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A B S T R A C T  

 

Many of us consider it uncontroversial that information processing is a natural function of the brain.  Since 

functions in biology are only won through empirical investigation, there should be a significant body of 

unambiguous evidence that supports this functional claim.  Before we can interpret the evidence, however, we 

must ask what it means for a biological system to process information.  Although a concept of information is 

generally accepted in the neurosciences without critique, in other biological sciences applications of information, 

despite careful analysis, remain controversial.  In this work I will review classical stimulus-response studies in 

neuroscience and use Claude Shannon’s mathematical information theory as a starting point to interpret 

information processing as a function of the brain.  I will illustrate a disanalogy between Shannon’s communication 

model (source, encode, channel, receiver, decode) and neural systems, and will argue that the neural code is not 

very code-like in comparison to genetic and engineered codes.  I suggest that we have conflated the act of 

representing neuroscientific facts—which we do to summarize and communicate our findings with others—with 

taking experimental facts to be representations.   
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1. Introduction 

Many cognitive scientists and neuroscientists, and 

perhaps most people in general, believe that the brain 

processes information, although there is ambiguity 

about what this belief entails.  Bechtel and Richardson 

(2010), as philosophers of cognitive science, consider it 

uncontroversial that cognitive scientists involved in 

neuroimaging research believe that “the brain contains 

some regions that are specialized for processing 

specific types of information” (p. 241).  Neuroscientists 

too claim that “the principal function of the central 

nervous system is to represent and transform 

information” (deCharms & Zador 2000, p. 613).  Given 

such wide-spread acceptance of a belief, it is 

appropriate to ask for the justification of this belief.  If 

the justification is empirical and experimental, then we 

should look to the research reported by working 

scientists in the field; if it is primarily theoretical, then 

we should look to the arguments of philosophers and 

theoreticians. 

We will no doubt discover both kinds of justification 

if we look for it.  Yet we also assume that scientists, 

when stating that the brain processes information, are 

primarily stating an empirical fact or a widely agreed-

upon scientific proposition that is supported by a body 

of experimental evidence.  Like the physiologist who 

can back up the proposition ‘kidneys filter the blood’ 

with a presentation of the experimental evidence, we 

expect that the neuroscientist should be able to do the 

same regarding a functional claim about the brain.  I am 

not suggesting a definition of science or attempting to 

solve Popper’s demarcation problem, but am appealing 

to the belief that widely accepted scientific statements 

ought to be associated with unambiguous evidence.   

The task here, however, is somewhat more involved 

than an objective review of the scientific literature.  The 

concept of information processing, and informational 

language in general, has received considerable critique 

within the field of biology, with authors disagreeing 

about the explanatory and theoretical weight of 

informational concepts (Sarkar 1996; Maynard Smith 

2000; Godfrey-Smith 2000; Griffiths 2001).  It is, 

however, generally agreed that the concept of 

information developed by Claude Shannon as used in 

mathematical information theory can be appropriately 

applied to the biological sciences (Godfrey-Smith and 

Sterelny 2008).  Shannon’s concept of information can, 

in fact, be applied to anything that can be represented 

as a random variable (Cover & Thomas 2006).  Given 
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the broad applicability of Shannon information, it is 

helpful to further define the concept of carrying 

Shannon information. Objects are said to carry Shannon 

information about each other when the states of two or 

more objects are physically or causally correlated 

(Dretske 1981; Piccinini & Scarantino 2011).  

Scientists, however, in saying that the function of 

the brain is to process information must be saying more 

than this.  Smoke carries Shannon information about 

fire, for the presence or absence of fire and smoke are 

causally correlated, but certainly information 

processing in the brain means something more than 

causal correlation.  More, authorities claim that 

information processing is the function of the brain.  

Although smoke carries information about fire, most 

people would not claim that it is the function of smoke 

to do so. In this work I analyze a broad category of 

neuroscientific evidence to determine (1) if this 

evidence supports a richer concept of information 

processing than causal correlation, and (2) if this richer 

concept can unambiguously be called the function of the 

brain.  I will argue that this evidence does not support a 

richer concept of information in the neurosciences, and 

that the functional attribution is either empirically 

unjustified or too ambiguous for careful theoretical use.   

Cognitive scientific evidence, especially 

neuroimaging evidence, has been increasingly 

subjected to criticisms.  To better demarcate my 

position, I highlight that I am not specifically arguing 

between distributed versus localized processing in the 

brain (Utel 2001; Hardcastle & Stewart 2002; Bunzl et 

al. 2010), or pointing out the previously discussed 

technical-methodological limitations of brain assessing 

technologies (Logothetis 2008; Roskies 2007; Klein 

2009).  I do share with these authors the broader 

concern for interpretations of evidence in the field of 

cognitive science, and how theoretical assumptions 

influence interpretations of evidence, ultimately ending 

in statements made by researchers that carry the 

weight of scientific fact.  These facts, in turn, are used 

by naturalistic philosophers of mind to constrain 

philosophical theory and argument.  

 

2.  External-stimulus/brain-response studies and 

neuronal function 

     Although there are other categories of 

neuroscientific evidence, I will be focusing exclusively 

on external-stimulus/brain-response (ES/BR) studies 

as these experiments have been traditionally used to 

justify claims of information processing in the brain.  In 

ES/BR studies the experimenter systematically 

manipulates physical features of an organism’s external 

environment and measures temporally coincident 

properties of the organism’s brain.  The brain responses 

(BR) need not occur precisely simultaneous with the 

stimulus and are typically extended in time.  Brain 

responses in ES/BR studies are recorded using a variety 

of techniques based upon electromagnetic brain 

properties, including single-unit intra and extracellular 

recording, evoked potentials, EEG, MEG, fMRI, and 

others.  Edgar Adrian is generally credited with 

pioneering stimulus-response studies of nervous tissue.  

He was the first to record the electrical activity of single 

nerve fibers, the first to use the term information to 

describe neuronal activity (Garson 2003), and was 

subsequently awarded a Nobel Prize in 1932 for his 

work.  

 

 

 

 

2.1  Examination of the evidence 

 

     Adrian and Zotterman (1926), in their ground-

breaking ES/BR research, measured the electrical 

responses of single sensory stretch receptors while 

they were fixed to varying weights.  Adrian and 

Zotterman observed that a cell’s electrical responses 

are in the form of stereotyped action potentials, or 

spikes, and that the rate of producing spikes increases 

as the weight increases.  Thus the rate or frequency of 

spikes during a fixed time period is able to predict the 
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Fig 1.  Schematic of a classic sigmoidal stimulus-
response curve.  The spike rate is a function of stimulus 
magnitude, allowing one to map spike rates onto 
stimulus magnitudes and vice-versa 
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magnitude of the stimulus.  Spike-rate can be plotted as 

a function of stimulus magnitude, demonstrating what 

is meant by a neural rate-code (Fig. 1).   

     These early experiments established that single cell 

responses and stimulus magnitudes may reliably 

covary with each other.  While magnitudes and 

intensities are important properties of stimuli, they are 

not the only properties of environmental stimuli that 

are relevant to an organism.  In general, a stimulus may 

be characterized by multiple properties.  For example, 

an auditory stimulus may be described by its intensity, 

frequency spectrum, temporal envelope, source 

direction, source distance, and so on.  It is possible that 

a particular cell responds to one of these properties and 

not to others, or to some combination of properties, 

which suggests that a cell may be selective for specific 

properties or features of the stimulus.      

     Barlow (1953) was perhaps the first to clearly 

demonstrate the feature selectivity of sensory cells 

(Reike et al. 1999).  By recording the electrical activity 

of retinal ganglion cells in the frog, he was able to show 

that the cell’s activity covaries with the location and 

size of a circular spot light on the retina.  After 

systematically varying the light spot’s size and location, 

Barlow determined that the cell’s receptive field—the 

collection of stimulus properties that maximally 

activated the cell—is a circularly symmetric form called 

a center-surround field.  Spots of light within a small 

region of the retina activate the cell, but spots of light 

away from that region inhibit it.   

     Hubel and Wiesel (1962) greatly extended Barlow’s 

work and discovered cells of the striate (visual) cortex 

that have surprisingly complicated receptive fields.  

Two of these cell types are the so-called simple and 

complex cells, which respond maximally to 

appropriately oriented bars or slits of light.  Some of the 

cells are relatively insensitive to the location of the bar, 

while others only appreciably respond to moving bars.  

In describing these cells, Hubel says that  

 

We feel that we have at least some 

understanding of a cell if we can say that its 

duty is to take care of a 1 degree by 1 degree 

region of retina, 6 degrees to the left of the 

fovea and 4 degrees above it, and to fire 

whenever a light line on a dark background 

appears, provided it is inclined at about 45 

degrees. (Hubel 1962, p. 168) 

      

     The evidence from these pioneering ES/BR electro-

physiological studies cannot be interpreted without the 

concept of selective response.   Selective response 

means, loosely, that the cell fires action potentials only 

when the ‘right’ stimulus is present.   Put more 

rigorously, selective response refers to two 

characteristics of neuronal cells: (1) the rate or pattern 

of firing action potentials (the spike train) covaries with 

specific stimulus properties, and (2) different cells may 

respond differently to the same stimulus.  Both 

characteristics are typically implied when referring to 

the selectivity of cells in ES/BR studies.  If someone 

discovered a neuron that exhibited (1), but on 

subsequent research discovered that all neurons 

exhibited (1) in the same way, one would not say that 

the initial neuron was selective for the stimulus, even 

though it exhibited selectivity for some stimuli among 

others.  As well, the fact that different neurons respond 

differently to similar stimuli does not imply (1), since 

neuronal responses may be random in response to 

stimuli.  Condition (1) is a form of within neuron 

stimulus selectivity, while condition (2) is a form of 

between neuron stimulus selectivity. For ES/BR studies 

such as Hubel and Wiesel’s, when an ES is chosen and 

controlled by the researcher,  we assume that the 

relation between the ES and BR is causal, as this 

assumption does not change our interpretation of 

selectivity, even though we use the term ‘covaries’  

which has statistical connotations. 

     We are now in a position to evaluate whether Hubel 

and Wiesel’s ground-breaking ES/BR studies justify the 

claim that the brain processes information in a way that 

means more than causal correlation.  The experimental 

evidence consists of recorded responses of complex 

cells that demonstrate stimulus selectivity in the senses 

of (1) and (2).  It seems that selectivity in the sense of 

(2) does not provide any justification that complex cells 

process information; the fact that different cells 

respond differently to the same stimulus suggests only 

that the cells are different in some way. 

     Claims of information processing, if they are justified 

by this experiment, must follow from the evidence that 

complex cell spike trains covary with the properties of 
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visual stimuli, or in causal language, that different 

visual stimuli cause different complex cell spike trains.  

Considering the latter causal language, the fact that 

different causes reliably produce different effects when 

mediated by the same cell does not appear to justify the 

claim that the cell processes information in a sense 

other than Shannon information.  Even so, this type of 

causal relationship appears everywhere one looks.  A 

particular pool ball when hit by other balls with 

different masses and velocities will undergo different 

effects.   The pool ball may not appreciably move when 

stimulated by light or sound at typical intensities.  The 

selectivity of the pool ball to acquire different velocities 

in response to different causal ‘stimuli’ does not appear 

fundamentally different than the selectivity of a 

complex cell, especially if the visual stimulus is taken to 

be a space-time collection of photons. 

     On closer analysis, there is a difference between the 

causality in the pool ball example and the relation 

between the ES and BR of complex cells.   The pool ball 

example involves direct physical contact and an 

exchange of energy and momentum, while the causal 

response of the complex cell is more indirect.  Photons 

travel through the lens of the eye and are absorbed by 

photoreceptor cells of the retina.  Absorption of 

photons modulates the release of the neurotransmitter 

glutamate at synapses onto so-called bipolar cells, 

causing the electrical field across the membrane of 

these cells to become more positive or negative, which 

respectively increases or decreases the probability of 

generating an action potential.  Bipolar cells have axons 

that synapse on other cells, and through a series of 

neuronal connections, influence the membrane 

potential of complex cells and subsequent action 

potential generation.  The causal chain from photons to 

complex cell response is complicated and likely 

includes causal feedback, yet it is not obvious that a 

complicated causal chain is necessarily information 

processing.   

      Even more worrisome is the fact that selective 

causation need not imply that the BR has any functional 

relation to the ES at all.  Nothing rules out the 

possibility that those selective correlations are 

accidental—not in the sense that the correlations are 

statistically spurious, but that those correlations are 

functionally irrelevant to the stimuli of interest.  As an 

analogy, suppose my computer has a CPU fan with a 

blue LED light on the fan.  The light, however, is unlit 

and the fan isn’t spinning.  It happens that when I kick 

my computer just so on the left side of the front cover, 

the LED lights up, the fan begins spinning but stops 

after a second or two, and the light goes out.  If I kick it 

again, just so, it starts up for a second then stops.  I can 

reliably cause the fan to turn on for a bit.  When I kick 

the computer in other places, or shake it up, or sing to 

it, nothing happens to the fan.  The fan is selectively 

correlated with a specific kick.  Perhaps there are 

hundreds of computers, constructed at the same 

factory, that behave similarly.  This selective, causal, 

complex, and perhaps arbitrary relationship does not 

imply that the fan is functionally relevant to my kicking, 

or processes kicking information, or represents 

kicking—the relationship may be accidental.    

 

2.2  Functional claims 

 

     Intuitively, there appears to be a qualitative 

difference between the computer fan example and 

neurons like center-surround ganglion cells.  The 

correlation between light-rays and the firing of ganglion 

cells is beneficial to the organism in some way, while 

the correlation between kicking the computer and the 

spinning fan is not beneficial to the computer—but this 

first hint at a difference is not convincing.  If my 

computer fan is not spinning, and the CPU is rapidly 

heating up which may cause the computer to crash, 

then the correlation will be quite beneficial if I start 

kicking my computer.  

     We must look elsewhere to explain the difference 

between the two cases, and this search leads one to 

consider fundamental issues in biology concerning 

purpose, function, and design.  The computer was not 

designed (by an engineering team) to manifest a 

correlation between kicking and fan movement, while 

the organism was designed (through natural selection 

or else wise) to have ganglion cells whose activity 

covaries with patterns of light rays.  It is highly 

controversial whether artificial design and natural 

selection can be grouped into a univocal concept of 

design to support the above intuition, although some 

authors clearly make use of a broad notion of design to 

do so (Kitcher 1993). 

     We would like to say that it is the function of 

ganglion cells to produce activity that correlates with 

light rays, and it is not the function of the fan to 

correlate with kicking the computer—the latter is an 
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accident.  Once we proffer this explanation, we must 

acknowledge that selective correlation, by itself, is not 

sufficient to establish the existence of a function, 

information processing or otherwise.  This finding is no 

surprise to philosophers of biology who have 

investigated the concept of biological function over the 

past fifty years, but it reminds us of the limitations in 

arguing that it is the function of the brain (or neurons) 

to process information based upon the discovery of 

selective correlations between stimuli and neuronal 

activity.  

     Philosophers of biology have understood biological 

functions in numerous ways, but two formulations are 

prominent, one grossly characterized as ‘backward-

looking’ and the other as ‘forward-looking’.  The 

backward looking or ‘etiological’ concept roughly 

defines a function of a given trait in terms of the trait’s 

causal history of effects (Wright 1973; Millikan 1984; 

Neander 1991).  It is often called the selected effect 

concept of function because it takes biological functions 

to be (historically) casual consequences that were 

preserved via natural selection.   The forward looking 

concept, in contrast, defines a function of a trait in 

terms of its causal dispositions or capacities, where the 

relevant capacities are often taken to advance some 

goal or purpose of the organism (Rudwick 1964; 

Bigelow and Pargetter 1987), although Cummins 

(1975) proposed a dispositional theory without direct 

reference to purpose that is perhaps most acceptable to 

practicing scientists (Amundson and Lauder 1994). 

Roughly, Cummins’ theory of function, often called a 

causal role theory, involves relating the causal 

capacities of parts of a system to other capacities of the 

whole system.  A part-wise capacity that contributes to 

a capacity of the whole is said to be a function of that 

part. 

     When experimental neuroscientists like Hubel and 

Wiesel identify selective correlations between light 

patterns and ganglion activity, what additional 

observations or assumptions allow them to claim that 

the function of ganglion cells is to produce activity that 

correlates with the presence and absence of light 

patterns?  Selective correlation is not enough to 

establish function, and it does not seem that 

experimental neuroscientists need appeal to natural 

selection in order to justify functional claims.  Scientists 

identify or at least speculate on function by 

investigating the systems of interest in the lab, thereby 

explicating causal mechanisms that, for instance, make 

vision possible.  We presume that the correlation 

between light patterns and ganglion activity 

contributes to the capacity of the organism to see—the 

correlation plays a causal role in vision—whereas the 

correlation between kicking and the spinning fan is not 

connected to any (relevant) capacity of the computer. 

     Correlation, however, is not the end of the story and 

is not a particularly useful identification of function.  

Many biological variables correlate, both within the 

organism and with the environment.  Heart rate and the 

speed of ambulatory locomotion in humans covaries, 

but it would be a odd to say that it is the function of the 

heart to produce contraction rates that correlate with 

the speed of movement.   When we attribute the 

function of information processing to neurons, we 

appear to be attributing something more than 

correlation or selective causal response.  But to infer 

information processing from an experimentally 

observed ES/BR correlation, we must first assume that 

the correlation is not accidental in the sense above.  A 

correlation can be said to be non-accidental if the 

organism was designed to manifest that correlation, if it 

was maintained by a selection process, or if the 

correlation is functional in the sense that the 

correlation contributes to some relevant capacity of the 

organism.  The latter notion of a non-accidental 

correlation is perhaps the least controversial among 

practicing experimental neuroscientists, but if we use 

this understanding to support claims of information 

processing, then information processing, with respect 

to ganglion cells, simply means a correlation between 

the ES and BR that contributes to the capacity for 

vision.   

     The lack of richness in this functional claim, based 

upon the evidence, does not significantly depend upon a 

causal role theory of function.  If one wishes to apply a 

selected effect notion of function to neuroscience data 

like in Garson (2011), then we can say that the brain 

structure was selected (by a neural selective process) to 

manifest a correlation between the ES and BR.  Neither 

notion of function appears to transform the empirical 

correlation into a theoretically useful concept of 

information processing. 
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3. Justification of information processing from 

ES/BR studies 

 

     There is a strong tendency to associate information 

processing with the results of ES/BR experiments like 

Hubel-Weisel’s.  The spike trains of neurons appear to 

be relaying specific messages about the external 

environment to the organism.  Claude Shannon (1948), 

the founder of mathematical communication theory, 

rigorously defined a model of information transfer that 

may explain this appearance.  In Shannon’s language, 

the physical environment acts as a source that 

generates a message (ES), the message is transformed 

by an encoder—a sensory organ of the organism—into 

a signal suitable for biological transmission.  The spike 

train (BR) is assumed to be this signal and the neuron 

to be the transmission channel.   These comparisons are 

reasonable, but the next stage of the communication 

model, however, is problematic (see Fig. 2).   

Communication requires a receiver that performs the 

inverse operation of the transmitter, or something that 

reconstructs the environmental message from the spike 

train signal. 

     The experimental researcher, the one who discovers 

selective correlations between neuronal spike trains 

and environmental messages (stimuli), often plays the 

surrogate role of the receiver or decoder.  By describing 

relational or mathematical mappings between the ES 

and BR, neuroscientists attempt to ‘read the neural 

code.’  But this is not the sort of information 

transmission we were trying to explain.  To complete 

the biological communication model, and to ground 

information transfer, we need to explain how the 

organism can reconstruct the environmental message 

from its temporal pattern of action potentials, and we 

must demonstrate that the organism reproduces a 

similar environmental message within the organism 

itself.   The neuronal spike train is not the message—if 

anything it is the transmission signal or encoded 

message.   Although interesting, it is not enough to 

show that spike trains have the capacity to represent 

environmental messages through selective covariation.  

The fact that researchers can mathematically map spike 

trains back onto stimuli does not say anything about 

how the organism biologically reconstructs the 

environmental message.  This capacity to map follows 

immediately from statistical correlations.  

Neuroscientists who acknowledge these limitations 

explain that mathematically reconstructing stimuli from 

spike trains requires taking the homunculus point of 

view (Reike et al. 1999). 

     For an organism to receive an environmental 

message in Shannon’s sense, that message must be 

within the organism and have the same structure as the 

original message.  This suggestion may appear radical, 

but it is simply the completion of Shannon’s 

communication model—the same model that supports 

the intuition that the brain processes and transmits 

information.  For example, consider telephonic 

communication.  Air pressure waves may be converted 

into analog electronic messages that are encoded into 

spike trains 

encode decode 

No causal or biological basis Causal and biological  

∑ H(t - ti ) 

estimated stimulus ŝ(t) physical stimulus s(t) 

Fig 2.  The typical encoding-decoding relation used in the neurosciences.  Physical stimuli are encoded 

into spike trains through a causal, biological process.  Spike trains are decoded into estimates of stimuli 

using mathematical heuristics that are unrelated to the biology of the organism 
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digital signals and transmitted through a physical 

channel.  This digital signal, which does not mirror the 

sound wave in form, reaches a destination where it is 

reconstructed back into an analog message that drives a 

loudspeaker, reproducing the original pressure wave.  If 

the original message was not reproduced (perhaps 

imperfectly) at a destination, we could not claim that 

communication or information transfer took place.  A 

message is communicated if and only if that message is 

reproduced at the receiver. 

     If one assumes that the organism receives 

environmental messages, then in accordance with 

Shannon’s communication model, at least the structure 

of that message must be physically reproduced within 

the organism.  The alleged encoded message—or spike 

train—has a physical basis, thus the message ought to 

have a physical basis as well.  This means that the 

scientist would have to demonstrate a set of brain-

related physical measurements that copy, perhaps 

imperfectly, the structure of an environmental stimulus.  

Let us call this the brain-image of an environmental 

message.   It would remain for the scientist to describe 

the mechanisms by which neuronal spike trains 

causally reconstruct the brain-image of a particular 

environmental message. 

     When decoding spike trains in practice, the 

neuroscientist leaves the animal lab and goes to work at 

the computer. On the computer, spike trains and 

environmental stimuli are given numerical 

representations.  The creative work involves finding 

mathematical algorithms and heuristics—let us call 

these the decoding procedures—that link spike trains 

to stimuli.  When the neuroscientist finds a decoding 

procedure that works, she claims to have discovered a 

neural code.  The problem is that the neurons 

themselves have no physical relation to the decoding 

procedure.  The actual neurons and spike trains in the 

living organism do not reconstruct environmental 

stimuli within the organism using these fabricated 

decoding procedures, or at least the neuroscientist has 

no evidence of this.  If she supposes that other neurons 

have the function of performing the decoding 

procedures that she discovered, and she wishes to find 

biological evidence, then she must record from neurons 

that allegedly perform the decode, and, using similar 

mathematical techniques above, fabricate a secondary 

decoding procedure that links these spike trains to the 

original decoding procedures.  These investigations 

lead to an infinite experimental regress that mirrors the 

epistemological regress of the homunculus argument.  

The only way to stop the regress is to discover the 

brain-image of the stimulus. 

     Eliasmith and Anderson (2002) have suggested 

another way to address this experimental regress when 

considering mathematically fabricated decoding 

procedures used in neuroscience, but their solution is 

quite similar to sweeping the problem under the rug: 

      

In fact, according to our account, there is no 

directly observable counterpart to these 

optimal decoders. Rather, the decoders are 

‘embedded’ in the synaptic weights between 

neighboring neurons. That is, coupling weights 

of neighboring neurons indirectly reflect a 

particular population decoder, but they are not 

identical to the population decoder, nor can the 

decoder be unequivocally ‘read-off’ of the 

weights. (quotes in original, p. 17) 

 

     So long as one can construct a mathematical heuristic 

to statistically map neuronal activity onto stimuli—

which we can always do if the activity is correlated in 

some way, and becomes more likely if we consider a 

population of neurons—then we should also assume 

that the mathematical heuristic is unobservably 

‘embedded’ within synapses.  This concept of 

embeddedness is even more mysterious than 

representation in that we cannot, even in theory, 

consistently map synaptic weights to the mathematical 

decoder.  We can avoid the regress, but at the expense 

of an unfalsifiable and seemingly unscientific 

assumption.   

      Application of Shannon’s model to neuroscience 

appears to require embedded decoders and embedded 

brain-images, both of which are beyond empirical 

investigation, so the very presence of an encoded 

message within the brain presents a problem.  In other 

words, why should the brain contain encoded messages 

that transmit environmental messages, yet never 

reproduce the structure of the message itself?   The 

organism requires the actual message, and not only an 

encoded version of it.  At this point our analogy to 
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Shannon’s communication model breaks down.  It does 

not appear that the environment communicates a 

message to the organism, but rather, the organism is 

perhaps translating the environment.  Spike trains are 

not signals corresponding to encoded messages; they 

are the actual messages only in the language of the 

organism, whatever that might mean.  With respect to 

the organism, the message is not encoded in anyway, 

and speaking of a neural code is metaphorical and at 

times misleading.  The analogy has changed from 

information transmission to language translation.  But 

even the idea that spike trains are a language is 

metaphorical—spikes trains need not constitute a 

private biological language.  Our goal here, however, is 

not to support other metaphors, but to show that 

Shannon’s communication model, which is an integral 

part of modern technology, does not match the way in 

which the environment ‘communicates’ with the 

organism. 

  

4.  The neural code 

 

     It is assumed in the neurosciences that there exists 

something called a neural code, and that this code has 

something to do with how the brain represents physical 

properties (and mental properties if you believe in such 

things).   One reason for this informational code talk is 

the assumed straightforward analogy between the 

action potentials of neural systems and the classical 

communication model of source, encoder, channel, 

decoder, and receiver (Bergstrom and Rosvall 2009), 

but this analogy is incomplete and generates 

ambiguities.  The decoder and receiver in the model 

have nothing to do with the organism, but it is the 

organism that allegedly decodes and receives the 

message. 

     The first stage of encoding, in which the properties of 

an ES are supposedly encoded into patterns of action 

potential, is probably the least controversial, but on 

what ground can we call this a code in more than a 

statistical sense?  Compare this code to the genetic 

code.  It is generally agreed that genes code for the 

amino acid sequences of proteins.  The two alphabets of 

the genetic code are finite and well-defined, consisting 

of the four-letter set of nucleic acid bases (A, G, T, C) 

and the 23 amino acids plus a stop codon. There is a 

regular mapping between nucleic acid bases and amino 

acids, where ordered sequences of bases map to 

sequences of amino acids.  The mapping is one-way in 

that transcription and translation decode base 

sequences into proteins, but there is no cellular 

mechanism that encodes proteins as sequences of 

bases.  We might call this an ‘encodeless’ code.  Still, 

even authors skeptical of informational talk in biology 

see reason to call the genetic code a code in a way that 

means more than causal correlation (Godfrey-Smith 

2000; Griffiths 2001). 

     The two alphabets of the neural code are taken to be 

environmental physical properties and temporal 

patterns of neuronal activity. Both alphabets are 

presumably uncountably infinite because both concern 

continuous variables, although one can make the case 

that perception is not infinitely fine-grained and that 

continuous magnitudes are discretized.  While infinite 

codes exist and neuroscientists have demonstrated how 

neuronal activity can be used to estimate continuous 

parameters of a stimulus, it remains difficult to clearly 

specify the alphabets of the neural code (Eliasmith and 

Anderson 2002), especially in comparison to the 

genetic code—which strangely has taken more criticism 

with respect to informational talk than neural coding.  

     With regard to neural coding and the nature of the 

code’s alphabet, photoreceptors, the first stage or input 

element of the visual system, bring up several 

questions.  Photoreceptors clearly play an important 

role in our capacity for vision.  Photons from the 

environment are absorbed by light-sensitive 

photopigments of the photoreceptor, which through a 

cascade of biochemical reactions, hyperpolarize the 

photoreceptor, decreasing the rate of glutamate release 

from the photoreceptor synapse.  The rate of glutamate 

release is thus graded from its highest rate in complete 

darkness to lower rates with increasing light 

absorption and hyperpolarization.  Post-synaptic 

bipolar cells respond to these glutamate levels by 

generating action potentials. 

     Should we conclude that the photoreceptor 

processes code-like information, or is it simply part of a 

well-specified causal cascade going from photon 

absorption to glutamate release?  Although we can 

always talk as if the photoreceptor is processing 

information—in the statistical, correlation sense—we 

are less drawn to do so, presumably because the 

mechanistic details of the photoreceptor are fairly-well 

understood.  Either the photoreceptor is processing 

information, in which case we see that information 
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processing talk tends to drop out once we sufficiently 

understand the causal mechanism, or it is not 

processing information, requiring us to explain why 

ganglion cells process information but photoreceptors 

do not.  Neuroscientists have tried to cash-out this 

difference through the dichotomy of implicit versus 

explicit representations, but implicit here simply means 

that a successful mathematical decoding heuristic has 

not yet been devised by the scientist (deCharms and 

Zador 2000), making the distinction relative. 

     Next consider glutamate release at the photoreceptor 

synapse.  The rate of glutamate release, when looking at 

the complete population of photoreceptors, appears to 

encode everything we need to know about the external 

visual stimulus.  In other words, if we were able to 

measure the rate of glutamate release at every 

photoreceptor, then a clever neuroscientist would be 

able to reconstruct, or decode, the stimulus that led to 

that particular pattern of glutamate release.  The 

photoreceptor is the encoder, but it encodes physical 

properties into rates of glutamate release.  Those 

knowledgeable about Shannon information theory will 

even tell us that the downstream electrical activity 

resulting from the glutamate release can only degrade 

the information in the source signal via the so-called 

data processing inequality.  It is therefore reasonable to 

conclude that the population-rate of glutamate release 

is an appropriate alphabet of the visual neural code, a 

code that has nothing to do with action potentials. 

     In addition to ambiguities in specifying the alphabets 

of the neural code, there are problems with the 

‘grammar’ of neural coding.  An important aspect of all 

engineered codes is that concatenated sequences or 

combinations of the ‘source’ alphabet can be recovered 

as sequences or combinations of the ‘target’ alphabet.  

This combinatorial property is manifest in the genetic 

code: sequences of bases are systematical mapped to 

sequences of amino acids.  Do neural codes, at least the 

ones discovered by neuroscientists, unambiguously 

manifest this property?  I will first concede that 

neuroscientists have demonstrated that temporal 

sequences of action potentials can be recovered as 

temporal sequences of distinct stimuli.  My concern, 

however, is that neuroscientists have not demonstrated 

that multiple contemporaneous source messages are 

encoded by any obvious function of the individual 

message encoding schemes.  To be clearer, if S1, S2, and 

S3 are stimuli and R1, R2, and R3 are spike trains, then 

given individual encoding relations S1�R1, S2�R2, 

and S3�R3; does S1+S2+S3�R1+R2+R3, where 

S1S2S3 occur contemporaneously? 

     This situation is particular relevant to vision and 

how neuroscientists understand the receptive fields of 

cortical cells like those discovered by Hubel and Wiesel.  

Individual cells, such as complex cells, are classically 

characterized by their receptive fields and typically fire 

most when the stimulus is a suitably oriented bar.  This 

leads us to believe there is a clear encoding relation 

between oriented bars and cellular responses that is 

always followed, but experiments like those of Bakin et 

al. (2000) show us that this is simply not the case.  In 

Fig. 3, the dashed-boxes below the x-axis represent the 

identified receptive field of a striate cortical neuron, 

and the bar within the dashed-box in the S1 column 

represents a bar in the preferred orientation for that 

neuron.  S1 is the ‘optimal’ stimulus for this neuron, and 

we see for S2 that a bar outside of the receptive field 

generates little response.  However, the simultaneous 

presentation of S1 and S2 yields a super-optimal 

response, even though we might expect S2 to not 

influence the response at all (because it is outside of the 

classical receptive field).  In symbols, S1�R1 and 

S2�R2, but S3=S1+S2 does not map to any obvious 

linear function of R1 and R2.   

     We can appreciate this potential difficulty in neural 

coding when we consider again the classical stimulus-

response curve Fig. 1 as a function R(S), where R is the 

neural response and S the stimulus.  Now consider a 

response function R(S1, S2) for the same neuron.  When 

each stimulus S1 and S2 is a visual stimulus, R(S1, S2) ≠ 

R(S1)+R(S2) for some stimuli as above.  Since R(S1, S2) 

is not linearly separable, nor obviously separable by 

some other transformation, then to understand the 

encoding relation R(S1, S2), we must experimentally 

determine this relation by probing the neuron with a 

wide range of joint stimuli S1+S2.  A similar procedure 

is required to determine R(S1, S2, S3) and so forth, 

procedures that quickly become impractical for 

moderate numbers of stimuli, yet if the piecewise 

encoding relations do not clearly determine 

combinatorial relations, then in what sense is the 

piecewise code a code in the first place?  Scientists may 
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use nonlinear mathematical techniques to patch 

together piecewise encoding relations into 

combinatorial relations, but then, as in the previous 

section, one may question the biological relevance of 

such a practice. 

     As well as lacking contemporaneous combinatorial 

properties, responses of neurons in primary and 

extrastriate cortex are not strictly determined by the 

passive physical properties of external stimuli, but are 

dependent upon the behavioral and cognitive states of 

the organism (Pasternak et al. 2003).  These sorts of 

dependencies are not present in the genetic code—at 

least not unless one stretches code-like talk beyond the 

coding of proteins and onto whole-organism 

phenotypes, which does not appear appropriate 

(Godfrey-Smith 2000; Griffiths 2001).  One might argue 

that behavioral dependences are ‘part of the code’, 

making the encoding relation look something like (S, 

B)�R where B is a behavioral or cognitive state, but 

this move greatly complicates any understanding of the 

alphabet and grammar of the neural code.  What 

behaviors or cognitive states count in the code? How do 

we specify the relevant alphabet? Do (S, B) pairs have 

combinatorial properties, are not behaviors functions of 

neural responses, and will mappings not change with 

time and learning?  Again, one can respond that “it’s 

complicated, but this is what takes to understand the 

neural code”, yet this code looks less and less like a 

systematic code and more like an unruly temporally 

dependent multidimensional blob of lawless 

correlations.  

     Neural coding, as practiced by cognitive scientists 

and neuroscientists, is an anything-goes sort of coding, 

by which I mean that any brain properties that 

correlate with stimulus properties, behavioral 

properties, cognitive properties, or social contexts can 

be considered part of the code.  This is not a 

shortcoming or limitation of neuroscientific research, 

but it is a limitation of the coding metaphor.  The code 

of the neural code does not have a lot going for it when 

critically compared to genetic or engineered codes.  One 

property they probably share is that their respective 

mapping relations are arbitrary.  Garson (2003) has 

attempted to defend a concept of information as 

applied to neural responses based upon this property.  

Given the above shortcomings of neural coding, it is 

difficult to see how arbitrariness by itself justifies 

informational and code-like language. 

 

5.  Information theory as a tool 

 

     The decoding procedures discovered by 

neuroscientists are useful in that they allow us to 

predict spike trains given environmental stimuli, and 

stimuli given spike trains; but the specific decoding 

procedures do not tell us anything about the function of 

neuronal populations—because the decoding 

algorithms have nothing to do with the biology of the 

organism.  Rather, the capacity to successfully predict 

between stimuli and spike trains via decoding is 

typically taken as evidence that spike trains represent 

stimuli, although the capacity to predict immediately 
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Fig 3.  Response of a neuron in the primary visual cortex.  

Dashed boxes represent the receptive field of the neuron.  A 

bar in the middle of the dashed-box is the optimal stimulus for 

the neuron, while a bar outside of the box is a stimulus that 

does not activate the neuron.  The combination of a bar 

inside and outside of the receptive field produces a super-

optimal response, which is not predicted by either stimulus 

taken in isolation.  Adapted from Bakin et al. (2000) 
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follows from the statistical correlations between spike 

trains and stimuli. 

     There are neuroscientists who consistently, and with 

clearly stated assumptions, apply Shannon’s 

mathematical information theory to neuronal data with 

the goal of quantifying the theoretical channel capacity, 

or bit rate, of spike trains (Strong et al. 1998; Reike et 

al. 1999). These interesting applications of information 

theory within neuroscience try to answer the following 

question: assuming spike trains carry Shannon 

information about the environment, how much 

information (in bits) could they carry?  We could ask 

similar questions about the oxygen molecules in one’s 

living room, the ants in an anthill, or the blades of grass 

in one’s yard—although the answers presumably would 

not be as interesting.  The fact that Shannon 

information theory can be rigorously applied to spike 

trains does not imply that the brain processes 

information as a function. 

     Other neuroscientists, such as deCharms and Zador 

(2000), repeatedly claim that spike trains carry 

information about the environment as a fact, and 

suggest what it means to carry information: “Imagine 

recording from the neuron labeled B1 during different 

types of stimuli or behaviors and discovering the 

information that this neuron carries about the 

organism’s environment—the content of this neuron’s 

signal” (p. 614-15).  In a concrete example about a 

retinal cell they say that “The activity of the neuron will 

be highly correlated with the point of luminance (thus 

carrying content about this input)” (p. 637).  Like in 

Hubel-Wiesel’s ES/BR experiments, we call this 

evidence the selective covariation between stimulus 

properties and spike trains.   deCharms and Zador use 

the word ‘information’ above to possibly mean ‘specific 

properties or features of the stimulus.’   Given these 

examples, we can suppose that they would endorse the 

following argument: (1) spikes trains and stimulus 

properties selectively (and causally) covary, and (2) the 

(representational) content of a spike train is the 

stimulus property that causes that spike train. 

     deCharms and Zador do not bring forth any other 

types of experimental evidence other than selective 

covariation to justify the claim that spike trains carry 

informational or representational content, although 

they do stress that the representational nature of spikes 

trains is based upon content and function.  We have 

argued that (1) is a statement about the evidence that 

all of us would agree upon, but that (2) does not 

obviously follow.   The fact that an ES and BR selectively 

covary, through causal paths, does not appear sufficient 

to justify claims of representational content, and it has 

been argued that covariation of this sort is not even 

necessary for representational content (Millikan 1989; 

Bechtel 1998).  

     We need not expect deCharms and Zador, as 

neuroscientists, to philosophically justify what it means 

for a spike train to carry representational content, yet if 

claims of carrying content do not follow immediately 

from the observed evidence, then we can only assume 

that they are interpreting the evidence or 

communicating the evidence by way of metaphor.  But 

deCharms and Zador, along with many other 

neuroscientists, speak as though ‘carrying content’ is a 

straightforward experimental fact apart from, or in 

addition to, selective correlations. 

     To justify informational talk, some neuroscientists 

mount a proof-is-in-the-pudding defense, arguing that 

the use of informational concepts has helped the field of 

neuroscience progress.  How else could visual 

neuroscience be where it is now without envisioning 

hierarchies of different layers of neurons that process 

specific types of information?   I believe confusion 

arises between representations of experimental facts—

which we use to summarize and share our findings with 

others—and taking experimental facts to be 

representations.  For example, there is a tendency to 

imagine that a receptive field (or stimulus-response 

tuning curve, e.g. Fig. 1) is a property of a neuron, but 

this is no straightforward intrinsic physical property of 

a cell. If anything a receptive field is a mathematical 

function of physical properties spread throughout the 

brain and includes, from the start, reference to external 

stimuli.  When a receptive field is first characterized, it 

simply represents the collection of stimulus-response 

pairs (in the form of a handy graph or picture) that 

were investigated by the researcher.  The receptive 

field summarizes the results of an experiment involving 

a particular neuron; it is not an intrinsic physical or 

biological property of that neuron. 

     These representations of experimental facts are 

undoubtedly useful in guiding further research and 
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generating hypotheses.  Neuroscientists can and do 

reason using these representations, but this does not 

imply that, for instance, spike trains carry 

representational content.  Similarly, Shannon 

information theory can be usefully applied to neuronal 

responses, but that does not imply that neuronal 

responses are code-like or process information, at least 

no more so than any objects that manifest causal 

correlations.  We appear to be confusing the tools we 

use to understand neural systems with the properties 

of neural systems.   An appreciation of this distinction 

may help us to better understand the function of 

neurons and the brain. 
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