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ABSTRACT 

. . 

We  assume, in the first place, that two kinds of processes occur in Nature: the strictly 
continuous and causal ones, which are governed by the Schroedinger equation; and those 
implying discontinuities, which are ruled by probability laws. In the second place, we 
adopt a postulate ensuring the statistical sense of conservation laws. These hypotheses 
al low us to state a rule telling in which situations and to which vectors the system’s state 
-” -- 
must collapse. The way our proposed approach works is illustrated with some examples 
and with the analysis of a particular measurement problem. 
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W H ICH N A T U R A L  P R O C E S S E S  H A V E  T H E  S P E C IA L  
S T A T U S  O F  M E A S U R E M E N T S ?  

1 . O u r  S ta r t i ng  P o i n t 

Tte fo rmu l a tio n  o f q u a n tu m  th eo r y  usua l l y  a c c ep te d  b y  th e  pa r t i sans  o f th e  o r t hodox  
in te rp re ta t ion  c a n  b e  s umma r i z e d  i n  th e  fo l l ow i ng  way  ( J amme r , 1 9 7 4 , p p . 5 ; C o h e n -  
Tannoud j i ,  1 9 7 7 , p p .2 1 5 - 2 2 2 ) : 

(A )  T o  eve ry  sys tem co r r e sponds  a  H i lbe r t  s p a ce  X  w h o s e  vecto rs  (state vectors,  
w a v e  fu n c tio ns )  c o m p l e te ly  desc r i b e  th e  states o f th e  system. 

(B )  T o  eve ry  d ynam i ca l  va r i ab l e  A  co r r e sponds  un i q ue l y  a  se l f -ad jo in t  o p e r a to r  A  
ac t i ng  i n  X . It h a s  asoc i a t ed  th e  e i g e nva l u e  e q u a tio n s  

. . _ .. . A  l a i v>  =  a i  I a i v >  (1 )  

-  -  -  (v is i n t r oduced  i n  o r de r  to  d i s t i ngu ish  b e tween  th e  d i f fe rent  e i genvec to rs  th a t 
- - m a y  c o r r e spond  to  o n e  e i g e nva l u e  ai ) ,  a n d  

Zi,v l a i v>  < a i V I =  I (2 )  

(whe r e  I is th e  i d e n tity o p e r a tor) .  If i o r  v  is c o n tin u o u s , th e  respec t i ve  s u m  h a s  
to  b e  r e p l a ced  b y  a n  in tegra l .  

(C)  Fo r  a  sys tem i n  th e  state IQ >  th e  p robab i l i t y  th a t th e  resu l t  o f a  m e a s u r e m e n t o f A  
l ies  b e tween  a ’ a n d  a ” is g i v en  b y  l lY l l2, w h e r e  IIY II is th e  n o r m  o f 

IY >  =  ( Ia” - Ia ’) IQ >  (3 )  

a n d  Ia  is th e  reso lu t i on  o f th e  i d e n tity b e l o n g i n g  to  A . 

(D)  S ch r o e d i n g e r  E q u a tio n : T h e  evo l u t i on  i n  tim e  o f th e  state vecto r  Id i >  is d e te r m i n e d  
b y  th e  e q u a tio n  

iA  d lW -/dt =  H  IQ > , (4 )  

w h e r e  H  r ep resen ts  th e  Ham i l t o n i an  o f th e  system. 

(E )  P ro jec t i on  P o s tu la te :  If a  m e a s u r e m e n t o f A  y ie l ds  a  resu l t  b e tween  a ’ a n d  a ”, th e n  
<  --  

~ < f- 
th e  state o f th e  sys tem i m m e d i a te ly  a fte r  th e  m e a s u r e m e n t is a n  e i g e n fu n c tio n  
d f Ia ” - Ia ’. 
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M a n y  physic ists,  par t icu la r ly  e x p e r imen ters,  th i nk  th a t th e  state vecto r  re fe rs  to  a n  
i nd i v i dua l  sys tem a n d  th a t its q u a n tu m  j umps  a r e  r ea l  (G is in ,  1 9 9 2 ) . W e  sha r e  th i s  p o i n t 
o f v iew.  Neve r the less ,  q u a n tu m  th eo r y  d o e s  n o t p r ov i d e  a  r u l e  to  fix u n a m b i g u o u s l y  th e  
p rec i se  cond i t i ons  u n d e r  wh i c h  th e s e  r educ t i ons  occur .  W e  cons i de r  th i s  th e  wors t  fla w  
th is  th eo r y  c o n fronts (Bu rgos ,  1 9 9 0 a ) . A s  Be l l  ( 1 9 84 )  p o i n ts o u t, “du r i n g  ‘m e a s u r e m e n t’ 
th e  l i nea r  S c h r o e d i n g e r  evo l u t i on  is s u s p e n d e d  a n d  a n  i l l - de f ined  ‘w a v e fu n c tio n  co l l a pse’ 
$ & e s  over .  T he r e  is n o th i n g  i n  th e  m a th e m a tics to  te l l  w h a t is ‘sys tem’ a n d  w h a t is 
‘a p p a r a tus,’ n o th i n g  to  te l l  wh i c h  n a tu ra l  p r ocesses  h a v e  th e  spec i a l  s tatus o f 
‘m e a s u r e m e n ts.’ D isc re t i on  a n d  g o o d  taste,  b o r n  f r om expe r i ence ,  a l l ow  us  to  u s e  
q u a n tu m  th eo r y  w i th  ma rve l l o us  success,  desp i t e  th e  amb i g u i ty o f th e  c o n c e p ts n a m e d  
a b o v e  i n  q u o ta tio n  ma r ks” ( emphas i s  a d d e d ) . A s  Be l l  ( 1 9 90 )  d o e s , w e  a l so  th i nk  th a t 
“‘a p p a r a tu s’ s hou l d  n o t b e  s e pa r a te d  o ff f r om th e  rest  o f th e  wo r l d  in to  b l ack  b o xes , a s  if 
it we r e  n o t m a d e  o f a to m s  a n d  n o t r u l e d  b y  q u a n tu m  mechan i cs . ” Th is  is why  w e  a s s u m e  
th a t measu r i n g  dev i ces  a r e  just phys ica l  systems,  a n d  a s  s uch  th e y  h a v e  to  b e  t rea ted  o n  ..- 
th e  s a m e  fo o tin g  w i th  eve ry  o th e r  phys ica l  system. - - - 
T h e  m a i n  ob jec t  o f th e  p r e s e n t ar t ic le  is to  p r o p o s e  a  r u l e  th a t m a k e s  c l ea r  w h e n  th e  
Sch r o e d i n g e r  evo l u t i on  ta kes  p lace ,  a n d  w h e n  th e  state vecto r  is p ro jec ted .  T o  ach i e ve  
th is  p u r p o s e  w e  a r e  g o i n g  to  a s s u m e , i n  th e  first p l ace ,  th a t p o s tu la tes  (A )  a n d  (B )  wr i t ten 
a b o v e  a r e  va l id .  In  th e  s e c o n d  p lace ,  w e  sha l l  c l a im  th a t two  k i nds  o f p r ocesses  occu r - r  i n  
N a tu re :  th e  str ict ly c o n tin u o u s  a n d  causa l  o n e s , wh i c h  a r e  g o v e r n e d  b y  th e  Sch r o e d i n g e r  
e q u a tio n ; a n d  th o s e  imp l y i ng  d iscont inu i t ies ,  w h e r e  th e  w a v e  fu n c tio n  c h a n g e s  i n  a  n o n  
str ict ly d e te rmin is t ic  way , wh i c h  a r e  r u l e d  b y  p robab i l i t y  laws.  Mo r e o ve r , w e  a r e  g o i n g  
to  say  th a t b o th  a r e  s p o n ta n e o u s  (i.e. th e y  h a p p e n  w i thou t  th e  i n te rven t i on  o f a n y  
obse rve r )  a n d  i r r educ ib l e  to  o n e  a n o th e r  (Bu rgos ,  1 9 8 4 a , 1 9 8 4 b , 1 9 8 7 a ) . 

F r om  th is  star t ing p o i n t w e  sha l l  fa c e  th e  p r o b l e m  o f fin d i n g  a  r u l e  th a t te l ls  u s  ( i ) i n  
wh i c h  s i tua t ions a n d  to  wh i c h  vecto rs  th e  sys tem’s state m u s t co l l apse ;  a n d  ( i i ) w h a t is 
th e  p robab i l i t y  fo r  th i s  h a p p e n . T h e  pa r t  ( i )  o f o u r  p r o p o s e d  r u l e  wi l l  b e  s ta ted  i n  S e c tio n  
2 . Fo r  d o i n g  s o  w e  a r e  g o i n g  to  a s s u m e  th a t conse rva t i on  l aws  h a v e  a  stat ist ical  s e n se  i n  
eve ry  c ase  (Bu rgos ,  1 9 9 3 ) , i n c l ud i ng  th o s e  i n  wh i c h  th e  w a v e  fu n c tio n  is r e d u c e d . Fo r  

V  -- pa r& i i )  o f:th i s  r u l e  w e  sha l l  a d o p t th e  fo l l ow i ng  ve rs i on  o f B o r n ’s p o s tu la te :  If a cco r d i n g  
to  ( i ) a  sys tem i n  th e  n o rma l i z ed  state 
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Iah = Cl lup + c2 lup (5) 
(where cullu2> = 612 and cl,2 = <ul,2l<D> # 0) can jump to the state lul>, then the 
probability for this happen is P  = 1~112. On the contrary, if according to the first part of 

our rule, i.e. (i), the state vector I@> cannot be projected to any Iu> f Ia>, then the 
Schroedinger evolution must follow. 

2. The Importance of Conservation Laws 
-” .+- 

. 

In this article we shall assume that the state of the system can be represented by a vector 
IQ> of the Hilbert space and that it has a Hamiltonian H such that &I/& = 0. 

Let A  be a dynamical variable referring to a system (object or thing) S. The corresponding 
operator A  satisfies (1). The mean value of A  for the system S  in the normalized state 
I@> is 

<A> = <@IAl@>. 

If A  fulfills the conditions 
(6) 

- - 
. . 

and 

CM/at = 0 t7a) 

[A, HI = 0, Ub) 
and the process is governed by the Schroedinger equation, it is easy to demonstrate that 
<A> does not change over time. It is said that A  is a constant of the motion (Cohen- 
Tannoudji, 1977, pp.247). On the contrary, for processes not ruled by the Schroedinger 
equation it has not been proven that the validity of conditions (7) implies that <A> 
remains a constant. Moreover, it has been shown that in processes involving projections 
(traditionally called measurement-l ike processes), the mean value <A> concerning the 
individual system S  (given by (6)) may change even if relations (7) are satisfied (Pearle, 
1986; Burgos, 1993). However, the average of the changes of <A>, which is obtained 
by repeating the process many times, is practically zero (Burgos, 1993): Taking into 
account these analyses, we shall assume that if conditions (7) are fulfilled, then A  must be 
conserved in a statistical sense, both in cases where the process is ruled by probability 
laws and in those where it is governed by the Schroedinger equation. It is worth noticing 
&&-since-in the latter cases the mean value <A> remains a constant in individual 
processes, a fortiori the average of <A> is also <A>. 
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In order to establish our postulate in a precise way, let us consider a generic orthonormal 
set { lui>} ( i = 1,2,...) such that we can write 

I@> = Ci Ci lUi>, (8) 

We have <uiluj> = Sij, The mean value of A  in the state lui> is <uilAlui>. (For reasons 
we are going to see below we can restrict this treatment to cases in which the set (lui>] is 

denumerable.) We  now state 
; -- 

Postulate I: If relations (7) are satisfied, the validity of 

<@IAl@> = Xi Ici I2 <uilAlui> (9) 

is a necessary condition for projections of the state ICI?> given by (8) to the vectors of the 
set { lui>) to happen, i.e. for jumps like 

Ia0 =a lup (104 

or 
. _.. . I@> =3 lu2> (lob) 

etc;, tg occur. 

Let us look at the meaning of this postulate in the following way: if I@> col lapses to lui>, 
the mean value of A  changes from <@IAl@> to <uilAlui>. The probability of this 
particular reduction taking place is lci12. Now, if the process is repeated many times 
starting with the same initial state I@, the average of the different <uilAlui> (i = 1, 2,...) 

obtained in the different projections must be close to the sum in (9), and so to the initial 
mean value <CI4Al@. This is why we say that the validity of equation (9) ensures the 

’ L- statistical sense of the conservation of A. 

A  first-consequence of Postulate I is that it forbids col lapses of the wave function to the 
vectors of some orthonormal sets and, in particular, of some complete bases (for which 

_ (2) is satisfied). 

To show that our assertion is right, let us consider a unidimensional harmonic oscillator. 
The operator H that represents the Hamiltonian fulfills conditions (7) and has associated 
eigenvalue equations of type (1) which we explicitely write as follows: 

, -- .--- H Ivi> = Ei Ivi> (11) 

(where i g 0, l,...). In the basis (Iwi>) defined by 



Iwo> = (2/3)1/2 Ivg> + (1/3)li2 Ivl> 

Iwl> = (l/3)1/2 Ivg> - (2/3)1/2 Ivl> 

IWi> = IVi> 

for i 2 2, the state Ivp is given by 

W-0 

(12b) 

(12c) 

IVO> = Zi di IWi> = (2/3)‘/2 IWO> + (1/3)li2 IWl> (13) 

and the corresponding mean value of the Hamiltonian is <v~lHlv~> = Eo. Since 
; -- 

. . 

& Idi12 <wilHlwi> = (5/9) Eo + (4/9) El, (14) 

we obtain 
CVOIHIVO> + Ci Idi12 CwilHlwi>. (15) 

As a consequence, Postulate I prevents Ivp jumping to the vectors of the basis (IWi>). 

On the contrary, it is evident that the equation 
<<DIHlQ> = Xi lci12 <vilHlvi> (16) 

is-realized-for every I@> = Zi ci Ivi>, and so Postulate I allows it to be reduced to the 
vectors of the basis { Ivi>}. 

Now let us consider an operator having a continuous spectrum. For instance, if px 

represents a component of the linear momentum and satisfies (7), collapses to the 
eigenvectors of px are allowed by Postulate I. Nevertheless, since these eigenvectors are 

not in the Hilbert space, projections to them are forbidden. This is why we are going to 
exclude every reduction to eigenstates belonging to sets for which i is continuous. 

- . . . Our next analysis will be restricted to situations in which the system has only three 
dynamical variables: the Hamiltonian, A and B. We shall assume that the corresponding 
operators satisfy equations (7) and have discrete spectra. Under these conditions, let us 
consider the following two cases. 

- Case (i): If [A, B] = 0, the set (H, A, B) is a complete set of compatible..operators. The 
vectors of its unique common.basis will be denoted by IEi aj bk>, where Ei, aj and bk are 

respectively the eigenvalues of H, A and B. As the relations 
<@IHI@> = xi,j,k ICi,j,k12 <Ei aj bkIHIEi aj bk> (174 

. .- .--- _ -i; <<DIAla> = q,j,k ICi,j,k12 <Ei aj bkIAIEi aj bk> (17b) 

<<DIBI@> = ciJ,k ICi,j,k12 <Ei aj bkIBIEi aj bk> (17c) 



are satisfied for every state 
I<D> = Ci,j,k Ci,j,k IEi aj bk>, (18) 

Postulate I does not prohibit projections like I@> 3 IEi aj bk>. 

Case (ii): If [A, B] z 0, the operators A and B do not have a common basis. Let us 
suppose, however, that (H, A} and {H, B) are two complete sets of compatible 
operators. In the basis of the former, every state I<D> can be written 

-” -- 
I@> = q,j cij IEi aj>, 

and in the basis of the latter we have 

(1% 

. . 

As 

I@> = Ci,k di,k IEi bk>. (20) 

<@lBIQ>> = &,j lcij12 <Ei ajlBlEi aj> 

+ Ci, j#jl cij*cij* <Ei ajlBlEi ajl> (21) 

and the second sum is in general non null, in these cases Postulate I prevents collapses to 
the vectors of the basis { IEi aj>). A similar argument shows that reductions to the states 
of ilEi.bk>} are in general also forbidden. Nevertheless, we can write I@> = Z$oi Iti>, 

where 
2 l/2 Iti> = ( Cj lcijl )- Zj cij IEi aj> (22) 

is the normalized projection of I@ into the eigensubspace of the Hamiltonian 
corresponding to the eigenvalue Ei, and oi = ( Xj lcij12) li2. The orthonormal set (Iti>] is 
not a basis. (Notice that Iti> depends on I@> and does not fulfill (2).) Since 

.- ,.- <@IHI@> = Ciloil2 <tilHIti>, CW 
<@IAl@> = qloi12 <tilAlti> (23b) 

and 
<Q]Bl@i> = Ziloil2 <tilBlti>, (23~) 

jumps like ]a> + Iti> are allowed by Postulate I. 

Our next step wil be to assume that I@> has a tendency to collapse to the eigenstates 
of operators fulfilling conditions (7). Nevertheless, this tendency should not become 

_ -- actualized if projections it induces result in a violation of Postulate I or lead the state 
ve tor outside the Hilbert space. Y- -;. 



A particular simple situation arises when all of the operators for which (7) are valid 
belong to the same complete set of commuting operators having discrete spectra, as in the 
case (i) we dealt with above. Then, if { lui>} is the unique common basis of all of these 

operators, equation (9) is necessarily satisfied for each one of them whatever be the state 
I@-. This basis will be called the preferentiuE basis of the system. According to our 
analysis reductions to its vectors are allowed. 

On the contrary, if not all of the operators fulfilling (7) commute, or their spectra are at 
least partially continuous, or the set they constitute is not complete, the system does not 

. . have a preferential basis. However, if for the system in the state I@> there is a 
denumerable set (lui>) such that all of the operators for which (7) is valid fulfill (9) (as in _~ 
the case (ii) treated above), we shall say that it is a preferential set of the system in the 
state I@>. According to our analysis collapses to its vectors are allowed. 

LkIike preferential bases, preferential sets are not unique. In the case (ii) we dealt with 
above f his} is a preferential set. We shall see that there are others. 

LRt'uS write I@> = ZiPi Isi>, where ISi> = Ni Cj=i,i+lCXj ltj> (i = 1, 3,...), the number Ni - . 
is a normalizing constant and pi = <SilQ>>. As 

<@IHI@> = Cil&l’ <silHlsi>, (244 

<Q/AI<D> = %I&12 <silAlsi> (24b) 

and 
<@IBI<D> = &l&l’ <silBlsi>, (24~) 

- Postulate I does not prevent reductions as IO> d ISi>. 

The sets (lti>} and (Isi>} are both preferential sets with the following difference: the 

vectors of the latter are linear superpositions of the vectors of the former, and the 
converse is false. Projections to the vectors of (Iti>} make actual the tendency the system 

has to jump to the eigenstates of the operators fulfilling (7) in the highest degree allowed 
by Postulate I. 

If there is a unique preferential set (lui>) such that the vectors of every other preferential 

_ - set can.be written as linear superpositions of the lui>, the set (lui>) will be called the 

n&&uzl~referential set of the system in the state IO>. A preferential basis is, thus, a 



maximal preferential set whose vectors do not depend on IQ> (and so fulfill the closure 
relation (2)). 

We shall say that the vectors of the preferential basis or of the maximal preferential set are 
preferential states. It is worth noticing that they are stationary states. 

Now we present the rule announced in Section 1 (for cases which satisfy the restrictions 
imposed at the beginning of Section 2). 

RuZe I: The state 
IO> = Xi Ci lUi> (25) 

can be projected to lui> iff lui> is a preferential state; the probability of this happening is 
lcil2. If the system in the state I@> has neither a preferential basis nor a maximal 

preferential set, the Schroedinger evolution must follow. 

. . 

Before concluding this section let us make the following comments. . ̂  ..- - 
(a) Rule I tells us in which situations natural processes having the special status of - r - measurements are going to result. Nevertheless, it does not say anything about 

the instant the system will jump into a preferential state. Concerning this point we 
confront the same problem faced in the traditional treatment of the measurement 
problem. In our approach, the vector IQ> given by (25) may be considered an 
unstable state that eventually decays to one of the stable states lui>, so the 

probability that the system survives in the unstable state should decrease with 

.- time according to an exponential law (Cohen-Tannoudji, 1977, pp.338). The 
details will be analysed elsewhere. 

(b) An ensemble of systems initially in the same state I@> given by (25) will finally be 
distributed in the different preferential vectors lUi>. The corresponding processes 

are ruled by probability laws, so they are irreversible and entail an. increase of 
entropy. On the contrary, processes governed by the Schrodinger equation are 

. - 

. -- 

reversible and do not entail any change of entropy. In our view, time 
irreversibility has its roots in quantum jumps (Burgos, 1990b). In this sense it 
could be said that the increase of entropy is the macroscopic result of quantum 

-ic’.- mechanical laws (Landau, 1958, pp.30-31). In other words: collapses build 

10 
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tim e ’s a r r ow  u p  s i nce  th e y  fix th e  p a s t a n d  l e ave  unce r t a i n  th e  fu tu re .  A  s im i la r  
i d e a  was  first p r o p o s e d  by  P h i p p s  ( 1 973 )  a n d  d e v e l o p p e d  by  Noyes  ( 1975 ) .  

(c)  T h o s e  w h o  th i nk  th a t eve ry  q u a n tu m  p r ocess  is d e te r m i n e d  b y  th e  Sch r o e d i n g e r  
e q u a tio n  fa c e  th e  puzz l e  o f th e  e n ta n g l e m e n t. Acco r d i n g  to  G h i ra rd i  e t a l .  ( 1988 ) ,  
“if p u s h e d  to  its ex t r eme  c o n s e q u e n c e s , it l e a ds  to  th e  c o n c e p tio n  o f th e  un i ve r se  
a s  a n  u n b r o k e n  w h o l e  w h o s e  par ts  h a v e  lost a n y  i nd i v i dua l  e n tity.” Th is  is why , 

. . 

-” -- i n  the i r  op i n i on ,  “q u a n tu m  e n ta n g l e m e n t is th e  e n e m y  to  b e  d e fe a te d .” In  o u r  
a p p r o a c h  q u a n tu m  j umps  b r e ak  e n ta n g l e m e n ts w h e n  th e  p re fe ren t i a l  vecto rs  a r e  
fac to r i zed  states. Howeve r , it is impo r tan t  to  n o t ice th a t if th i s  cond i t i on  is n o t 
rea l i zed ,  co l l apses  p r o d u c e  e n ta n g l e m e n ts. 

3 . S o m e  E x a m p l e s  

In  o r de r  to  s h o w  h o w  ou r  a p p r o a c h  works,  let u s  cons i de r  th e  fo l l ow i ng  s imp l e  
e x amp l e s . . 

( i )  T h e  f ree  par t ic le :  T h e  o p e r a to rs  H , px,  py,  pz,  Lx,  L y  a n d  L ,, wh i c h  respect ive ly  
- - -  

. . r ep resen t  th e  Ham i l t o n i an  a n d  th e  c o m p o n e n ts o f th e  l i nea r  a n d  a ngu l a r  
m o m e n ta , fulf i l l  cond i t i ons  (7).  Howeve r , s i nce  th e  o p e r a to rs  H , px,  p y  a n d  p z  

h a v e  c o n tin u o u s  spect ra ,  p ro j ec t i ons  to  the i r  e i gens ta tes  a r e  fo r b i d d e n ; a n d  s i nce  
Lx,  L y  a n d  L , d o  n o t c o m m u te , P o s tu l a te  I p roh ib i ts  co l l apses  to  the i r  

e i genvec to rs .  T h e  f ree  par t ic le  d o e s  n o t h a v e  a  p re fe ren t i a l  bas i s  a n d  d o e s  n o t 
s e e m  to  h a v e  a  max ima l  p re fe ren t i a l  set  fo r  th e  states it is no rma l l y  s u p p o s e d  to  
b e  inIts evo l u t i on  s h ou l d  b e  d e te r m i n e d  b y  th e  Sch r o e d i n g e r  e q u a tio n . 

( i i )  A  sp i n  i n  a  h o m o g e n e o u s  m a g n e t icf ie ld B  =  B , k: T h e  o p e r a to rs  th a t in terest  
h e r e  a r e  H , a n d  S ,, S y  a n d  S , (wh i ch  r ep resen t  th e  th r e e  c o m p o n e n ts o f th e  
sp in ) .  W e  h a v e  H  =  -yB,  S ,, w h e r e  y  is th e  g y r o m a g n e tic rat io. T h e  o p e r a to rs  
S , a n d  S y  d o  n o t sat isfy (7),  b u t S , d o e s . T h e  spec t ra  o f H  a n d  S , a r e  d iscrete.  

T h e  p re fe ren t i a l  bas i s  o f th i s  sys tem is {I+ > , I-> ) ,  th e  bas i s  o f th e  e i gens ta tes  o f 
S z . S o  a  sp i n  in i t ia l ly i n  th e  state . 

I@ >  =  C +  I+ >  +  c-  I->  ( 26 )  

_  -- h a s  p robab i l i t y  I~ + 1 2  o f j ump i n g  to  I+ >  a n d  p robab i l i t y  IL 1 2  o f j ump i n g  to  I-> . 
-.- - .L 
-( i i i )  i’sp i n  i n  a n  i n h o m o g e n e o u s  m a g n e tic fie l d  
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B(r) = B,(r) i + By(r) j + B,(r) k, (27) 

where r is the position: the components of the field vary with r, and now 

H(r) = -%B,(r) Sx + By(r) Sy + B,(r) S,l. (28) 

As the operators S,, S y and S, do not fulfill conditions (7), their eigenvectors 

are not preferential states, and collapses to them are forbidden. In particular, a 
spin in the magnetic field of a Stern-Gerlach device (whose strongest component 
is B,) cannot be projected to the eigenstates of S,. The study of H, which 

depends on r, lies beyond the scope of this article. 
(iv) The benzene molecule: In an idealized model Iwl> and Iw2> represent the only 

two states of the molecule which correspond to the two possible positions of the 
three double bonds. Since ly11> and Iw2> are not eigenvectors of H, they are not 
preferential states. On the contrary, the basis (lul>, IQ>} where H is diagonal 
and <ulIHlul>.# <u2lHlu2>, is the preferential basis of the molecule. An 
ensemble of them will finally be distributed in the states lul> and lu2>. The fact 

- - that the lowest level of energy is 
- _ <ulIHlul> < <~llHl~l> = <~2lHl~2>, (29) 

is supposed to explain that the benzene molecule is more stable than expected 
(Cohen-Tannoudji, 1977, pp.41 1). 

4. The Measurement Problem 

We have not imposed on the system (or object) S the restriction of being isolated (as the 
F . . . free particle or the benzene molecule analyzed in Sec. 3), or in interaction with other 

objects through, for instance, a magnetic field. We have not said that S has to be 
microscopic or macroscopic.-Like Einstein, we do not believe in micro and macro laws, 
but in laws of general validity. His principal objection to quantum mechanics was to the 

- subjective character of the theory. He held that basic physical theories should represent 
the physical world itself, not merely connections between human observations (Pauli, 
1971). Our approach would not be subject to Einstein’s objection and, if it is right, 
should be of some help in the study of many of the problems fulfilling the conditions 

, -- specified at the beginning of Section 2. So our next analysis will be of a more _: .-- 
cofirplicated case than those treated in Section 3. 
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Let Sl be a system in the initial state Ivi> (i = 1, 2,...), where { IWi>) is a basis in the 
Hilbert space of Sl; and let S2 be a system in the initial state Ix>. We shall assume that if 
the initial state of S = Sl + S2 is I@i> = Ivi> 0 Ix> (i = 1,2,...), the interaction between 
Sl, S2 and the environment leads the state of S to lui>, i. e. we have 

I@i> * lUi> (30) 

for every i. Now, if the initial state of Sl is Iw> = Ci ci Ivi>, and so S is in the initial state 

IQ> = [Zi Ci II+fi>] 0 IX>, (31) 

. . 
according to our approach it can happen (i) that the state IQ> evolves guided by the 
Schroedinger equation, and then 

I@> * Xi Ci ILli>; (32) 

or (ii) that I@> is projected. If we do not know at least some details of the problem we 
want to analyze, it is completely impossible to tell which of these two alternatives will be 
realized. Nevertheless, as quantum jumps can lead I@> only to the preferential states of 
S, taking into account (30) we can say that, if S has a preferential basis or a maximal 
preferential set, it is (lui>}. As a consequence, in that case collapses like - _ 

Ia%- * lup, (334 

or 
Ia%= * lup, t-b) 

etc., must occur. 

In the traditional treatment of the measurement problem it is supposed that the apparatus 
.- 

L- S2 measures the dynamical variable A corresponding to the system S 1, which has the 

eigenvalue equation 

A IWi> = ai IWi>. (34) 

- Transitions (30) do not present any difficulty. (Since the probability that they happen is 
P = 1, they may be atributed to the Schroedinger evolution.) The same is valid for (32). 
Now, if it is assumed that the behaviour of IQ> must always be determined by the 
Schroedinger equation, transitions (33), i.e. the trunsitions “observed,” cannot be 

, -- explained.-This is the great puzzle of the measurement problem. In our approach there is 
n&&h puzzle: if the lui> are the preferential states of S in IQ>, the evolution (32) should 

not occur-r, and transitions (33) must take place. 
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We do not claim, however, that the above remarks solve every measurement problem. 
This is true, first, because quantum mechanics (like good old classical physics!) does not 
have just one measurement problem but as many as there are dynamical variables 
corresponding to different systems worth measuring, with as many different methods as 
it is possible to imagine, and, second, because finding the preferential basis or sets of an 
object is not always easy. In particular, a macroscopic system seldom fulfills the 
-restrictions specified at the beginning of Section 2, which in our treatment are necessary 
conditions for the concept of preferential states to make sense. For these reasons it seems 
dubious that our approach will prove to be a useful tool to deal with particular 
measurement problems. It could, perhaps, be of some help in the study of processes 
taking place at the microscopic level. 

. . 

Being aware of these difficulties, let us try to analyze a very simple measurement process: 
the determination of a p.article’s position with a detector. 

We  shall assume that a particle S  1 arrives at a detector S2 that counts particles entering it, 
and whose window covers the interval (xl, x2). (To make things easier we are going to 
treat this problem as if it were unidimensional.) Although we consider S2 to be a quantum 

system, if it is macroscopic enough, its window’s boundary is well-defined, as in the 
classical case (Burgos, 1988), and so xl and x2 have sharp values (Burgos, 1984b). 

As we do not know the Hamiltonian and the other dynamical variables referred to 
S  = Sl + S2, we cannot tell whether it has a preferential basis (set) or not; and if it has, 

which one is it. Hence, we are forced to state an ad-hoc hypothesis: 

(a) if the normalized state of S  1 is IWa>, where Wa(x) = <xlWa> and Wa(x) has non 
null values only in the interval (xl, x2), then the probability that the particle will 
be detected is Pa = 1; 

(b) if the normalized state of S  1 is IWb>, where Wb(x) = <xlWb> and Wb(x) is null in 
the interval (xl, x2), then the probability that the particle will be detected is Pb = 

0; and 
(c) if the normalized state of Sl is 

~<f- .; 1~ = Ca IWa> + Cb IWb>, (35) s 
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the particle can be either detected or not detected, and there is not a third 
possibility. 

Let us assume that the detector has M + P orthogonal states, that in an idealized model its 
states IXi> (i = 1, 2,..., M) corresponding to cases in which the particle is captured can be 
written in a brief notation as IXa>, and that the states IXi> (i = M + 1, . . . . M + P) 
corresponding to cases in which the particle is not in the detector can be written as IXb>. 

. . 

-flow, if the initial state of S is IO> = IWa> 0 IXp, according to part (a) of our ad-hoc 

hypothesis, the probability of the transition 
I@> * I@a> = IWv> 0 IXa> (36) 

is P = 1 (here Iwv> represents the state void for Sl); if the initial state of S is I@> = Iyp 
0 IXb>, according to part (b) of our ad-hoc hypothesis, the probability of the transition 

I@> + lab> = hjfb> @  IXb> (37) 

is P = 1; and if the initial state of S is 
IQ> = (Ca IWa> + cb lWb>) @  lXb>, (38) 

acc&ling to part (c) of our ad-hoc hypothesis, it could be that 
IO> j lOa> (394 

or that 
lb>> =3 IQ>b>. W’b) 

There is no other possibility. As the evolution of IO> is not guided by a deterministic 
law, we must conclude that the process we are studying involves quantum jumps; and 

- L- sin&these can lead S only to its preferential states, we can say that (in our idealized 
model) these are lOa> and I<Dp. 

Moreover, we can say that if (39a) takes place, the particle just disappears, and if (39b) 
happens, the state of S is projected to l@b>. According to (37) the particle’s state jumps 
to lvb>. In other words, it has probability lcb12 of losing its componentsin the interval 
(xl, x2) as if they were cut off. As a consequence, if we repeat the experiment with N 
particles in the initial state Iw> given by (35) a number N Ical of them will be detected 
and N lcb12 will be led to the state IWb>. 

, -- .:- -ii. 
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5. Concluding Remarks 

In our view, the tremendous success of quantum mechanics suggests that this theory 
reflects certain aspects of Nature, that it is more than merely a man-made tool for 
calculating expectations. In its orthodox version, which is at present the version exposed 
in classical books and practically the only one taught, it includes the Projection Postulate 
and the concept of measurement (see Section l), even though nobody has been able to tell 
hia precise way what a measurement is. This is perhaps one of the reasons why so many 
people are afraid of projections. “Mention collapse of the wave function, and you are 
likely to encounter vague uneasiness or, in extreme cases, real discomfort. This 
uneasiness can usually be traced to a feeling that wave-function collapse lies ‘outside’ 
quantum mechanics: the real quantum mechanics is said to be the unitary Schroedinger 
evolution; wave-function collapse is regarded as an ugly duckling of questionable status, 
dragged in to interrupt the beatiful flow of Schroedinger evolution” (Caves, 1986). 

On the contrary, we are not afraid of projections. Moreover, as Heisenberg once said, we 
arebfthe opinion that discontinuities are the most interesting things in quantum theory, 
and that one can never stress them enough (Hendry, 1985). As a matter of fact, our 
approach is of the objective Heisenberg reduction type (Stapp, 1992). We think that even 
if it is difficult to accept that quantum jumps spontaneously occurr in Nature, the adoption 
of this point of view has some advantages. Two of these are that it unifies the treatment of 
micro and macro objects, and so the traditional measurement problem just disappears; and 
further, that it allows quantum mechanics to be made compatible with philosophical 

’ :-realism (Burg&, 1983, 1987b), a doctrine in which there is no room for observers and 
superobservers. 

Bell (1990) says that “however legitimate and necessary in application, [the following 
_ words] have no place in a formulation with any pretention to physical precision: system, 

apparatus, environment, microscopic, macroscopic, reversible, irreversible, information, 
measurement... on this list of bad words... the worst of all is ‘measurement’.” The idea 
that projections are a kind of natural processes and that conservation laws should have a 

. _. statistical sense in every case (including those in which collapses take place), led us to 
w&&out -an approach where, except for “system,” it is not necessary to use these bad 
words or the corresponding concepts. None of them appear in Postulate I or Rule I (see 
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Section 2), just in their applications. (Concerning the word system, it could be replaced 
with object or thing, but they represent the same idea, which is central in our treatment.) 
On the contrary, authors who do not accept the concept of projections seem to be doomed 
to use this complete list of bad words, over and over again. 

Bell (1990) also observes that “it would seem that [quantum mechanics] is exclusively 
concerned about ‘results of measurements,’ and has nothing to say about anything else. 
-what exactly qualifies some physical system to play the role of ‘measurer’? Was the 
wavefunction of the world waiting to jump for [billions] of years until a single-celled 
living creature appeared? Or did it have to wait a little longer, for some better qualified 
system.. . with a Ph D? If the theory is to apply to anything but highly idealized laboratory 
operations, are we not obliged to admit that more or less ‘measurement-l ike’ processes 
are going on all the time, more or less everywhere? Do we have jumping all the time?” 
Our answer to the two last questions is yes. Concerning the first question, Rule I - 
provides an answer, at least in principle, for cases fulfilling the restrictions imposed at the 
beginning of Section 2. 

Other approaches aiming to solve the measurement problem are close to, but different 
from quantum mechanics. In contrast, ours does not modify the theory. So, if it were 
right, we would claim that it complements the orthodox version of quantum mechanics 
(as summarized in Section 1) and renders it a quite acceptable theory that, for the 
moment, does not seem to need any fundamental change (at least at the non-relativistic 
limit). Nevertheless, we have to recognize that it is too early to pass a favorable 
judgement on the present approach, whatever its success may have been in the analysis of 
the few examples we dealt with in this article. 

To conclude, let us.say that we are aware that, as Maxwell once said, there is always 
more than one way of looking at things. In our view the state vector refers to an 
individual system and quantum jumps are real. On the contrary, according to Bohr it is 
wrong to think that the task of physics is to find out how Nature is, since physics 
concerns only what we can say about Nature; and nowadays it is frequently considered 
that “quantum theory, in a strict sense, is nothing more than a set of rules whereby 
p&&ists.compute probabilities for the outcome of macroscopic tests” (Peres, 1990). 
Since, independently of the point of view adopted, everybody faces the question “what is 
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a  m e a s u r e m e n t? ” (Pe res ,  1 9 9 0 ) , w e  h o p e  th a t th i s  wo rk  wi l l  c o n t r ibute i n  s o m e th i n g  n e w  
to  th e  a n swe r . 

A C K N O W L E D G M E N T S  

M a n y  o f th e  i d eas  r epo r t ed  h e r e  o r i g i na ted  d u r i n g  visits a t th e  T E C H N IO N - Israe l  Inst i tute 
o f Techno l ogy ,  Un ivers i ty  o f U trecht, a n d  th e  C e n te r  fo r  th e  S tu d y  o f L a n g u a g e  a n d  
& fo r m a tio n  p f S ta n fo r d  Univers i ty .  D iscuss i ons  w i th  J. B e r g e r , F. G . Cr iscuo lo ,  D . 
D ieks,  T. E tter,  J. H i l gevoo rd ,  C . W . K ilm ister, H . P . Noyes , P . S u p p e s  a n d  J. U ffin k  

. we r e  ve ry  fruitful. Th is  wo rk  was  par t ia l ly  s u p po r te d  b y  th e  C D C H T - U L A . 
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