and scientific factors have been made. In
this paper, we attempt to approach the question by making use of some
recent developments in the philosophy of technology and in the philosophy
of science. Our analysis will be complemented by historical examples taken
from the field of artificial intelligence.

Pattern recognition and machine learning face a broad spectrum of problems
involving the ability to discover regularities in data, generalizing from obser-
vations. In these two areas many traits of the traditional opposition between
science and engineering are still present. Although some scholars pointed out
both scientific and technological aspects (Duin et al. 2007), the most com-
mon tendency is to emphasize a single component. In some cases, especially
in the past, the approach of pattern recognition and machine learning has
been associated to the scientific practice of physics (Serra 2000) or more gen-
erally of experimental sciences (Langley 1988). On the contrary, nowadays,
it prevails the idea that machine learning and pattern recognition are pri-
marily engineering disciplines dealing with problems intrinsically dependent
on the application they are built for (Duda 2001).

This sharp opposition between science and technology stems from an over-
simplified view of their mutual relationship. In the light of some new achieve-
ments in the philosophy of technology (Franssen et al. 2010), it turns out
that, granted that there are indeed important differences, at the conceptual
level the boundary between the two camps is more blurred than is com-
monly thought, and that they stand to each other in a kind of circular,
symbiotic relationship. Technology can be considered an activity produc-
ing new knowledge on a par with ordinary science (Simon 1969). The so
called operative theories (Bunge 1966) in technology look like those of sci-
ence and their contribution goes beyond the mere application of scientific
knowledge. Conversely, even science can be brought closer to technology
when its progress is expressed in terms of immanent achievements. This
idea lies at the heart of the problem solving approach (Laudan 1977) and
could well characterize much of the work in the fields of machine learning
and pattern recognition.

Our discussion will advocate that both machine learning and pattern recog-
nition are suitable examples of the circularity joining scientific and techno-
logical efforts. If we look at the history of the fields, we observe that most
the technological progress springs from very scientific issues and early at-
tempts tried not only to provide feasible solutions, but also to uncover the
structure of the problems. The case of neural networks is paradigmatic, as
their formulation was been clearly inspired by scientific purposes, that is,
by the wish of studying and imitating the brain but, in the phase of their

61



renaissance, technical matters prevailed. Indeed, with the (re)invention of
the back- propagation algorithm for multi-layer neural networks and, above
all, thanks to the impressive results obtained by these new models on prac-
tical problems such as zip code recognition and speech synthesis a new wave
of excitement spread across the artificial intelligence community. At that
point, however, it was widely accepted that these models had no pretention
of being biologically plausible except of being interesting computational de-
vices (Pavlidis 2003). Bayesianism is another interesting example of the gate
allowing machine learning and pattern recognition to move from theoretical
issues to more practical aims. Introduced as a theory, which can character-
ize the strength of an agent’s belief, it provided many inference algorithms
with a practical machinery. On the other hand, recent advances in density
estimation techniques, such as nonparametric Bayesian methods, have been
successfully applied to approach a variety of cognitive processes (Sanborn
et al. 2010). This choice is typically useful in problems suffering from a
combinatoric explosion and particularly suitable to bridge the gap between
the computational and the algorithmic levels of rational models of cognition.

In conclusion, with the contribution of philosophy of technology and philoso-
phy of science, we shall argue that we should rethink the classical dichotomy
between science and technology, which is still holding in some subfields of
computer science, as they appear closer than we used to think. Historical
examples from artificial intelligence will suggest that computer science works
as a bridge between the two, indeed, and many ideas from science result in
technological innovation via computer science, and vice versa.

References

Bunge, M. Technology as applied science. Technology and Culture 7:329-347,
(1966).

Denning, P. Is computer science science? Communications of the ACM
48(4):27-31, (2005).

Duda, R.O., Hart, P.E., Stork, D.G. Pattern Classification. Wiley, (2001).

Duin, R.P.W., Pekalska, E., The science of pattern recognition. Achievements
and perspectives. Studies in Computational Intelligence (SCI) 63: 221-259,
(2007).

Franssen, M., Lokhorst, G.-J., van de Poel, I. Philosophy of technology. In:
Zalta, E. (Ed.), The Stanford Encyclopedia of Philosophy, (2010).

Langley, P. Machine learning as an experimental science. Machine Learning
3:5-8, (1988).

Laudan, L. Progress and its Problems. University of California Press, (1977).

62



Pavlidis, T. 36 years on the pattern recognition. Pattern Recognition Letters
24: 1-7, (2003).

Serra, J. Is pattern recognition a physical science? Proc. ICPR’2000 3: 29-36,
(2000).

Sanborn, A.N., Griffiths, T.L., Navarro, D.J. Rational approximations to ra-
tional models: alternative algorithms for category learning. Psychological Re-
view 117(4):1144-1167, (2010).

Simon, H. The Sciences of the Artificial. MIT Press, (1969).

63



Von Mises, Church, and the Birth of Algorithmic Randomness

Christopher Porter (christopher.p.porter@gmail.com)
LIAFA - Université Paris Diderot — Paris 7, France

In 1919, Richard von Mises published in his ‘Grundlagen der Wahrscheinlichkeit-
srechnung’ (von Mises 1919) a definition of randomness for infinite sequences
that he in- tended to serve as a foundation for his theory of probability (which

is more fully expounded upon in (von Mises 1964 and 1981). This defini-
tion was widely rejected as inade- quate by von Mises’ contemporaries, who
objected that it made use of an ill-defined notion of place selection (see, for
instance, Kamke 1932, Kamke 1933, and Fréchet 1938). According to these
objectors, von Mises’ definition was highly arbitrary, as he never precisely
specified what should count as a place selection, and this, they claimed, led

to his definition being inconsistent.

What Von Mises’ critics (as well as later commentators on his definition)
failed to recognize was that this apparently arbitrary character of place se-
lections was held to be necessary by von Mises. In von Mises’ view, if one
were to define random sequences in terms of a fixed, well-defined collection
of place selections, the resulting theory of probability would be incomplete,
incapable of solving certain problems in the probability calculus, thus fail-
ing to attain what one might call the resolutory ideal of completeness for
theories of probability.

In attempting to respond to von Mises’ critics, Alonzo Church suggested in
his 1940 article, ‘On the Concept of a Random Sequence’ (Church 1940),
that random sequences should be defined in terms of effectively calculable
and thus (by the Church-Turing thesis) computable place selections, thereby
providing the first definition of algorith- mic randomness. However, as this
restriction of the collection of place selections to the computable ones is
contrary to von Mises’ prohibition against defining random- ness in terms of
a fixed collection of place selections, the question arises as to whether Church
was aware of von Mises’ intention for his definition of randomness, namely to
yield a theory of probability attaining the resolutory ideal of completeness.

The primary goal of this talk is to present an answer to the question as to how
Church viewed his definition of algorithmic randomness vis-a-vis von Mises’
original intention for his definition of randomness. The answer I suggest is
uncovered in the brief correspondence in the early 1960s between Church and
Hilda Geiringer (Church 1966a and 1966b, Geiringer 1966), von Mises’ wife,
herself a mathematician who edited a number of von Mises’ works after his

64



death in 1953. As I will highlight, not only did Church recognize the central-
ity of von Mises’ resolutory ideal of completeness to his larger programme,
but he also subscribed to an alternative formulation of the resolutory ideal.
According to Church, the problems of the probability calculus that occur in
actual practice are those that can be solved by computable place selections.
Thus, in his view, a limited version of the resolutory ideal can be attained
simply by ignoring those problems of the probability calculus that are not
solvable by algorithmic means, for in Church’s view, these are not problems
that we should worry about solving to begin with.

Church’s application of computability theory to the study of randomness is
thus not merely significant for technical reasons, but it also raises a number
of more general philosophical questions about the role of computability in
the solution of problems (and not just problems of the probability calculus):
Should we restrict our attention to problems that can be solved effectively?
Why are problems that are effectively solvable privileged over problems that
are not? Is there anything lost by ignoring problems that cannot be solved
effectively?

References

Alonzo Church. On the concept of a random sequence. Bull. Amer. Math.
Soc., 46:130-135, 1940.

Alonzo Church. Letter to Hilda Geiringer von Mises, 11 june 1966. Alonzo
Church Papers, Box 22, Folder 21; Department of Rare Books and Special
Collections, Princeton University Library, June 1966.

Alonzo Church. Letter to Hilda Geiringer von Mises, 16 mar. 1966. Alonzo
Church Papers, Box 22, Folder 21; Department of Rare Books and Special
Collections, Princeton University Library, March 1966.

Maurice Fréchet. Exposé et discussion de quelques recherches récentes sur
les fondéments du calcul des probabilités. In Colloque consacré au calcul des
probabilités, volume 735 of Actualités Scientifiques et Industrielles, pages 22—
55. Hermann, 1938.

Hilda Geiringer. Letter to Alonzo Church, 13 apr. 1966. Alonzo Church Pa-
pers, Box 22, Folder 21; Department of Rare Books and Special Collections,
Princeton University Library, April 1966.

Erich Kamke. Einfiihrung in die Wahrscheinlichkeitstheorie. S. Hirzel, Leipzig,
1932.

Erich Kamke. Uber neuere begriindungen der wahrscheinlichkeitsrechnung.
Jahresbericht Deutsche Mathematiker Vereinigung, 42:14, 1933.

Richard von Mises. Grundlagen der Wahrscheinlichkeitsrechnung. Math. Z.,
5(1-2):52-99, 1919.

65



Richard von Mises. Mathematical theory of probability and statistics. Edited
and Complemented by Hilda Geiringer. Academic Press, New York, 1964.

Richard von Mises. Probability, statistics and truth. Dover Publications Inc.,
New York, English edition, 1981.

Exploring Thue’s 191/ paper on the transformation of strings according
to given rules

James Power (jpower@cs.nuim.ie)
National University of Ireland, Maynooth, Ireland

Rarely has any paper in the history of computing been given such a pres-
tigious introduction as that given to Axel Thue’s paper by Emil Post in 1947
(Post 1947):

“Alonzo Church suggested to the writer that a certain problem
of Thue (Thue 1914) might be proved unsolvable ...”

However, only the first two pages of Thue’s paper are directly relevant to
Post’s proof, and, in this abstract, I hope to shed some light on the remaining
part, and to advocate its relevance for the history of computing.

Thue Systems Thue’s 1914 paper is the last of four he published that
directly relate to the theory of words and languages (Berstel 1995, Stein and
Thomas 2000). In this 1914 paper, Thue introduces a system consisting of
pairs of corresponding strings over a fixed alphabet:

A17A27A37~-~7An
Bl7B2aB37"'7B’n

and poses the problem: given two arbitrary strings P and (), can we get one
from the other by replacing some substring A; or B; by its corresponding
string? Post called these systems of “Thue type” and proved this problem to
be recursively unsolvable.

Reception of Thue’s Work Thue’s earlier work was not widely cited
but often rediscovered independently (Hedlund 1967), and something similar
seems to have happened with the 1914 paper.

For example, Thue is not among the 547 authors in Church’s 1936 Bibliog-
raphy of Symbolic Logic, nor is Thue cited in Post’s major work on tag

66



systems, correspondence systems, or normal systems before 1947. His work
appears to have had no direct influence on the development of formal gram-
mars by Chom- sky in the 1950s. Most subsequent references to Thue’s paper
(where they exist) note it only for providing a definition of Thue systems.
Thue’s awareness Thue explicitly understood the general meta-mathematical
context (that we now associate with (Hilbert’s programme)), describing the
prob- lem as being of relevance to one of the “most fundamental problems
that can be posed”.

Further, he phrases the problem in terms that have become quite familiar in
the post-1936 world:

“.. to find a method, where one can always calculate in a pre-

dictable number of operations, ...”

This language parallels that used in Hilbert’s 10th problem in 1900 and
places Thue’s work firmly in what we would now regard as computing, rather
than pure algebra.

Foundations of Language Theory Having posed the general problem in
§1I of his paper, Thue then presents an early example of a proof of (what
we would now call) termination and local confluence for a system where the
rules are non-overlapping and non-increasing in size.

When reducing some string P , we must find some occurrence of A; and
replace it with B; . A difficulty arises if there is an overlap: some substring
CUD in P , such that A; matches both CU and UD, and thus choosing one
option will eliminate our ability to later choose the other.

In §IV, Thue presents the string U as a common divisor of CU and UD and
then shows how we can apply Euclid’s algorithm to derive a Thue system
from this. Euclid’s algorithm had been considerably generalised throughout
the 19th century, but here the string U “measures” the strings CU and UD
just as Euclid’s lines measure each other (Elements, Book 10, proposition

Thue derives another algorithm in §V which, given two strings P and @
will derive those strings equivalent to them, and gradually reduce them to
a core set of irreducible strings, providing a solution to the word problem
in a restricted case. He investigates variants of these presentations based on
their syntactic properties in §VI and gives some examples in §VII.

We remark that from the identity CU = U D we can derive rules of the form
CU — UD, and that this template is precisely what Post termed normal

67



form for his rewriting systems.

Thue’s “completion” algorithm In §VIII of his paper Thue develops an
algorithm to derive a system of equations from any given sequence R. This
is interesting not just for its structure (the algorithm iterates until it reaches
a fixed point) but also for its use of overlapping sequences as a generation
mechanism.

Starting from some given identity sequence R we can identify all pairs where
R = CU = UD, and then add the rules C' <+ D to the Thue system. We
can then apply these rules using R as a starting symbol to derive a further
set of identity sequences Rj, Rs,.... These, in turn, can be factored based
on overlaps to provide a further set of rules C; <+ D; and so on. Since all
R; have the same length, as do all C; and D; , this process is guaranteed to
terminate.

This is similar to, but not the Knuth-Bendix algorithm: there is no explicit
concept of well-ordering, for example. However, it certainly contains many of
the “basic features” of the algorithm as described by Buchberger (Buchberger
1987), and could be considered, under restrictive conditions, as an embryonic
version of it.

References

Jean Berstel. Axel Thue’s papers on repetitions in words: a translation. Pub-
lications du LaCIM, Université du Québec a Montréal, 1995.

Bruno Buchberger. History and basic features of the critical- pair/completion
procedure. Journal of Symbolic Computation, 3(12):3— 38, 1987.

G.A. Hedlund. Remarks on the work of Axel Thue on sequences. Nordisk
Matematisk Tidskrift, 15:148-150, 1967.

Emil L. Post. Recursive unsolvability of a problem of Thue. Journal of Sym-
bolic Logic, 12(1):1-11, March 1947.

M. Steinby and W. Thomas. Trees and term rewriting in 1910: On a paper
by Axel Thue. EATCS Bull., 72:256-269, 2000.

Axel Thue. Probleme uber Verdnderungen von Zeichenreihen nach gegebenen
Regeln. Christiana Videnskabs-Selskabs Skrifter, I. Math.- naturv. Klasse,
10, 1914. My (anonymised) translation of [Thul4] is available at: http://
tinyurl.com/thuel914-pdf

68



Computers and obedience: defining machine autonomy in the 1940s

Mark Priestley (m.priestley@gmail.com)
UCL, United Kingdom

Historians have often noted that the new computing machines of the 1940s
were frequently de- scribed in anthropomorphic terms, for example as robots
or as “giant brains”. By the end of the decade, this tendency had crystallized
into an often impassioned debate around the specific question of whether
machines could be said to possess intelligence, or the ability to think.

The purpose of this paper is to use the concept of obedience as a tool to
analyze some aspects of this anthropomorphizing discourse. Drawing on
material from logic, philosophy, and popular fiction as well as the history of
computing, it will trace some of the ways in which the idea of obedience came
to be associated with that of machinic agency, and how these ideas helped
shape responses to the emergence of the automatically sequenced computer.

The first section of the paper examines the early robot stories of Isaac Asi-
mov. Written in the first half of the 1940s, these stories represent an at-
tempt to imagine robots as manufactured products embedded in complex
industrial societies, rather than simply as fantastic figures, and to respond
to contemporary anxieties about the role of machines in human society. Asi-
mov encapsulated the rela- tionship between robots and human society in
his famous three rules of robotics, the second of which explicitly states that
robots must obey humans.

The early stories can be read as both an explanation and as an exploration
of the three rules. View- ing them almost as a formal system defining the
boundaries of acceptable robot behaviour, Asimov constructs a number of
apparently paradoxical situations in which the outcome of the rules is not at
all what might have been expected. The drama of the stories is provided by
the human protagonists’ attempts to explain the robots’ behaviour in terms
of the rules that determine it.

Interestingly, Asimov described it as a “mathematical certainty” that a robot
would obey the three rules embedded in its positronic brain. The second
section of the paper argues that Alan Turing’s 1936 analysis of computability
provides just such a mathematical analysis of the relevant aspects of human
behaviour, and that the universal machine can usefully be described as a
machine whose primary function is precisely to obey the instructions given
to it. That this interpretation was central to Turing’s own understanding of

69



the universal machine is demonstrated by an examination of a passage from
his 1951 Programmer’s Handbook for the Manch- ester computer, in which
Turing gives a formal definition of what is meant by obeying a command.
Interestingly, his account is internal rather than external: the effect of a
successful act of obedience is a change in the agent rather than any necessary
change in the outside world.

After this examination of contemporary notions of machinic obedience, the
third section of the paper examines texts from the 1940s which describe the
new computers and begins the task of identi- fying some of ways in which
the notion of obedience played out in practice, including the following.

Class and social position A number of texts, particularly from Britain,
attempted to locate comput- ers in relation to positions in the social hierar-
chy characterized by obedience. Naturally, these tended to be lower-status
roles, and computers were often presented as ideally disciplined work- ers.

Initiative It soon became apparent, however, that compared with the com-
puter, even the most dis- ciplined human worker was expected to demon-
strate considerable initiative. In a formulation that was widely attributed
to Ada Lovelace, it was said that computers could do only what they were
told to do, and it became recognized that the instructions given to machines
had to be to an unprecedented degree complete, and completely explicit.

Surprise However, as Asimov’s robots had demonstrated, this turned out
to be less straightforward than expected, and the capability of machines
and programs to surprise their creators with the unexpected or unintended
consequences of the instructions given to them was frequently noted.

Responsibility Despite being thought of as partially autonomous, however,
computers were not held to be responsible for these unexpected outcomes.
Errors of performance, both mechanical prob- lems and those arising from
the instructions given to them, were not deemed to be their fault and did
not affect their status as “obeying machines”; as Turing observed, obedience
was an internal, not an external, property.

Tracing the contours of machinic agency is not simply an intellectual exercise.
In a move reminis- cent of Hegel’s dialectic of the master and the slave,
human agents began to reconfigure themselves in response to the interaction
with computers. This is clearly visible in connection with programming.
Early treatments of errors in automatic computation did not envisage a
category of “programming errors”’, and Maurice Wilkes famously remembered
as an epiphany the moment when he realized that much of the rest of his
life would be spent correcting the errors in his own programs.

70



The apparent difficulty of anticipating the consequences of a set of formally
given instructions therefore led to a transfer of responsibility: rather than it
being the worker’s responsibility to carry out orders in an appropriate way,
it now became the manager’s responsibility to ensure that orders were given
in such a way that slavish obedience would lead to a reasonable outcome.
Managers themselves had to become more disciplined in order to make use
of that most disciplined of employees, the computer.

The final section of the paper turns from the positive to the negative charac-
terization of machine agency. Hoping to establish that the computer, while
more than a machine, was sill less than a fully autonomous agent, consider-
able efforts were made to describe what computers lacked. Answers proposed
to this question centered around the notions of intelligence and the question,
“can machines think?”

Causality in concurrent systems

Federica Russo (f.russo@kent.ac.uk)
Center Leo Apostel, Vrije Universiteit Brussel
Brussels, Belgium

Silvia Crafa (crafa@math.unipd.it)
Universita di Padova, Italy

In the terminology of computer science, concurrent systems identify systems,
either software, hardware or even biological systems, where sets of activities
run in parallel with possible occasional interactions. A simple example of
concurrent system is the Internet, which can be thought of as a set of com-
puters, each one computing its independent activity, that often communicate
to exchange some information. A further example is the railway system of
a country, where many trains travel sharing tracks in an ordered way so
that two trains can move at the same time along different tracks, whereas a
single track (e.g, a platform in a train station) can only be used by a single
train at a time. Furthermore, the large number of activities carried on by a
single human cell form a biological concurrent system that actually shares a
number of similarities with the Internet.

Compared to sequential systems, where a single action is executed at a time
according to a sequential algorithm, concurrent systems raise new complex is-
sues dealing with the ordering of action executions, since independent actions
can be executed in any order or simultaneously. As a consequence computer
scientists resorted to the causal terminology to describe and analyse the re-
lations between the system actions. However, a thorough discussion about

71



the meaning of causality in such a context has not been developed yet. We
then ask precisely what causality means and how causal reasoning works in
concurrent systems. We rely on a precise formalization of the systems under
observation, distinguishing between formal languages to specify or to pro-
gram a concurrent system, operational models describing their behavior and
analysis techniques to prove system properties. In particular, we consider
concurrent systems modeled in terms of Event Structures (Winskel 1982),
where the causality relation is given explicitly as a primitive relation and the
causal talk is recurrent. First we observe that these models are not intended
to be used for causal discovery: instead of asking whether two events are
related by a causal relation or not, which might be difficult or controversial,
they take causal relations as primitive, i.e., as already decided, so to allow
formal reasoning on them. However, the difficult problem is not completely
eluded: given a system, an event structure must be correctly associated to
the system so that the primitive causal dependences of the event structure
actually agree with the system behavior. The definition of a correct and
useful model for a given concurrent system is a lively research topic. Any-
way, for software systems there is again no causal discovery to do; the debate
generally amounts to the definition of a ‘precedence relation’ between system
instructions.

Moreover, in event structures causality means quite generally dependence,
whether temporal, spatial, or even causal dependence. It is then very differ-
ent with respect to more traditional debates in the philosophy of causality,
for instance production and mechanisms, independence, and causation by
omission. In concurrent systems causal talk may then appear ‘loose’, or
even unnecessary, as causality just involves here a ‘dependence’ component
with no ‘productive’ component. But all this is just to say that, in spite
of similarities of type of problems, concurrent systems seem to have differ-
ent worries, like formal reasoning about (any kind of) dependencies and the
study of independent/concurrent actions.

As far as analysis techniques are concerned, we focus on tools like trace
analysis and fault diagnosis, where the causal model of the system turns out
very useful to reason about the chain of events (the ‘causes’) that led to a
specific system state, i.e. to an error. Interestingly, such a process involves
counterfactual reasoning. Indeed, counterfactuals are often used to reason
about causes and effects, specifically about what would have happened had
the putative cause not occurred. The goal of a counterfactual is then to pick
out the ‘right’ cause and we’ll know that it did in case it holds true.

There exists a vast and controversial philosophical literature dealing with
counterfactual validation that mainly focused on Lewis’s account based on

72



possible-world semantics. We rather observe that operational models of con-
current systems can be effectively used together with the theory of Nicholas
Rescher (2007), which is capable of making sense of counterfactual validation
in a way that is logically precise and rigorous, and that is metaphysically par-
simonious. More precisely, in order to validate a counterfactual, Rescher’s
approach for restoring consistency by prioritising information (a.k.a. MELF)
is well suited to formal operational models, where we can always decide the
priority of beliefs thanks to the clear distinction between ‘facts’ and ‘laws’.
Given the nature of event structures, for each pair of events, it is known what
relation they stand in; consequently, all the ‘laws’ connecting all the pairs of
events are known from the model. Counterfactuals can then be validated by
combining salient laws into a well-constructed proof. Conversely, given that
the model describes all the possible system executions, a counterfactual can
be rejected by showing a case, namely a possible execution that violates it.

To conclude, the formalization of concurrent systems is an interesting area
to investigate the meaning and use of causal concepts. The literature in
computer science customarily uses causal terms, but a systematic investi-
gation has not been carried out so far. The analysis above suggests that
causal talk in concurrent systems diverges from the traditional meaning in
the philosophy of causality: it may as well dispose of the term ‘causality’
and employ ‘dependence’ instead, without loss of content in its modeling
practices. Yet, our goal is not to call for a terminological change in the field
of concurrent systems. We think that at this stage a rounded discussion
about similarities and dissimilarities with parallel debates happening in the
philosophy of causality is already a contribution.

References

Rescher, N. (2007). Conditionals. The MIT Press.

Winskel, G. (1982). Event structure semantics for CCS and related languages.
In: Automata, Languages, and Programming. LNCS, vol. 140, pp. 561-576.
Springer.

73



Is Networking computing ?

Valérie Schafer (valerie.schafer@iscc.cnrs.fr)
CNRS, France

Francesca Musiani (francesca.musiani@gmail.com)
Mines Paris Tech, France

Benjamin Thierry (benjaminthierry@gmail.com)
Paris Sorbonne, France

“Network science” is currently developing as an academic discipline-of-disciplines.
It parallels computer science, its developments, and forms interesting hybrids
with research more closely related to computational problems. The seman-
tic shift from computational to digital is increasingly commonplace, and has
a French counterpart in the choice of the word numérique, which attempts
to account for a phenomenon that goes beyond mere computing. In this
context, critically raising the question “Is networking computing?” does not
seem unfounded. It is even less so as, despite its somewhat provocative
allure, it has been raised since the very beginning of the history of networks.

Thus, this paper will, in a first part, re-examine the questions that re-
searchers asked during the networks’ “first steps”, in the 1960s and 1970s, on
their perimeter, their definition, their role. Researchers in computer science
and in telecommunications, in particular, find in networks a venue of dia-
logue, but interrogate themselves on the respective places of their fields of
study in this convergence, which allows to think about the relation between
networking and computing in a diachronic way. Investigating the status of
network research in the decades preceding ours, and study the computing-
networking nexus, also entails a closer look to the men, the institutions, the
research and the implementations that interested them the most. It means
to address the integration, or the marginality, of different research teams,
their understanding of being part of the computing culture or of a new field-
in-the-making. It implies a careful analysis of the position of other actors
— such as, e.g. in research on packet switching, ATT or French CNET —
as the positioning vis- a-vis these actors is used by researchers as a way to
ultimately define themselves. And finally, it means to look more closely at
hybrid objects and systems that are landmarks of this convergence, whether
it’s the Minitel, the Internet, or today’s cloud.

Our initial question is, therefore, grounded in history — and interrogates his-
torians themselves: are historians of networks computing historians? Arrived
after computing historians, who started their work by focusing on periods of
time in which data networks did not exist, network historians needed, all of

74



a sudden, to take into account the societal implications of their object, and
could not avoid yielding to the “internalist” tradition (history of technology
proposed by technical people) which had characterized, in its early days,
a history of computing fascinated by the machine. Notwithstanding, this
should not be taken as evidence of the fact that network historians have not
learned from history of computing and from its epistemological and histo-
riographical evolutions. These have witnessed, in turn, interest shifts from
hardware to software (Ensmerger), to information society (Aspray, Castells),
and to the “digital revolution” (Misa). Furthermore, the preservation of this
link allows them to incessantly reconsider the materiality of networks — that,
without neglecting the virtual, allows them to avoid a content-exclusive ap-
proach — and to remain anchored to the study of digital objects that relate
to the histories of innovation, technology, media and enterprise. At the
crossroads of several fields, the history of networks invites, as well, to reflect
upon its specificities, those of its archives; how it adds to the history of com-
puting while owing to it; with the aim, finally, to enrich the already-lively
historiographical debates that the latter has been experiencing for several
years.

Finally, the third part of this paper will address the cultural, social, po-
litical and juridical roots — beyond the technical and scientific ones — that
have shaped networks, to try and single out how the imaginaires and prac-
tices of networking have evolved, in relation (and in opposition) to those
of computing. To do so, we address themes such as openness, information
and communication, languages, data and interfaces — themes that are com-
mon to both fields, and can weave interesting links, if we take into account,
rather than computers or networks as objects, computing or networking as
foundational dynamics of a field where research and practice are increasingly
complementary — and intertwined.

References

Abbate J. (1999). Inventing the internet. Cambridge: MIT Press

Agre, P. (2003). Peer-to-Peer and the Promise of Internet Equality. Commu-
nications of the ACM, 46 (2) : 39-42.

Braman S. (2010). Technical Design of the Internet and the Law : The First
Decade. http://microsites.oii.ox.ac.uk/ipp2010/programme/111

Ensmenger N. (2004). Power to the people: Toward a social history of com-
puting. IEEE Annals of the History of Computing, 26 (1), 94-96.

Ensmenger N. (2012). The Digital Construction of Technology: Rethinking
the History of Computers in Society. Technology and Culture.

75



Flichy P. (1999). Internet ou la communauté scientifique idéale. Réseaux, nAf
97, vol. 17, 77- 120.

Flichy P. (2001). L’imaginaire d’internet. La Découverte, Paris.

Hauben R. et M. (1997). Netizens: On the History and Impact of Usenet and
the Internet. Wiley-IEEE Computer Society Pr.

Mahoney M. (1998). The History of Computing in the History of Technology.
Annals of the History of Computing, 10, 113-125.

Misa T. J. (2007). Understanding how Computing has changed the World.
IEEE Annals of the History of Computing, 52-63.

Musiani F. & Schafer V. (2011), “Le modéle Internet en question (années
1970-2010)”, Flux, 85-86 (3-4), pp. 62-71.

Moatti A. (2012). Le numérique, adjectif substantivé. Le débat, nA¥ 170,
133-137.

Neff, G. & Stark, D. (2003). Permanently Beta: Responsive Organization in
the Internet Era. In Howard, P. & Jones, S. G. (eds.) Society Online: The
Internet in Context, Thousand Oaks, CA : Sage Publications, 173-188.
Paloque-Berges C. (2010). Entre trivialité et culture : une histoire de I’Internet
vernaculaire. Emergence et médiations d’un folklore de réseau. Thesis in In-
formation and Communication Sciences, Paris 8 University.

Quaterman J. (1989). The Matrix: Computer Networks and Conferencing
Systems Worldwide. Digital Press.

Schafer V. & Thierry B. (2012). Le Minitel, enfance numeérique de la France.
Nuvis, Paris.

Serres A. (2003) Aux sources d’Internet : l’émergence d’Arpanet, Presses
Universitaires du Septentrion, Villeneuve d’Ascq.

Rheingold H. (1996). Les communautés virtuelles. Addison-Wesley/France.

40 years of computer science PhD in Lille University

Yann Secq (Yann.Secq@univ-1lillel.fr)
Université Lille I, France

C omputer science has emerged in France in the late fifties with the develop-
ment of calculators usages within universities laboratories. Works on these
calculators started within mathematical laboratories and more specifically in
the applied mathematics domain of numerical analysis. Then, gradually new
themes have emerged that were not tied to numerical considerations. These
works have progressively led to the creation of computer science laboratory
that have gained their autonomy from mathematical laboratories.

76



This study is focused on the evolution of PhD subjects from the creation of
the Laboratoire de Calcul of the Université de Lille in 1958 until the end of
2012. We have categorized PhD subjects and traced their evolution during
these 50 years from the beginnings of computer science PhD to the special-
ization stage that has exploded during the eighties. We also describes PhD
supervisors training and their scientific genealogy to relate the development
of given research categories.

We hope that this work can be seen as a contribution for the description
of one community of the communities of computing as Mahoney (2005) call
them. Finally, we try to confront what has happened within this laboratory
to others studies done at a larger scale concerning the evolution of research
themes in computer science history.

Method

This study is a part of an ongoing effort that has started in november 2012
to preserve the heritage of the computer science laboratory (Laboratoire
d’Informatique Fondamentale de Lille, LIFL'). Two workshops involving
retired colleagues have been organized to this aim. The first one in Novem-
ber 2012 was focused on the emergence of the Laboratoire de Calcul within
the Lille University and the second one in May 2013 on the creation and
developments of computer science diploma. A third one should happen in
December 2013 during the commemoration of the 30 years of the LIFL. This
work relies on a collective involvement of severals colleagues without whom
this paper would not exist:

e Joseph Losfeld who has initiated this work by organizing the first meeting in novem-
ber 2012,

e all retired colleagues that have positively answered our call to participation in this
heritage preservation action,

e Pierre-Eric Mounier-Kuhn which was present at both workshop and has gently
suggested to present this work in progress to the HaPoC community,

e Sylvie Moine and Isabelle Le-Bescond from our university library which have been
helpful to build the exhaustive listing of all PhD thesis.

To sustain and foster the work done during the first two workshops, a wiki
website? has been started to organize and to make available resources that
have been gathered. All PhD notices are available on this wiki and can be
downloaded in an easily usable format (CSV).

Results

Thttp://www.1lifl. fr
2http://wikis.univ-1illel.fr/scite/site/histoireinfo/home

7



The results are based on an extraction of data available on the SUDOC? and
ENS ULM RubENS* websites. Notices older than 1973 have been gathered
on RubENS while others notices have been extracted from SUDOC.

The database contains 329 PhD notices ranging from 1967 until 2012. These
notices are still being manually checked by colleagues to complete them
because some fields are missing, particularly the director field.

YEAR 67 68 70 73 74 T6 T7 78 79 80 81 82 83 &4
#orPuD 1 1 11 2 5 1 3 14 3 3 5 6 11
YEAR 8 8 87 88 8 90 91 92 93 94 95 96 97 98
#orbPuD 4 5 1 7 9 12 11 8 10 14 10 9 13 16
YEAR 99 00 01 02 03 04 05 06 O7r 08 09 10 11 12
#orPuD 10 10 5 8 2 10 13 16 15 15 8 16 9 6

Kalmdr’s Argument Against the Plausibility of Church’s Thesis

Mate Szabo (mszabo@andrew.cmu.edu)
Carnegie Mellon University, USA

In his famous paper, An Unsolvable Problem of Elementary Number Theory,
Alonzo Church (1936) identified the intuitive notion of effective calculabil-
ity with the mathematically precise notion of recursiveness. This proposal,
known as Church’s Thesis, has been widely accepted. Only a few people have
argued against it. One of them is Laszlé Kalmar, who, in 1957 gave a talk in
Amsterdam at the International Colloquium “Constructivity in Mathemat-
ics,” entitled An Argument Against the Plausibility of Church’s Thesis. The
talk was published as (Kalméar 1959). The aim of this paper is to present
and analyze Kalmar’s argument in detail.

It is very useful to have an insight into Kalmar’s general, sometimes pecu-
liar, views on the foundations of mathematics; my discussion is based on his
(1942) and (1967). According to him, mathematics not only stems from expe-
rience and empirical facts, but even its justification is in part empirical. The
development of mathematics, mathematical methods and notions is endless.

Shttp:/ /www.sudoc.abes.fr
“http:/ /halley.ens.fr/search*frf S5

78



As a consequence, mathematics cannot have a fixed foundation once and
for all. Finally, presenting mathematical results in given, fixed frameworks
is useful for precision and clarity, but mathematics is always done on an
intuitive level, not in one or many of these frameworks.

Kalmér considers Church’s Thesis as a pre-mathematical statement: it can-
not be a mathematical theorem or definition, as it identifies a mathemati-
cally precise notion with an intuitive one. Thus, his argument against the
plausi- bility of the thesis is also pre-mathematical. Kalmar begins by dis-
cussing his understanding of effective calculability, which is less restrictive
than Church’s, and questions the “objective meaning” of the notion of uni-
formity. That allows him to draw some “very unplausible” consequences of
the thesis. It “implies the existence of an absolutely undecidable proposition
which can be decided.” This proposition is absolute in the sense that it is
not undecidable relative to a fixed framework as the Gddel sentence is, but
it is only one proposition and not an infinite set of propositions as Churchs
undecidable problems are. However, the proposition can be decided on an
intuitive level.

Kalmar’s different understanding of the notions of effective calculability and
uniformity were not only motivated by his general views on the foundations
of mathematics. His epistemological as well as his political views played
a significant role in it. He expressed these views in his talks on the same
topic in Hungarian in his (1952) and (1957). Within this broader context,
Kalmar’s rather short and peculiar paper appears a bit more appealing.
However, in the end his argument does not affect Church’s Thesis, given the
usual understanding of effective calculability as mechanical procedures.

It is worth mentioning that Godel’s explanation of his incompleteness re-
sults and his conclusion that it “is not possible to mechanize mathematical
reasoning” (1937) and some of Kalmar’s arguments concerning Godel’s and
Church’s results resemble each other remarkably. Nevertheless, their stance
on Church’s Thesis is quite different. I will use the dissimilarities of their
arguments to point out once again where Kalméar’s takes a defective turn.

References
Church, Alonzo. 1936. “An Unsolvable Problem of Elementary Number The-
ory.” American Mathematics 58, no. 2: 345-363.

Godel, Kurt. 1937. “[Undecidable Diophantine Propositions].” In Kurt Gédel’s
Collected Works. Unpublished Essays and Lectures, Vol III, New York-
Oxford: Oxford University Press, 164-174.

79



Kalmar, Laszlo. 1942/2011. “The Development of Mathematical Rigor from
Intuition to Axiomatic Method.” Translated by Zvolenszky Zsofia, In Maté
Andras, Rédei Miklés and Friedrich Stadler (eds) The Vienna Circle in Hun-
gary. Wien-New York: Springer—Verlag, 269-288.

Kalmar, Laszlo. 1952. “A matematika alapjaival kapcsolatos tjabb ered-
meények (New Results Concerning the Foundations of Mathematics).” In
A Magyar Tudoményos Akadémia Matematikaiés Fizikai Osztalyanak Ko-
zleményei 2, no. 2: 89-112.

Kalmar, Laszl6. 1957. “Az tn. megoldhatatlan matematikai problém &kra
vonatkoz6 kutatasok alapj aul szolg 4l6 Church-féle hipotézisrol (About
Church’s Thesis and Unsolvable Mathematical Problems).” In A Magyar Tu-
domanyos Akadémia Matematikaiés Fizikai Osztalyanak Kozleményei 7, no.
1: 19-38.

Kalmar, Laszlo. 1959. “An Argument Against the Plausibility of Church’s
Thesis.” In Arend Heyting (ed) Constructivity in Mathematics, Proceedings of
the Colloquium Held at Amsterdam. Amsterdam: North— Holland Publishing
Company, 72-80.

Kalmar, Lasz16. 1967. “Foundations of Mathematics — Whither Now?” In

Lakatos Imre (ed) Problems in the Philosophy of Mathematics. Amsterdam:
North—Holland Publishing Company, 187-207.

Back to the (Libraries of the) Future

Mirko Tavosanis (tavosanis@ital.unipi.it)
Universit & di Pisa - Dipartimento di Filologia, lett. e 1., Italy

The role of J. C. R. Licklider as a pioneer in the creation of modern comput-
ing is well understood (Hiltzik 1999; Bardini 2000; Rheingold 2000). How-
ever, most of the pertinent research is related to the work Licklider carried
out in the second half of the Sixties, mainly centered on the establishment
of interfaces and networks and culminating in the seminal paper The Com-
puter as a Communication Device (April 1968) written together with Robert
Taylor, illustrated by cartoons of Roland B. Wilson and published only a few
months before Engelbart’s famous “Mother of All Demos” in California.

Comparatively less known is instead the wider scope of Licklider’s aims. In
the Fifties, keeping track of the way he was spending his working days as
expert in psychoacoustics, Licklider realized that a good part of his time
was occupied by simple mechanical tasks which did not require particular
intelligence. In 1960 he then published the seminal paper Man-Computer
Symbiosis, where he explicitly stated the importance of a direct interaction

80



between the human operator and the machine in order to improve knowledge
work. In this article, among other things Licklider proposed the widespread
use of three systems: a “desk-surface display and control” (a screen on which
the operator to track characters and pen drawings that the computer inter-
prets and “regularizes”), a “computer-posted wall display” for meetings and
finally “automatic speech production and recognition”. It is interesting to
note that none of these systems resembles a modern computer.

Licklider believed then that in a reasonable time “most of the task (...) of
any technical thinker would be performed more effectively by machines”
(Rheingold 2000, p. 134). The idea that the computer could not replace
the scientist, but his aides, at that time was already the focus of the work
of other researchers, such as Engelbart. Licklider, however, soon found him-
self in a unique position that allowed him to take mighty steps toward the
concretization of his idea: in October 1962 he became director of the Infor-
mation Processing Techniques Office (IPTO) of the Pentagon, a structure
that in practice was responsible for the allocation of funds from the U.S.
Ministry of Defense to the computer industry.

In 1964, when he was also busy writing Libraries of the Future, Licklider
left the post of Director of IPTO and recommended (successfully) the young
Ivan Sutherland as its substitute. Sutherland, however, held the position
for only a few months, and in 1965 he was replaced not by a computer
scientist, but by another expert in psychoacoustics: Robert Taylor, who
followed scrupulously the search paths set by Licklider, of which he was
indirectly student (Hiltzik 1999, p. 15, in his new role, among other things,
Taylor was one of the main supporters of the work of Engelbart in 1967:
Bardini 2000, p. 23). Goals like the production of computers capable of
time-sharing and of interacting through graphic displays, or as the creation
of ARPAnet, the first embryo of the Internet, became then central in the
funding policy of the IPTO, according to the guidelines set in Libraries of
the Future.

In Licklider’s vision, however, those bold moves were meant only as a section
of a wider restructuring of knowledge work. From this more general point
of view, Libraries of the Future constituted an eerily prescient description
of some fields of study that were developed independently in the following
decades. In the book, in particular, Licklider described in full detail the
composition and the working ways of a “procognitive system” where real-
time computer networks and sophisticated tools of input and output were
linked to natural language processing tools and wider repositories of infor-
mation classified in machine-readable format. Particularly interesting from
this point of view is the detailed comparison between Licklider’s idea and

81



Tim Berners-Lee’s description of a “semantic web” (Berners-Lee, Hendler
and Lassila 2001).

However, it seems that the success of some sections of the program carried
also the seeds of oblivion for the overall idea. Licklider’s framework was
quickly forgotten and was not considered as a reference for the computing
of the following decades. A quick survey of the state of the art shows in-
stead, if not an ongoing relevance of the framework, at least its usefulness as
benchmark for the progress of computing and for a better understanding of
some recurrent misperceptions regarding the nature of the information used
in knowledge work

References

Bardini, Thierry. 2000. Bootstrapping. Douglas Engelbart, coevolution, and
the origins of personal computing. Stanford University Press, Stanford.
Berners-Lee, Tim, James Hendler and Ora Lassila. 2001. “The Semantic Web”.
Scientific American Magazine, 17 May 2001.

Hiltzik. 1999. Dealers of lightning. Xerox PARC and the dawn of the computer
age. HarperCollins, New York.

Licklider, Joseph C. R. 1960. “Man-Computer Symbiosis”. IRE Transactions
on Human Factors in Electronics, HFE-1, pp. 4-11, March 1960 (Licklider
1990, pp. 1-20).

Licklider, Joseph C. R. 1990. The computer as a communication device. Palo
Alto, Digital.

Licklider, Joseph C. R. and Robert Taylor. 1968. “The Computer as a Commu-
nication Device”. Science and Technology, 1968. (Licklider 1990, pp. 21-41).

Towards a Semiotic Framework for Programming Languages

Andrea Valle (andrea.valle@unito.it)
Universita degli Studi di Torino, Italy
Alessandro Mazzei (mazzei@di.unito.it)
Universita degli Studi di Torino, Italy

A programming language is "an artificial formalism in which algorithms can
be expressed. For all its artificiality, though, this formalism remains a lan-
guage" (Gabbrielli and Martini 2010). Considering this property, Tanaka-
Ishii motivates a semiotic analysis of the programming languages (Tanaka-
Ishii 2010). It is the only large-scale sign communication system not intended

82



uniquely for humans: “The purpose is the communication of programs be-
tween computers, from man to computers, and also from man to man.”
(Zemanek 1966). We can arrange programming languages considering their
proximity to the machine (low-level) toward the human (high-level). In the
artificial ecosystem created by the Von Neumann machine the principal ref-
erent in low-level languages is the processor, with its specific binary dialect.
Just upon this level we can recognize assembler languages, where a basic lin-
guistic representation is introduced by using symbolic name for operations
(e.g. STORE, LOAD, ADD) and by using addresses in order to refer to
memory locations. Moving up we find high-level languages, in which the
abstraction allows for the introduction of a "structured" form of linguistic
representation based on the notion of "control flow" by means of condition-
als and loop (e.g. IF, WHILE). Here we find an osmosis between human and
machine semiotics, where the strict formal correctness of the machine side
is balanced by the variety typical of natural languages.

In programmers communities a number of good practices has emerged in
relation to the crucial notion of ‘readability’ of the code. For instance, the
so-called good practices prescribe the insertion of comments, i.e. natural
sentences that are directed uniquely toward the ideal human-reader and that
are eliminated in the compilation/interpretation process. Good practices
prescribe the use of meaningful names for variables, where meaning depends
on the ideal human reader.

All programming languages are Turing-complete. This means that all lan-
guages are able to express the same "things", but the variety of languages
(thousands of languages in fifty years) demonstrates the need to express
some of these ‘things’ better (more easily, more efficiently) than others. In
other words, there is obviously a connection to the Sapir-Whorf hypothesis
in the relationship between programming language and what it can express.
The explicit linguistic nature of programming languages, although little in-
vestigated by current semiotic literature, make them an interesting test bed
for a theory of enunciation, that takes into account the roles played by the
concepts of persona, time and space. From ethnographic point of view, many
famous programmers consider the linguistic abilities, in the sense of natu-
ral language, as a important prerequisite to become a skilled programmer
(Seibel 2002). We briefly analyze the concepts of persona, time, and space
in the imperative, functional and object-oriented paradigms.

3

Imperative paradigm is the older family of high-level languages: “.. -
imperative- here has to do with natural language: as in an imperative phrase,
we say -take that apple- to express a command, so with an imperative com-
mand we can say ‘assign to x the value 1’ ” (Gabbrielli and Martini 2010).

83



Here the subject of the enunciation "I" is an abstract entity, the subject-
programmer who get into a relationship with an asymmetric and comple-
mentary subject "YOU", an abstract agent of calculus which implements
the given orders. The memory is the reference space of the language: the
names of variables establish a system of real mnemonic loci, in the dou-
ble meaning of memory addresses for the machine and "placeholders" for
the human interpreter. Thus, in the imperative paradigm, there is a clear
opposition between an active dimension of the subject (agentive) and a pas-
sive dimension of the data (spatial). With regard to temporal dimension,
imperative languages do not provide references to past or future. Every
statement prescribes an action to be realized at the time of its enunciation:
the sequence of enunciates coincides with the advancement of time.

In the functional paradigm, “computation proceeds by rewriting functions
and not by modifying the state” (Gabbrielli and Martini 2010). Usually we
can separate a functional programs into two sections: in the first section we
find a set of inter-related function definitions; in the second section there is a
‘request’ to the ‘environment’ (no specific “YOU” is present here) to compute
the output value of a function over a specific input value. The programmer
constructs an ‘imaginary geography’ of functions that can partially or ex-
haustively be explored. In other words, the functions establish a space of
possible relations, governed by a specific topology. This function space also
absorbs the time: the first function-call is the trigger of a function-call tree
into the space of the function. The basic assumption in the pure functional
paradigm is that the order in which this graph is explored does not affect
the final result of the computation.

The foundational assumption in the object-oriented paradigm is to represent
the human conceptualization of the world. Following a classical Aristotelian
perspective, the basic structure is a taxonomy of classes that organizes the
world into objects, where an object is an entity with properties (its ‘at-
tributes’) and abilities (its ‘methods’). The program counsists of two blocks:
the first descriptive (metalinguistic) one which provides for the definition of
classes; the second one in which the objects are invoked.

The typical object-oriented syntax has the shape name.method(arguments),
i.e. “subject! Do this in this way!”. So, the ‘YOU’ of the enunciation is not
the calculation agent, but a plurality of possible receivers, i.e. the objects:
this feature eliminates spatiality from the world, because data are encoded
into object attributes. Considering time, the object-oriented paradigm pro-
vides a timeless description of classes (similar to functional paradigm) and
moreover a ‘call’, i.e. a sequence of instantiations and methods calls (similar
to imperative paradigm).

84



References

Gabbrielli M. and Martini S., 2010, Programming Languages: Principles and
Paradigms, London, Springer.

Seibel P., 2009, Coders at Work, New York, Apress.
Tanaka-Ishii K., 2010, Semiotics of Programming, Cambridge-New-York,
Cambridge- University.

Zemanek H., Semiotics and programming languages, Communications of the
ACM (9-3), 1966.

Can Computing in Art Renew the Debate on Art?

Mario Verdicchio (mario.verdicchio@unibg.it)
Dipartimento di Ingegneria dell’Informazione, Universita degli Studi di
Bergamo, Italy

To take Computing into account in the context of Art is anything but simple.
The task is complex because there is a number of issues to consider and
because such issues are entangled in an intricated web of mutual influence.
This work is an attempt to shed some light on the matter, with the aim to
bring home at least some clear perspective from which we can conduct the
discourse on Computing in Art and, hopefully, some new insights into the
nature of Art.

Fundamental questions like “What is Art?” and “What is Computing?”’ are
still very controversial. The former points at a long standing debate (Davies
1991) whose scope was made even wider in the beginning of the 20th cen-
tury by groundbreaking and controversial works like Duchamp’s Readymades
(Kuenzli and Naumann 1989). The latter might appear to point at a nar-
rower context, because the range of computing devices seems to be more
manageable than the vast variety of works of Art out there, but nevertheless
Computing is not devoid of conceptual issues surrounding its definition as a
discipline (Tedre 2011) or the criteria that qualify computing devices (Searle
1980, Block 1990).

The lack of a solid conceptual framework in either field is reflected in the
several names with which scholars refer to their intersection: “digital art”,
“generative art”, “interactive art”, “computer art”, “online art” are some ex-
amples. Each term focuses on a peculiar characteristic that is meant to
differentiate Art made with computing devices from more traditional en-
deavors. In particular, theorists seem to present interactivity as one of the

85



defining characters for this type of Art (Carter & Geczy 2006, McIver Lopes
2010).

Interactivity is often said to redefine the role of the spectator, who acquires
a kind of co- authorship by activating some prompts, although always within
the constraints predefined by the artist. Still, interactivity alone is not suf-
ficient to fully characterize Computing in Art: sculptures with a reflective
surface like Kapoor’s Cloud Gate in Chicago (Baume 2008) also give the
viewer the possibility to alter what they see on the artwork. An obvious
reply may be that a piece of stainless steel is passive, whereas a fully-fledged
interactivity requires the artwork to include devices that actively respond to
the stimuli from the viewer.

However, there is no physical or conceptual requirement that obliges the
artist to create such active responders by means of computing devices: purely
mechanical or electromechanical feedback systems, comprised of sensors and
actuators, would perfectly work in terms of interactivity. There is a concep-
tual issue here: are mechanical devices to be considered performing compu-
tations because their behavior depends on external stimuli and, hence, they
can be seen as information processing systems, although there is no symbolic
encoding at work? Answering this question on the nature of Computing is
no easy task, but it is not the main point when it comes to Art. Whether
they are computing devices or not, why are purely electromechanical systems
employed only rarely nowadays, whereas an overwhelming majority of inter-
active artworks rely on (less conceptually controversial) computers? There
are operational considerations to be made.

Snibbe’s interactive work “Boundary Functions” projects lines between peo-
ple on a platform, defining the contours of their personal spaces; as the per-
sons move the lines change, too (Snibbe 1998). Imagine realizing such work
without resorting to a computer: it is not impossible but it would require a
much bigger effort by the artist to design and build the whole installation,
possibly involving weight sensors to detect the participants’ positions on the
platform instead of a computer-based image analysis of the input from a
camera.

If it becomes a question of performance (whether it is the speed at which
the artwork responds, or the completion time by the artist), are comput-
ers employed in Art today because they are computing devices or because
they are technological devices that guarantee results within certain resource
constraints?

Computing in Art today is not only about computation, but how such com-

86



putation is carried out: computing devices play an important role also thanks
to the technology they are based upon. The final result that the viewers en-
joy is not the only part of the whole artistic endeavour to exploit technology:
the way artists work is indeed changed by the benefits provided.

The impact on the creation process has been traditionally underestimated
in the philosophical debate on Art, especially if the discourse ends up in the
functional vs procedural debate. In trying to define the role of Computing
in Art it might be necessary to go beyond such dualism.

References

Baume, N., editor (2008). Anish Kapoor: Past, Present, Future, MIT Press.
Block, N. (1990). “The computer model of the mind”, Thinking: An Invitation
to Cognitive Science, 3, MIT Press, pp.247-289.

Carter, M. & A. Geczy (2006). Reframing Art, Berg.

Davies, S. (1991). Definitions of Art, Cornell.

Kuenzli, R. E. & F. M. Naumann, editors (1989). Marcel Duchamp: Artist of
the Century, MIT Press.

Mclver Lopes, D. (2010). A Philosophy of Computer Art, Routledge.

Searle, J. R. (1980). “Minds, brains, and programs”, Behavioral & Brain Sci-
ences 3(3), Cambridge, pp.417-457.

Snibbe, S. (1998). Boundary Functions. http://www.snibbe.com/projects/

interactive/boundaryfunctions

Tedre, M. (2011). “Computing as a science: A survey of competing view-
points”, Minds & Ma- chines, 21, Springer, pp.361-387.

Computer art or art of computing? FEarly debates revisited.

Joanna Walewska (joanna.walewska@gazeta.pl)
Nicolaus Copernicus University, Krakau, Poland

Since its very beginning, computer art has operated on the margins of art
establishment as it was created in research laboratories and universities by
engineers. Artists using computers tended to keep distance from contempo-
rary art, but at the same time they needed to define computer art and its
place in relation to traditional art. The status of computer art as art and
its position in relation to such trends like op art, kinetic art or conceptual
art were still negotiated. It was debated whether such computer art features

87



as generativity, processuality, reactivity, interactivity and creativity in the
approach to technology can be a basis to recognizing it as an autonomous
trend in contemporary art. In my paper, I would like to invastigate a process
of recognition of computer art not as an iconic art but as purely intellectual
or conceptual form. I will analyze two cases: first, a debate on the pages
of PAGE bulletin which took place in the 1970’s and then, a 2010 text by
Frieder Nake from 2010, in which he reconsidered the status of computer art
from the prespective of almost 50 years of its history and presented a view
that it was virtually “more” conceptual than conceptual art.

In October 1971, Frieder Nake, one of the pioneers of computer graphics,
wrote an article concerning the future of computer art entitled ‘There Should
Be No Computer Art’, which started a dispute on the pages of the PAGE
bulletin (nr 18, October 1971). It was provoked by his statement that he
would no longer make art using a computer, because “the repertoire of re-
sults of aesthetic behavior has not been changed by the use of computers.”
Nake protested against the use of the new medium to create conventional
art works, suitable for hanging on the wall of a gallery or museum. Ac-
cording to Nake, computers should be use as a tool for the liquidation of
art, and he described the artists, who used it as if nothing had changed,
as aAdtechnocratic dadaists”. The leading computer artists, who perceived
Nake as an author of an algorythmic, geometric works referring to Paul Klee,
considered it as an insult. The responses to this, so to say, Nake’s “man-
ifesto” appeared in the next issue of the bulletin in which John Lansdown
published his article Computer Graphics does not equal Computer Art. In
the article Lansdown tried to prove that the Nake’s statement was true in
relation to computer graphics, but one could not evaluate all the branches of
computer art in such a way. According to Lansdown, computer art should
be understood more as a process than a material object as only the former
helps discover its potential. He thought that at least three artists should be
appreciated as their artworks could not have been made without a computer:
John Lifton, George Mallen and Edward Thnatowicz, whose sculpture was
described by Lansdown as “computer- controlled, ’intelligent’, responsive to
its environment in a way which makes other Kinetic art works seem like a
toys”. This response was followed up by a body of articles written by leading
artists, which appears in subsiquent numbers of PAGE, but it seems that
this heated discussion was inconclusive. In 2010 Nake wrote an article called
Paragraphs on Computer Art, referring to the text by Sol LeWitt, in which
he explicitly emphasized purely intellectual, algorithmic and semiotic nature
of computer art, which should not be called computer but more precisely art
of computing. By presenting this discussion along with the recent text by
Frieder Nake I would like to situate the early computer art within the het-

88



erogenous conceptual framework of modernist art and to show its relation
to the avant-garde.

An historical perspective on informatics language and music composition

Jean-Marc Wolff (jeanmarcwolff@hotmail.com)
Ministére de I’Education Nationale, Paris, France

What was the impact of the development of computer science on music com-
position practices since the mid-20th century ? What are the links between
computer programming and music composition?

From the 1957 asssembler language used by Music 1 to the current QuteC-
Sound language and Openmusic software, we will discuss the genealogical
succession of informatics languages and softwares used for music composi-
tion in ‘art music’ and the way both were implemented and used by computer
engineers and composers, in a interactive and cross-fertilised movement.

In this study, we firstly consider the growth of an ‘invisible college’. From
a small community of music-loving computer engineers like Max Mathews
and Lejaren Hiller (some of them like Jean-Claude Risset will eventually be-
come composers), composers such as lannis Xenakis, Pierre Boulez and Kaija
Saarihao seeking solutions or inspiration in informatics languages, joined the
community. Both composers and engineers contributing to a common work
through their various competences and needs, a cross- fertilised movement
arose from this intellectual symbiosis. This movement was reinforced by aca-
demic institutions such as the MIT, Stanford or Princeton and by research
institutions such as the IRCAM. An ‘invisible college’ early springs up at
the end of the 1960’s, in a strong interaction with IT networks and leads to
the rise of a specific ‘epistemic community’.

More precisely, we will discuss how informatics shaped music composition
and how related composition issues lead up to new intellectual and creative
dynamics among this community. While studiing several piece of art (from
Hiller, Risset, Xenakis, Saarihao, etc.) we will deeply focus on specific time
dynamics of both informatics and music composition. Indeed lags and con-
vergence of this two technical an esthetic historicities gave birth to creativity
in this two fields.

This study is conducted by using several engineers’ and composers’ testi-
monies extracted from specific books, specialized music reviews and scientific
conferences’s proceedings such as the International Computer Music Confer-

89



ence, and secondary sources which conduct analysis of musical works, with
a specific emphasis of those from composers who worked at the IRCAM.

References

Dean R.T. dir.(2009), The Oxford Handbook of Computer Music, Oxford
University Press, New York

Collins N., d’Escrivan J. ed. (2007), The Cambridge Companion to Electronic
Music, Cambridge University Press, Cambridge

Computer Music Journal, since 1977
Leonardo since 1968 ; since 1991: Leonardo Music Journal
International Music Computer Conference (ICMC) since 1975

Journées Informatique et Musique (JIM), since 1994

90



Conference Venue

The conference will take place at the Ecole Normale Supérieure (ENS), rue
d’Ulm 45, salle Dussane.

The afternoon session on Wednesday, 30th of October and the conference
dinner that same afternoon will take place at the Amphithéatre resp. la
Rotonde of the Ecole Nationale Supérieure des Arts Décoratifs, rue d’Ulm
31.

wisTo
EUTREOUL
§ o

NORMALE
SUPERIEURE
LocausaTion
orS saits
7 D SERVICES

s

~AWSVYI Iy

&= AT [E o W
HEIOTHIOUE BIALICTHEQUE
S AL e P

91



Index

Abbate, Janet, 6, 10, 74 Halpin, Harry, 6, 39
Alberts, Gerard, 3 Hicks,Marie, 3

Artemov, Sergei, 3 Hoarau, Dominique, 3
Assayag, Gérard, 8, 15 Hocquet, Alexandre, 8, 41
Bartzia, Iro, 3 Jebeile, Julie, 6, 44
Benini, Marco, 8, 36, 39 Joinet, Jean-Baptiste, 3
Berry, Gérard, 3

Birgé, Jean-Jacques, 8, 15 Lindsay, Jon, 47

Brand, Wolfgang, 7, 16 Loewe, Benedikt, 3

Bullynck, Maarten, 3
Meéleés, Baptiste, 3, 8, 49

Calude, Cristian, 3 Martini,Simone, 3, 84
Campbell-Kelly, Martin, 3 Mazzei, Alessandro, 81

Cardone, Felice, 9, 18 Mazzei, Allessandro, 8

Chazelle, Bernard, 9, 11 Morene. Andreata. 8. 15
Cignoni, Giovanni, 6, 27, 29, 53 Mori, Elisabetta, 6, 51, 53
Cooper, Barry, 9, 10 Mounier-Kuhn, Pierre-Eric, 3, 76
Corry, Leo, 3 Musiani, Francesca, 6, 73, 75

Crafa, Silvia, 9, 70
Naibo, Alberto, 3

Daylight, Edgar, 6, 21 Numerico, Teresa, 7, 54

De Mol, Liesbeth, 3
Dean, Walter, 7, 12

Pégny, Maél, 3
Dennhardt, Robert, 7, 23

Paloque-Berges,Camille, 7, 56, 75

Dowek, Gilles, 6,12 Pelillo, Marcello, 6, 60
Durand-Richard, Marie-José, 3 Pereira, Patrice, 3
Durnova, Helena, 3 Petrolo, Mattia, 3
Piccinini, Gualtiero, 3
Ensmenger, Nathan, 8, 12, 74 Porter, Christopher, 7, 63
Franchette, Florent, 3 Power, James, 7, 65
Priestley, Mark, 7, 23, 68
Gadduci, Fabio, 6, 27, 29, 53 Primiero, Giuseppe, 3
Gasparri, Luca, 6, 29
Gherardi, Guido, 7, 33 Rapaport, William, 3
Giavitto, Jean-Louis, 3, 8, 15 Rohrhuber, Julian, 3
Girard, Jean-Yves, 7, 13 Rojas, Raul, 3
Gobbo, Federico, 8, 36, 39 Rosen, Margit, 8, 14, 15
Guegen, Haud, 7, 56 Russo, Federica, 9, 70

92



Ségal, Jérome, 3
Scantamburlo, Teresa, 6, 60
Schafer, Valérie, 6, 73, 75
Schiaffonati, Viola, 6, 60
Schmitt, Antoine, 8, 15
Scopsi, Claire, 7, 56

Secq, Yann, 6, 75

Sieg, Wilfried, 3

Smets, Sonja, 3

Szabo, Mate, 7, 77

Tagliabue, Jacopo, 6, 29
Tavosanis, Mirko, 7, 79
Thierry, Benjamin, 6, 73, 75
Turner, Raymond, 3

Ungerer, Laurent, 3

Valle, Andrea, 8, 81
Verdicchio, Mario, 8

Walewska, Joanna, 8, 86
Wolff, Jean-Marc, 8, 88

93



