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ABSTRACT 

What is the simplest and most natural axiomatic replacement for the set-theoretic 

definition of the minimal fixed point on the Kleene scheme in Kripke's theory of truth? 

What is the simplest and most natural set of axioms and rules for truth whose adoption by 

a subject who had never heard the word "true" before would give that subject an 

understanding of truth for which the minimal fixed point on the Kleene scheme would be 

a good model? Several axiomatic systems, old and new, are examined and evaluated as 

candidate answers to these questions, with results of Harvey Friedman playing a 

significant role in the examination.  
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1 
 Small though it is, the area of logic concerned with axiomatic theories of truth is 

large enough to have two distinguishable sides. These go back to contrasting early 

reactions of two eminent logicians to Saul Kripke's "Outline of a Theory of Truth" 

[1975]. One side originates with Harvey Friedman, who first wrote Kripke in the year of 

the publication of the "Outline", but whose published contributions are contained in a 

joint paper with Michael Sheard from over a decade later, Friedman and Sheard [1987]. 

(There was also a sequel, Friedman and Sheard [1988], but I will not be discussing it.) 

The questions raised in that paper are these: First, which combinations of naive 

assumptions about the truth predicate are consistent? Second, what are the proof-theoretic 

strengths of the consistent combinations?   

 In the Friedman-Sheard paper, combinations of items from a menu of a dozen 

principles are added to a fixed base theory that includes first-order Peano arithmetic PA. 

A variety of model constructions are presented to show various combinations consistent, 

and a number of deductions to show various other combinations inconsistent, and 

complete charts of the status of all combinations worked out. There turn out to be nine 

maximal consistent sets.  

 In a portion attributed in the paper to Friedman alone (§7), two sample results on 

proof-theoretic strength are presented, showing one combination very weak and another 

very strong. Later additional results on proof-theoretic strength were obtained by a 

number of workers, and most recently Graham Leigh and Michael Rathjen [forthcoming] 

have finished the job, so that we now have a complete determination of the proof-

theoretic strengths of all nine maximal consistent sets.  

 Though the questions addressed in Friedman's work are purely mathematical, and 

the paper with Sheard explicitly declares its philosophical neutrality, the notion of truth is 

so philosophically fraught that one naturally expects some of the formal results will turn 

out to have some bearing on questions of interest to philosophers. This expectation is not 
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disappointed, and I will be making use of Friedman's proofs of both his sample results in 

the course of this paper.  

 

2 

 I follow the example of Friedman and Sheard by describing in advance the base 

language and theory to be considered, and in listing and naming the various candidate 

principles of truth. (See the table of PRINCIPLES OF TRUTH.) The base language will be 

that of arithmetic with a truth predicate T. Formulas not involving the new predicate are 

called arithmetical. Sometimes it will be convenient to have also a falsehood predicate F, 

where falsehood is truth of the negation (as denial is assertion of the negation, and 

refutation is proof of the negation), while the negation of truth is untruth. F need not be 

thought of as a primitive but may be thought of as defined. (Some truth principles that are 

nontrivial when it is taken as primitive become trivial when it is taken as defined.) T(x) 

literally means "x is the code number for a true sentence". The coding of sentences and 

formulas may as usual be carried out so that simple syntactic operations on sentences and 

formulas correspond to primitive recursive functions on their code numbers. I write T[A] 

to mean T(a), where a is the numeral for the code number of A. Otherwise I follow the 

relaxed attitude towards notation in Sheard's "Guide to Truth Theories" [1994].  

 The base theory will be first-order Peano arithmetic PA, with the understanding 

that when new predicates are added to the language, the instances of the scheme of 

mathematical induction for formulas involving them are added as well. The underlying 

logic will be classical, and where it makes a difference it may be assumed that the 

deduction system for classical logic is one in which proofs do not involve open formulas, 

and the only rule is modus ponens. Even in weak subtheories of PA, notions of 

correctness and erroneousness can be defined for atomic arithmetic sentences, which are 

equations between closed terms, and proved to have the properties one would expect for 

truth and falsehood restricted to such sentences. And even in such weak subtheories, 
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construction of self-referential examples is possible by the usual diagonal procedure. 

These include truth-tellers, asserting their own truth, and two kinds of liars, namely,  

falsehood-tellers asserting their own falsehood, and untruth-tellers, asserting their own 

untruth. (Here talk of a sentence "asserting" such-and-such really means the sentence's 

being provably equivalent in the theory to such-and-such.) Unlike Friedman and Sheard I 

will not count any truth principles — they count truth distribution and truth classicism — 

as part of the base theory. Comments on some individual principles will be in order. 

 As to the four rules, these are, like the rule of necessitation in modal logic, to be 

applied only in categorical demonstrations, not hypothetical deductions. For instance, 

with truth introduction, if we have proved that A, we may infer "A is true". If we have 

merely deduced A from some hypothesis, we may not infer "A is true" under that 

hypothesis. Allowing introduction or elimination to be used hypothetically would amount 

to adopting truth appearance and disappearance, and hence truth transparency, as axiom 

schemes applicable to all sentences, and that would be inconsistent. Indeed, the usual 

reasoning in the liar paradox shows that allowing either one of introduction or 

elimination to be used hypothetically, while allowing the other to be used at least 

categorically, leads to contradiction. 

 As to the axioms and schemes, the composition and decomposition axioms, even 

without those for atomic truth and falsehood, imply truth transparency for arithmetical 

sentences and formulas, arguing by induction on logical complexity of the sentence or 

formula in question. With composition and decomposition for atomic truth and falsehood 

as well, truth transparency extends to truth-positive sentences and formulas, those built 

up from arithmetical formulas and atomic formulas involving the new predicates by 

conjunction, disjunction, and quantification. With the further addition of truth 

consistency, one would get truth distribution and truth disappearance for all formulas. 
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3 

 The other side of axiomatic truth theory originates with Solomon Feferman. The 

background here is his well-known work on predicative analysis (Feferman [1964]). The 

idea of predicative analysis is that one starts with the natural numbers, and then considers 

a first round of sets of natural numbers defined by formulas involving quantification only 

over natural numbers, and then considers a second round of sets of natural numbers 

defined by formulas involving quantification only over natural numbers and sets of the 

first round, and so on. The process can be iterated into the transfinite, up to what has 

come to be called the Feferman-Schütte ordinal Γ0. 

 Instead of considering round after round of sets, those of each round defined in 

terms of those of earlier rounds, one could consider instead round after round of 

satisfaction predicates, each applying only to formulas involving only earlier ones. 

Instead of speaking of definable sets and elementhood one would speak of defining 

formulas and satisfaction. But in arithmetic formulas can be coded by numbers, and the 

notion of the satisfaction of a formula by a number reduced to that of the truth of 

sentence obtained by substituting the numeral for the number for the variable in the 

formula. So in the end all that is really needed is  round after round of truth predicates, 

each applicable only to sentences containing only earlier ones. Feferman [1991] finds that 

the process iterates only up to the ordinal ε0, though by introducing what he calls 

"schematic" theories it can be extended up to Γ0. 

 Kripke gives a set-theoretic construction of a model for a language with a self-

applicable truth predicate, and this raises the question whether the hierarchy of truth 

predicates could be replaced by a single self-applicable one. To pursue this possibility it 

would be necessary to replace the set-theoretic construction of a model by an axiomatic 

theory. Thus arose the question of axiomatizing Kripke's theory of truth.  

 Feferman proposed a candidate axiomatization (which became known from 

citations of his work in the literature well before its publication in Feferman [1991]) with 
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all the composition and decomposition axioms. In the literature the label KF (for Kripke-

Feferman) is sometimes used for this theory, as it will be here, but is sometimes used for 

this theory plus truth consistency, which here will be called KF+. Later Volker Halbach 

and Leon Horsten [2006] produced a variant of KF based on partial logic, which they 

called PKF but which I will call KHH. They give a sequent-calculus formulation, but a 

natural deduction formulation will be given in a book by Horsten [forthcoming]. 

 

4 

 This past semester an undergraduate philosophy major at my school, Dylan Byron, 

asked me to direct him in a reading course on the literature on axiomatic theories of truth. 

Over the semester he expressed increasing disappointment at the scarcity in the literature 

of articulations of just what the philosophical aims and claims of axiomatic truth theories 

are supposed to be, and hearing his complaints I became convinced that there was a need 

for more philosophical discussion of just what is meant by "an axiomatization of Kripke's 

theory of truth".  

 There are at least three potential sources of ambiguity, two generally recognized 

and the other perhaps other not. To begin with, Kripke has not just one construction, but 

several, differing in two dimensions. On the one hand, one can choose among different 

underlying logical schemes: the Kleene trivalent scheme, the van Fraassen supervaluation 

scheme, and others. On the other hand, for any given scheme, one can choose among 

different fixed points: the minimal one, the intersection of all maximal ones, and others. 

The multiplicity of fixed-points is what allows Kripke to distinguish the outright 

paradoxical examples like liar sentences from merely ungrounded examples like truth-

teller sentences, the former being true in no fixed points, the latter in some but not others. 

These two sources of ambiguity in the notion of "Kripke's theory of truth" are generally 

recognized. It is the minimal fixed point on the Kleene scheme that has received the most 
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attention, from Kripke's original paper to the present day — I set aside work of Andrea 

Cantini [1990] on the van Fraassen scheme — and I will concentrate on it. 

 Beyond this, though it would be difficult to overstate how guarded are Kripke's 

philosophical formulations in his "Outline", one passage does suggest that there may be 

two levels or stages of understanding the concept of truth, earlier and later: 
 
 If we think of the minimal fixed point, say under the Kleene valuation, as giving a 

model of natural language, then the sense in which we can say, in natural language, 

that a Liar sentence is not true must be thought of as associated with some later 

stage in the development of natural language, one in which speakers reflect on the 

generation process leading to the minimal fixed point. It is not itself a part of that 

process. (Kripke [1975], 714) 
 
Thus there is a further ambiguity in the notion of "axiomatizing Kripke's theory of truth", 

and a need to distinguish the problem of codifying in axioms a pre-reflective 

understanding of truth from the problem of doing the same for a post-reflective 

understanding.  

 

5 

 Early in Kripke's exposition of his proposal (§III of Kripke [1975]), he invites us to 

join him in imagining trying to explain the meaning of "true" to someone who does not 

yet understand it. Herein lies what for me is a crucial question for the problem of 

axiomatizing the earlier, pre-reflective understanding, which I would state as follows: 
 
 Internal Axiomatization. What is the simplest and most natural set of axioms and 

rules whose adoption by a subject who had never heard the word "true" before 

would give that subject an understanding of truth for which the minimal fixed point 

on the Kleene scheme would be a good model?  
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If we had an answer to this question, the question whether the minimal fixed point on the 

Kleene scheme really provides a good "model of natural language" would largely reduce 

to the question whether it is plausible to suggest that speakers of natural language first 

acquire an understanding of truth by adopting something like the indicated system of 

axioms and rules. Needless to say, the notion of "good model" here is an intuitive, not a 

rigorously defined one. 

 The internal axiomatization question is essentially the question of what we would 

have to tell a subject who had never heard the word "true" before to help him acquire a 

pre-reflective understanding of Kripkean truth. One might be inclined to think, "We 

could just tell him what Kripke tells us." But Kripke, as he repeatedly emphasizes, is 

speaking to us in a metalanguage, describing his fixed points from the outside, saying 

things that cannot be said in the object language, or recognized as true from the inside. 

Kripke says, for instance, that neither untruth-teller sentences nor truth-teller sentences 

are true, thus asserting what an untruth-teller sentence asserts and denying what a truth-

teller sentence asserts. If we told the subject what Kripke tells us, we'd be skipping right 

over the pre-reflective to the post-reflective stage.  

 The problem of axiomatizing the later, post-reflective understanding, is a separate 

problem, which I would state as follows: 
 
 External Axiomatization. What is the simplest and most natural axiomatic 

replacement for Kripke's set-theoretic definition of the minimal fixed point on the 

Kleene scheme? 
 
The notion of "simplest and most natural axiomatic replacement" is no more rigorously 

defined than that of "good model", but this does not mean that we cannot recognize 

examples when we see them. A paradigm would be PA itself, arguably the simplest and 

most natural set axiomatic replacement for the set-theoretic definition of the natural 

numbers as the elements of the smallest set containing zero and closed under successor. 
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 Beginning with the internal question, let us return to Kripke's discussion of the 

subject being taught the meaning of "true" (Kripke [1975], 701). Kripke supposes the 

subject has knowledge of various empirical facts: for instance, meteorological facts, such 

the fact that snow is white, and historical facts about what is said in what texts, perhaps 

the fact that "Snow is white" appeared in the New York Times on such-and-such a date. 

But the subject has initially no knowledge about truth. Kripke then imagines us telling the 

subject "that we are entitled to assert (or deny) of any sentence that it is true precisely 

under the circumstances when we can assert (or deny) the sentence itself", which I take to 

amount to giving him the four categorical rules of inference in the table. 

 Kripke then explains how his subject, having already been in a position to assert 

"Snow is white", is now in a position to assert "'Snow is white' is true", and how, having 

already been also in a position to assert "'Snow is white' appears in the New York Times 

of such-and-such a date", he is now in a position to infer and assert "Some true sentence 

appears in the New York Times of such-and-such a date".  Kripke concludes "In this 

manner, the subject will eventually be able to attribute truth to more and more statements 

involving the notion of truth itself." 

 Kripke's discussion can be adapted to the situation where the base theory to which 

the truth predicate is being added is PA. We suppose the subject initially knows and 

speaks of nothing but numbers and their arithmetical properties, and of sentences and 

their syntactic properties insofar as statements about the latter can be coded as statements 

about the former. Now suppose we introduce a truth predicate and give the subject the 

four categorical rules in the table. Let us call the resulting theory PA*.  

 Then what Kripke said about "Snow is white" and "…appears in the New York 

Times of such-and-such a date" applies to, say, "Seventeen is prime" and "…is provable 

in Robinson arithmetic Q". The subject will be able to assert — the theory PA* will be 
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able to prove — that Robinson arithmetic proves some true sentence, and beyond that 

"more and more statements involving the notion of truth itself". 

 

7 

 The paper of Friedman and Sheard contains information about the scope and limits 

of what PA* can prove. In the first place, it can't prove contradictions: it is consistent, as 

is the theory, now called FS (for Friedman-Sheard), which adds truth consistency and 

completeness, and the composition and decomposition axioms except those for atomic 

truth and falsehood. Consistency is proved by a model-theoretic construction that 

represents an independent discovery of the principle of "revision" theories of truth.  

 To recall how revision works in a fairly general form (as in various works of Anil 

Gupta and Hans Herzberger), we can construct a sequence of models, indexed by 

ordinals, each of which consists of the standard model of arithmetic plus an assignment 

of an extension to the truth predicate. At stage zero the truth predicate may be assigned 

any extension we please. At stage one its extension consists of the (code numbers for) 

sentences that are true in Tarski's sense at stage zero. Stage two is obtained from stage 

one as stage one was from stage zero, and so on. At stage ω, anything that has always 

been true from some point on is put in the extension, and anything that has always been 

false from some point on is left out of the extension. Other sentences are put in or left out 

according as they were put in or left out originally, at stage zero. And so on.  

 The consistency proof in the paper of Friedman and Sheard involves only the finite 

stages. One considers the set that contains a sentence A just in case A has always been 

true from some point on. This set is closed under logical consequence and under the four 

categorical truth rules, and contains all the axioms and theorems of PA* and indeed of 

FS,  but does not contain 0 = 1. In the section of the paper on proof-theoretic strength, a 

refinement of the method of the consistency proof is used to show that PA* is a 
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conservative extension of PA. It proves no new arithmetical sentences.  (Indeed, this is 

proved for PA* plus the axioms of truth consistency and truth completeness.) 

 The revision method can be adapted to show that PA* by itself does not imply 

various additional axioms of FS. For instance, let L be a liar sentence. Start at stage zero 

with L in the extension of the truth predicate and its conjunction with itself, L & L, out of 

it. Continue the construction through all the ordinals less than ω2. Consider the set of 

sentences that have always been true from some point on. These will not contain the 

sentence "if L is true then L & L is true", because this will fail at stage zero and at every 

subsequent limit stage, and positive conjunctive composition therefore fails. Something 

similar can be done for truth consistency and completeness and the composition and 

decomposition axioms for the connectives and quantifiers. 
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 PA*, though suggested by a literalistic reading of some of Kripke's initial heuristic 

remarks, does not correspond very directly to Kripke's eventual set-theoretic construction 

of the minimal fixed point on the Kleene scheme, and this for a double reason. 

 First, PA*, like all the systems considered by Friedman and Sheard, is based on 

classical logic, and has every instance of truth classicism as a theorem, including for 

example T[L ∨ ~L] where L is a liar sentence. Kripke represents himself as adhering 

throughout to classical propositional logic, but allowing that departures from classical 

sentential logic may be needed if our language contains sentences that do not express 

propositions (as departures from classical sentential logic would also be needed if our 

language contained ambiguous sentences expressing multiple propositions). Even where 

there are sentences that do not express propositions, use of classical logic will be 

appropriate if one follows the van Fraassen scheme; but on the Kleene scheme, 

T[L ∨ ~L], where L is a liar sentence, does not hold in any fixed point, and the internal 

axiomatization question as I formulated it was a question about the Kleene scheme.  
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 Presumably this first problem could be resolved by replacing PA* with a version 

pPA* based on partial logic. And in any case it is of interest to consider the internal 

axiomatization question for the van Fraassen scheme.  

 Second, however, even considering the question for the van Fraassen scheme, the 

minimal fixed point does not provide a good model for PA*. Though as acknowledged 

earlier, the notion of "good model" is not a rigorously defined one, that does not prevent 

us from recognizing that the minimal fixed isn't one, simply because it is far more 

complicated than is needed. We get a model of PA* already even if we only carry out the 

finite stages of Kripke's inductive construction. Even the simplest and most natural 

examples of sentences that don't get evaluated as true or false until some transfinite 

stages turn out to be neither provable nor refutable PA*. For example, if we let τ0, τ1, 

τ2, … be the sentences 0 = 0, T[0 = 0],  T[T[0 = 0]], … and let τω be the sentence saying 

that all the τn are true, then PA* cannot prove τω. (It fails in the model used to prove 

consistency.) 

 Thus we have not found in the considerations advanced so far an answer to the 

internal axiomatization question, the question what to tell the subject who does not know 

the meaning of "true". Telling him everything Kripke tells us is too much, and telling him 

just the four categorical rules is not enough.  

 

9 

 At this point, a fantasy suggests itself. Suppose that instead of starting with a 

human being and giving him the four categorical truth rules, we start with a  Superhuman 

Being, and give Her those rules. We suppose She has enormous cognitive abilities about 

all matters not involving the notion of truth, which in the test case of arithmetic might be 

represented by the ability to draw inferences using the omega rule.  

 For any arithmetic sentence A that is true in Tarski's sense, She can prove it using 

the ω-rule, and She can then infer "A is true". If A is unprovable in PA, then the 
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arithmetical sentence saying so will be true in Tarski's sense, so She can prove that, too, 

using the ω-rule. So She can prove "Some true arithmetical statement is not provable in 

PA", and so on.  

 Formally we might represent Her by a theory PAω* consisting of Peano arithmetic 

plus the omega rule and the four categorical truth rules. It is not too hard to see (using the 

basic result about ω-logic that a sentence follows by ω-logic from a set of first-order 

sentences if and only if it is true in all ω-models of that set) that what is provable is 

precisely what holds in the minimal fixed point on the van Fraassen scheme. 

 Presumably by replacing our theory with a variant pPAω* based on partial logic 

we can get an equivalent characterization of the minimal fixed point on the Kleene 

scheme. But needless to say, none of this gives us an answer to the internal 

axiomatization question as I formulated it, as a question about natural language as spoken 

by human beings, not Superhuman Beings. 
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 Another thought may now suggest itself. Perhaps we could tell our human subject 

about the foregoing fantasy, and then in addition specify that he is entitled to assert a 

sentence himself if and only if he is entitled to assert that She of the fantasy would be 

entitled to assert it.  Formally, we could add a predicate S for "The Superhuman Subject 

could assert", with appropriate axioms and rules.  

 The question which principles are appropriate for S must be approached with 

caution, however. We cannot, for instance, assume "If She can assert that A, then A" as an 

unrestricted axiom scheme, since contradiction results upon applying that principle to a 

self-referential sentence of the kind "This very sentence is something She cannot assert". 

The most cautious approach would assume that S[A] or T[A] hold only for sentences A 

not containing S (as with a Tarski-style truth-predicate). 
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 Some principles that seem appropriate are the following: (a) the rules permitting 

inference in categorical demonstrations from "She can assert that A" to A and from A to 

"She can assert that A", as per our imagined specifications to the human subject; (b) the 

axiom that She can assert any axiom of logic or arithmetic; (c) the axiom that She can 

make inferences from assertion to assertion using modus ponens; (d) ditto for the ω-rule; 

(e) ditto for the four truth rules. Let us call the system given by these principles SPAω*. 

 SPAω* is consistent. This can be established by showing that a fixed point on the 

van Fraassen scheme provides a model (à la van Fraassen). The arithmetical part of the 

model is standard. The predicates T and S have the same extension, the set of (codes for) 

sentences valued true in the fixed point, but T is treated as a partial predicate, with anti-

extension the set of (codes for) sentences valued false, whereas S is treated as a total 

predicate, whose anti-extension is simply the complement of its extension.  
 SPAω* provides more than enough in the way of axioms and rules to prove the test 

sentence τω mentioned earlier as unprovable in PA*. We may reason as follows. We can 

assert 0 = 0 or τ0, hence so can She. But then since She can reason using the truth rules, 

for any n, if She can insert τn, then She can assert T[τn] or τn+1. Hence, by induction, for 

every n, She can assert τn, and that  τn is true. Hence, since She can reason by the ω-rule, 

She can assert that for every n, τn is true. But that is to assert τω, and since we have just 

deduced that She can assert it, we can assert it, too. 

 SPAω* provides enough in the way of axioms and rules to prove the consistency 

of PA as well. The argument is that She can assert each axiom, and She can reason by 

modus ponens so She can assert each theorem, and so through Her ability to use the truth 

rules, She can assert the truth of each theorem of PA, and since — skipping some details 

here — She can also assert for each nontheorem that it is not a theorem, She then can, for 

each sentence, assert that if it is a theorem it is true, and then through Her ability to use 

the ω-rule, She can assert that every theorem of PA is true. But 0 ≠ 1, and since we have 

just asserted it, She can assert that 0 ≠ 1 as well, and then through Her ability to use the 
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truth rules, She can infer that 0 = 1 is untrue. Hence She can assert that 0 = 1 is a 

nontheorem, and since we have just deduced that She can assert it, we can assert it, too. 

 I will not pursue the development of the theory further here. In particular, I leave 

the determination of the exact proof-theoretic strength of SPAω*, and that of the variant 

pSPAω* based on partial logic, to the experts. Presumably pSPAω* would represent one 

candidate answer to what I have called the internal question, the question of what to tell 

the human subject who has never heard the word "true" before. But having brought this 

kind of answer, involving a new predicate over and above the truth predicate, to your 

attention, let me now set it aside. 
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 Returning to theories involving no new predicates but T, there lie near at hand two 

further conceivable answers to the question what to tell our subject: "We can tell him the 

axioms of KF" or "We can tell him the axioms of KHH". (I do not mean to imply that the 

originators of either theory advocated it as an answer to the internal question as I have 

posed it, but only that it is natural to take up the issue whether one or the other of them 

might be a good answer.)  

 The difference between the two is that KF is based on classical, and KHH on 

partial logic. This difference results in a difference in proof theoretic strength. For 

Halbach and Horsten [2006] show that their system, though stronger than FS, which 

Halbach [1994] had shown to have the same strength as  RA(<ω), is weaker than KF, 

which Feferman [1992] had shown to have the same strength as  RA(<ε0). Its strength is 

that of RA(<ωω). 

 But though it is the issue of partial versus classical logic that distinguishes PA* or 

PAω* from pPA* or pPAω*, and the same issue that distinguishes KF from KHH, the 

issue apparently distinguishes in different ways in the two cases. The difference between 

PAω* and pPAω* looks like the difference between an object language based on a van 
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Fraassen fixed point and an object language based on a Kleene fixed point. The 

difference between KF and KHH looks like the difference between an object language 

based on a Kleene logic and a metalanguage based on classical logic.  

 The mere fact that it is based on classical rather than partial logic means that KF 

has theorems, such as instances of excluded middle for liar sentences, that are not valued 

true in the minimal or indeed any fixed point on the Kleene scheme. For that matter, 

many of the composition and decomposition axioms of KF are not valued true in any 

fixed point on either the Kleene or the van Fraassen scheme. Moreover KF proves 

sentences such as "a liar sentence is not true" that Kripke explicitly classifies as post-

reflective rather than pre-reflective. All this seems to disqualify KF as an answer to the 

internal axiomatization question, leaving KHH as the only surviving candidate.  

 If we accept KHH as tentative answer to the internal question, we now face the 

question whether it is plausible to suggest that the way we actually learn the meaning of 

"true" is by coming to internalize something like that system of axioms and rules. 

Perhaps the sheer number of axioms and rules involved is enough to make the 

defensibility of the claim seem doubtful, but in addition there is fact that, in Feferman's 

quotable phrase, "nothing like sustained ordinary reasoning can be carried out" in the 

kind of partial logic on which KHH is based. It was this fact that led Feferman seek a 

system like KF based on classical logic in the first place. Perhaps the availability of the 

natural deduction formulation in Horsten [forthcoming] may soften this judgment, but 

this is not an issue I can pursue further here. 

 

12 

 I turn instead from the internal to the external question, the question of 

characterizing by axioms and rules, without explicit set-theoretic apparatus, Kripke's 

model construction, as viewed from the outside rather than the inside. I should first 

consider whether KF, which was disqualified as an answer to the internal question, looks 
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any better as an answer to external question, since after all the reason KF was disqualified 

as an answer to the internal question was precisely that it seemed to be describing a fixed 

point from without rather than from within.  

 But KF does not look good as answer to the external axiomatization question, 

either, at least not as I formulated the question. KF provides a simple and natural 

axiomatization, from an external perspective, of the properties of an arbitrary fixed point; 

but as I formulated the axiomatization question, it was not about an arbitrary fixed point 

but rather about the minimal fixed point. KF shares with KHH the feature that, by design, 

we get a model for it from any Kleene fixed point. This feature seems less appropriate for 

a representation of a post-reflective understanding, than for a representation of a pre-

reflective understanding, when we are just going forward with whatever specifications we 

have been given, without thinking about the scope and limits of how far they will take us.  

 This feature is what is responsible for the limited proof-theoretic strength of KF. 

Earlier I mentioned that Feferman showed its strength to be the same as that of the theory 

known as RA(<ε0). But that is known (using results in Feferman [1982] in one direction 

and a combination of Aczel [1980] with Friedman [1970] in the other) to be the same as 

the proof-theoretic strength of the theory asserting for each positive arithmetic inductive 

operator the existence of some fixed point; and the more illuminating comparison is 

between KF and this last theory. KF is interpretable in it because the inductive operator 

involved in Kripke's construction is positive arithmetic, and because any fixed point for 

that operator provides a model of KF.  

 Interpretability holds in the opposite direction also (not literally in KF itself, but in 

the conservative extension related to KF as the theory known as ACA0 is related to PA), 

because, as noted in Cantini [1989], for any positive arithmetic inductive operator, KF 

proves that a certain associated self-referential formula defines a fixed point for it. This 

may be shown as follows. Let Φ(X, x) be a formula with no quantification over set-
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variables in which the all appearances of the free set-variable X are positive. We may take 

it to be of the form 
 

(1) ∀y1  … ∃yk ∨i = 1 to r ∧j = 1 to s ϕij(x, y1,  … , yk) 
 

where each ϕij is either arithmetical or of the form X(uij) where uij is one of the variables 

y1, … , yk. In the usual way introduce B(x) that "says" 
 

(2) ∀y1  … ∃yk ∨i ∧j   ϕij*(x, y1,  … , yk) 
 

where  ϕij* is  ϕij if  ϕij is arithmetical, and T[B(uij)] if ϕij is X(uij). In other words, B(x) 

"says" Φ(T[B()], x). Then KF proves 
 

(3) ∀x (B(x) ↔ ∀y1  … ∃yk  ∨i ∧j  ϕij*(x, y1,  … , yk)) 
 

and since the formula involved is T-positive, by transparency KF proves 
 

(4) ∀x (T[B(x)] ↔ ∀y1  … ∃yk ∨i ∧j   ϕij*(x, y1,  … , yk)) 
 

In other words, if we give the formula T[B(x)] the name Φ*(x), then KF proves for 

pertinent Φ that the associated Φ* gives a fixed point for the operator given by Φ.  
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 The only attempt in the literature known to me to frame an axiomatic theory of 

truth that would incorporate minimality, as KF and KHH do not, occurs in work of 

Cantini [1989]. He introduces a system KF+ + GID, where GID is a certain general 

scheme of inductive definition that he shows to hold for the minimal fixed point. The 

incorporation of minimality through such a scheme is somewhat indirect, and to that 

extent complicated and artificial, so I would like to propose another system, which I will 

call KFµ (with µ for minimal), that incorporates minimality more straightforwardly.  
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 Let us think of our theories as formulated with only the truth predicate T as 

primitive (the falsehood predicate F being treated as a defined).  KF takes the 

composition and decomposition laws in the table as axioms. By contrast, KFµ takes only 

the composition laws as axioms, but adds an axiom scheme of minimality. For each 

formula τ(x) it is an axiom that if the set of truths satisfying τ is closed under the 

composition laws, then every truth satisfies τ. What the closure assumption here amounts 

to is a conjunction of conditions, one for each composition axiom. Thus corresponding to 

positive equational composition, for instance, we have the condition that any correct 

equation satisfies τ. KFµ provides one obvious candidate for an answer to the external 

axiomatization question, and I will devote the remainder of this talk to exploring its 

consequences. 

 The first thing to be noted is that every theorem of KF and indeed of KF+ is a 

theorem of KFµ. First, to get KF, we note that the decomposition axioms can be derived 

using the minimality scheme. Taking the positive equational decomposition axiom for 

example, let τ(x) say: if x is (the code number for) and equation, it is correct. It is easily 

seen that the set of truths satisfying τ is closed under the composition laws. The only such 

law that could conceivably be a problem is the one whose consequent mentions the 

specific kind of sentence mentioned in τ (namely, equations), since all other sentences 

vacuously satisfy τ. So we need only check the positive equational composition axiom; 

and the condition corresponding to this axiom is (as noted above) simply that every 

correct equation should satisfy τ, which it trivially does. The minimality principle now 

applies to tell us that every truth satisfies τ, which is to say, that every true sentence 

fulfills the condition that if it is an equation it is correct, or more simply, that every true 

equation is correct. That is the positive equational decomposition axiom we wanted. 

Exactly the same method can be used with all the other decomposition axioms. 

 Further, to get KF+, the same method can be used to prove the truth consistency 

axiom, that no sentence is both true and false (where falsehood is truth of the negation). 
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Let τ(x) say: if x is not (the code number for) of a false sentence. It is then not hard to 

prove in KFµ closure under the composition laws. For instance the composition law for 

addition, for instance, what we must check is that if A and B are true and not false, then 

their conjunction is true and not false. But this is easy using the positive composition and 

negative decomposition axioms for conjunction (which respectively tell us that if both 

conjuncts are true, their conjunction is true, and that if a conjunction is false, one of its 

conjuncts is false). Once we have all the composition axioms, minimality applies to tell 

us that every true sentence satisfies the condition τ of not being false, which is the truth 

consistency axiom. That axiom is known to be unprovable in KF, though it has also been 

shown by Cantini that KF+ is not of greater proof-theoretic strength than plain KF.  
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 There are also theorems of KFµ that are not theorems of KF+. Consider a truth-

teller sentence, a sentence B constructed by the usual diagonal method so that B "says" 

T[B]. It cannot be proved in KF+ that B is not true, because the axioms of KF+ hold for 

any fixed point, and though no truth-teller is true in the minimal fixed point, each is true 

in some fixed point or other. But it can be proved in KFµ that B is not true. 

 What B literally is, is a sentence ∀z(~C(z) ∨ T(z)) with code b, where C is 

arithmetical and where C(b) and ∀n(n = b ∨ ~C(n)) are provable in PA, so that PA proves 

T(b) → B and B → T(b). Note that these are provable in KFµ not only because KFµ 

extends PA, but also simply because B is T-positive. Now let τ(x) say: x is not (the code 

number for) any of the following formulas: 
   
 T[B] = T(b)  

 ~C(b) ∨ T(b)  

 B = ∀p(~C(p) ∨ T(p)) 
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Let T*(x) abbreviate the conjunction of T(x) and τ(x). Checking the closure of the set of 

sentences satisfying τ under the composition laws amounts to checking that the 

composition axioms hold with truth* (or T*) in place of truth (or T). The only cases that 

could possibly cause trouble are those where the consequent of the axiom is the truth* of 

one of the three exceptional sentences mentioned in τ: 
 
(1) if B is true*, then T[B] is true* 

(2) if ~C(b) is true* or T(b) is true*, then ~C(b) ∨ T(b) is true* 

(3) if for all p, ~C(p) ∨ T(p) is true*, then ∀p(~C(p) ∨ T(p)) is true* 
 
In all these cases the consequent of the axiom fails by definition of T*, so we must show, 

working in KFµ, that the antecedent fails as well. And indeed, the antecedent of (1) fails 

by definition of truth*. The first disjunct of the antecedent of (2) fails since C(b) holds 

and we have truth transparency for ~C(b) because it is arithmetical, while the second 

disjunct fails by definition of truth*. The antecedent of (3) fails in the instance p = b by 

definition of T*.  Once we have the all the composition axioms, minimality applies and 

tells us that every true sentence is true*, which is to say, is not one of the sentences 

mentioned in T*, or in other words, that those sentences, including B, are not true. In a 

similar way it can be proved that B is not false, either.  
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 KFµ is essentially a subtheory of the theory known in the literature as ID1, which 

for each positive arithmetic inductive operator asserts the existence of a minimal fixed 

point. In the joint paper with Sheard, Friedman proves that a certain axiomatic truth 

theory H is proof-theoretically as strong as ID1.  

 (It may be mentioned that though KF+ has all the truth principles from the list of 

Friedman and Sheard for the system they call H, as well as truth distribution, which is 

part of the Friedman-Sheard base theory, and though Friedman proves that H is of 
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impredicative proof-theoretic strength, and so of much greater strength than KF, still 

Friedman's proof for H does not apply to KF+, because it makes use of truth classicism, 

which is part of the Friedman-Sheard base theory, and so not mentioned by them 

explicitly in their definition of H, but is not available in KF+.) 

 Friedman's proof uses truth principles only to get a certain lemma, after which they 

are not referred to again. So it will be enough for us to prove for T = KFµ the lemma that 

Friedman proves for T = H. It reads as follows: 
 
 Friedman's  Lemma. For any arithmetical formula R(x, y) and any formula A(x),  

the theory T proves the following:  

 If transfinite induction along R holds for T[B(x)] for every formula B(x)  

 then transfinite induction along R holds for A(x). 
 
 The claim that transfinite induction holds for all formulas of form T[B(x)], unlike 

the claim that transfinite induction holds for all formulas A(x), can be stated in a single 

sentence, and that is what makes the lemma key to Friedman's proof.  

 There is in fact a single formula B, depending only on R, such that for any formula 

A, KFµ proves that if transfinite induction along R holds for T[B(x)], then in holds for 

A(x). The formula is suggested by Kripke's proof that the set of truths in the minimal 

fixed point is a complete ∏11 set.  

 Take B constructed by the usual diagonal method so that B(n) "says" ∀m(R(m, n) 

→ T[B(m)]).  What B(x) literally is, is a formula 
 
 ∀z∀y∀w(~C(z) ∨ ~R(y, x) ∨ ~I(z, y, w) ∨ T(w)) 
 
with code b, where C is arithmetical, where C(b) and ∀n(n = b ∨ ~C(n)) are provable in 

PA, and where I is the usual arithmetical formula expressing "w is the code for the 

sentence resulting from substituting the numeral for y for the free variable in the formula 

with code z", with its usual properties. Then PA proves  
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 ∀n(∀m(R(m, n) → T[B(m)]) → B(n)) 

 
and its converse. Note that KFµ then proves 

 
 ∀n(∀m(R(m, n) → T[B(m)]) → T[B(n)]) 

 
by truth transparency, since B is T-positive. This is the antecedent of transfinite induction 

along R for T[B(x)], so by the assumption of Friedman's lemma the consequent 

∀nT[B(n)] holds.  

 Suppose now for contradiction that the conclusion of Friedman's lemma fails, that 

the antecedent of transfinite induction along R for A(x), namely,  
 

 ∀n(∀m(R(m, n) → A(m)) → A(n)) 
 

holds, but the consequent ∀nA(n) fails. To deduce a contradiction and complete the proof 

that Friedman's lemma holds, we prove, working in KFµ, that for any n, ~A(n) implies 

~T[B(n)] or equivalently ~B(n). 

 To this end, writing bn for the code of B(n),l et T*(x) be the conjunction of T(x) 

and the formula τ(x) saying that x is not (the code of) any of the following sentences: 
 

 T[B(n)] = T(bn), where ~A(n) 

 ~C(b) ∨ ~R(m, n) ∨ ~I(b, m, bm) ∨ T(bm), where R(m, n) and ~A(m) 

 B(n) = ∀z∀y∀w(~C(z) ∨ ~R(y, x) ∨ ~I(z, y, w) ∨ T(w)), where ~A(n) 
 

 In verifying the composition axioms for T*, the only cases that could conceivably 

cause trouble are those where the consequent of the axiom is the truth of one of the three 

sentences mentioned in T*: 
 

(1) if B(n) is true*, then T[B(n)] is true* 
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(2) if ~C(b) ∨ ~I(b, m, bm) ∨ ~R(m, n) is true* or T(bm) is true* 

 then ~C(b) ∨ ~R(m, n) ∨ ~I(b, m, bm) ∨ T(bm) is true* 

(3) if for all p, m, q, ~C(p) ∨ ~R(m, n) ∨ ~I(p, m, q) ∨ T(q) is true* 

 then B(n) = ∀p∀m∀q(~C(p) ∨ ~R(m, n) ∨ ~I(p, m, q) ∨ T(q)) is true* 
 

 Here (1) will be troublesome when ~A(n), (2) will be troublesome when R(m, n) 

and ~A(m), and (3) will be troublesome when ~A(n) again, since these are the cases in 

which the consequent of the axiom fails by the definition of T* and we must prove in 

these cases that the antecedent fails also. For (3), if ~A(n), then by the antecedent of 

transfinite induction along R for A(x), there is some m with R(m, n) and ~A(m), and the 

thing to prove is that the antecedent of (3) fails for p = b and this m and q = bm. The 

argument is much as in the case of the truth-teller example.  

 Once we have the all the composition axioms, minimality applies and tells us that 

every true sentence is true*, which is to say, is not one of the sentences mentioned in T*, 

or in other words, that those sentences, including B(n) whenever ~A(n), are not true. So 

Friedman's lemma is established, and applies to complete the proof.  

 To show that ID1 is outright interpretable in (a conservative extension of) KFµ, it 

would be enough to prove a metatheorem to the effect that for any pertinent formula Φ 

there is a formula Φ* such that it can be proved in  KFµ that Φ* gives a minimal fixed 

point for the operator given by Φ. A formula Φ* was introduced towards the end of §12 

above, and shown to give a fixed point. It would only remain to show, applying the 

minimality principle of KFµ as in this section and the preceeding, that this fixed point is 

minimal. But this is not the place to go into details. 
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 Having taken so much from Friedman, it may be bad form for me to close by 

asking for more, but I am tempted to do so.  It would be nice to have the Friedman-
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Sheard project redone in a way that does not make truth classicism or any truth principles 

as part of the base theory. It would be nice to have the Friedman-Sheard project done 

again in a version based on partial rather than classical logic. I would be nice to have the 

Friedman-Sheard project redone for theories with two predicates T and S. The task is 

enormous, and so one may think, "If only Friedman could be lured back to the subject to 

do some of this work for us!"  

 But perhaps philosophers should first do a bit more in the way of distinguishing, 

within the enormous range of combinations, those potentially of the most philosophical 

interest. Something like that is what I have been attempting to do here.  
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PRINCIPLES OF TRUTH 
RULES 
Truth Introduction  from a sentence to infer the truth of the sentence 
Truth Elimination  from the truth of a sentence to infer the sentence 
Untruth Introduction from the negation of a sentence to infer the untruth of the sentence 
Untruth Elimination  from the untruth of a sentence to infer the negation of the sentence 
AXIOMS 
Truth Consistency  No sentence is both truth and false. 
Truth Completeness  Every sentence is either true or false. 
Positive Composition 
 Equational If an equation is correct, it is true. 
 Negational If a sentence is false, its negation is true. 
 Conjunctive If two sentences are true, their conjunction is true. 
 Disjunctive analogous 
 Universalizing analogous 
 Existentializing analogous 
 Atomic Truth If a sentence is true, it is true that it is true 
 Atomic Falsehood If a sentence if false, it is true that it is false 
Negative Composition  
 e.g. Conjunctive 

correlates for falsehood of Positive Composition 
If either of two sentences is false, their conjunction is false. 

Positive Decomposition  
 e.g. Conjunctive 

converses of Positive Composition 
If a conjunction of two sentences is true, both of them are true. 

Negative Decomposition 
 e.g. Conjunctive 

converses of Negative Composition  
If a conjunction of two sentences if false, at least one of them is false. 

Truth Distribution If a conditional and its antecedent are true, so is the consequent. 
Truth Classicism Any instance of excluded middle (or other classical law) is true. 
SCHEMES 
Truth Transparency  
 Sentential A is true iff A 
 Formulaic For all n, A(n) is true iff A(n) 
Truth Appearance 
 Sentential If A, then A is true. 
 Formulaic For all n, if A(n), then A(n) is true 
Truth Disappearance  
 Sentential If A is true, then A. 
 Formulaic For all n, if A(n) is true, then A(n) 
THEORIES STRENGTH 
PA* truth rules PA 
FS truth rules, consistency & completeness, 

composition & decomposition except atomic truth & falsehood 
RA(<ω) 

KF all composition and decomposition RA(<ε0) 
KF+ KF + consistency RA(<ε0) 
KHH = PKF partial logic variant of KF RA(<ωω) 
KFµ all composition + minimality ID1 

 


