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Abstract

Originating from work in operations research the cutting plane refuta-
tion system CP is an extension of resolution, where unsatisfiable proposi-
tional logic formulas in conjunctive normal form are recognized by showing
the non-existence of boolean solutions to associated families of linear in-
equalities. Polynomial size CP proofs are given for the undirected s-t
connectivity principle. The subsystems CPq of CP , for q ≥ 2, are shown
to be polynomially equivalent to CP , thus answering problem 19 from
the list of open problems of [8]. We present a normal form theorem for
CP2-proofs and thereby for arbitrary CP -proofs. As a corollary, we show
that the coefficients and constant terms in arbitrary cutting plane proofs
may be exponentially bounded by the number of steps in the proof, at
the cost of an at most polynomial increase in the number of steps in the
proof. The extension CPLE+, introduced in [9] and there shown to p-
simulate Frege systems, is proved to be polynomially equivalent to Frege
systems. Lastly, since linear inequalities are related to threshold gates,
we introduce a new threshold logic and prove a completeness theorem.
Mathematics Subject Classification: 03B05, 03F07, 03F20, 90C10.

1 Introduction

The cutting plane system CP [12, 13] is a refutation system for propositional
logic formulas in conjunctive normal form CNF . In CP , the truth values true
and false are interpreted by 1 and 0 and propositional formulas are expressed
by systems of linear inequalities. An unsatisfiable CNF formula such as

(x ∨ y) ∧ (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ y)
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is represented by the family

x + y ≥ 1(1)
1 − x + y ≥ 1(2)
x + 1 − y ≥ 1(3)

1 − x + 1 − y ≥ 1(4)

of linear inequalities, one for each conjunct.
The inference rules of CP include addition of linear inequalities and division

of an inequality by a positive integer (a formal definition of CP is given later).
Adding equations (1) and (2) we have

1 + 2y ≥ 2

hence
2y ≥ 1

and dividing by 2 and rounding up we have

y ≥ d1/2e = 1.

Now adding equations (3) and (4) we have

3 − 2y ≥ 2

hence
1 ≥ 2y

and dividing by 2 and rounding down we have

0 = b1/2c ≥ y.

But then 0 ≥ y and y ≥ 1 which is a contradiction.
It is perhaps not surprising that CP is more “efficient” than resolution,

since cutting plane expressions have considerably more expressive power that
the clauses of resolution. To give a representative example of the efficiency
of CP over resolution, consider a combinatorial principle called the pigeonhole
principle.

The pigeonhole principle, PHPn, is∧
0≤i≤n

∨
0≤j<n

pi,j ⊃
∨

0≤i<i′≤n

∨
0≤j<n

(pi,j ∧ pi′,j)

and states that there is no injection from {0, . . . , n} into {0, . . . , n − 1}. Its
negation can be formulated by a propositional CNF formula denoted ¬PHPn

of size O(n3). Work of Haken [14] and W. Cook et al. [12] established an
exponential size gap between CP and resolution.
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Specifically, if the size of a proof is the total number of symbols appearing
in the proof, then while every resolution refutation of ¬PHPn must be of size
2Ω(n) [14] there exists a CP refutation of ¬PHPn of size O(n4) [12, 9]. In fact,

every depth d Frege proof1 of ¬PHPn must be of size at least 2Ω(n1/6d
) [3].

In this paper, we further investigate the cutting plane refutation system; the
outline of the paper is as follows. Section 2 gives the basic definitions for cutting
plane proofs. In sections 3, 4 and 5, we give polynomial size cutting plane proofs
of the unique endnode principle and the s-t connectivity principle for graphs of
valence 2. In section 6, we consider the subsystems CPk of CP in which the
division rule is restricted to be division by k, for k ≥ 2. Somewhat surprisingly,
we show that the subsystem CPk of CP is equivalent within a polynomial factor
to CP , thus answering question 19 on the list of open problems from [8]. In
section 7, we present a normal form for CP2 proofs, which in conjunction with
the results of section 6 is a normal form for all cutting plane proofs. In section 8
we extend the construction of the normal form for CP2 to arbitrary CP proofs;
as a consequence we prove that the coefficients and constant terms in a cutting
plane proof may be exponentially bounded by the number of steps in a cutting
plane proof at the cost of increasing the number of steps by at most a polynomial
amount. Sections 6, 7 and 8 may be read independently of sections 3-5. Next,
in section 9, the extension CPLE+ is proved to be polynomially equivalent
to Frege systems. Lastly, in section 10, since linear inequalities are related to
threshold gates, we introduce a new threshold logic and prove a completeness
theorem.

2 Preliminaries

We begin by defining the class E of CP expressions.

Definition 1 If a ∈ Z and i ∈ N, then a ∈ E and (a · xi) ∈ E . If E,F ∈ E
and a ∈ Z, then a · E and E + F belong to E . A positive integer c divides an
expression E =

∑
ai ·Ei of E , denoted c|E, if c|ai all i. The quotient of E by c is

that expression E′ =
∑

bi ·Ei of E , where bi = ai/c. Formulas of CP are of the
form E ≥ F , where E,F ∈ E . The cutting plane system CP has five rules of
inference — transitivity, simplification, addition, multiplication, division, given
as follows.

• transitivity
E ≥ F F ≥ G

E ≥ G

1i.e. usual Hilbert-style proof using axioms and modus ponens, where all formulas involve
at most d alternations of ∧, ∨.
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• simplification: addition is commutative and associative; multiplication is
commutative, associative and distributive over addition; common expres-
sions may be combined [i.e. a·E+b·E may be replaced by (a+b)·E]; integer
sums and products may be evaluated; an expression may be moved to the
opposite side of the inequality sign, provided the sign of the coefficient is
changed; 0 · E may be replaced by 0.

• addition
E ≥ F G ≥ H
E + G ≥ F + H

• multiplication — for c ∈ N,

E ≥ F
c · E ≥ c · F

• division: for c ∈ N, c > 0, b ∈ Z, if c|E with quotient E′, then

E ≥ b
E′ ≥ db/ce.

In order to prove a formula A in disjunctive normal form, one expresses the
negation B = ¬A in conjunctive normal form as

∧
i∈I

∨
j∈J ci,j where the ci,j

are literals; i.e. propositional variables x or negations x of propositional vari-
ables. To express clauses in B as cutting plane formulas, we let propositional
variables x be represented by integer variables x, let negated propositional vari-
ables, x, be represented by 1−x, and let disjunctions be represented by summa-
tions. Formally, the cutting plane representation of a clause is defined by letting
R(x) = x and R(x) = 1−x, and the representation R(

∨
j∈J cj) of literals cj de-

fined to equal the linear inequality
∑

j∈J R(cj) ≥ 1. Finally the representation
of the formula B in conjunctive normal form

∧
i∈I

∨
j∈J ci,j is the set

{R(
∨
j∈J

ci,j) : i ∈ I}

of linear inequalities.

The intent of cutting plane proofs is to restrict attention to boolean solutions
x ∈ {0, 1} of families of linear inequalities with integer coefficients. We define a
cutting plane axiom to be an inequality of the form 1 ≥ 0, 1 ≥ 1, and x ≥ x,
x ≥ 0, 1 ≥ x where x is a propositional variable. A formula B in conjunctive
normal form has a cutting plane refutation, if there is a sequence s0, . . . , sm of
linear inequalities, such that

• sm is 0 ≥ 1,
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• for all i ≤ m, either si is a cutting plane axiom 1 ≥ 0, 1 ≥ 1, x ≥ 0, x ≥ x,
1 ≥ x for propositional variable x in B, or of the form R(

∨
j∈J ci,j) for

one of the conjuncts of B, or there exist j, k < i such that si is obtained
from sj , sk by the transitivity, simplification, addition, multiplication or
division rule.

A formula A is said to have a cutting plane proof if its negation ¬A has a cutting
plane refutation.

For an arbitrary proof system (semantic tableaux, resolution, cutting planes,
constant depth Frege, Frege, extended Frege, etc.), the size of a proof is the
total number of symbols in the proof (integers, including those in subscripts of
variables, are represented in binary).

The following definitions are due to Cook and Reckhow in [11]. Let taut
denote the collection of propositional tautologies.

Definition 2 Let Σ be a finite alphabet and taut ⊆ Σ∗. A proof system is a
polynomial time computable function f : Σ∗ → taut which is onto.

Definition 3 If f : Σ∗
1 → taut and g : Σ∗

2 → taut are proof systems, then g
p-simulates f if there is a polynomial time computable function h : Σ∗

1 → Σ∗
2

such that g(h(x)) = f(x) for all x ∈ Σ∗
1.

If the associated function h is polynomially bounded but not necessarily
polynomial time computable, then we have the weaker notion of simulation.
More formally,

Definition 4 Let P1, P2 be arbitrary proof systems for propositional logic.
The system P1 simulates system P2, iff there is a polynomial p(x) such that for
any proof Q of formula A in P2, there is a proof P of (the formula corresponding
to) A in P1 and the size(P ) ≤ p(size(Q)).

3 Nonunique endnode principle

A graph G is stipulated by a non-empty vertex set V and an edge set E ⊆ V ×V .
A graph is simple if it contains no loops (i.e. for any x ∈ V , (x, x) 6∈ E), and
is undirected if for any (x, y) ∈ E, it is the case that (y, x) ∈ E. An endnode
x ∈ V of an undirected graph G is a vertex for which there is a unique vertex
y ∈ V such that (x, y), (y, x) ∈ E.

The valence (or degree) of a node x of a simple undirected graph is the number
of edges to which x is incident. The valence of a finite simple undirected graph
G is the maximum valence of its nodes. Note that a graph of valence k may
possess certain nodes of valence smaller than k. A graph is k-regular if all its
nodes have valence k. The nonunique endnode principle informally states that
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no finite simple undirected graph of valence 2 can have a unique endnode. Its
negation, the unique endnode principle, states that there exists a finite simple
undirected graph of valence 2 having a unique endnode. An easy inductive proof
establishes the nonunique endnode principle. The unique endnode principle for
graphs whose vertex set is {0, . . . , n − 1} can be formulated in propositional
logic by the conjunction of (5) through (10) below.2

¬ri,i, for all 0 ≤ i < n(5)
¬ri,j ∨ rj,i, for all 0 ≤ i, j < n(6) ∨

0≤j<n

r0,j(7)

¬r0,j ∨ ¬r0,j′ , for all 0 < j < j′ < n(8) ∨
0<j<j′<n

(ri,j ∧ ri,j′), for all 0 < i < n(9)

¬ri,j ∨ ¬ri,j′ ∨ ¬ri,j′′ , for all 0 < i < n and 0 ≤ j < j′ < j′′ < n(10)

Note that, because of (9), the conjunction of (5) through (10) is not in con-
junctive normal form. Nevertheless, we can present an equivalent formulation
of this principle within the cutting plane system by the following equalities (11)
through (14).

ri,i = 0, for all 0 ≤ i < n(11)
ri,j = rj,i, for all 0 ≤ i, j < n(12) ∑

0≤j<n

r0,j = 1(13)

∑
0≤j<n

ri,j = 2, for all 0 < i < n.(14)

Since the symbol ‘=’ is not part of the syntax of the CP system, each of the
above equations (11) through (14) really abbreviates two inequalities; e.g., (13)
abbreviates ∑

0≤j<n

r0,j ≥ 1 and 1 ≥
∑

0≤j<n

r0,j .

The family of linear inequalities represented by (11) through (14) will be denoted
as UEPn. We will prove that UEPn has a cutting plane refutation of size nO(1).

2The unique endnode principle is very closely related to the search problems in the class
PPA introduced by Papadimitriou [18]. In a nutshell, the class PPA contains search problems
where, given one node of degree one, it is required to find another node which does not have
degree two. In [4], it is shown that the unique endnode principle is equivalent to the mod 2
counting principle in the setting of constant depth Frege proofs.
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For 0 ≤ k < n, let

Bk =
∑

i<j≤k<n

ri,j(15)

Sk =
∑

i≤k<j<n

ri,j(16)

Thus Bk is the number of edges ri,j for i < j both of whose endpoints are
bounded by k, while Sk is the number of edges ri,j for i < j whose endpoints
straddle k.

Claim For 0 ≤ k < n, 2 · Bk + Sk = 2k + 1.

Proof. By induction on k. The base case, k = 0, holds since by (11), B0 = 0,
and by (13), S0 = 1, so that 2·B0+S0 = 1. Assume by the induction hypothesis
that 2 · B` + S` = 2` + 1 holds for ` < n − 1. By definition, 2 · B`+1 + S`+1 is
given by

2
∑

i<j≤`+1

ri,j +
∑

i≤`+1<j

ri,j

which is
2(

∑
i<j≤`

ri,j +
∑
i≤`

ri,`+1) +
∑

i≤`,`+1<j

ri,j +
∑

`+1<j

r`+1,j

hence is

2(
∑

i<j≤`

ri,j +
∑
i≤`

ri,`+1) +
∑

i≤`<j

ri,j −
∑
i≤`

ri,`+1 +
∑

`+1<j

r`+1,j .

By rearranging, this yields

2
∑

i<j≤`

ri,j +
∑
i≤`

ri,`+1 +
∑

i≤`<j

ri,j +
∑

`+1<j

r`+1,j

and since by (12) r`+1,j = rj,`+1 and by (11) r`+1,`+1 = 0, we obtain

2
∑

i<j≤`

ri,j +
∑

i≤`<j

ri,j +
∑

0≤i<n

r`+1,i.

By (14) and the induction hypothesis, this yields

2` + 1 + 2 = 2(` + 1) + 1

Setting k = n − 1 we have

2Bn−1 + Sn−1 = 2n − 1.

But by its definition, Sn−1 = 0, so that 2Bn−1 = 2n−1. The left side is odd and
the right side is even, yielding the desired contradiction. This, when properly
formalized (as in the related CPLE proof of s-t undirected connectivity given
in detail below), furnishes a cutting plane refutation of the system (11) through
(14) of size polynomial in n. Hence we have the following theorem.
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Theorem 5 There are polynomial size CP proofs of the unique endnode prin-
ciple UEPn.

4 s-t connectivity

The s-t connectivity principle, as formalized below by P. Pudlák, is the following
statement. Let G be a finite simple undirected graph all of whose nodes have
degree 2, except for two specially designated nodes s,t, each of which has degree
1. Then there is a path in G from s to t.

Let ¬STCn be the conjunction of the following propositional formulas.

q0(17)
pii, for all 0 ≤ i ≤ n(18) ∨

0≤j≤n

p0j(19)

∨
0≤j≤n

pnj(20)

pij ∨ pji, for all 0 ≤ i, j ≤ n(21) ∨
0≤j<j′≤n

(pij ∧ pij′), for all 0 < i < n(22)

p0j ∨ p0j′ , for all 0 ≤ j < j′ ≤ n(23)
pnj ∨ pnj′ , for all j < j′ ≤ n(24)

(pij ∨ pij′) ∨ pij′′ , for all 0 ≤ i ≤ n and 0 ≤ j < j′ < j′′ ≤ n(25)
(qi ∨ pij) ∨ qj , for all 0 ≤ i, j ≤ n(26)

qn(27)

The above formalization can be explained as follows. The propositional atom
qi means that vertex i is connected to vertex 0, while pij means that there is
a directed edge from vertex i to j. Thus equation (25) states that if there is
a directed edge from i to j then there is a directed edge from j to i; i.e. the
graph is undirected. Thus any truth value assignment to the atoms for which
conditions (17) through (25) hold gives rise to an undirected finite simple graph.
Condition (26) states that if i is connected to 0 and there is an edge from i to j,
then j is connected to 0. Condition (27) states that vertex n is not connected
to vertex 0.

As in the propositional formalization of the unique endnode principle, ¬STCn

is not in conjunctive normal form. However, by introducing new atoms rij to
abbreviate qi ∧ pij , we can provide polynomial size refutations of ¬STCn in
CPLE, the cutting plane system with limited extension, which will be defined
momentarily. Informally, the idea of the proof is to reduce ¬STCn to UEPn.
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Namely, as before, one proves that for 0 ≤ k < n,

2Bk + Sk = 2Qk + 1

where Qk =
∑

0≤i≤k qi is the number of vertices i for which 0 ≤ i ≤ k and qi

holds.
We now introduce the refutation system CPLE of cutting planes with lim-

ited extension. The idea of CPLE is to allow the introduction of new propo-
sitional variables only for subformulas of the initial formula to be refuted. By
contrast, cutting planes with a general extension rule is equivalent to extended
resolution (see [12]).

Definition 6 By induction on formula A, we define the set LE[A] of linear
inequalities associated with A.

• If A is the propositional variable xi, then
LE[A] = {pA ≥ 0, 1 ≥ pA, pA ≥ pA, 1 ≥ 1, 1 ≥ 0}

• If A is ¬B, then
LE[A] = {pA ≥ 0, pA + pB ≥ 1, 1 ≥ pA, 1 ≥ pA + pB ,

pA ≥ pA} ∪ LE[B].
• If A is B ∧ C, then

LE[A] = {pA ≥ 0, pA ≥ pB + pC − 1, 1 ≥ pA, pB ≥ pA,
pC ≥ pA, pA ≥ pA} ∪ LE[B] ∪ LE[C].

• If A is B ∨ C, then
LE[A] = {pA ≥ 0, pB + pC ≥ pA, 1 ≥ pA, pA ≥ pB , pA ≥ pC ,

pA ≥ pA} ∪ LE[B] ∪ LE[C].

The acronym LE stands for limited extension, a concept related to Tseitin’s
notion of the extension rule for resolution. The system CPLE has, as before,
the rules for transitivity, simplification, addition, multiplication and division. A
CPLE refutation of the formula B (not necessarily in conjunctive normal form)
is a sequence s0, . . . , sm of linear inequalities, such that

• sm is 0 ≥ 1,

• for all i ≤ m, either si ∈ LE[B]∪{pB ≥ 1}, or there exist j, k < i such that
si is obtained from sj , sk by the simplification, addition, multiplication or
division rule.

We sometimes speak of C ∈ LE[B] as an axiom and of pB ≥ 1 as the hypothesis
in a refutation of B. The formula A is said to have a CPLE proof, if its negation
¬A has a CPLE refutation.

Theorem 7 There are polynomial size CPLE proofs of STCn.

This proof of Theorem 7 is in the appendix.
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5 Undirected and directed s-t connectivity

It is well-known that there is sometimes a difference in the computational com-
plexity (or definability) of undirected versus directed graph properties. In par-
ticular, Ajtai and Fagin [2] proved that connectivity for undirected graphs is
not definable in monadic second order logic, whereas connectivity for directed
graphs is so definable. In this section, we investigate the proof theoretic strength
of the undirected and directed forms of s-t connectivity. We observe that undi-
rected s-t connectivity trivially implies directed s-t connectivity, and the latter
is equivalent (by constant depth polynomial size Frege proofs) to the pigeonhole
principle. Moreover, the nonunique endnode principle of the previous section is
easily seen to be equivalent (by constant depth polynomial size Frege proofs) to
the undirected s-t connectivity principle. In [4], the nonunique endnode princi-
ple is shown to be equivalent (by constant depth polynomial size Frege proofs)
to Ajtai’s parity principle. By [1, 3] the parity principle is strictly stronger than
the pigeonhole principle. Thus it follows from this section that the undirected
s-t connectivity principle is strictly stronger than the directed s-t connectivity
principle, with respect to constant depth polynomial size Frege proofs.

STC(P,Q) or s-t connectivity for undirected graphs of valence 2 is the
bounded first order statement in predicates P,Q given as follows.

1. Q(s), meaning s is red.

2. ¬Q(t), meaning t is not red.

3. ∃j ≤ n(j 6= s ∧ P (s, j)), meaning at least one edge incident to s.

4. ∃j ≤ n(j 6= t ∧ P (t, j)), meaning at least one edge incident to t.

5. ∀i, j ≤ n(P (i, j) ↔ P (j, i)), meaning G undirected.

6. ∀i ≤ n ∃j, j′ ≤ n(i 6= s ∧ i 6= t → j 6= j′ ∧ P (i, j) ∧ P (i, j′)), meaning at
least 2 edges incident to every vertex different from s, t.

7. ∀j, j′ ≤ n(j 6= j′ → ¬P (s, j) ∨ ¬P (s, j′)), meaning s incident to at most
one edge.

8. ∀j, j′ ≤ n(j 6= j′ → ¬P (t, j) ∨ ¬P (t, j′)), meaning t incident to at most
one edge.

9. ∀i, j, k, l ≤ n(j, k, l distinct ∧i 6= s∧i 6= t → ¬P (i, j)∨¬P (i, k)∨¬P (i, l)),
meaning vertices different than s, t incident to at most 2 edges.

10. ∀i(¬P (i, i)), meaning no loops at vertices.

11. ∀i, j ≤ n(Q(i) ∧ P (i, j) → Q(j)), meaning any vertex connected by an
edge to a red vertex is red.
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12. s = 0

13. t = n

Let θ(P,Q, n) [resp. θ′(P,Q, n, s, t)] be the conjunction of the above for-
mulas [resp. with the exception of s = 0, t = n]. Then STC(P,Q) [resp.
STC ′(P,Q)] is the formula ∀n¬θ(P,Q, n) [resp. ∀n∀s, t ≤ n(¬θ′(P,Q, n, s, t)].
Let α(P,Q, n, s, t) denote the conjunction of (1) through (10). STC(P,Q) states
that any undirected graph on nodes {0, . . . , n} for which 0, n have valence 1 and
all other nodes valence 2 must have a path from 0 to n. Thus STC(P,Q) ex-
presses s-t connectivity where s = 0, t = n, while STC ′(P,Q) expresses s-t
connectivity without postulating the values of s, t. Note that for given P,Q, n,
the values s and t in α(P,Q, n, s, t) must be unique — it is not possible for two
distinct pairs (s, t) and (s′, t′) to satisfy the above conditions.

Recall that I∆0 is the first order theory of arithmetic in the language
0, 1,+, ·,≤ with the usual axioms describing a discretely ordered semi-ring to-
gether with the scheme of induction

Φ(0) ∧ (∀x)(Φ(x) → Φ(x + 1)) → (∀x)(Φ(x))

for all formulas Φ which are ∆0 (where all quantifiers are bounded, i.e. of the
form (∃x < t), (∀x < t) for some term t). In [20], J. Paris and A. Wilkie observed
that if I∆0 ` Φ(x), then there are constant depth polynomial size Frege proofs
of the tautologies Φ̃n. See as well [17] for details about the translation Φ̃n.

Proposition 8 I∆0(P,Q, P ′, Q′) ` STC(P,Q) ↔ STC ′(P ′, Q′).

Proof. (⇐) clear.
(⇒) Suppose that ¬STC ′(P ′, Q′), so that ∃s, t ≤ n(s 6= t ∧ θ′(P ′, Q′, n, s, t)).
Given P ′, Q′ define P (i, j) to be

i 6= j ∧ ∃s, t ≤ n(α(P ′, Q′, n, s, t) ∧ i = s ∧ j = t → P ′(0, n) ∧
i = t ∧ j = s → P ′(n, 0) ∧
i = s ∧ j 6= t → P ′(0, j) ∧
i = t ∧ j 6= s → P ′(n, j) ∧
i 6= t ∧ j = s → P ′(i, 0) ∧
i 6= s ∧ j = t → P ′(i, n) ∧
{i, j} ∩ {s, t} = ∅ → P ′(i, j)).

Similarly define Q(i) to be

∃s, t ≤ n (α(P ′, Q′, n, s, t) ∧
i = 0 → Q(i) ↔ Q′(s) ∧
i = n → Q(i) ↔ Q′(t) ∧
i = s → Q(i) ↔ Q′(0) ∧
i = t → Q(i) ↔ Q′(n)).
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P,Q are ∆0 definable in P ′, Q′ and simply correspond to the interchange of
0, s and n, t. By hypothesis, θ′(P ′, Q′, n, s, t) so by construction θ′(P,Q, n, 0, n).
Thus θ(P,Q, n) and so ¬STC(P,Q). 2

DSTC(P,Q,R), directed s-t connectivity for directed graphs of valence 2,
is given as follows.

14. ∀i, j ≤ n(P (i, j) ∧ R(i, j) → ¬R(j, i))

15. ∀i, j ≤ n(P (i, j) ∧ ¬R(i, j) → R(j, i))

16. ∀i, j ≤ n(P (i, j) ∧ R(i, j) ∧ P (j, k) → R(j, k))

17. ∀i, j ≤ n(P (i, j) ∧ ¬R(i, j) ∧ P (j, k) → ¬R(j, k))

Let ϕ[P,Q,R](n) be the conjunction of (1) through (17). DSTC(P,Q,R) is
the formula ∀n¬ϕ(P,Q,R, n). The idea is that (14)-(17) describe an orien-
tation or direction for the edges: P (i, j) ∧ R(i, j) describes the edge i → j,
while P (i, j) ∧ ¬R(i, j) describes the edge i ← j. One can show, as be-
fore that DSTC(P,Q,R) and an analogous statement DSTC ′(P ′, Q′, R′) ≡df

∀n¬ϕ′(P ′, Q′, R′, n) (without specifying s to be 0 and t to be n) are equivalent
over I∆0(P,Q,R, P ′, Q′, R′).

Proposition 9 I∆0(P,Q, P ′, Q′, R′) ` STC(P,Q) → DSTC(P ′, Q′, R′).

Proof. Trivial.

Definition 10 PHP onto(F, n) is the statement

[∀i ≤ n ∃j < n F (i, j) ∧ ∀j < n ∃i ≤ n F (i, j)

∧∀i ≤ n ∀j, j′ < n(j 6= j′ → ¬F (i, j) ∨ ¬F (i, j′))]

→ ∃j < n ∃i, i′ ≤ n(i 6= i′ ∧ F (i, j) ∧ F (i′, j))

where F is a binary predicate symbol. PHP onto(F ) is ∀n PHP onto(F, n).

Proposition 11 I∆0(P,Q,R, F ) ` PHP onto(F ) ↔ DSTC(P,Q,R).

Proof. (⇒) Suppose DSTC(P,Q,R) does not hold. Let n be such that
ϕ(P,Q, n). Define f : {0, . . . , n} → {0, . . . , n − 1} by

f(i) =
{

i if ¬Q(i)
j if Q(i) ∧ P (i, j) ∧ R(i, j).

Assuming ϕ(P,Q, n), then for any i such that Q(i), there is a unique j such
that Q(i) ∧ P (i, j) ∧ R(i, j). Thus f is well-defined. Let F (i, j) ↔df f(i) = j.
Then as f is a 1-1 mapping from n + 1 into n, ¬PHP onto(F ) holds.
(⇐) Suppose ¬PHP onto(F, n) holds for some n. Define the relation G on
{n + 1, . . . , 2n + 1} → {n, . . . , 2n − 1} by G(n + 1 + i, n + j) ≡df F (i, j).
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Let P (i, j)≡df F (i, j) ∨ G(i, j) ∨ F (j, i) ∨ G(j, i)
R(i, j)≡df P (i, j) ∧ (F (i, j) ∨ G(i, j))
Q(i) ≡df i ≤ n.

Then ϕ′(P,Q,R, 2n+1) holds, so DSTC ′(P,Q,R) fails and hence DSTC(P,Q,R)
fails. 2

Corollary 12 STCn requires exponential size constant depth Frege proofs.

Proof. A subexponential size constant depth Frege proof of STCn would yield
a subexponential size constant depth Frege proof of PHP onto

n , contradicting [3].
2

From the previous section there are polynomial size CPLE proofs of STCn,
hence by [13] polynomial size Frege proofs of STCn.

6 The Systems CPq

For an integer q ≥ 2, the proof system CPq is obtained from CP by restricting
the division rule to division by q. The systems CPq are quite strong, and will be
shown to be p-equivalent to CP . To illustrate the idea of the proof, we present
the following example of how CP2 can simulate division by three.

Example 13 To simulate division by 3 applied to

6x + 15y ≥ 7(28)

within CP2, first write the coefficient of each variable with 3 as explicit factor.
This gives

3(2x) + 3(5y) ≥ 7.(29)

The least power of 2 greater than 3 is 22 or 4. Using x ≥ 0, y ≥ 0 obtain 2x ≥ 0,
5y ≥ 0 which when added to (29) gives

22(2x) + 22(5y) ≥ 7.(30)

Two applications of division by 2 yields

2x + 5y ≥ 2.(31)

Adding (29) and (31) gives

22(2x) + 22(5y) ≥ 9(32)

and two applications of division by 2 yields the desired inequality

2x + 5y ≥ 3(33)

which one would obtain from (28) by division by 3.
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Theorem 14 Let q > 1. Then CPq p-simulates CP .

Since CP trivially p-simulates CPq, we have that CP and CPq are p-
equivalent systems, for any fixed q > 1.

Proof. Fix q > 1. We must prove that an arbitrary instance of the division
rule in a CP -proof can be simulated by a polynomial size CPq proof. For the
purposes of this proof, we modify slightly the syntax of cutting plane proofs as
follows. Firstly, we allow only inequalities of the form

a1x1 + a2x2 + · · · + anxn ≥ b,

where a1, . . . , an and b are integers. With this restricted syntax for inequalities
appearing in cutting plane proofs, the transitivity and simplification rules are
unneeded. The addition, multiplication and division rules still apply in the
obvious way and these are the only rules of inference. The axioms for this
restricted cutting plane syntax are −xi ≥ −1 and xi ≥ 0. A cutting plane
refutation now is defined to be a sequence of inequalities obtained via these
axioms and rules of inference and ending with a formula 0 ≥ 1. It is easy
to verify (and we leave the verification to the reader) that any cutting plane
refutation of the type we defined in section 2 above can be converted into a
cutting plane refutation in this restricted syntax system. For the rest of this
section, we work with the restricted cutting plane system, which we also denote
CP .

Suppose a cutting plane proof contains a division inference

cα ≥ M

α ≥ dM
c e(34)

where, of course, c > 1. We must prove that this can be efficiently simulated
using division by q; so we shall describe a short CPq proof of α ≥ dM

c e from the
hypothesis

c · α ≥ M(35)

Choose p so that qp−1 < c ≤ qp. Without loss of generality, we may assume
that qp/2 < c; if this does not hold, then find a suitable multiple m · c of c such
that qp/2 < m · c ≤ qp and multiply the hypothesis inequality (35) by m and
use division by m · c in place of c.

The expression α is a linear combination
∑n

i=1 aixi with integer coefficients.
Let s0 equal the sum of the negative coefficients of α. From the axioms xi ≥ 0
and −xi ≥ −1, we can derive

α ≥ s0(36)

without any use of the division rule. Inductively define si by

si+1 =
⌈

(qp − c)si + M

qp

⌉
.
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Assuming that α ≥ si has already been derived, we show that CPq can derive
α ≥ si+1 with a short proof. First, by combining the inequality (35) with α ≥ si,
CPq can derive

qp · α ≥ (qp − c)si + M

with no use of division. Then, with p uses of division by q, CPq can derive
α ≥ si+1.

Since we have

si+1 ≥ qp − c

qp
si +

c

qp

(
M

c

)
and c > qp/2, it is immediate that M

c −si+1 ≤ 1
2

(
M
c − si

)
. Since si is an integer,

it follows that if M/c− si < 1/c, then si = dM/ce. Therefore, si = dM/ce after
i = log(M−c ·s0) iterations. This completes the simulation of the inference (34)
in CPq; namely, the CPq-proof derives α ≥ si for i = 0, 1, . . . , log(M − c · s0).
The fact that this CPq-proof has length polynomially bounded by the number
of symbols in inequality (35) is easily checked. 2

7 A normal form for cutting plane proofs

In this section, we present a normal form for CP2-proofs. In view of Theorem 14
which implies that CP2 p-simulates CP , this also gives a normal form for arbi-
trary cutting plane proofs. Our original motivation for discovering the normal
form for CP2-proofs was an attempt to show that the coefficients of inequalities
in cutting plane proofs can be bounded by a polynomial of the number of infer-
ences in the proof (provided that the set of inequalities being refuted contains
only small coefficients). Unfortunately, we have not achieved this goal; instead,
we only obtain exponential bounds on the values of coefficients in the cutting
plane proofs (the proof for general CP -proofs is in section 8). In fact it remains
an open problem whether cutting plane proofs with coefficients represented in
unary notation can p-simulate cutting plane proofs with coefficients represented
in the usual binary notation. However, the normal form for CP2-proofs that we
present below does give a partial result in this direction.

For this section and the next section, we shall again slightly modify the
syntax of cutting plane proofs: we now assume that all inequalities in the proof
are of the form

a1x1 + a2x2 + · · · anxn + an+1 ≥ 0

where the ai’s are integers. We’ll use letters E and F , often with subscripts and
superscripts to denote expressions of the form shown in the lefthand side of the
inequality; thus, all inequalities in the proof are of the form E ≥ 0. The rules of
inference are still the addition rule, the multiplication rule and the division rule.
For the division rule, each of the coefficients a1, . . . , an in the inequality in the
hypothesis must be multiples of the divisor c, and the constant coefficient, an+1,
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is rounded down, not up, since it is on the lefthand side of the inequality. The
initial inequalities include xi ≥ 0 and −xi +1 ≥ 0 in addition to the inequalities
which are being refuted. The last line of a cutting plane proof is now −1 ≥ 0.

We are now ready to describe the normal form for CP2-proofs. Assume we
are given a CP2-proof P . Firstly, we can, w.l.o.g., view P as consisting of the
lines

E1 ≥ 0, E2 ≥ 0, . . . , Ep ≥ 0,

Fp+1 ≥ 0, Ep+1 ≥ 0, Fp+2 ≥ 0, Ep+2 ≥ 0,

. . . , Fm ≥ 0, Em ≥ 0, Fm+1 ≥ 0,

where the following conditions hold. Firstly, E1 ≥ 0 through Ep ≥ 0 are the
initial inequalities (axioms and hypotheses). Secondly, Fm+1 is just −1. Thirdly,
each Fi+1 is a nonnegative linear combination of E1, . . . , Ei; i.e.,

Fi+1 = bi
1E1 + bi

2E2 + · · · + bi
iEi,(37)

with each bi
j a nonnegative integer. Finally, for i > p, Ei ≥ 0 is obtained from

Fi ≥ 0 by division by two.
Given the proof P containing the lines Ei ≥ 0 and Fi ≥ 0 as above, we now

describe how to form a CP2-proof P ′ in the normal form. P ′ will contain lines
E′

i ≥ 0 and F ′
i ≥ 0 which correspond to the lines in P . For 1 ≤ i ≤ p, E′

i is
equal to Ei. For i > p, the lines E′

i ≥ 0 will be obtained from F ′
i ≥ 0 by division

by two. It remains to describe the lines F ′
i ≥ 0. Recall that Fi was computed

according to (37) above. We compute F ′
p+1 as

F ′
p+1 =

p∑
i=1

(bp
i mod 2)Ei.

Note the coefficients of variables which appear in F ′
p+1 are even, since they were

even in Fp+1. Therefore, it is valid to use the division by two rule to obtain
E′

p+1 ≥ 0 from F ′
p+1 ≥ 0.

Now we claim that Ep+1 is a nonnegative linear combination of E′
1, . . . , E

′
p+1.

Indeed,

Ep+1 = E′
p+1 +

p∑
i=1

bbp
i /2cE′

i.

We continue this process inductively to define F ′
i and E′

i for p + 1 ≤ i ≤ m.
We always maintain the inductive condition that Ei is a nonnegative linear
combination of E′

1, . . . , E
′
i; therefore, Fi+1 is equal to a nonlinear combination

of these, say,
Fi+1 = b1E

′
1 + b2E

′
2 + · · · + biE

′
i.
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Then F ′
i+1 is defined to equal

F ′
i+1 =

i∑
j=1

(bj mod 2)E′
j .

Once F ′
i and E′

i have been obtained, for all i = 1, . . . , m; we have that
−1 is a nonnegative linear combination of E′

1, . . . , E
′
m. Of course, this nonneg-

ative linear combination may involve large coefficients. However, these large
coefficients can be avoided as follows. Suppose

∑m
i=1 ciE

′
i = −1 with the ci’s

nonnegative integers. Since the ci’s are obtainable as solutions to a linear pro-
gramming problem with the constraints ci ≥ 0, we may assume the sizes of the
ci’s are polynomially bounded by m and the sizes of the coefficients and con-
stant terms in the E ′

i ’s. This is an elementary fact about linear programming;
in fact, letting C equal the maximum of the absolute values of the coefficients
and constant terms in the E ′

i ’s, we have that |ci| ≤ m! · Cm, for all i. (For
a proof of this see, e.g., [19, Lemma 2.1]). Let J be such that each |ci| < 2J ;
thus, J = O(m(log m + log C)). Instead of deriving −1 ≥ 0 as a single non-
negative linear combination of the inequalities E′

i ≥ 0; we use J steps, with
j = J, J − 1, . . . , 2, 1, 0, to successively derive Gj ≥ 0 where

Gj =
m∑

i=1

bci/2jcE′
i.

However, the Gj ’s are not derived according to the formula defining them; in-
stead, the Gj−1 ≥ 0 is derived from Gj ≥ 0 and from the inequalities E′

i using
the fact that Gj−1 equals twice Gj plus a 0/1 linear combination of the E′

i’s;
namely,

Gj−1 = 2 · Gj +
m∑

i=1

(bci/2j−1c mod 2
)
E′

i.

Since G0 is just −1, we obtain a CP2 derivation P ′ of −1 ≥ 0.
To analyze the size of the coefficients appearing in P ′; first note the absolute

values of the coefficients in the Gj ’s must be ≤ m ·C; since otherwise, it would
be impossible to end up with the final summation G0 equal to −1. To bound the
size of the coefficients in E′

i, we let B be the maximum of the absolute values of
the coefficients and constant terms in the hypotheses E1 ≥ 0, . . . , Ep ≥ 0, and
let A = B · p.

Lemma 15 Let i > p. The constant term and every coefficient of E′
i has

absolute value ≤ 11
8 A · (1.5)i−p−3. Thus C ≤ A · 1.5m−p = p · B · 1.5m−p.

The lemma is proved by induction on i. In the base case i = p+1, since F ′
p+1 is a

0/1-linear combination of the p expressions E1, . . . , Ep and since Ep+1 is Fp+1/2,
we have that each coefficient of E′

p+1 is ≤ A/2 in absolute value. By similar
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reasoning, each coefficient in E′
p+2 has absolute value ≤ (A + A/2)/2 ≤ 3A/4;

and likewise each coefficient in E′
p+3 has absolute value ≤ (A+A/2+3A/4)/2 =

11
8 A. For the induction step, with i ≥ p + 3, E′

i+1 is a 0/1-linear combination of
E′

1, . . . , E
′
i. Therefore, each coefficient in E′

i+1 has absolute value bounded by

A · 11
8

((
2
3

)i−p−3

+
1
2

(
2
3

)i−p−3
)

=
11
8

· A ·
(

2
3

)i−p−2

2

To count the number of lines in P ′, note that each F ′
i can be obtained by

≤ i + 2 additions and thus with O(m) lines. The complete derivation of the
inequalities E′

1 ≥ 0, . . . , E′
m ≥ 0 therefore takes O(m2) lines. The final portion

of P ′ derives each of the J inequalities Gi ≥ 0 with O(m) steps. By the above
estimate on J and by Lemma 15,

J = O(m(log m + (m − p)(log B + log p))) = O(m2 log B).

Therefore, the final portion of P ′ has O(m3 log B) lines, so P ′ has O(m3 log B)
lines in total.

8 Bounds on coefficients in general CP proofs

Let Σ be a set of linear inequalities: following the convention of the previous
section, we assume all inequalities are of the form E ≥ 0, where E is a linear
polynomial of variables x1, . . . , xn. We let ||E|| denote the maximum of the
absolute values of the constant term and the coefficients appearing in E. For the
rest of this section, we let B denote the maximum value of ||E|| for inequalities
E ≥ 0 in Σ.

The construction in section 7 and the size analysis of Lemma 15 proved
that if a CP2-proof P refuting Σ has M lines, then there is another CP2-
proof P ′, also refuting Σ, in which each coefficient and constant term has abso-
lute value bounded by O(M2 · B · (1.5)M ) such that the number of steps in P ′

is O(M3 log B). Also, by the construction of section 6, every general CP -proof
can be converted into a polynomial size CP2-proof. Therefore it is reasonable
to expect that whenever P is a general CP -proof refuting Σ, then there is a
CP -proof P ′, also refuting Σ, such that the both the number of lines of P ′ and
the sizes of constant terms and coefficients in P ′ are polynomially bounded by
M and log B.

Unfortunately, the construction in section 6, which converted a general CP -
proof into a CP2-proof, can cause a superpolynomial increase in the number of
lines in the proof when the coefficients and divisors are very big. So we must
give a new proof to establish the following lemma.

Lemma 16 Let Σ and B > 0 be as above. Let P be an M line CP -proof
refuting Σ. Then there is a CP -proof P ′, also refuting Σ, such that P ′ has
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O(M3 log B) lines and such that each coefficient and each constant term ap-
pearing in P ′ has absolute value equal to O(M2 · B · 2M ).

Note, that as a corollary to Lemmas 15 and 16, we can also take P ′ to be a
CP2-proof with slightly worse upper bounds.

Proof. The proof is very similar to the construction of the CP2-proof in normal
form in the previous section; so we shall sketch only the principal ideas of the
proof. As before, we can view the CP -proof P as a sequence of inequalities

E1 ≥ 0, E2 ≥ 0, . . . , Ep ≥ 0,

Fp+1 ≥ 0, Ep+1 ≥ 0, Fp+2 ≥ 0, Ep+2 ≥ 0,

. . . , Fm ≥ 0, Em ≥ 0, Fm+1 ≥ 0.

where each Fi is a nonnegative linear combination of E1, . . . , Ei−1, but now each
Ei, with i > p, is obtained from Fi by division by some integer ci ≥ 2. Similarly
to the earlier construction, form P ′ with inequalities E′

i ≥ 0 and F ′
i ≥ 0. We

still have Ei is equal to Ei for i ≤ p, and also, for i > p, E′
i ≥ 0 is obtained

from F ′
i be division by ci. Now, however, each

F ′
i+1 =

i∑
j=1

bj · E′
j

for some integers bj , which depend on i, such that 0 ≤ bj < ci. The proof that
P ′ can be constructed this way is essentially the same as before. And the final
part of P ′ that derives Gi ≥ 0 is constructed exactly as before.

Redoing the analysis of Lemma 15, we find that ||Ep+i+1|| can be bounded
by

1
ci

(ci − 1)

p · B +
i∑

j=1

||Ep+j ||


and then ||Ep+i+1|| ≤ pB +
∑i

j=1 ||Ep+j ||. Therefore, ||Ep+i+1|| ≤ pB2i. Then
P ′ has all constant terms and coefficients ≤ MpB2m−p < M2B2M in absolute
value and has

O(m(log m + m log(pB2m−p))) = O(m3 log B) = O(M3 log B)

many lines. 2

9 Frege systems and extended cutting planes

We define the extensions CP+ and CPLE+ of CP , CPLE obtained by remov-
ing a requirement in the division rule. We first define the collection E+ of all
CP+ expressions.
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Definition 17 If a ∈ Z and i ∈ N, then a ∈ E+ and (a ·xi) ∈ E+. If E,F ∈ E+

and a ∈ Z, then a · E and E + F belong to E+. If E ∈ E+ and c ∈ N, c > 0,
then dE/ce belongs to E+.

Though not formally part of the syntax, the floor operator bE/cc could be
defined by −d−E/ce. A positive integer c divides an expression E =

∑
ai · Ei

of E+, denoted c|E, if c|ai all i. The quotient of E by c is that expression
E′ =

∑
bi · Ei of E+, where bi = ai/c.

We define the modified rule of simplification to admit, in addition to the
other cases of simplification, the following replacements and inferences. For
E,F,G expressions in E+, and c > 0 in N, if c|E with quotient E′ then dE+F

c e
may be replaced by E′ + dF

c e, and dE
c e may be replaced by E′. As well we

admit the following simplification inference.

1 ≥ E
dE/ce ≥ E

Modified division is given by the following:

For c > 0 in N and E,F ∈ E+,

E ≥ F

dE
c e ≥ dF

c e

The systems CP+ and CPLE+ are respectively defined from CP and CPLE
by modifying the substitution and division rules as indicated above.

Theorem 18 Frege systems p-simulate CPLE+.

Proof. We give only a proof sketch, basing the essential ideas on Goerdt’s [13]
p-simulation of CP by Frege systems. We begin by an overview of Goerdt’s
simulation. Let C =

∧n
i−1 Ci be a formula in conjunctive formal form where

each Ci is
∨mi

j=1 Dij . Let I1, . . . , IM be a CP refutation of C; i.e. axioms∑mi

j=1 R(Dij) ≥ 1 are allowed for 1 ≤ i ≤ n.
Goerdt constructs a Frege formula Rep(Ik) for each inequality Ik and proves

within a Frege system F that

`F C ⊃ Rep(I1)
`F C ⊃ Rep(I2)

...
`F C ⊃ Rep(IM )
`F C ⊃ false

where false represents the false formula x0 ∧ ¬x0. Standard techniques then
show `F ¬C. What has just been sketched is an effective translation process,
which given a CP refutation of C yields a Frege proof of ¬C.
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Goerdt’s techniques are easily adapted to provide a p-simulation of CPLE.
Before indicating how to extend these techniques to CPLE+, we review some
of the machinery introduced in [13].

An integer m =
∑T−1

i=0 mi · 2i, 0 ≤ mi ≤ 1, has propositional representation
~m = (F 0, . . . , FT−1) where F i = true = x0 ∨¬x0 if mi = 1 and F i = false =
x0 ∧ ¬x0 otherwise. Integers can be given a positive or negative sign by

+~F = (F 0, . . . , FT−1,true)

−~F = (F 0, . . . , FT−1, false).

Inequality ~F ≥ ~G is then defined in F , along with

Add(~F , ~G) = (Add0(~F , ~G), . . . , AddT−1(~F , ~G))

where Addi(~F , ~G) is true iff the ith bit of the sum of the integers designated
by formula vectors ~F , ~G is 1. Using carry-save addition, as in [5], the formula
ItAdd( ~F 0, ~F 1, . . . , ~Fn−1) is defined, which represents the sum f0+f1+· · ·+fn−1

where fi is the integer denoted by the formula vector ~Fi of length T , and n is a
power of 2, n ≤ T .

Taking into account iterated addition for all positive terms and separately for
all negative terms, the representing formula Rep(I) for cutting plane inequality∑

ai · xi −
∑

bi · xi ≥ m for ai, bi ∈ N is given by

AddSi(+ItAdd(~a · ~x), −ItAdd(~b · ~x)) ≥ ~m

where AddSi is an extension of Add which allows addition of two signed integers.
The formula

Mult(~F , ~G) = (Mult0(~F , ~G), . . . , Mult2T−1(~F , ~G))

is defined where Multi(~F , ~G) is true iff the ith bit of f ·g is 1 where f [resp. g]
is the integer denoted by the formula vector ~F = (F0, F1, . . . , FT−1) [resp. ~G =
(G0, G1, . . . , GT−1)].

Goerdt proves that all the above formulas are of size polynomial in T and
that, provably in the Frege system F , the usual properties of addition, multipli-
cation, distribution of addition over multiplication, etc. all hold. For conjunctive
normal form formula C, Goerdt now shows by induction on the number of infer-
ences I1, I2, . . . , IM in a cutting plane refutation that `F C ⊃ Rep(I1), . . . `F
C ⊃ Rep(IM ),`F C ⊃ false.

To extend Goerdt’s technique, we must construct a propositional formula
to express

⌈
E1+···+Em

n

⌉
. This is done as follows. Theorem 136 on p.112 of [15]

yields the following. Suppose q ∈ N, q ≥ 2 is of the form 2µ Q, where Q is not
divisible by 2 and let p satisfy 0 < p/q < 1, gcd(p, q) = 1. Let ν be the order of
2, mod Q; i.e. ν is the least positive integer satisfying 2ν ≡ 1 (mod Q). Then
the binary expansion of p

q has µ non-recurring bits and ν recurring bits.
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Now for q = 2µ Q and ν the order of 2 modulo Q, the binary representation
of 1

q is 0 . r1 . . . rµ s1 . . . sν where the bar indicates infinitely many repetitions
of the indicated block s1, . . . , sν . Given a ∈ N where |a| = n, let k be the
least positive integer satisfying µ + k · ν > n + µ + ν. Let inv(q, k) have binary
representation 0 . r1 . . . rµs1 · · · sν

k, where the bar with superscript k indicates
k repetitions of the block s1, . . . , sν . It follows that 0 ≤ 1

q − inv(q, k) < 1
2n+µ+ν ,

so that

0 ≤ a

q
− a · inv(q, k)

≤ a · (1
q
− inv(q, k))

≤ a

2n+µ+ν

≤ 2n

2n+µ+ν
=

1
2µ+ν

.

Thus the first µ + ν bits (to the right of the decimal) of a · inv(q, k) agree
with those of a

q . By the previously mentioned theorem of [15], for all p satisfying
0 < p

q < 1, gcd(p, q) = 1, it is the case that p
q has at most µ non-recurring

bits and ν recurring bits to the right of the decimal. As well, if p
q ≥ 1 or

gcd(p, q) 6= 1 then p
q = K + p′

q′ when 0 < p′

q′ < 1 and gcd(p′, q′) = 1. Letting
q = 2µ Q, q′ = 2µ′

Q′ and ν be the order of 2 modulo Q, and ν′ be the order of 2
modulo Q′, it is easy to show that µ′ ≤ µ and ν′ ≤ ν. For instance, to see that
ν′ ≤ ν note that 2ν ≡ 1 (mod Q) so that Q | 2ν − 1; since Q′ | Q it follows that
Q′|2ν − 1 so 2ν ≡ 1 (mod Q′). The order of 2 modulo Q′ is the least positive
ν′ satisfying 2ν′ ≡ 1 (mod Q′). Hence ν′ ≤ ν. It is similarly easy to see that
µ′ ≤ µ.

From this discussion, it follows that if the binary expansion of a · inv(q, k)
is bm−1 · · · b1b0.c1c2 · · · cµ+ν and if c1 = 1 or c2 = 1 or . . . or cµ+ν = 1 then
da

q e =
(∑

i<m bi · 2i
)

+ 1 otherwise da
q e =

∑
i<m bi · 2i.

We now sketch polynomial size formulas to express d ~F
q e, where ~F is a formula

vector (F0, . . . , FT−1) representing an integer of length T .
Temporarily we abbreviate the expression Multi(~x, ~inv(q, µ, ν, k)) by Multi

for any i < T + µ + k ·ν. Define Quotiq,µ,ν,k(x0, . . . , xT−1) by

(
∧

j<µ+k·ν ¬Multj ∧ Multi+µ+k·ν) ∨
(
∨

j<µ+k·ν Multj ∧ [(
∨

i′<i ¬Multi
′+µ+k·ν ∧ Multi+µ+k·ν) ∨

(
∧

i′<i Multi
′+µ+k·ν ∧ ¬Multi+µ+k·ν)])

The previous informal discussion provides the intuition behind the definition
of the formula Quotiq,µ,ν,k(x0, . . . , xT−1). Namely one forms the product P of
the integer x, represented by formula vector ~x, with the integer inv(q, µ, ν, k) =
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inv(q, k) · 2µ+k·ν , represented by the formula vector ~inv(q, µ, ν, k). Then we
divide by 2µ+k·ν and check to see if any bits to the right of the decimal point
are 1. If not, then the ith bit of

⌈
x
q

⌉
is the i + µ + k · ν − th bit of P . If

so, then the ith bit of
⌈

x
q

⌉
is equal to the ith bit of

⌊
P

2µ+k·ν
⌋

+ 1. Clearly the

formula Quotiq,µ,ν,k(x0, . . . , xT−1) is of size polynomial in T, µ, ν, k. If the size
of a given CPLE+ refutation I1, . . . , IM is S, then to propositionally represent
all expressions of the form

⌈
x
q

⌉
occurring in the refutation sequence, it suffices

to take k = S in Quotiq,µ,ν,k(x0, . . . , xT−1), and as T ≤ S, it follows that all
propositional formulas representing C ⊃ Rep(Ij) are of size polynomial in S.

We can simulate in a Frege system the general division rule

E1≥E2

dE1
q e≥dE2

q e
by extending Goerdt’s [13] Frege system simulation of the multiplication rule

E1≥E2
C·E1≥C·E2

for fixed positive integer C. [Goerdt’s proof was for the case of CP expressions,
whereas E1, E2 are CPLE expressions.] Since Quotiq,µ,ν,k is defined in terms of

Multj(~x, ~inv(q, µ, νk)) the propositional representation

C⊃Rep(E1≥E2)

C⊃Rep(dE1
q e≥dE2

q e )

has polynomial size Frege proofs. The same type of argument can be used
to provide polynomial size Frege proofs of proportional representations of the
simplification rules of CPLE+

dE+Fe≥G
dEe+dFe≥G

E≥0

E≥dE
C e

1≥E

dE
C e≥E

for C ∈ N+.
This concludes the sketch of proof of theorem 18. 2

In [9], the second author showed that CPLE+ p-simulates constant depth
Frege systems. As observed by first author, this proof can be extended to
prove that CPLE+ p-simulates Frege systems (details will appear in the journal
version of [9]). It thus follows that CPLE+ and Frege systems are polynomially
equivalent.
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10 Threshold logic

In this section, we introduce propositional threshold logic and prove a complete-
ness theorem. It is hoped that certain lower bound results for threshold circuits
may be extended to yield lower bounds for proof size of propositional threshold
logic and a fortiori for cutting planes.

Kraj́ıček has introduced a different system FC of propositional threshold
logic [17].

Definition 19 Propositional threshold logic is given as follows. Formula depth
and size are defined inductively by:

i. a propositional variable xi, i ∈ N, is a formula of depth 0 and size 1.3

ii. if F is a formula then ¬F is a formula of depth 1 + dp(F ) and size 1 +
size(F ).

iii. if F1, . . . , Fn are formulas and 1 ≤ k ≤ n then Tn
k (F1, . . . , Fn) is a for-

mula of depth 1 + max{depth(Fi) : 1 ≤ i ≤ n} and size (n + k) + 1 +∑
1≤i≤n size(Fi).

Propositional threshold logic can be viewed as an extension of propositional
logic in the connectives ¬,∧,∨, the latter two connectives being defined by∨

1≤i≤n

Fi ≡ Tn
1 (F1, . . . , Fn)

∧
1≤i≤n

Fi ≡ Tn
n (F1, . . . , Fn)

A cedent is any sequence F1, . . . , Fn of formulas separated by commas. Ce-
dents are sometimes designated by Γ,∆, . . . (capital Greek letters). A sequent is
given by Γ ` ∆, where Γ,∆ are arbitrary cedents. The size [resp. depth] of a ce-
dent F1, . . . , Fn is

∑
1≤i≤n size(Fi) [resp. max1≤i≤n(depth(Fi))]. The size [resp.

depth] of a sequent Γ ` ∆ is size(Γ)+size(∆) [resp. max(depth(Γ), depth(∆))].
The intended interpretation of the sequent Γ ` ∆ is ∧Γ → ∨∆.

An initial sequent is of the form F ` F where F is any formula of proposi-
tional threshold logic. The rules of inference of PTK, the sequent calculus of
propositional threshold logic, are as follows.4 By convention, Tn

m(A1, . . . , An) is
only defined if 1 ≤ m ≤ n.

3One could as well allow propositional constants 1 (true) and 0 (false) of depth 0 and
size 1.

4Gentzen’s original sequent calculus for first order logic was called LK (Logischer Kalkül).
The propositional sequent calculus with connectives ¬, ∨, ∧ has sometimes been called PK
(propositional Kalkül), so our propositional threshold Kalkül is denoted PTK.
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structural rules

Γ,∆ ` Γ′
weak left:

Γ, A,∆ ` Γ′
Γ ` Γ′,∆′

weak right:
Γ ` Γ′, A,∆′

Γ, A,A,∆ ` Γ′
contract left:

Γ, A,∆ ` Γ′
Γ ` Γ′, A,A,∆′

contract right:
Γ ` Γ′, A,∆′

Γ, A,B,∆ ` Γ′
permute left:

Γ, B,A,∆ ` Γ′
Γ ` Γ′, A,B,∆′

permute right:
Γ ` Γ′, B,A,∆′

cut rule

Γ, A ` ∆ Γ′ ` A,∆′

Γ,Γ′ ` ∆,∆′

logical rules

A,Γ ` ∆¬-left: Γ ` ¬A,∆
Γ ` A,∆¬-right: ¬A,Γ ` ∆

A1, . . . , An,Γ ` ∆∧-left: for n ≥ 1
Tn

n (A1, . . . , An),Γ ` ∆

Γ ` A1,∆ · · · Γ ` An,∆∧-right: for n ≥ 1
Γ ` Tn

n (A1, . . . , An),∆

A1,Γ ` ∆ · · · An,Γ ` ∆∨-left: for n ≥ 1
Tn

1 (A1, . . . An),Γ ` ∆

Γ ` A1, . . . , An,∆∨-right: for n ≥ 1
Γ ` Tn

1 (A1, . . . , An),∆

Tn−1
k (A2, . . . , An),Γ ` ∆ A1, T

n−1
k−1 (A2, . . . , An),Γ ` ∆

Tn
k -left: for 2 ≤ k < n

Tn
k (A1, . . . , An),Γ ` ∆
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Γ ` A1, T
n−1
k−1 (A2, . . . , An),∆ Γ ` Tn−1

k (A2, . . . , An),∆
Tn

k -right: for 2 ≤ k < n
Γ ` Tn

k (A1, . . . , An),∆

Theorem 20 PTK is sound.

Proof. A truth evaluation is a mapping ν : {xi : i ∈ N} → {0, 1}. By induction
on formula depth, it is clear how to extend the truth evaluation ν to assign a
truth value for each formula of propositional threshold logic. A formula is valid
if it is true in every truth evaluation. Now by induction on the number of
inferences in an PTK proof, it is straightforward to show that every theorem
of PTK is valid. Thus PTK is sound. 2

Theorem 21 PTK is complete.

Proof. Suppose that ∧Γ → ∨∆ is valid. We construct a finite tree T , each
node of which is labeled by sequents, the root of T being labeled by Γ ` ∆. The
tree T is constructed so that

i. if Γ′′ ` ∆′′ is a child of Γ′ ` ∆′ then size(Γ′′ ` ∆′′) < size(Γ′ ` ∆′),

ii. if Γ′′ ` ∆′′ is a child of Γ′ ` ∆′ and ν is a truth evaluation such that
ν(Γ′′ ` ∆′′) = 0, then ν(Γ′ ` ∆′) = 0,

iii. if Γ1 ` ∆1, . . . ,Γn ` ∆n are all the children of Γ′ ` ∆′, each of which has
a proof in PTK, then there is a proof of Γ′ ` ∆′ in PTK,.

iv. each leaf of T is of the form Γ′ ` ∆′ where Γ′,∆′ contain only propositional
variables, and moreover some propositional variable x appears both in Γ′

and in ∆′.

Given an already defined node Γ′ ` ∆′ of T , let F be the first formula of
that sequent which is not a propositional variable. If F appears in Γ′, then for
notational simplicity we write Γ′ as F,Π rather than Π, F,Π′ when F is not
necessarily the first formula of cedent Γ′. Similarly for ∆′.

Case 1 F is ¬A, occurring in Γ′.
Π ` A,Λ

¬A,Π ` Λ

Case 2 F is ¬A, occurring in ∆′.
A,Π ` Λ

Π ` ¬A,Λ
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Case 3 F is Tn
k (A1, . . . , An), occurring in Γ′.

Tn−1
k (A2, . . . , An),Π ` Λ A, Tn−1

k−1 (A2, . . . , An),Π ` Λ

Tn
k (A1, . . . , An),Π ` Λ

Case 4 F is Tn
k (A1, . . . , An), occurring in ∆′.

Π ` A1, T
n−1
k (A2, . . . , An),Λ Π ` Tn−1

k−1 (A2, . . . , An),Λ

Π ` Tn
k (A1, . . . , An),Λ

Conditions (i),(ii) are straightforward to check and left to the reader. Con-
dition (iii) for cases 1-4 follows immediately from the relevant logical rules. If
condition (iv) does not hold, then there is a leaf of tree T labeled by a sequent
Γ′ ` ∆′ whose cedents consist only of propositional variables, but which have
no variable in common. Define the truth assignment ν by

ν(x) =
{

1 if x does not occur in ∆′

0 otherwise

Then ν(Γ′ ` ∆′) = 0, and by iterating condition (ii) along the branch
consisting of all nodes of tree T between leaf Γ′ ` ∆′ and root Γ ` ∆, it follows
that ν(Γ ` ∆) = 0. But this contradicts the assumption that Γ ` ∆ is valid. 2

Remark 22 Since the above proof does not use the cut rule, it follows that cuts
may be eliminated from proofs in PTK. Also note that cut-free PTK proofs
satisfy the subformula property; namely, every formula in a cut-free PTK proof
is a subformula of a formula in the endsequent.

The structural rules, cut rule, ¬ rules, ∧ rules and ∨ rules are the same as
for PTK. However, in place of the Tn

k rules of PTK, PTK ′ has the following
rules.

Tn
k (A1, . . . , An),Γ ` ∆

Tn
k -left1: for 1 ≤ k < k + ` ≤ n

Tn
k+`(A1, . . . , An),Γ ` ∆

Tn
k (A1, . . . , An),Γ ` ∆

Tn
k -left2: for 1 ≤ k ≤ n < n + m

Tn+m
k+m (A1, . . . , An, B1, . . . , Bm),Γ ` ∆

¬A1, . . . ,¬An, Tm
k (B1, . . . , Bm),Γ ` ∆

Tn
k -left3: for 1 ≤ k ≤ m < m + n¬A1, . . . ,¬An, Tm+n

k (A1, . . . , An, B1, . . . , Bm),Γ ` ∆

Γ ` Tn
k (A1, . . . , An),∆

Tn
k -right1: for 1 ≤ k ≤ n < n + m

Γ ` T n+m
k (A1, . . . , An, B1, . . . , Bm),∆
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Γ ` Tn
k (A1, . . . , An),∆ Γ ` Tm

` (B1, . . . , Bm),∆
Tn

k -right2: for 1 ≤ k ≤ m < m + n
Γ ` Tn+m

k+` (A1, . . . , An, B1, . . . , Bm),∆

Theorem 23 PTK ′ is sound.

Proof. As in the proof of soundness of PTK. 2

Theorem 24 PTK ′ is complete.

Proof. As in the proof of completeness of PTK, suppose that ∧Γ → ∨∆
is valid. As before, construct a finite tree T , each node of which is labeled by
sequents, the root of T being labeled by Γ ` ∆, such that T satisfies the previous
conditions (i) through (iv).

Given an already defined node Γ′ ` ∆′ of T , let F be the first formula of
that sequent which is not a propositional variable. If F appears in Γ′, then for
notational simplicity we write Γ′ as F,Π rather than Π, F,Π′ when F is not
necessarily the first formula of cedent Γ′. Similarly for ∆′.

Case 1 F is ¬A, occurring in Γ′.
Π ` A,Λ

¬A,Π ` Λ

Case 2 F is ¬A, occurring in ∆′.
A,Π ` Λ

Π ` ¬A,Λ

Case 3 F is Tn
1 (A1, . . . , An), occurring in Γ′.
A1,Π ` Λ · · · An,Π ` Λ

Tn
1 (A1, . . . , An),Π ` Λ

Case 4 F is Tn
1 (A1, . . . , An), occurring in ∆′.

Π ` A1, . . . An,Λ
Π ` Tn

1 (A1, . . . , An),Λ

Case 5 F is Tn
n (A1, . . . , An), occurring in Γ′.

A1, . . . , An,Π ` Λ
Tn

n (A1, . . . , An),Π ` Λ

Case 6 F is Tn
n (A1, . . . , An), occurring in ∆′.
Π ` A1,Λ · · · Π ` An,Λ

Π ` Tn
n (A1, . . . , An),Λ
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Case 7 F is Tn
k (A1, . . . , An), occurring in Γ′, where 1 < k < n.

Tn−1
k (A2, . . . , An),Π ` Λ A1, T

n−1
k−1 (A2, . . . , An),Π ` Λ

Tn
k (A1, . . . , An),Π ` Λ

Case 8 F is Tn
k (A1, . . . , An), occurring in ∆′, where 1 < k < n.

Π ` A1, T
n−1
k (A2, . . . , An),Λ Π ` Tn−1

k−1 (A2, . . . , An),Λ

Π ` Tn
k (A1, . . . , An),Λ

Conditions (i),(ii) are straightforward to check and left to the reader. Con-
dition (iii) for cases 1-6 follows immediately from the relevant logical rules. The
following is a proof for case 7.

Tn−1
k (A2, . . . , An),Π ` Λ

¬A1, T
n−1
k (A2, . . . , An),Π ` Λ

¬A1, T
n
k (A1, . . . , An),Π ` Λ

A1, T
n−1
k−1 (A2, . . . , An),Π ` Λ

A1, T
n
k (A1, . . . , An),Π ` Λ

T 2
1 (¬A1, A1), Tn

k (A1, . . . , An),Π ` Λ

Now one can prove A1 ` A1

Tn
k (A1, . . . , An),Π ` ¬A1, A1,Λ

Tn
k (A1, . . . , An),Π ` T 2

1 (¬A1, A1),Λ

Applying the cut rule to the endsequents of these two proofs yields the desired

Tn
k (A1, . . . , An),Π ` Λ

The following is a proof of case 8.

Π ` A1, T
n−1
k (A2, . . . , An),Λ

Π ` T 1
1 (A1), Tn−1

k (A2, . . . , An),Λ

Π ` Tn−1
k−1 (A2, . . . , An),Λ

Π ` Tn−1
k−1 (A2, . . . , An), Tn−1

k (A2, . . . , An),Λ

Π ` Tn
k (A1, . . . , An), Tn−1

k (A2, . . . , An),Λ
Π ` Tn

k (A1, . . . , An), Tn
k (A2, . . . , An),Λ

Π ` Tn
k (A1, . . . , An),Λ

This completes the verification of condition (iii). If condition (iv) does not
hold, then as before, define a truth evaluation ν so that ν(Γ ` ∆) = 0, contra-
dicting the assumption. 2

Remark 25 Unlike the proof of completeness of PTK, the cut rule was used
in the previous proof. It is unclear whether PTK ′ enjoys cut elimination or the
subformula property.
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The systems FC ([17]), PTK and PTK ′ all p-simulate each other within
a polynomial size factor and constant depth factor. For lack of space, we only
state the results below (detailed proofs can be found in [6]).

Definition 26 Translate the FC formula A by the PTK ′ formula A as follows:

FC formula PTK ′ formula
x x∧n

i=1 Ai Tn
n (A1, . . . , An)∨n

i=1 Ai Tn
1 (A1, . . . , An)

A ⊃ B T 2
1 (¬A,B)

A ≡ B T 2
2 (A ⊃ B,B ⊃ A)

Cn,k(A1, . . . , An), 0 < k < n T 2
2 (Tn

k (A1, . . . , An),¬Tn
k+1(A1, . . . , An))

Cn,n(A1, . . . , An) Tn
n (A1, . . . , An)

Cn,0(A1, . . . , An) ¬Tn
1 (A1, . . . , An)

Definition 27 Translate the PTK formula A by the FC formula Ã as follows:

PTK formula FC formula
x x

¬A ¬Ã

Tn
k (A1, . . . , An)

∨n
i=k Cn,i(Ã1, . . . , Ãn)

A PTK sequent Γ ` ∆, which is equivalent to the formula
n∧

i=1

Ai ⊃
m∨

j=1

Bj

is translated by the FC formula
n∧

i=1

Ãi ⊃
m∨

j=1

B̃j .

Proposition 28 Suppose that 〈Pn : n ≥ 1〉 is a family of PTK proofs, where
Pn is a depth d(n), size s(n) proof of φn. Then there exists a constant c for
which there exists a family 〈P ′

n : n ≥ 1〉 of FC proofs, where P ′
n is a depth

c + d(n), size s(n)c proof of φ̃n.
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Proposition 29 Suppose that 〈Pn : n ≥ 1〉 is a family of PTK ′ proofs, where
Pn is a depth d(n), size s(n) proof of φn. Then there exists a constant c for
which there exists a family 〈P ′

n : n ≥ 1〉 of PTK proofs, where P ′
n is a depth

c + d(n), size s(n)c proof of φn.

Proposition 30 Suppose that 〈Pn : n ≥ 1〉 is a family of FC proofs, where Pn

is a depth d(n), size s(n) proof of φn. Then there exists a constant c for which
there exists a family 〈P ′

n : n ≥ 1〉 of PTK ′ proofs, where P ′
n is a depth c+d(n),

size c · s(n) proof of φn.

11 Appendix.

Here we present the proof of Theorem 7.
Proof. Using limited extension, for 0 ≤ i, j ≤ n introduce new atoms rij to
abbreviate qi ∧ pij .

Let
Bs =

∑
0≤i<j≤s rij

Ss =
∑

0≤i≤s<j rij

Qs =
∑

0≤i≤s qi

Then B0 = 0, S0 = 1, and by induction on s it will be shown that

Ss + 2Bs = 2Qs − 1.

Since Sn = 0 it follows that

2Bn = 2Qn − 1.

But the left side is even and the right side is odd, a contradiction. We shall
formalize this argument in CPLE; for space reasons we omit some of the details.

Claim. rij = rji

Proof. By hypothesis we have

pij ∨ pji for 0 ≤ i, j ≤ n

hence
1 − pij + pji ≥ 1

and so
pji ≥ pij .

Similarly pij ≥ pji. From qi ∨ pij ∨ qj we have

1 − qi + 1 − pij + qj ≥ 1
1 + qj ≥ qi + pij

Now
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1. rij ≥ rij

2. 1 ≥ 1

3. rij + (1 − rij) ≥ 1, addition of (1), (2) and simplification

4. qi ≥ rij

5. pij ≥ rij

6. qi + (1 − rij) ≥ 1, addition of (3), (4) and simplification

7. pij + (1 − rij) ≥ 1, addition of (3), (5) and simplification

8. qi + pij + 2(1 − rij) ≥ 2, addition of (6) (7)

9. qi + pij − 1 + 2(1 − rij) ≥ 1, simplification of (8)

10. qj ≥ qi + pij − 1

11. qj + 2(1 − rij) ≥ 1, addition of (9), (10) and simplification

12. pji ≥ pij

13. pji + (1 − rij) ≥ 1, addition of (12), (7) and simplification

14. qj + pji + 3(1 − rij) ≥ 2, addition of (11), (13)

15. rji ≥ qj + pji − 1

16. rji + 3(1 − rij) ≥ 1, addition of (15), (14) and simplification

17. rji ≥ 0

18. 2rji ≥ 0, multiplication of (17) by 2

19. 3rji + 3(1 − rij) ≥ 1, addition of (16) (18)

20. rji + (1 − rij) ≥ 1, division of (19) by 3

21. rji ≥ rij , simplification of (20). 2

Following our earlier proof outline, we intend to show that Ss + 2Bs = 2Qs − 1
for 0 ≤ s ≤ n. To this end, it first must be shown that

n∑
j=1

r0j = 1

n−1∑
j=0

rnj = 0
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and for fixed 0 < i < n ∑
0≤j≤n,j 6=i

rij = 2qi.

The CPLE proofs of these three equalities actually consist of proving six
inequalities; namely, the following six claims:

Claim.
∑n

j=1 r0j ≥ 1

Claim. 1 ≥ ∑n
j=1 r0j

Claim.
∑n−1

j=0 rnj ≥ 0

Claim. 0 ≥ ∑n−1
j=0 rnj

Claim.
∑

j 6=i rij ≥ 2qi, for 0 < i < n.

Claim. 2qi ≥
∑

j 6=i rij , for 0 < i < n

The proof of rji ≥ rij was already given in complete detail; the CPLE proofs
of the above six claims are of similar length and detail. We therefore omit their
proofs for space reasons and leave it to the reader to supply the details of these
CPLE proofs.

Claim. For 0 ≤ s ≤ n, Ss + 2Bs = 2Qs − 1.

Proof. By induction on s. If s = 0, then it follows from earlier claim
(
∑

j 6=0 r0j = 1, 0 ≥ r00) that

S0 = 1, B0 = 0, Q0 = 1

hence
S0 + 2B0 = 2Q0 − 1.

Suppose the claim holds for s. Now by regrouping, Ss+1 + 2Bs+1 is the sum

2
∑

i<j≤s

rij +
∑

i≤s<j

rij + (2
∑

i<s+1

ri,s+1 −
∑
i≤s

ri,s+1 +
∑

j>s+1

rs+1,j)

Using an earlier claim that rs+1,j = rj,s+1, the expression in parentheses is equal
to ∑

j≤s

rs+1,j +
∑

j>s+1

rs+1,j =
∑

j 6=s+1

rs+1,j .

By an earlier claim, ∑
j 6=s+1

rs+1,j = 2qs+1.

Thus
Ss+1 + 2Bs+1 = Ss + 2Bs + 2qs+1 = 2Qs + 2qs+1 = 2Qs+1
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This inductive step establishes the claim. 2

Now taking s = n, we have

Sn + 2Bn = 2Qn − 1.

But as Sn = 0, we have
2Bn = 2Qn − 1.

Dividing the inequality
2Bn ≥ 2Qn − 1

by 2, we have
Bn ≥ Qn.

Similarly, dividing the inequality

2Qn ≥ 2Bn + 1

by 2 yields
Qn ≥ Bn + 1.

From the above inequalities it follows that

Bn ≥ Bn + 1

hence 0 ≥ 1, the desired contradiction. That completes the construction of the
polynomial size CPLE proofs of STCn. 2
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