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Abstract

Pentus [24] proves the equivalence of LCG’s and CFG’s, and CFG’s
are equivalent to BCG’s by the Gaifman theorem [1]. This paper provides
a procedure to extend any LCG to an equivalent BCG by affixing new
types to the lexicon; a procedure of that kind was proposed as early, as
Cohen [12], but it was deficient [4]. We use a modification of Pentus’
proof and a new proof of the Gaifman theorem on the basis of the Lambek
calculus.

1 Introduction and preliminaries

A categorial grammar is a quadruple G = (VG, IG, sG, RG), such that VG is a
nonempty finite lexicon (alphabet), IG is a mapping which assigns a finite set
of types to each atom v ∈ VG, sG is a designated atomic type, and RG is a type
change system. One refers to VG, IG, sG and RG as the lexicon, the initial type
assignment, the principal type and the system of G. We say that G assigns type
a to string v1 . . . vn (vi ∈ VG), if the sequent a1 . . . an → a is derivable in RG, for
some ai ∈ IG(vi), i = 1, . . . , n. The set L(G), called the language of G, consists
of all the strings on VG which are assigned type sG by G. Two grammars are
said to be equivalent, if they yield the same language.

Types are formed out of atomic types by means of operation symbols \, /, ?,
called left residuation, right residuation, and product, respectively. We denote
types by a, b, c, atomic types by p, q, r, and finite strings of types by X, Y, Z.
Basic Categorial Grammars (BCG’s) admit the system B whose formulas are
product-free sequents a1 . . . an → a, and its axioms and rules are as follows:

(Ax) a → a

(\1) XaZ → c, Y → b ` XY (b\a)Z → c

(/1) XaZ → c, Y → b ` X(a/b)Y Z → c.
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The sequent X → a is derivable in B if, and only if, X reduces to a by the
standard reduction procedure based on the rules:

(R\) b(b\a) ⇒ a

(R/) (a/b)b ⇒ a,

and consequently, BCG’s are precisely categorial grammars in the sense of [1].
Lambek Categorial Grammars (LCG’s) are based on the system L equal to

B enriched with additional rules:

(\2) bX → a ` X → b\a

(/2) Xb → a ` X → a/b,

where X is nonempty (dropping this constraint yields a stronger system L1).
The full Lambek Calculus admits types with product and can be axiomatized

by (Ax), (\1), (/1), (\2), (/2) together with: the following product introduction
rules:

(?1) XabY → c ` X(a ? b)Y → c

(?2) X → a, Y → b ` XY → a ? b.

The latter system is denoted LP, and LP1 is defined in an obvious way. In each
of the four variants of the Lambek Calculus, axioms (Ax) can be restricted to
atomic types a. They are Gentzen-style systems without structural rules [13].
All the systems mentioned above are decidable and closed under the cut rule:

(CUT) XaZ → b, Y → a ` XY Z → b,

which has been proved in Lambek [20] for LP.
The Lambek Calculus and its sub- and supersystems are closely related to

several issues of current interest in logic, as e.g. linear logics [17], action logic
[25], gaggle theory [14], labelled deductive systems [16], and in natural language
semantics and computational linguistics (see van Benthem [2], Moortgat
[22]). A thorough logical discussion of the domain can be found in [10, 5], and
many linguistic applications in [23].

In terms of type theory, B is a purely applicative system, while Lambek
systems employ lambda-abstraction. A problem which has quite early ap-
peared in this discipline is whether lambda-abstraction affects generative ca-
pacity. Strictly, the question is whether LCG’s are equivalent to BCG’s. In
[1], BCG’s are proven to be equivalent to Context-Free Grammars (CFG’s) (the
Gaifman theorem), and the authors conjecture the same equivalence holds for
LCG’s. This conjecture, repeated in Chomsky [11], was referred to as the
Chomsky conjecture. Cohen [12] shows that each BCG is equivalent to some
LCG, but his proof of the converse statement contains essential errors [4]. There
have been obtained partial results in this direction [4, 7, 9]; for the Nonassocia-
tive Lambek Calculus even a strong equivalence with BCG’s is given in [6, 19].
Finally Pentus [24] proves the conjecture for the full calculus LP. It follows
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from his theorem that each LCG is equivalent to some CFG, hence to some BCG,
and the same holds for categorial grammars based on L1, LP, LP1. (No kind
of strong equivalence is possible here, since Lambek systems are structurally
complete [7].)

In this paper we prove that each LCG can be transformed into an equivalent
BCG in a natural way: namely one expands the initial type assignment of
the LCG by affixing new types b, such that there is type a in the initial type
assignment with a → b derivable in L. This is precisely the way Cohen has tried
in his deficient proof, but our expansion is more subtle and essentially uses the
methods elaborated by Pentus as well, as a proof of the Gaifman theorem
on the basis of L. From the linguistic point of view, such a natural extension
of a grammar to another one is quite desirable, since new types have a clear
linguistic meaning. On the other hand, going directly the way of Pentus yields
an artificial grammar: for the given LCG one constructs an equivalent CFG and,
then, transforms the latter into an equivalent BCG using the construction from
the Gaifman theorem; eventually, there are no semantic connections between
the initial type assignment of the third grammar and that of the first grammar.

The paper consists of four sections. Section 2 provides a proof of the Gaifman
theorem which essentially employs the logic of L. Section 3 adapts the Pentus
theorem to product-free types. The main result and some final comments are
given in section 4.

2 The Gaifman theorem proven from L

Recall that a CFG is a quadruple Γ = (VΓ, NΓ, sΓ, RΓ) such that VΓ is a
nonempty finite set of terminal symbols, NΓ is a nonempty finite set of nonter-
minal symbols which is disjoint with VΓ, sΓ ∈ NΓ is the initial symbol, and RΓ

is a finite set of production rules of the form:

(R1) p ⇒ p1 . . . pn, where p, pi ∈ NΓ,

(R2) p ⇒ v, where p ∈ NΓ, v ∈ VΓ.

Nonterminal symbols of a CFG are symbolized by the same letters as atomic
types, since both kinds of symbols will be identified in the sequel. The relation
p ⇒Γ X, where p ∈ NΓ, X ∈ N+

Γ , is recursively defined as follows:

(D1) p ⇒Γ p, for all p ∈ NΓ,

(D2) if p ⇒ p1 . . . pn is a rule (R1) from RΓ and pi ⇒Γ Xi, for all i = 1, . . . , n,
then p ⇒Γ X1 . . . Xn.

The language of Γ is the set L(Γ) which consists of all strings v1 . . . vn, n ≥ 1,
such that, for some nonterminal symbols p1, . . . , pn with pi ⇒ vi ∈ RΓ, i =
1, . . . , n, there holds sΓ ⇒Γ p1 . . . pn. The CFG Γ1 is equivalent to the CFG Γ2

if L(Γ1) = L(Γ2). It is well known that each CFG is equivalent to some CFG
in the Chomsky Normal Form; the latter’s rules (R1) are always of the form
p ⇒ p1p2 [18].
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The CFG Γ is equivalent to the BCG G if L(Γ) = L(G). The Gaifman the-
orem [1] establishes the equivalence of BCG’s and CFG’s. It can be formulated
as the conjunction of the following statements:

(I) each BCG is equivalent to some CFG,

(II) each CFG is equivalent to some BCG whose initial type assignment uses
at most types of the form p, p/q, (p/q)/r, where p, q, r are atomic.

Statement (I) is obvious: rules (R\) and (R/) decrease the complexity of
types, and consequently, the given BCG G is equivalent to the CFG Γ with
VΓ = VG, NΓ = the set of subtypes of the types from IG, sΓ = sG, and RΓ

consisting of all rules:
a ⇒ (a/b)b; b ⇒ a(a\b),

for a, b ∈ NΓ.
Statement (II) is nontrivial; actually, it is equivalent to the Greibach Normal

Form theorem in the theory of CFG’s [18]. In this section we give a proof of (II)
with the aid of the Lambek Calculus; the idea of this proof has already been
announced in [8, 7]. In [8] there is given another proof of (II) which relies upon
congruences and transformations in the algebra of phrase structures.

We use axiomatic extensions of L, first studied in [3]. Let R be a set of
product-free sequents X → a (X 6= Λ). (Λ stands for the empty string). L(R)
denotes the system axiomatized by (Ax) and all the sequents from R (as new ax-
ioms) together with the inference rules of L and (CUT). An equivalent Gentzen
style axiomatization can be given as follows. First, observe each sequent is de-
ductively equivalent to a sequent of the form X → p (p is atomic) on the basis
of L. So, we may assume each sequent in R is of the latter form. The system
GL(R) is axiomatized by (Ax), (/1), (\1), (/2), (\2) and the special rules:

(SR) X1 → a1, . . . , Xn → an ` X1 . . . Xn → p,

for all sequents a1 . . . an → p in R.

Lemma 1 GL(R) is closed under (CUT).

Proof. The proof proceeds by triple induction: (1) on the complexity of
type a in (CUT), (2) on the derivation of the first premise, (3) on the derivation
of the second premise. The crucial point is that the conclusion of (SR) cannot
be the second premise of (CUT), if a in the first premise is the type designated
in (/1) or (\1). �

Lemma 2 GL(R) and L(R) yield the same derivable sequents.

Proof. Using (CUT), we show that L(R) is closed under each rule of
GL(R). Conversely, each sequent from R is derivable in GL(R), by (Ax) and
(SR), and GL(R) is closed under (CUT). Then, L(R) and GL(R) are equivalent.
�
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Let us note that lemma 2 does not imply the decidability of systems L(R),
even for finite sets R (rules (SR) can forget information). As shown in [3],
each recursively enumerable language can be generated by a categorial grammar
based on some system L(R) with R finite.

We are concerned with especially simple sets R which consist of finitely many
sequents of the form:

(S) p1 . . . pn → p;

these sequents are naturally related to production rules (R1). For those sets R,
systems L(R) are decidable [3]. By RΓ we denote the set of all sequents (S)
related to the production rules (R1) of the CFG Γ.

Lemma 3 For any p, p1, . . . , pn ∈ NΓ, p ⇒Γ p1 . . . pn if, and only if, L(RΓ) `
p1 . . . pn → p.

Proof. Since L(RΓ) admits (CUT), then ‘only if’ holds. For ‘if’, it is
enough to notice that each derivation of p1 . . . pn → p in GL(RΓ) uses at most
(Ax) and (SR), hence it amounts to a derivation in Γ (up to the direction of
arrows). �

Now, with each CFG Γ we associate a categorial grammar G(Γ) whose
system is L(RΓ) and other components are defined as follows: VG(Γ) = VΓ,
sG(Γ) = sΓ and IG(Γ)(v) consists of all nonterminal symbols p such that (R2)
belongs to RΓ. As an immediate consequence of lemma 3, we obtain:

Fact 1 L(G(Γ)) = L(Γ).

The BCG G is said to be derivable from the CFG Γ, if the lexicon and the
principal type of G are those of G(Γ), and the initial type assignment of G
fulfills the condition:

(DER) if a ∈ IG(v), then L(RΓ) ` p → v, for some p ∈ IG(Γ)(v).

If G is derivable from Γ, then L(G) ⊂ L(G(Γ)) (since L(RΓ) admits (CUT) and
is stronger than B). So, by fact 1, we obtain:

Lemma 4 If a BCG G is derivable from a CFG Γ, then L(G) ⊂ L(Γ).

Accordingly, in order to find a BCG equivalent to the given CFG Γ, it
suffices to construct a BCG G derivable from Γ and such that L(Γ) ⊂ L(G). To
accomplish this goal we need the following properties of the Lambek Calculus:

(L1) if L(R) ` qr → p, then L(R) ` r → q\p,

(L2) L ` q\p → (q\t)/(p\t),

(L3) L ` q → p/(q\p),

(L4) if L(R) ` a → b, then L(R) ` a/c → b/c,
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for all (not necessarily atomic) types p, q, r, t, a, b, c. (L1) holds, by (\2). (L2)
follows from L ` q(q\p)(p\t) → t, by (\2) and (/2). (L3) is a consequence of
L ` p(p\q) → q, by (/2). For (L4), (a/c)c → a is derivable in L, hence a → b
entails (a/c)c → b, by (CUT), which yields a/c → b/c, by (/2).

Let Γ be a CFG in the Chomsky Normal Form. We define a mapping I
which assigns a finite set of types to each nonterminal symbol of Γ and satisfies
the condition:

(DER’) if a ∈ I(p), then L(RΓ) ` p → a.

We set I(p) = I1(p)∪ I2(p), where I1, I2 are defined as follows. For any produc-
tion rule p ⇒ qr from RΓ we put types:

q\p and (q\t)/(p\t), for all t ∈ NΓ, (1)

into I1(r). Additionally, we also put sΓ into I1(sΓ). Further, for all types a, p, q,
if a ∈ I1(p), then we put type:

a/(q\p) (2)

into I2(q). This finishes the construction of I. (DER’) is an easy consequence
of (L1)-(L4). We only show the case (2). Since L(RΓ) ` p → a, by (DER’) and
the fact that a ∈ I1(p), then:

L(RΓ) ` p/(q\p) → a/(q\p),

by (L4), and consequently, L(RΓ) ` q → a/(q\p), by (L3) and (CUT).
We define a BCG G derivable from Γ by setting:

IG(v) =
⋃
{I(p) : p ⇒ v ∈ RΓ}, (3)

for v ∈ VG = VΓ.
We must show L(Γ) ⊂ L(G). We need simple properties of derivations in Γ.

(D2) for Γ takes the form:

(D2’) if q ⇒Γ X and r ⇒Γ Y , then p ⇒Γ XY ,

for any production rule p ⇒ qr from RΓ. A derivation in Γ is said to be
regular, if Y = r for each application of (D2’). (Clearly, regular derivations
can be simulated by finite state acceptors.) The next lemma exhibits regular
subderivations of each derivation in Γ.

Lemma 5 If p ⇒Γ qX, then there are a number k ≥ 0, nonterminal symbols
q1, . . . , qk, and strings X1, . . . , Xk such that X = X1 . . . Xk, qi ⇒Γ Xi, for all
i = 1, . . . , k, and p ⇒Γ qq1 . . . qk has a regular derivation.

Proof. Induction on the length of X. For X = Λ, we have p = q and k = 0.
Assume X 6= Λ. Then, there exist a production rule p ⇒ rs and strings Y,Z
such that X = Y Z and r ⇒Γ qY , s ⇒Γ Z. Since Z 6= Λ, then Y is shorter than
X. By the induction hypothesis, there are k ≥ 0, q1, . . . , qk and X1, . . . , Xk

such that Y = X1 . . . Xk, qi ⇒Γ Xi, for all i = 1, . . . , k, and r ⇒Γ qq1 . . . qk has
a regular derivation. We take qk+1 = s and Xk+1 = Z. �
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Lemma 6 Let p ⇒Γ qq1 . . . qk (k ≥ 0) have a regular derivation. Then, for any
type a ∈ I1(p), there are types b ∈ I(q) and bi ∈ I1(qi), for i = 1, . . . , k, such
that B ` bb1 . . . bk → a and rule (\1) (equivalently: (R\)) is not applied in the
latter derivation.

Proof. For k = 0, we take b = a. Assume k ≥ 2. The regular derivation
proceeds by the following sequence of production rules:

p ⇒ rkqk, rk ⇒ rk−1qk−1, . . . , r3 ⇒ r2q2, r2 ⇒ qq1, (4)

for some nonterminal symbols r2, . . . , rk. By (1), I1 satisfies the condition:

rk\p ∈ I1(qk), (rk−1\p)/(rk\p) ∈ I1(qk−1), . . . , (q\p)/(r2\p) ∈ I1(q1); (5)

the left-hand types are denoted bk, . . . , b1, respectively. Evidently:

B ` b1 . . . bk → q\p,

and (R\) is not applied in this derivation. Now, choose a ∈ I1(p). By (2),
a/(q\p) ∈ I2(q), which yields the thesis with b = a/(q\p). Case k = 1 is
particular: p ⇒ qq1 is the only rule in (4), and we set b1 = q\p and b = a/(q\p).
�

Accordingly, the BCG constructed above can simulate regular derivations in
Γ. We show it can simulate arbitrary derivations in Γ.

Lemma 7 Assume p ⇒Γ p1 . . . pn. Then, for any a ∈ I1(p), there are types
ci ∈ I(pi), for i = 1, . . . , n, such that B ` c1 . . . cn → a, and rule (R\) is not
applied in the latter derivation.

Proof. Induction on n. For n = 1, the derivation is regular, hence lemma
6 yields the thesis. Assume n > 1. By lemma 5, there are k, q1, . . . , qk and
X1, . . . , Xk such that p2 . . . pn = X1 . . . Xk (hence k 6= 0), qi ⇒Γ Xi, for i =
1, . . . , k, and p ⇒Γ p1q1 . . . qk has a regular derivation. Choose a ∈ I1(p). By
lemma 6, there are types c1 ∈ I(p1) and bi ∈ I1(qi), i = 1, . . . , k, such that:

B ` c1b1 . . . bk → a

without (\1). By the induction hypothesis, since bi ∈ I1(qi) and qi ⇒Γ Xi, then
we find a string Yi of types assigned by I to the corresponding symbols from
Xi, such that B ` Yi → bi without (\1). Consequently,

B ` c1Y1 . . . Yk → a

holds by (CUT), and we set c2 . . . cn = Y1 . . . Yk. Clearly, (\1) is not applied. �

Fact 2 Let Γ be a CFG in the Chomsky Normal Form, and let G be the BCG
derivable from Γ, constructed according to (3). Then, L(Γ) = L(G).
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Proof. Lemma 4 yields L(G) ⊂ L(Γ). For the converse inclusion, assume
v1 . . . vn ∈ L(Γ). Then, there are pi ∈ NΓ, i = 1, . . . , n, such that pi ⇒ vi ∈ RΓ

and sΓ ⇒Γ p1 . . . pn. Since sΓ ∈ I1(sΓ), then, by lemma 7, there are types
ci ∈ I(pi), i = 1, . . . , n, such that B ` c1 . . . cn → sΓ (without (\1)). By (3),
ci ∈ IG(vi), i = 1, . . . , n, which yields v1 . . . vn ∈ L(G). �

The proof of fact 2 shows that part (II) of the Gaifman theorem holds true.
Since rule (\1) is not used, one can drop it from B. Then, of course, both lemma
4 and fact 2 remain true. Now, if B lacks (\1), then types of the form a\b are
treated as atomic types, actually. In the definition of G, we replace each type
p\q by the atomic type pq. So, types in (1) are changed into:

pq, pt/qt,

and types in (2) are changed into types a/qp, where a are of the above form.
Consequently, a BCG G equivalent to the CFG Γ can be constructed with types
in IG restricted to the three forms in (II). However, this transformation hiddens
the fact that types in IG are derived from nonterminal symbols of Γ by means
of L, and this possibility has been our major concern in this section. Due to
it, the CFG equivalent to the given LCG, to be constructed in the next section
with applying Pentus’ methods, can be transformed into an equivalent BCG by
an L-derivable expansion of the initial type assignment of the LCG (see section
4).

3 Interpolation and binary reductions for L

By ρ(a) we denote the complexity of type a, i.e. the number of occurrences of
atomic types in a. We also set:

ρ(a1 . . . an) = ρ(a1) + · · ·+ ρ(an), ρ(X → a) = ρ(X) + ρ(a).

By l(X) we denote the length of string X. For a set P , of atomic types, TPn(P )
denotes the set of all types a such that ρ(a) ≤ n and all atomic types occurring
in a are in P . Tpn(P ) stands for the set of all product-free types in TPn(P ).

The major lemma in Pentus [24] is the following binary reduction lemma
(the BR-lemma):

• For any set P and any number n ≥ 1, if LP ` X → a, X ∈ TPn(P ),
l(X) ≥ 2, a ∈ TPn(P ), then there exist types b, c, d ∈ TPn(P ) and strings
Y, Z such that X = Y bcZ, LP ` bc → d and LP ` Y dZ → a.

The BR-lemma has earlier been proven in [4, 9] for some special families of
product-free types, while [24] succeeds in establishing it for arbitrary types.

It immediately follows from the BR-lemma that each LCG (with product) is
equivalent to some CFG. Fix an LCG G (with product). We choose a positive
integer n and a finite set P such that TPn(P ) contains all types appearing in
IG. The CFG Γ is defined as follows: VΓ = VG, NΓ = TPn(P ), sΓ = sG, and
RΓ consists of production rules:
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(G1) d ⇒ bc, for all b, c, d ∈ NΓ such that LP ` bc → d,

(G1’) b ⇒ a, for all a, b ∈ NΓ such that LP ` a → b,

(G2) a ⇒ v, for all v ∈ VG, a ∈ IG(v).

The BR-lemma yields L(G) ⊂ L(Γ), and the converse inclusion also holds, since
LP is closed under (CUT). Consequently, G is equivalent to Γ.

The aim of this paper is to transform the given LCG (without product) into
an equivalent BCG by an L-derivable expansion of the initial type assignment
of the LCG. Since L is a conservative subsystem of LP, then we can use the
above construction to find a CFG Γ, equivalent to the given LCG G. Applying
the construction from section 2, Γ can be transformed into a BCG G′, derivable
from Γ and equivalent to Γ. One easily checks IG′ results from expanding IG

by means of L (see section 4).
The failure of this transformation is that it, actually, yields a pseudo-BCG

G′ in which the product symbol can appear in types from IG′ . For it does not
follow from the Pentus proof of the BR-lemma that, if X consists of product-
free types, then there exist types b, c, d such that d is product-free and the
remaining conditions hold. Pseudo-BCG’s are formally and linguistically ugly:
the logic of B does not touch the product, hence types of the form a ? b are
treated as atomic types, and their compound structure is an overcomplication.
Within the product-free world, which is the world of most linguistic examples of
categorial grammars, we would prefer to transform the given LCG into a normal,
i.e. product-free, BCG. The product-free transformation is also desirable for
semantic reasons: the standard typed lambda calculus suffices to transform the
semantic denotations of lexical units, corresponding to the initial LCG, into
those corresponding to the resulting BCG, while with product appearing in
types one must use an extended lambda calculus [2, 21].

To accomplish this goal we need the BR-lemma for product-free types, which
will be proven below. The proof follows the Pentus proof rather closely, but an
essential change must be done in the interpolation lemma, established for LP
in Roorda [26].

By ρ(p, a) we denote the number of occurrences of the atomic type p in type
a, and ρ(p, X), ρ(p, X → a) are defined as ρ(X), ρ(X → a). Let LP ` XY Z →
a with Y 6= Λ. The type y is called an interpolant of string Y in the latter
context, if the following conditions are satisfied:

(I1) LP ` Y → y and LP ` XyZ → a,

(I2) ρ(p, y) ≤ min(ρ(p, Y ), ρ(p, XZ → a)), for every atomic type p.

As shown in [26], interpolants exist for all strings Y 6= Λ in any context LP `
XY Z → a. The Pentus proof of the BR-lemma relies on this interpolation
property: the type d is chosen as an interpolant of an interval bc in LP `
Y bcZ → a.

For the case of L, the Roorda interpolation property does not hold. Consider
the context:

L ` pqr → (s/pqr)\s. (6)
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Here we write s/pqr for ((s/r)/q)/p. In general, we define the abbreviated
notation a/X and X\a by induction on l(X):

(N1) a/Λ = Λ\a = a,

(N2) a/(Xb) = (a/b)/X, (Xb)\a = b\(X\a).

Clearly, (6) holds, by (Ax), (/1) and (\2). We show that q ? r is the only
interpolant y of string qr in this context. (Consequently, there is no product-
free interpolant!) By (I2), ρ(q, y) ≤ 1, ρ(r, y) ≤ 1 and ρ(t, y) = 0, for any atomic
type t different from q and r. So, the only possible candidates for y are:

q, r, q/r, q\r, r/q, r\q, q ? r, r ? q,

and only y = q ? r satisfies LP ` qr → y.
Nevertheless, we obtain an interpolation property for L with a modified

notion of an interpolant. By an interpolant of string Y 6= Λ in the context
L ` XY Z ` a we mean a string y1 . . . yn (n > 0), of product-free types, such
that there are nonempty strings Y1, . . . , Yn satisfying Y = Y1 . . . Yn and the
following conditions:

(LI1) L ` Yi → yi, for i = 1, . . . , n,

(LI2) L ` Xy1 . . . ynZ → a,

(LI3) ρ(p, yi) ≤ min(ρ(p, Yi), ρ(p,XY ′Z → a)), Y ′ = Y1 . . . Yi−1Yi+1 . . . Yn, for
i = 1, . . . , n,

(LI4) ρ(p, y1 . . . yn) ≤ min(ρ(p, Y ), ρ(p, XZ → a)),

for all atomic types p. That means, each type yi is an interpolant of the cor-
responding string Yi, and type y1 ? · · · ? yn is an interpolant of string Y in the
previous sense. We sketch the proof of the interpolation lemma for L:

Lemma 8 If L ` XY Z → a, Y 6= Λ, then there is an interpolant of string Y
in this context.

Proof. We proceed by induction on derivations of XY Z → a in L.
If XY Z → a is (Ax), then Y = a, XZ = Λ, and y = a is an interpolant of

y. Rules (/2) and (\2) are easy: we take an interpolant of Y in the context of
the premise. Rule (/1) must be examined in detail ((\1) is dual).

Let the rule be TbV → a; U → c ` T (b/c)UV → a. We consider several
cases.

(I) Y is contained in T or V . We take an interpolant with respect to the left
premise.

(II) Y is contained in U . We take an interpolant with respect to the right
premise.

(III) Y = T2(b/c)UV1, T = T1T2, V = V1V2. We take an interpolant of
T2bV1 with respect to the left premise.
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(IV) Y = U2V1, U = U1U2, V = V1V2, U2 6= Λ, V1 6= Λ. Let U? be an
interpolant of U2 with respect to the right premise, and let V ? be an interpolant
of V1 with respect to the left premise. We take U?V ? as an interpolant of Y .

(V) Y = T2(b/c)U1, T = T1T2, U = U1U2, U2 6= Λ. Let U? be an interpolant
of U2 with respect to the right premise, and let T ? be an interpolant of T2b with
respect to the left premise. Then, T ? = Sd, T2 = T ′T ′′, and type d is an
interpolant of T ′′b with respect to the left premise. We take the string S(d/U?)
as an interpolant of Y . �

Following [24], we introduce auxiliary notions. By π(a) we denote the set of
all atomic subtypes of type a. The type a is said to be thin, if ρ(p, a) = 1, for
any p ∈ π(a), and the sequent X → a is said to be thin, if: (1) L ` X → a, (2)
every type appearing in X → a is thin, (3) ρ(p, X → a) ∈ {0, 2}, for any atomic
type p.

Lemma 9 Let a1 . . . an → an+1, (n ≥ 2), be a thin sequent. Then, π(ak) ⊂
π(ak−1) ∪ π(ak+1), for some 2 ≤ k ≤ n.

We skip the proof, since lemma 4 in [24] yields the same for LP, and L is a
conservative subsystem of LP. We only note the proof uses an interpretation of
LP in a free group. Consider the free group generated by atomic types. Define
g(a) by setting:

g(p) = p, g(a ? b) = g(a)g(b), g(a/b) = g(a)g(b)−1, g(a\b) = g(a)−1g(b).

Then, LP ` a1 . . . an → b only if g(a1) . . . g(an) = g(b) in the free group.
We do not know if the BR-lemma holds for L. We, nevertheless, prove its

weaker version, restricted to sequents with atomic succedents, which suffices for
the equivalence theorem. First, we prove it for thin sequents.

Lemma 10 If a1 . . . an → p, (n ≥ 2), is a thin sequent such that ai ∈ Tpm(P ),
for all i = 1, . . . , n, and p ∈ P , then there exist a number 1 ≤ k < n and a type
b ∈ Tpm(P ) such that L ` akak+1 → b and

L ` a1 . . . ak−1bak+2 . . . an → p.

Proof. The proof is similar to that of lemma 6 in [24], but case (2) needs
a different treatment, and an additional elimination of ‘long’ interpolants is
involved.

If n = 2, then typeb = p fulfils the thesis. Assume n > 2. Let k be the
number satisfying the thesis of lemma 9. Two cases are to be considered.

(1) k < n. Then π(ak) ⊂ π(ak−1) ∪ π(ak+1). For the set K, the cardinality
of K is denoted #(K). We consider two subcases.

(1a) #(π(ak−1) ∩ π(ak)) ≥ #(π(ak) ∩ π(ak+1)). Let Y be an interpolant of
string ak−1ak. We show ρ(Y ) ≤ ρ(ak−1). Notice that each atomic type occurs
at most once in Y . We obtain:

ρ(Y ) = #(π(ak−1)− π(ak−1) ∩ π(ak)) + #(π(ak)− π(ak−1) ∩ π(ak)) =

11



= #(π(ak−1)− π(ak−1) ∩ π(ak)) + #(π(ak) ∩ π(ak+1)) ≤

≤ #(π(ak−1)−π(ak−1)∩π(ak))+#(π(ak−1)∩π(ak)) = #(π(ak−1)) = ρ(ak−1)

where the first equality holds by (LI3), since ak−1 and ak are thin, the second
equality by the inclusion from lemma 9, the inequality by the assumption of
this subcase, and the remainder is obvious. Now, either Y is a single type,
or Y = ab, where a, b are interpolants of ak−1, ak, respectively. We exclude
the latter possibility. For ak−1 and ak are thin, hence ρ(a) = ρ(ak−1) and
ρ(b) = ρ(ak), by (LI2), which yields ρ(Y ) > ρ(ak−1), contrary to the above.
Consequently, Y is a single type which belongs to Tpm(P ), again by the above.
We set b = Y , and our thesis follows from (LI1), (LI2).

(1b) #(π(ak−1) ∩ π(ak)) < #(π(ak) ∩ π(ak+1)). The argument is similar;
one interchanges the roles of ak−1 and ak+1.

(2) k = n. Then π(an) ⊂ π(an−1) ∪ {p}. Let Y be an interpolant of the
string an−1an. As above, we obtain:

ρ(Y ) = #(π(an−1)− π(an−1) ∩ π(an)) + #(π(an)− π(an−1) ∩ π(an)).

Now, π(an−1) ∩ π(an) 6= ∅; otherwise an = p, but no sequent Xp → p with
X 6= Λ and p not appearing in X is derivable in L. Consequently:

ρ(Y ) ≤ ρ(an−1)−#(π(an−1) ∩ π(an)) + 1 ≤ ρ(an−1),

and we prove that Y is a single type fulfilling the thesis, as in case (1). �
We are ready to prove the (restricted) BR-lemma for L.

Lemma 11 If L ` X → p, where l(X) ≥ 2, X ∈ Tpm(P ), p ∈ P , then there
exist types b, c, d ∈ Tpm(P ) and strings Y, Z such that X = Y bcZ, L ` bc → d
and L ` Y dZ → p.

Proof. Let X → p satisfy the assumptions, X = a1 . . . an. Fix a derivation
D of X → p in L such that all axioms (Ax) in D use atomic types only.
For each atomic type q appearing in D, we form a set Pq which contains as
many different copies of q, as many times axiom q → q appears in D. Next,
different occurrences of this axiom are replaced by different sequents q′ → q′,
q′ ∈ Pq, which transforms D into a new derivation D′. The final sequent of
D′ is a′1 . . . a′n → p′, and it is related to X → p in the same way, as D′ to D.
Clearly, each atomic type has precisely two, if any, occurrences in each sequent
from D′. Let b1, . . . , bn be interpolants of types a′1, . . . , a

′
n, respectively, in the

context of the final sequent of D′. One easily sees that b1 . . . bn → p′ is a thin
sequent. By lemma 10, we find 1 ≤ k < n and type b′ ∈ Tpm(P ′) such that
L ` bkbk+1 → b′ and:

L ` b1 . . . bk−1b
′bk+2 . . . bn → p′,

where P ′ denotes the join of all sets Pq, described above. Now, in the two L-
derivable sequents, mentioned in the preceding sentence, substitute q for each
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q′ ∈ Pq, and do it, for every atomic q appearing in D. Since L is closed under
substitution, the two sequents give rise to new sequents L ` ckck+1 → d and:

L ` c1 . . . ck−1dck+2 . . . cn → p,

where ci is the substitution of bi, i = 1, . . . , n, and d is the substitution of b′.
Since bi is an interpolant of a′i, we have L ` a′i → bi, and the substitution yields
L ` ai ` ci, for i = 1, . . . , n. So, the thesis of the lemma holds by (CUT), since,
clearly, d ∈ Tpm(P ). �

Let G be an LCG. We construct a CFG Γ equivalent to G in a similar way,
as at the beginning of this section. We set VΓ = VG, NΓ = Tpm(P ), where m is
the maximal complexity of types appearing in IG, and P is the set of all atomic
subtypes of those types (plus sG, if it does not appear in IG), sΓ = sG, and
the production rules are (G1) and (G3). Of course, LP may be replaced by L,
and (G2) is redundant, since no sequent a → p with a 6= p is derivable in L.
L(Γ) ⊂ L(G), since L is closed under (CUT), and the converse inclusion holds
by lemma 11. So, we have just proven:

Fact 3 If G is an LCG, then the CFG Γ constructed above is equivalent to G,
that means, L(Γ) = L(G).

4 Main results and final comments

Let G be an LCG. The BCG G′ is called a natural expansion of G, if VG′ = VG,
sG′ = sG and, for every v ∈ VG, IG(v) ⊂ IG′(v) and, for every b ∈ IG′(v), there
exists a ∈ IG(v) such that L ` a → b. So, a natural expansion of the LCG
G arises from G by extending the initial type-assignment: one adds new types
which are L-derivable from the types assigned to v by IG. At the same time, one
strongly impoverishes the logic: L is replaced by the purely applicative system
B. We shall prove that each LCG is equivalent to some natural expansion of it.
Accordingly, for the purposes of sentence generation, the deductive power of the
Lambek Calculus (related to lambda abstraction in semantics and to Natural
Deduction in proof theory) can be restricted to the initial type assignment, while
complex expressions are to be analysed by purely applicative patterns. Since
only finitely many new types are affixed to the initial type assignment, then,
actually, for any given LCG, only a finite fragment of L is significant.

Lemma 12 If G′ is a natural expansion of the LCG G, then L(G′) ⊂ L(G).

Proof. Let v1 . . . vn ∈ L(G′). Then, for some bi ∈ IG′(vi), i = 1, . . . , n, we
have B ` b1 . . . bn → sG. By the form of IG′ , there are ai ∈ IG(vi) such that
L ` ai → bi, i = 1, . . . , n. By (CUT) and the fact that L is stronger than B, we
get L ` a1 . . . an → sG, which yields v1 . . . vn ∈ L(G). �

We are ready to prove the major result of this paper.

Theorem 1 For every LCG G, there exists a BCG G′ such that L(G) = L(G′)
and G′ is a natural expansion of G.
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Proof. Fix an LCG G. At the end of section 3, we have constructed a
CFG Γ such that L(Γ) = L(G). Recall that VΓ = VG, sΓ = sG, nonterminal
symbols of Γ are (a finite set of) types, and production rules of Γ are of the
form either d ⇒ bc with L ` bc → d, or a ⇒ v with a ∈ IG(v). To each type
a ∈ NΓ we assign a different atomic type pa; we can assume pq = q, for each
atomic q ∈ NΓ. Then, replace a with pa in the description of Γ, for all a ∈ NΓ.
The resulting CFG Γ′ is equivalent to Γ, hence L(Γ′) = L(G).

Now, we use results of section 2. Clearly, Γ′ is in the Chomsky Normal Form.
By fact 2, there exists a BCG G derivable from Γ′ and such that L(G) = L(Γ′).
The BCG G′ is defined as follows. VG′ = VG, sG′ = sG and, for each v ∈ VG, we
set IG′(v) = IG(v) ∪ J(v), where J(v) consists of all types b′ which arise from
types b ∈ IG(v) by substituting type a for pa at each place.

We show that G′ is a natural expansion of G. Let b′ ∈ IG′(v). If b′ ∈ IG(v),
then L ` b′ → b′ yields the desired condition. So, assume b′ ∈ J(v). Then,
b′ is the substitution of a type b ∈ IG(v). Since G is derivable from Γ′, then
there is a nonterminal symbol pa ∈ NΓ′ such that L ` pa → b and pa ⇒ v is
a production rule of Γ′. By the construction of Γ′, a ⇒ v is a production rule
of Γ, and consequently, a ∈ IG(v). Since L is closed under substitution, then
L ` a → b′, which again yields the desired condition.

We show L(G) = L(G′). In the light of lemma 12, it suffices to prove
L(G) ⊂ L(G′). Let v1 . . . vn ∈ L(G). Since L(G) = L(G), then v1 . . . vn ∈ L(G).
So, there are types bi ∈ IG(vi), i = 1, . . . , n, such that B ` b1 . . . bn → sG . In this
sequent, we substitute a for each atomic type pa, which yields B ` b′1 . . . b′n →
sG, since B is closed under substitution and sG = sG = psG

. Clearly, b′i ∈ J(vi),
for all i = 1, . . . , n, and consequently, v1 . . . vn ∈ L(G′). �

The equivalence of LCG’s and CFG’s (BCG’s) also requires the converse
statement: each CFG is equivalent to some LCG. That is an obvious conse-
quence of the Gaifman theorem, as observed in [12, 4, 24], since each CFG is
equivalent to a BCG using at most types of the form p, p/q, (p/q)/r, and, for
sequents X → p with X consisting of types of this form, B is equivalent to L.
Below we give another proof, applying methods of section 2.

Fix a CFG Γ in the Chomsky Normal Form. By fact 2, there exists a BCG
G derivable from Γ and such that L(G) = L(Γ). By G′ we denote the LCG
which equals G except for replacing B with L. We have L(Γ) = L(G) ⊂ L(G′),
since L is stronger than B. On the other hand, L(G′) ⊂ L(G(Γ)) = L(Γ), by
fact 1 (the inclusion holds, since L(RΓ) is stronger than L and derives all types
in IG′ from those in IG(Γ)). We have shown L(G) = L(G′).

Similar results can be obtained for the system L1, by repeating the above
arguments step-by-step. An alternative way is to reduce L1-derivability to L-
derivability, according to the method from [9]. Namely, for each type a, one
defines two finite sets of types A(a) and S(a) such that LP1 ` a → b, for every
b ∈ A(a), and LP1 ` b → a, for every b ∈ S(a), by the following recursion:

• A(p) = S(p) = {p}, for atomic types p,

• A(a ? b) = {c ? d : c ∈ A(a), d ∈ A(b)},
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• S(a ? b) = {c ? d : c ∈ S(a), d ∈ S(b)},

• A(a/b) = {c/d : c ∈ A(a), d ∈ S(b)} ∪ C(a/b),

• A(a\b) = {c\d : c ∈ S(a), d ∈ A(b)} ∪ C(a\b),

• S(a/b) = {c/d : c ∈ S(a), d ∈ A(b)},

• S(a\b) = {c\d : c ∈ A(a), d ∈ S(b)},

where:
C(a/b) = [ if LP1 ` Λ → b then A(a) else ∅],

C(a\b) = [ if LP1 ` Λ → a then A(b) else ∅].

By induction on derivations, one proves: LP1 ` a1 . . . an → b if, and only
if, there exist types ci ∈ A(ai), i = 1, . . . , n, and d ∈ S(b) such that LP `
c1 . . . cn → d, and the same holds with L1 and L. Consequently, each categorial
grammar based on LP1 (L) can effectively be transformed into an equivalent
grammar based on LP (L), and the latter can be transformed into an equivalent
BCG with applying the methods discussed above. That yields:

Theorem 2 LP1-grammars and L1-grammars are equivalent to BCG’s and
CFG’s. Further, for each L1-grammar G, there exists a BCG G′ such that
L(G) = L(G′) and G′ is a natural expansion of G.

The Commutative Lambek Calculus (CLP) results from enriching LP with
the permutation rule:

(PER) XabY → c ` XbaY → c,

and CLP1 arises from LP1 in the same way. Product-free fragments of these
systems are denoted CL and CL1. CL1 was used for semantic transforma-
tions of types in van Benthem [2], and CL1 is the implication fragment of
Girard’s Linear Logic [17] (it coincides with the BCI-logic). It is known
that the permutation closure of each context-free language can be generated
by some CL-grammar and some CL1-grammar [7]. It is quite likely that the
converse also holds: each CL-grammar generates the permutation closure of
some context-free language, and similarly for CL1-grammars, CLP-grammars
and CLP1-grammars. Unfortunately, this conjecture cannot be proven by a
direct modification of the Pentus argument. The BR-lemma does not hold, in
general. A counterexample is:

CLP ` (p/q)/r, (r/s)/t, (t ? q)/u → (p/s)/u,

which is a thin sequent, but each interpolant of two antecedent types (not neces-
sarily adjoint) must contain four atomic subtypes, while the maximal complexity
of types in this sequent is m = 3. One can find a product-free example, as well.
We leave it as an open problem if the above conjecture holds, and if a more
essential refinement of the Pentus strategy can prove it.

15



References

[1] Y. Bar-Hillel, C. Gaifman and E. Shamir, On categorial and phrase struc-
ture grammars, Bull. Res. Council Israel F 9, (1960), 155-166.

[2] J. van Benthem, Language in Action. Categories, Lambdas and Dynamic
Logic, North-Holland, Amsterdam, 1991.

[3] W. Buszkowski, Some decision problems in the theory of syntactic cat-
egories, Zeitschrift für mathematische Logik und Grundlagen der Mathe-
matik 28, (1982), 539-548.

[4] W. Buszkowski, The Equivalence of Unidirectional Lambek Categorial
Grammars and Context-Free Grammars, ibidem 31, (1985), 369-384.

[5] W. Buszkowski, Completeness Results for Lambek Syntactic Calculus, ibi-
dem 32, (1986), 13-28.

[6] W. Buszkowski, Generative Capacity of Nonassociative Lambek Calculus,
Bull. Polish Academy of Sciences. Mathematics 34, (1986), 507-516.

[7] W. Buszkowski, Generative Power of Categorial Grammars, in [23].

[8] W. Buszkowski, Gaifman’s Theorem on Categorial Grammars revisited,
Studia Logica 47, (1988), 23-33.

[9] W. Buszkowski, On Generative Capacity of the Lambek Calculus, in [15].

[10] W. Buszkowski, W. Marciszewski and J. van Benthem (eds.), Categorial
Grammar, J. Benjamins, Amsterdam, 1988.

[11] N. Chomsky, Formal properties of grammars, in: R. D. Luce et al. (eds.),
Handbook of Mathematical Psychology, vol. 2, Wiley, New York, 1973.

[12] J. M. Cohen, The equivalence of two concepts of categorial grammar, In-
formation and Control 10, (1967), 475-484.
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