
Spatial Embedding And the Struture of ComplexNetworksS. Bullok1 and L. Barnett2 and E. A. Di Paolo3

1Shool of Eletronis and Computer SieneUniversity of Southampton, UK
2Centre for Computational Neurosiene and RobotisUniversity of Sussex, UK

3Department of Logi and Philosophy of SieneUniversity of the Basque Country, Spain.Marh 5, 2010AbstratWe review and disuss the strutural onsequenes of embedding a random network withina metri spae suh that nodes distributed in this spae tend to be onneted to those nearby.We �nd that where the spatial distribution of nodes is maximally symmetrial some of thestrutural properties of the resulting networks are similar to those of random non-spatialnetworks. However, where the distribution of nodes is inhomogeneous in some way, thiseases to be the ase, with onsequenes for the distribution of neighbourhood sizes withinthe network, the orrelation between the number of neighbours of onneted nodes, and theway in whih the largest onneted omponent of the network grows as the density of edges isinreased. We present an overview of these �ndings in an attempt to onvey the rami�ationsof spatial embedding to those studying real-world omplex systems.1 IntrodutionThe new siene of networks [21, 4℄ aims to generate insights into omplex systems by representingthem as graphs (networks) omprising a number of nodes (parts, elements, omponents, individu-als) onneted by edges (onnetions, interations). One represented in this way, graph-theoretimetris and analyses an be used to haraterise the strutural organisation of the target omplexsystems. These haraterisations are helpful in that they an suggest mehanisms of growth [1℄,proesses of reon�guration [27℄, or other explanatory aounts of omplex system behaviour.The insights, methods and measures derived from omplex networks siene may be applied toa vast range of potential target systems: teleommuniation networks, soial a�liation networks,transport networks, epidemis, neural networks, metaboli pathways and geneti regulatory net-works, among many others, see, e.g., [14℄. It is attrative to think that the impliations of abstratmodels of omplex networks might generalise aross di�erent domains. This is one of the reasonsbehind the exitement generated by omplex networks. However, it may be expeted that realprogress on spei� appliations might not just require the addition of domain spei� knowledgeto a general insight, but also sometimes will fore researhers to question whether there are im-portant aspets of omplex networks that need further investigation in order to make them morewidely appliable. Many of the real systems mentioned present a spatial struture and often thisstruture onstrains the possible onnetivity and interations between nodes in the network andtheir ativity. This motivates an investigation into the role of spae on omplex networks.1



Traditionally, one popular approah has been to de�ne lasses of random graphs, so alledbeause they are generated by a random proess. By haraterising the properties of a set ofrandom graphs and explaining how these properties vary with parameters suh as onnetiondensity, number of nodes, amount of random rewiring of onnetions, et., networks siene anreveal what the generi properties of suh a graph an be expeted to be.For instane, Erd®s and Rényi [9, 10, 5℄ de�ned a very simple lass of random network in whiheah pair of nodes is onneted with probability p. Amongst other things, they showed that as thedensity of network onnetions is inreased (i.e., as p grows), their networks reah a onnetiondensity at whih they pass through a very rapid step hange in their overall organisation. Onesuh �phase transition� involves the onset of a giant omponent : a sub-set of nodes that are eitherdiretly or indiretly onneted to one another by network paths and between them omprise thevast majority of the network. Below a threshold value of p = 1/n (where n is the number ofnetwork nodes) suh a giant omponent is almost ertainly absent from an Erd®s-Rényi network,whih will tend to omprise many disonneted fragments. Above this threshold, a single giantomponent is almost ertainly present.Similarly, Watts and Strogatz [27℄ show that gradually randomly re-wiring a regular lattiean quikly generate a �small world� graph that retains the high lustering that is harateristiof the original lattie (the neighbours of a node are likely to themselves be neighbours1) but alsoenjoys the relatively short path lengths separating arbitrary pairs of nodes that is harateristi ofErd®s-Rényi random networks.The third major random graph model is due to Barabási and Albert, who proposed a randompreferential attahment proess apable of growing a network that exhibits a sale-free degreedistribution, meaning that the expeted number of neighbours of a randomly hosen node (itsexpeted degree) follows a power law distribution [1℄. Unlike both the Erd®s-Rényi and Watts-Strogatz models, where a node's degree an be expeted to be lose to the network's mean degree,Barabási-Albert's proess ensures that many nodes have very low degree (they are peripheralnodes onneted only to a very small number of neighbours) while a few have very large degree(hubs diretly onneted to a large proportion of the network).There are of ourse many variants of these models, and alternative random graph models[5, 21, 4℄. However, in the ontext of the burgeoning networks siene literature, the role ofspatial embedding has, arguably, been somewhat negleted given that the vast majority of real-world omplex systems are subjet to the onstraints that result from being spatially extended(inluding the problem system identi�ed with the birth of graph theory itself: Euler's SevenBridges of Königsberg). Both the Erd®s-Rényi and Barabási-Albert models onsider nodes to bea-spatial, with no relationship between nodes other than whether they are onneted or not. TheWatts-Strogatz model is di�erent in that it ommenes with a lattie that an be thought of asa set of points arranged regularly in some spae and onneted to their nearest neighbours, andthen proeeds to erode this spatial organisation. However, little attention is paid to the spatialityof small worlds, per se.This is despite the fat that the small-world notion originated in a set of soial network exper-iments that were expliitly geographial in spirit. Milgram [26℄ invited partiipants in his seminalexperiment to send a pakage to a reipient identi�ed by name, address and oupation, but onlyvia a hain of people known on �rst-name basis. Results of the experiment showed that whena pakage arrived at its ultimate destination it had passed through on average between �ve orsix intervening people who had been able to ombine their soial and geographi knowledge toahieve a remarkably short path length between initial sender and �nal reipient (but see [13℄ fora ritique of Milgram's study).Subsequent studies of spatially embedded networks have tended to be domain spei� and1In this paper, there is sope for onfusion in the meaning of terms suh as �neighbour� or �near� or �lose�,eah of whih might be interpreted either with respet to the spatial distane between nodes or with respet to theonnetivity of the network. Here we will refer to a node's neighbours as those nodes that are diretly onnetedto it on the network. When neessary this will be expliitly distinguished from nodes that share the same spatialloale. Similarly, a �path� between two nodes will be always be interpreted in terms of traversing onnetions onthe network, rather than moving diretly through spae.2



Figure 1: Examples of spatially embedded random networks, onstruted a) uniformly on a dis,b) uniformly on a sphere, ) non-uniformly on a plane.aimed at modelling some spatial aspet of network formation [28, 3, 19, 29, 17, 16, 18, 25, 15℄or addressing somewhat restritive spatial embeddings [22, 8, 12, 24℄. The urrent paper aims,therefore, to take a more general and fundamental perspetive on the onstraints on networkstruture implied by spatial embedding, drawing heavily on a reent tehnial exposition [2℄.22 OverviewBy a spatially embedded network in the broadest sense we shall mean the following: network nodesreside in a metri spae and the likelihood of a pair of nodes being onneted depends in some wayon the spatial distane between them. The spae ould be a �real� (Eulidean) spae or perhapssome more abstrat spae suggested by the problem or model domain (e.g., a politial spetrumranging over far-right, right-wing, entrist, left-wing and far-left ideologies). We generally imaginethat network nodes whih are nearby in spae have a better hane of being onneted than distantnodes; that is, onnetion probability deays with distane.Spatially embedded networks in the above sense have traditionally been studied in the (re-strited) form of Random Geometri Graphs (RGGs) [8, 22℄. In these networks, nodes are dis-tributed uniformly at random over some Eulidean spae and pairs are onneted only if they fallwithin a harateristi distane of eah other. Studies of RGGs have generated some insight intotheir struture, inluding the relationship between the amount of lustering and the dimensionalityof the spae, and the manner in whih a giant onneted omponent appears as the onnetiondensity is gradually inreased. The interested reader an �nd an overview of these results in [12℄.In [2℄, Barnett et al. introdued a generalisation of RGGs, the Spatially Embedded Random Net-works (SERN) model, where the embedding spae is no longer neessarily Eulidean, onnetionprobability deay is not restrited to a simple distane uto�3 and, ruially, the distribution ofnodes is no longer required to be uniform in spae. It is the latter feature�the possibility ofspatial inhomogeneity and the onsequent variability in the likelihood of di�erent pairs of nodesbeing onneted together�whih turns out to have a deisive impat on the struture of the re-sulting networks, e.g., �g 1. In analysing the properties of the SERN model (and in partiular thebehaviour of various �motif moments�, see �g 2), we were able to demonstrate that:
• Where the spatial distribution of nodes is homogeneous (i.e., there is maximal spatial sym-metry) the degree distribution of a spatially embedded random network is equivalent to that2Unless expliitly indiated, evidene and/or arguments supporting the laims and results reported in this paperan be found in [2℄.3While any pair of SERN nodes are either onneted, or not, in general these onnetions are determined prob-abilistially, not deterministially, and we may be required to onsider expetations of graph properties alulatedover an ensemble of networks generated using a partiular distane deay funtion for a partiular spatial distribu-tion of nodes. RGG graphs are a degenerate ase of this sheme in whih the probability of onnetane is unityfor nodes separated by a distane less than some value, d, and is zero otherwise.3
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Figure 2: Examples of, respetively, hain, fan and loop motif �moments� impliated in the analysisof spatially embedded random networks. A motif is a distintive, reurrent strutural networkelement. A moment is an average of a produt of random variables. Motif moments, averagedover an ensemble of networks, are useful and intuitive building bloks in terms of whih variousnetwork statistial features may be expressed. For example, the 'hain', 'fan' and 'loop' motifsillustrated appear in the expression for degree orrelation.of a non-spatial random graph.
• Similarly, as the number of onnetions in suh a homogeneous spatial graph is inreased aphase transition to a giant omponent may be observed, as in non-spatial random graphs.
• However, if there is spatial inhomogeneity in the distribution of nodes then there is evideneto suggest that no phase transition to a giant onneted omponent ours; rather, weonjeture that the expeted size of the largest omponent will grow smoothly as more edgesare added to the network.
• Spatially embedded random networks tend to exhibit assortative degree orrelation, withhighly onneted nodes tending to be more likely to be onneted to eah other, and thisorrelation is boosted by inhomogeneity in the spatial distribution of nodes.
• Spatially embedded random networks may exhibit a sale-free degree distribution, but thisrequires that there exist a singularity in the spatial distribution of nodes, i.e., a point inspae near whih the density of nodes inreases without limit.
• Under reasonable assumptions, we onjeture that random geometri graphs (and a broaderlass of lattie-like graphs to whih they belong) annot be small worlds. However, moregenerally, spatially embedded small worlds an exist, and indeed spatial rewiring shemesan reate small world properties in arbitrary lustered networks.In the next setion we expand on these results, before disussing some aveats and quali�ationsthat have to be borne in mind. In this paper our intention is to expliate the way in whih spatialembedding onfers ertain properties on graphs without resorting to mathematial proofs (whihan be found in the original paper [2℄).3 Strutural Properties of Spatially Embedded RandomNet-works3.1 Homogeneity vs. InhomogeneityUpon setting out to explore the general properties of spatially embedded networks, an obviousplae to start is a network onstruted over a random spatial distribution of otherwise featurelessnodes. For instane, we might satter nodes aross a square path of spae and onnet togetherthose that are loser together than some threshold distane, not aring about any other propertyof the nodes. Of ourse, points near the boundary of the square path might be non-standard4



in their properties, so we might restrit our attention to part of the spae that is far from theboundary. Or perhaps, rather than onsider a square path, we might onsider points randomlydistributed over a sphere whih has no problemati boundaries4. We might also avoid onsideringspaes that have holes in them or other inongruities, and we might also be sure to distribute thenodes aording to a uniform random distribution rather than a distribution that tends to putmore points in some areas than in others. By onsidering many networks onstruted over manyrandom distributions of nodes we an reah expetations of generi network properties, rather thanbe distrated by partiular peuliarities of spei� instanes of an individual random distributionand its assoiated network(s).The epitome of this approah is the onsideration of what we shall all homogeneous spatialnetworks: networks onstruted over a distribution of nodes that is maximally spatially symmet-rial. What does this mean? Consider a set of points distributed uniformly over a sphere. Fromwhihever angle we hoose to look at it, this distribution of points tends to look the same. If wewere to stand on the sphere at the loation of one point and be transported to the loation ofanother point hosen at random, we would tend not to notie the di�erene.When we onsider suh networks, in some respets they resemble Erd®s-Rényi random graphs(E-R graphs) onstruted over nodes that have no spatial loation�in an E-R graph the haneof any two nodes being onneted is equal. For instane, if we ount what proportion of networknodes have no neighbours, or only one neighbour, or two neighbours, or three or have 10 neighbours(i.e., we alulate the network's degree distribution), we �nd that, whether we are desribing a non-spatial E-R graph or a homogeneous spatial network, the degree values follow the same Poissondistribution5.This makes sense sine the Poisson distribution is known to represent the frequeny with whiha number of independent events our in some unit of time, or, in this instane, within some unitof spatial area. �Will a node have three neighbours or two neighbours, or some other number?�,turns out to be the same kind of question as �Will this week's lottery have three winners or two,or some other number?�.However, despite their ongruent degree distributions, homogeneous spatial networks are notequivalent to Erd®s-Rényi graphs. In an E-R graph the hanes that two of a node's neighbours areonneted is the same as the hane that one of its neighbours is onneted to any other randomlyhosen node (sine any pair are onneted with probability p). However, in a homogeneous spatialnetwork, sine nodes are onneted to those that are nearby, a node's neighbours tend to be losetogether and are therefore more likely to be onneted to eah other resulting in more lusteringthan in an equivalent Erd®s-Rényi graph.The properties of a partiular lass of homogeneous spatial networks and whether they areequivalent or not to properties of an E-R graph have been explored in work on Random Geo-metri Graphs [8, 22℄. Here we are more interested in exploring properties of the more generallass of inhomogeneous spatial networks. This is motivated primarily by the fat that the vastmajority of extant real-world networks fall into this ategory having variously, edges, holes, more-or-less sparse/dense regions, non-uniform distributions of nodes, or other fators that introdueheterogeneity.Moreover, inhomogeneous spatial networks o�er a seond important advantage in a more fun-damental sense. For homogeneous spatial networks, as was desribed above, there is no realdi�erene between one plae and another�every loation in the spae is equivalent. But, a riti-al property of spatial systems must surely be that there are onsequenes assoiated with whereyou are loated. Even when a number of nodes are sattered at random on a sphere, and thereis no tendeny to preferentially satter them in some plaes more than in others, the satteringwill tend to result in more or less sparsely populated regions �aidentally�. Of ourse, on averageand in the limit, all suh nodes will tend to �nd themselves in idential irumstanes. However,4In fat it turns out that the existene of a boundary is struturally signi�ant only in restrited irumstanes[2℄.5In fat (in the ontext of a partiular lass of spatial network) it an be demonstrated that a Poisson degreedistribution may only arise when nodes are distributed uniformly in spae. This highlights the impat of spatialinhomogeneity on network struture. 5



in every single instane of suh a system, some nodes will tend to �nd themselves in a relativelydense path of neighbours, while others will �nd themselves more spatially remote from theirnearest neighbours. This inhomogeneity in the distribution of nodes is thus fundamental to spa-tially distributed systems, and it will tend to be re�eted in the network of onnetions betweennodes if spatial distane between them in�uenes the likelihood of a onnetion being formed andmaintained.3.2 Giant ComponentsOne respet in whih introduing inhomogeneity in the spatial distribution of nodes has a signif-iant impat is the onset of a giant omponent in the network as the density of network edges isinreased.If we start by onsidering a population of nodes with no edges between them, an empty network,and gradually inrease the number of edges that the network ontains, tending to onnet togethernodes that are loser together, we initially see a growing number of onneted pairs of nodes. Aftera while we begin to see network �fragments� eah omprising a small number of sparsely onnetednodes. Over time these fragments tend to grow in size and eventually oalese as edges are addedthat link together previously disonneted fragments. If the initial distribution of nodes in spae ishomogeneous, then there omes a ritial value of edge density when the network transitions fromomprising a large number of isolated fragments to omprising a single giant onneted omponentthat ontains the vast majority of nodes: i.e., there is a �phase transition� in the onset of a giantomponent. This result was originally shown in the ontext of E-R graphs, and has been shownto generalise to homogeneous spatial networks in simulations [8℄.However, our simulations support a onjeture that there will be no suh phase transition tothe extent that there is initially any inhomogeneity in the spatial distribution of nodes. Rather,as edge density inreases, the size of the largest onneted omponent of the network grows moresmoothly, and the giant omponent does not arise abruptly, but arrives more gradually. This anbe understood by noting that the phase transition relies on oalesene to happen at the samerate aross the entire population.In order for the size of the largest omponent to remain initially small while the �rst edges areadded but then to rapidly transition to a giant omponent of muh larger size, network fragmentsmust �rst grow in size without beoming onneted to eah other, reahing a point at whih a fewadditional edges inter-onnet a large number of suh fragments. In order to reah suh a point nonetwork parts an be easier to onnet together than others as this would smooth out the growthof the largest omponent and prevent the phase transition.Consider a multiple-hoie test being taken by a lass of idential student �lones� that areidentially apable and identially well-prepared and identially well-rested, et. We might expetthem all to omplete the exam at roughly the same time. As we wathed the lass at work, wewould see an abrupt transition in the number of students that had ompleted the test�beforethe rapid transition most would be working on the test, and just afterwards the vast majoritywould have stopped work. However, in a real lassroom students vary in many ways and we seea muh smoother rate of ompletion�not a phase transition. A spatially inhomogeneous networkexhibits just this kind of variability in the propensity to beome well-onneted with some partsbene�tting from the e�ets of the inhomogeneity and some parts su�ering from it.The impliations are signi�ant. E-R graphs and homogeneous spatial networks of varying sizeand edge density are likely to be observed to fall into one of two lasses: either they omprisemany small fragments, or they feature a single giant omponent. Sine the transition betweenthese two lasses of network is very abrupt we are unlikely to see networks that fall in between thetwo lasses. However, where real-world networks are spatially embedded and inhomogeneous, weshould expet to enounter networks that do fall between the two lasses: networks that feature anumber of disonneted omponents that vary in size, the largest of whih may variously be small,moderately sized, or giant. 6



3.3 Degree CorrelationWe have already mentioned that spatial graphs an expet to exhibit a higher degree of lusteringthan equivalent non-spatial graphs, i.e., a node's neighbours have an inreased hane of beingonneted together in a spatial graph. But an we say more about the harater of a node'sneighbours? In partiular, if a node has many neighbours, will that make it more or less likelythat its neighbours are also well-onneted?The orrelation between a node's degree (its number of neighbours) and the average degree ofthose neighbours is alled degree orrelation or assortativity. In a positively assortative network,high-degree nodes tend to be onneted together. In a negatively assortative (or disassortative)network high-degree nodes tend to be onneted to low-degree nodes. Both kinds of assortativitymay be observed in real-world networks. For instane, ollaborative networks suh as o-authorshipgraphs and ator-ollaboration graphs may exhibit positive degree orrelation, while some teh-nologial and biologial systems suh as the Internet, world-wide-web, protein networks, neuralnets, and food webs may exhibit negative degree orrelation [20℄.By ontrast, Erd®s-Rényi random graphs, Barabási-Albert preferential attahment graphs andWatts-Strogatz small worlds all have zero degree orrelation, there being no onsistent relationshipbetween the degree of onneted nodes. The same is not true of spatial networks, whih tend toexhibit positive (assortative) degree orrelation even when they are homogeneous. In the simplesthomogeneous ase, the magnitude of this orrelation is equal to the degree of lustering in thenetwork. Moreover, introduing inhomogeneity into suh spatial networks boosts this orrelation,with inreasing inhomogeneity leading to inreasingly positive assortativity.It is easy to see why spatial graphs would exhibit assortative degree orrelation. In orderthat a node ahieve higher than average degree, it must tend to be the ase that it is loser to itsneighbours than is the average node�it is in a well-populated path. Sine the nodes to whih it isonneted will tend to be lose by, they will tend to also bene�t from the loal population densityand will themselves tend to have a higher than average degree as a onsequene. Conversely, alow-degree node will tend to be found in a low-density path, onneted to a small number ofsimilarly disadvantaged nodes. As a result, a node's degree will tend to be a good estimate forthat of its neighbours. Of ourse, to the extent that a spatial network is inhomogeneous, therewill be more disparity between its dense and sparse pathes, exaerbating this assortativity e�et.It would be interesting to relate this theoretial result to the empirial �ndings mentionedabove. To what extent might the impat of spatial onstraints on network formation and main-tenane aount for the observed positive and negative degree orrelations in natural, soial andengineered systems?3.4 Sale-Free and Small-World Spatial NetworksCan a set of nodes that are idential save for their loation in spae be onneted together solelyon the basis of the distanes between them in order to arrive at a graph that exhibits sale-freeor small-world struture? In both ases the answer is no if we limit ourselves to onsidering thelass of random geometri graphs but yes if we are onsidering the more general lass of spatiallyembedded random networks.First, an a sale-free degree distribution arise purely as a onsequene of nodes tending to beonneted when they are lose in spae? Reall that a degree distribution is said to be sale-freewhen the probability that a randomly hosen node has a partiular degree follows a power law. Insuh ases, many nodes have very low degree, but a small minority have extremely high degree. Itan be shown that a random geometri graph (where nodes are distributed uniformly at randomin spae) annot exhibit this type of struture�where nodes tend to be equi-distant from theirneighbours, there tend to be no large disparities in onnetivity.However, sale-free spatial networks are possible where node distribution is inhomogeneous. Inpartiular, onsider nodes that are arranged suh that node density inreases at an aeleratingrate as we approah a partiular point in spae, and the density at that point is in e�et in�nite.If we generate a population of nodes aording to this distribution and then onnet together pairs7



of nodes that are lose together in spae, then a sale-free network an result.This is an example of �power law in, power law out�. The sale-free degree distribution re�etsour deliberate hoie to distribute the nodes in spae in a partiular �sale-free� manner. It mayof ourse be possible to generate a sale-free spatial network without demanding a singularity inthe distribution of nodes if we allow a more sophistiated method of onneting nodes, perhapsone that makes some use of the �rih get riher� dynami that is brought about by �preferentialattahment� [1℄.What of small-world networks, in whih, simultaneously, there is signi�ant lustering (like alattie, or spatial network) but also the path between any two randomly hosen nodes tends toinvolve only a small number of intervening edges (like a totally random graph)? First, we an showthat, as for sale-free networks, small worlds annot our in random geometri graphs. Reallthat for this lass of graph, nodes are only onneted if they are separated by a distane less thansome threshold. As suh, �long-range� onnetions are outlawed. While lustering is signi�antin suh graphs, the average path length separating network nodes tends to be long�some pairsof nodes are separated by a signi�ant spatial distane and onsequently getting from one to theother requires a large number of network �hops�.We an understand that this is prohibitive of small-world struture by noting that the lassialway to onstrut a small world is to start with something like a random geometri graph (a lattie)and alter it (by randomly rewiring a few edges) suh that it ontains new edges that would beillegal under the original RGG wiring sheme�they tend to break onnetions between pairs ofnear-by nodes and introdue onnetions between arbitrary pairs of nodes that, at least for the�rst few rewirings, tend to be separated by a muh longer distane.However, it is possible to onstrut spatial small worlds for the less restritive lass of spatiallyembedded random networks. Spei�ally, we must onsider graphs where, rather than using adistane threshold to trunate onnetivity, we allow onnetivity to deay with distane proba-bilistially. For example, we ould onstrut a sheme where there is a base probability q that anypair of nodes are wired together, but also an additional probability 1 − q that nodes are wiredtogether if they are separated by a distane less than some threshold d. For this sheme, as weonsider larger and larger networks, we see signi�ant lustering and low mean path length�i.e.,small worlds. It is possible to interpret this sheme as a spatial analogue of the original Watts-Strogatz model with lattie-like loal onnetivity ensured by the 1 − q term and longer-rangeonnetions introdued by the q term.Interestingly, it an be shown that this approah to generating a small world an be used for anylattie-like network (i.e., a network with strong lustering but long path lengths) and that it bringsabout small world properties while preserving many strutural aspets of the original network, suhas sale-free or Poisson degree distribution, for instane. By introduing just enough arbitraryonnetions to any spatial network, short path length an be ahieved without ompromisinglustering, and without radially altering the network's onnetivity struture. In some sense, thisemphasizes the essentially spatial nature of the original Watts-Strogatz model.4 Caveats and Quali�ationsThe results desribed above are true for various idealised mathematial representations of real-world systems. To what extent should we understand these results as transferring to the realworld? Unfortunately, several aveats and quali�ations must be borne in mind.First, unlike the mathematial objets explored here, the struture of any real-world spatialnetwork is not wholly determined by the spatial organisation of its nodes. The presene andabsene of relationships amongst the parts of a real-world system an be in�uened by more thanthe distane between these parts. Shared a�nities, shared histories, and other ontingenies willalso play a part. In the models explored here we are interested in understanding what might beexpeted to ome about purely as a onsequene of spatial proximity between nodes in�ueningtheir onnetivity. Whatever strutures tend to arise in these models an be understood as a kindof baseline organisation that we an expet to arise �for free� in spatially embedded networks [6℄.8



Where real-world spatial networks reveal the kind of strutures exhibited in these models, it is insome sense unremarkable. Conversely, where suh networks depart from this type of organisationit may be at signi�ant ost, or as a result of signi�ant (and possibly interesting) organisingproesses that are not aptured in the models presented here.Seond, in order to reah the results reported in the previous setion, it has been neessary toidealise spatial networks in various ways. For mathematial tratability, we have followed othersin sometimes onsidering a spae to be populated uniformly or by an in�nite number of nodes.It is lear that real-world networks are not like this. There are two main issues here, one moretehnial and one more pratial. First, we have made di�erent kinds of idealisation at di�erentpoints in order to ahieve partiular insights. For instane, in this paper, we have only tendedto distinguish between �homogeneous� and �inhomogeneous� spatial networks, whih has tendedto disguise the more subtle distintions made between di�erent ways of idealising homogeneityin terms of, e.g., uniformity, ontinuity, and spatial homogeneity, and the neessity to restritanalyses to speial ases suh as generalisations of random geometri graphs. In order to fullyunderstand the sope of eah result, a �rm grasp of these idealisations is neessary. Perhaps moresigni�antly, any and all of these idealisations will mean that, to some extent, the relatively leanstatements that we are able to make about the ideal mathematial objets will not arry over toreal-world networks. Unfortunately, it is inherently di�ult to know how these idealisations playout in terms of the transferability (or not) of mathematial results to the real world.6 For a fullaount of the idealisations that we have made please see [2℄.A third set of more more generi onerns are also assoiated with the networks siene ap-proah to omplex systems exempli�ed here. First, real-world networks are not stati objets inthe way that we (and many other networks sientists) have treated them here. Real networksarise as a onsequene of proesses that take plae in the real world. Typially these proessesdo not stop one a ertain number of edges or nodes are in plae. Rather, real-world networksare onstantly being brought about by ongoing proesses. They are thus inherently dynami andany onsistent strutural properties that they exhibit are dynamially maintained in the fae ofperturbation and erosion, an aspet whih has not been treated in this paper (or in many of thepapers that we ite, e.g., [5, 27, 1℄). Furthermore, the empirial basis for omparing results fromnetworks siene with those from experimental studies of real-world networks is somewhat suspetsine we an only sample real-world networks, and report the properties of the samples. If oursampling method is biased in some way that our samples will not be aurate re�etions of theunderlying real-world network. They will be distorted. At times it has not been reognised that afair omparison between the properties of a model network and evidene from real world networksmust address this issue of sampling, see, e.g., [11, 7℄ for a treatment of this issue in the ontextof soial networks. Finally, it must be remembered that �networks� do not neessarily exist in thereal world. Cables exist in the real world, onneting power stations, sub-stations, et., but the�power network� is not aounted for by a network of nodes and the edges between then, sinethe relevant tehnologial infrastruture is struturally oupled with a wider ontext of inputs,outputs, poliies, drivers, and adjaent �networks�. To equate the power network with a graphrepresenting the lines of power distribution is to idealise and simplify the real world. Similarly,hildren in a playground exist, but the soial network representing their relationships is a onep-tual framework, a theoretial postulate, or, more plainly, just an idea. Of ourse the promise ofnetworks siene is that there will be many ases in whih a partiular network idea will play akey role in how we make sense of the phenomena assoiated with it, to the extent that we startassigning it some kind of ausal e�ay. In suh a ase the network idea is no di�erent from otherideas that only seem more onrete beause of their identi�ation with material strutures (e.g.,ables and power stations).6The same problem is true for omputational approahes. While partiular idealisations might be side-steppedby using numerial methods, or simulations, the issue of idealisation itself annot be avoided.
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5 Conlusions and Future WorkWe have aimed to eluidate the ontribution that spatial embedding makes to the struture ofnetworks, taking as our starting point a tradition of analysing the properties of random graphensembles. By onsidering a more general model of spatial networks that allows for di�erentrelationships between proximity and onnetivity and for inhomogeneous distributions of nodes inspae, we have been able to show some of the ways in whih spatial networks an be expeted todi�er from their non-spatial ousins. One motivation for suh analysis is to ahieve a new lassof null models of graph struture that ontrol for the (extremely pervasive) in�uene of spatialembedding. Another is to ahieve a more profound understanding of the role of spatial onstraintsin enabling omplex organisation.In ahieving these results we have been able to demonstrate irumstantial evidene that ourapproah (in terms of identifying the �right statistis� to analyse spatial networks, i.e., motif mo-ments, onditional mean degree, et., [2℄) is on the right trak. However, there are signi�ant gapsin the analysis that are worth �agging here. First, we have so far onsidered graphs that are �rstonstruted and then analysed as stati objets, rather than addressing the relationship betweenspatial proesses and the dynami network struture that they bring about. Seond, we have sofar onsidered spatial distributions of nodes that do not themselves exhibit signi�ant struture, interms of, for instane, separate lusters (something that might be remedied by generating spatialdistributions of nodes using spatial point proesses, [23℄). A satisfying treatment of these twoissues would perhaps relate them to o�er an understanding of how spatial and network struturemutually inform one another over the lifetime of a real-world spatially embedded system.Referenes[1℄ A.-L. Barabási and R. Albert. Emergene of saling in random networks. Siene, 286:509,1999.[2℄ L. Barnett, E. Di Paolo, and S. Bullok. Spatially embedded random networks. Phys. Rev.E, 76(5):056115, 2007.[3℄ M. Barthélemy. Crossover from sale-free to spatial networks. Europhys. Lett., 63:915, 2003.[4℄ S. Boaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex networks:Struture and dynamis. Phys. Rep., 424:175�308, 2006.[5℄ B. Bollobás. Random Graphs. Aademi, 1985.[6℄ S. Bullok and C. L. Bukley. Embraing the "tyranny of distane": Spae as an enablingonstraint. Tehnoeti Arts, 7:141�152, 2009. Speial issue on Living Buildings: PletiSystems Arhiteture.[7℄ D. P. Croft, R. James, and J. Krause. Exploring animal soial networks. Prineton UniversityPress, 2008.[8℄ J. Dall and M. Christensen. Random geometri graphs. Phys. Rev. E, 66:016121, 2002.[9℄ P. Erd®s and A. Rényi. On random graphs. I. Publiationes Mathematiae, 6(290-297), 1959.[10℄ P. Erd®s and A. Rényi. The evolution of random graphs. Magyar Tud. Akad. Mat. KutatóInt. Közl., 5(17-61), 1960.[11℄ D. W. Franks, G. D. Ruxton, and R. James. Sampling animal assoiation networks with thegambit of the group. Behavioral Eology and Soiobiology, 2009. DOI 10.1007/s00265-009-0865-8.[12℄ C. Herrmann, M. Barthélemy, and P. Provero. Connetivity distribution of spatial networks.Phys. Rev. E, 68:026128, 2003. 10
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