WOJCIECH BUSZKOWSKI Type Logics and
Pregroups

Abstract. We discuss the logic of pregroups, introduced by Lambek [34], and its con-
nections with other type logics and formal grammars. The paper contains some new ideas
and results: the cut-elimination theorem and a normalization theorem for an extended
system of this logic, its P-TIME decidability, its interpretation in L1, and a general con-
struction of (quasi-ordered) bilinear algebras and pregroups whose universe is an arbitrary
monoid.
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1. Type logics

The Lambek calculus L, introduced in Lambek [31] under the name Syntactic
Calculus, is a standard type logic for categorial grammars. Types (formulas)
are formed out of atoms (variables or constants) by means of operation
symbols \,/,®. (The residuals \,/ may also be denoted by — and «,
respectively.) A Gentzen-style system for L admits the following axioms
and rules:
(Id) A= A,
(\L) I''BA=C;, = A (\R) ATl'=10B
e, A\B,A=C I'= A\B
I'BA=C; = A I'N'A=10B
(/L) (/R)
IB/A,®,A=C I'= B/A
I'NA,B,A=C (%R) I'= A, A=B
INA® B,A=C INA=A®B
for any types A, B,C and type sequences I'; A, ® provided that T' # € in

rules (\R) and (/R). Lambek [31] proves the cut-elimination theorem for L:
the following rule is admissible:

(®L)

= A, A, A=B
I,,A=B '

(CUT)
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L extends the rewriting system of classical categorial grammars, based
on (\,/)—types and rewriting rules:

(A1) A, A\B = B, (A2) A/B,B = A,

which we call logic AB, after Ajdukiewicz [2] and Bar-Hillel [3]. AB is
equivalent to the fragment of L, restricted to (\,/)—types and rules (\L),
(/L). (CUT) is admissible in this fragment.

Different variants of the Lambek calculus appear in literature. Admit-
ting I' = € in (\R), (/R) yields the Lambek calculus with (possibly) empty
antecedents (L*). It is a conservative fragment of L1; the latter admits one
new constant 1, one new rule and one new axiom:

A=A

(L) INi,A= A

(IR) = 1.
By affixing V (join) and A (meet) one obtains Full Lambek Calculus (FL)
(see Ono [40]) with the additional rules:

ILAA=C;T,B,A=C
INAv B A=C

I'= AV Ay

(VL) (VR)

I'NA;, A= B
I'AiNAy, A= B

for ¢ = 1,2. It can also contain 0, with or without the axiom:

'=s=ATI'=B
I'=AAB

(AL) (AR)

(OL) T,0,A = A,

which expresses the interpretation of 0 as the lower bound.

All systems mentioned above admit cut elimination and are decidable.
The consequence relation is undecidable for each of them, since one can
reduce general word problems for semigroups to this relation [10, 17].

Non-associative variants of these systems are obtained by replacing se-
quences of types by bracketed sequences of types and a slight modification
of rules; for instance, the premise of (/R) will take the form [I', A] = B.
The non-associative Lambek calculus (NL) was proposed in Lambek [32].

The consequence relation for NL is P-TIME [17], and similarly for NL1
[9]. The consequence relations for NL with A and NL with A, V, assuming
the distribution laws for A, V, are decidable; this follows from Finite Embed-
dability Property of residuated groupoids with V or V, A plus distribution
[21]. The provability relations for L and L* are NP-complete [43].
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Type logics are substructural logics; their sequent systems avoid struc-
tural rules (Weakening, Contraction, Exchange) and NL-like systems also
Associativity. They can be strengthened by adding some of these rules. L*
with Exchange:

I'NA,B,A=C

I''B,AJ/A=C

is a conservative fragment of Linear Logic from [23], and without (EXC) of
Bilinear Logic from [33]. FL with all structural rules amounts to Proposi-
tional Intuitionistic Logic.

Among other interesting extensions, let us mention modal type logics,
e.g. Propositional Linear Logic (with exponentials), modal versions of NL,
L, designed for linguistics [38], and FL with Kleene star [26, 18].

In linguistic interpretations, types denote categories of expressions. Cat-
egories can refer to ontology (semantic categories) or syntax (syntactic cate-
gories). Categorial grammars are intended to join the two levels [39]. Type-
forming constructions can be interpreted in both ways. For instance, A\B
can denote the set of functions (morphisms) from A to B, on the semantical
level, and a residual operation on languages (sets of strings), on the syntac-
tic level. The Curry-Howard correspondence between (Natural Deduction)
proofs in Intuitionistic Logic and typed A—calculus rises a possibility of read-
ing provable sequents as schemes of semantic transformations [5, 6, 7]. Since
axioms and rules of type logics are sound in algebras of languages, these log-
ics also yield correct inferences about syntactic types. In some cases, they are
(strongly) complete with respect to algebras of languages, e.g. the @—free
L* (resp. L) with A with respect to (resp. e—free) languages (strong com-
pleteness [11]), and L* (resp. L) with respect to (resp. e—free) languages
(weak completeness [42]).

Abstract algebraic models for L are residuated semigroups: structures
M= (M,<,-,\,/) such that < is a partial ordering on M, - is an asociative,
binary operation on M (product), and \,/ are binary operations on M
(residual operations), which satisfy the residuation law:

(RES) a-b<ciff b<a\ciff a <c/b

(EXC)

for all a,b,c € M. In these models, ® is interpreted as -, and = as <. From
(RES) it follows that (M, <,-) is a partially ordered semigroup, this means,
- is monotone in both arguments:

(MONT1) if a < b then ca < ¢b and ac < be.
Also \,/ are isotone in one argument and antitone in the other:

(MON2) if a < b then c\a < c\b, b\c < a\c, a/c < b/c, ¢/b < c/a.
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Models of NL are residuated groupoids, defined as above except - need
not be associative; (MON1), (MON2) also hold for them. For L*, L1 (resp.
NL*, NL1), one employs residuated monoids (resp. residuated groupoids
with identity), this means, residuated semigroups (resp. groupoids) with an
element 1, satisfying: la = a = al, for all elements a. For systems with
(EXC), one assumes that - is commutative; then a\b = b/a, for all a,b.
For FL, (M, <) must be a lattice, possibly with the lower bound 0 (- is
associative).

In models of Bilinear Logic (BL), called bilinear algebras, 0 need not
be the lower bound. It is a dualizing element, satisfying: a = 0/(a\0) =
(0/a)\0, for all elements a. One defines two negations: a” = a\0, a' = 0/a,
and proves:

al=a=d", aa” <0, dla <0, (a"b") = (a'b))".

One also defines the operation par: a ® b = (bTaT)l7 which is associative,
and together with - it satisfies De Morgan laws:

(DM) (ab)! = b @ d, (ab)" =b" @ a”, (a®b) =bld!, (a@b)" =b"a".

Alsoa®0=a=0@a,a\b=a"®b, a/b=adb. If - is commutative, this
construction yields general algebraic models of Multiplicative Linear Logic
(MLL).

Residuated semigroups and monoids can be formed as powersets of semi-
groups and monoids, respectively. Let M = (M, -) be a semigroup. For sets
X,Y C M, one defines:

X Y={ab:ae X, beY},

X\Y={aeM:X {a}CY},Y/X={acM:{a} - X CY}.

Then, (P(M),C,-,\,/) is a residuated semigroup. We call this algebra the
powerset algebra over M and denote P(M). It is a complete lattice (of sets).
If 1 is the identity element of M, then {1} is the identity element in P(M).

Language frames are powerset algebras P(X*). X* is the set of finite
strings on the alphabet ¥ (a free monoid with concatenation and the iden-
tity €). An analogous construction over free groupoids yields tree language
frames (intended models for NL).

Since distribution (for A,V) is not provable in FL, then this logic is
not complete with respect to powerset algebras. To get a fully adequate
semantics one considers a closure operation on P(M) and a model consisting
of closed subsets of M [40]. For closed sets X,Y C M, define X ® Y as the
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closure of X -Y. For Linear Logic, one takes a commutative monoid M and
an arbitrary set 0 C M. Then, C'(X) = (X\0)\0 is a closure operation, and
the closed sets (facts) form a model of this logic [23]. Similar constructions
can be applied to BL and other Non-Commuative Linear Logics [1, 45].

Systems which are sound with respect to language frames, e.g. L (alge-
bras P(X1)), L*, FL, cannot yield linguistically wrong inferences provided
that the initial assumptions are correct. Certain ‘paradoxes’ discussed in lit-
erature are simply examples of an incorrect initial type assignment. For in-
stance, one assigns n/n to adjectives (n to common nouns) and (n/n)/(n/n)
to very. In L*, these two types are equivalent, which motivates some au-
thors to claim the linguistic inadequacy of L*. Yet, this example merely
shows that (n/n)/(n/n) is not a correct type of very (on the basis of L*).
In P(X*), e € X/X, for any set X C 3* and consequently, € is of type n/n,
but the concatenation of very and e is not. Lambek [36] (this issue) proposes
a different typing.

The situation is more complicated for systems which are not sound with
respect to language frames. Commutative systems overgenerate, and sys-
tems like BL refer to closed sets and operations on closed sets, admitting
no reasonable interpretation in language frames. The linguistic adequacy of
(some of) these systems can be justified on the basis of finer representations
of language expressions, usually involving type-theoretic semantics [39, 6, 7].

The logic of pregroups, being the major focus of this paper, continues
the line of BL. Actually, it simplifies it by identifying operations - and 9,
whence also 1 and 0. On the one hand, this move leads to a nice computation
technique, based on simple reductions ala < 1, aa” < 1 (!, " are called
the adjoint operations). On the other hand, it rises problems of linguistic
adequacy. These problems are here even more urging than for the case of BL:
the latter logic is conservative over L*, whence it safely processes types in the
language of L*, whereas the logic of pregroups is not conservative over L*.
For instance, (ab)/c < a(b/c) and (a/((b/b)/c))/c < a are valid in pregroups,
but (the corresponding sequents are) not provable in L*, so they are not valid
in language frames. These sequents are also unprovable in Intuitionistic
Logic, and consequently, intractable by type-theoretic semantics. In the
author’s opinion, to find a linguistically natural, adequate semantics for the
logic of pregroups is one of the most important challenges in this area.

Let £ be a type logic (in the form of a sequent system). A catego-
rial grammar based on L (shortly: L—grammar) is defined as a triple
G = (%,1,s) such that ¥ is a finite alphabet, I is a finite relation between
elements of ¥ and formulas of £, and s is a designated atomic formula. We
say that G assigns type A to a string a; - - - a,, (a; € X), if there exist types
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A; such that a;IA;, fori =1,...,n, and Ay,..., A, = A is provable in L.
The language of G (L(G)) consists of all strings x € X1 such that G assigns
s to x.

The languages of AB-grammars are precisely the e—free context-free
(CF) languages [3], and the same holds for L-grammars, L*-grammars and
BL-grammars [41]. This is also true for NL-grammars [12, 28] and for gram-
mars based on finitely axiomatizable theories on NL [17]. The equivalence
of pregroup grammars, i.e. grammars based on the logic of pregroups, and
e—free context-free grammars is proved in [14]. For type logics with (EXC),
non-associative systems remain CF [29, 25, 14], but L with (EXC) gener-
ates all permutation closures of e—free context-free languages [13], whence it
goes beyond CF. FL generates non-CF languages, e.g. the meet of any two
CF languages [27]. Non-associative variants of FL (even with assumptions)
remain CF [21].

The paper is organized as follows. In section 2, we present the logic
of pregroups in two forms: (1) in the original form due to Lambek [34],
where (iterated) adjoints are applied to atoms only, (2) in an extended form,
where adjoints are applied to arbitrary formulas. For the second form we
prove the cut-elimination theorem and the Lambek normalization theorem
(proved by Lambek for the first form). As a consequence, we get the P-TIME
decidability of both forms. We show that the logic of pregroups is faithfully
interpretable in L1. The results concerning (2) are new. We also briefly
discuss some extensions of this logic. In section 3, we survey the author’s
earlier results on models of this logic (i.e. pregroups). As a new topic,
we provide a general construction of (quasi-ordered) bilinear algebras and
pregroups whose universe is an arbitrary monoid, with a bijection defined
on it.

2. The logic of pregroups

A pregroup is a structure M = (M, <,-' 7, 1) such that (M, <, -, 1) is a par-
tially ordered (p.o.) monoid, and !, " are unary operations on M, satisfying
the adjoint laws:

(Al) dla <1 <ad, (Ar) aa” <1< d"a,

for all a € M. Pregroups were introduced by Lambek [34] as a generalization
of p.o. groups; some ideas appeared in earlier articles of Lambek. a' (resp.
a”) is called the left (resp. right) adjoint of a. This terminology refers to
category theory (adjoints of functors).
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If - is commutative, then ala = 1 = ad!, aa” = 1 = a"a, whence

a! = a7' = ¢". Commutative pregroups are simply p.o. Abelian groups.
They are not adequate for language description, so Lambek focuses on non-
commutative pregroups, and even free pregroups, defined below.

First, we note that the following laws easily follow from (Al), (Ar):
'=1=1" d"=a=a", (ab)! =bld', (ab)" =b"a",
a<biff ! <diff 0" <a’.

For any pregroup, one defines a\b = a”b, a/b = ab’ and easily proves
(RES). Accordingly, every pregroup is a residuated monoid with these resid-
ual operations. It follows that all sequents provable in L1 are valid in pre-
groups under this translation of residuals. The converse is not true; some
counterexamples have been mentioned in section 1.

For an integer n > 0, one defines a(™ = """ and a(~™ = /!, where
adjoints are iterated n times. The following laws are provable:

APt < 1 < gD o), 1)
(ab)(Zn) _ a](2n)b(2n)7 (ab)(2n+1) _ b(2n+1)a(2n+1)7 (2)
a < biff a® < b iff pHD) < ot (3)

for all n € Z (Z denotes the set of integers).

Let (P, <) be a (finite) poset. Elements of P are denoted by atoms:
p.q,T,.... Simple terms are of the form p(™, for any p € Pand n € Z.
A term is a finite sequence (string) of simple terms. Terms are also called
types. Greek capitals range on terms, and ¢ denotes a simple term. If p < ¢,
then we write p(™ < ¢, if n is even, and ¢ < p™ | if n is odd. One
defines a binary relation = on the set of terms as the least reflexive and
transitive relation, satisfying the clauses:

(CON) T, p™ p("*+D) A = T A,
(EXP) I, A = T, p D) p(m) A
(IND) T, p™, A = T, ¢, A, if pm) < ().
(CON), (EXP), (IND) are called Contraction, Expansion and Induced
Step, respectively. They can be treated as rules of a term rewriting system.
I' = Aistrueiff I' can be transformed to A by a finite number of applications

of these rules. This rewriting system is Lambek’s original form of the logic
of pregroups. This logic is also called Compact Bilinear Logic (CBL).
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One defines T and T as follows:

6l — = €, (p(n))l — p(nfl)’ (p(n))r _ (n+1)

)

(t1, o tn) = () (DY), (- t)" = ()., (8)7).

The set of all terms with the relation =, operations - (concatenation), !, ",
and the identity € constitutes a quasi-pregroup. A quasi-pregroup is defined
like a pregroup except that < can be a quasi-order, and in monoid equations
= is replaced by ~, where: a ~ b iff a < b and b < a.

So,I' ~ Aiff ' = A and A = I'. The relation ~ is nontrivial also for a
trivial poset (P,=); for instance p,pN p~p;p,pY p~p. (In pregroups,
aa"a = a and aa'a = a.) It is a congruence on the quasi-pregroup, defined
above. The quotient-structure with the ordering defined by:

] <[A]iff T = A

is a pregroup, called the free pregroup generated by (P, <), and denoted
F(P,<) or F(P). One easily proves that it is free in the sense that every
function f from P to a pregroup M which preserves the order (p < ¢ entails
f(p) < f(q)) can uniquely be extended to an (order-preserving) homomor-
phism from F(P) to M. This yields the completeness theorem: I' = A iff
F(I) < f(JA]), for any order-preserving function f from P to a pregroup
M.

Lambek [34] proves the following normalization theorem for CBL (also
called the Lambek switching lemma): if I' = A then there exists ¢ such that
I' = ® without (EXP) and ® = A without (CON). Consequently, if I' = ¢,
where t is a simple term or €, then I' can be reduced to ¢t by (CON) and
(IND) only. Such reductions are easily computable and can be simulated
by a context-free grammar. This yields the P-TIME decidability of CBL
(O(n?)). (Notice that I' = A iff AL, T = ¢.) The Lambek normalization
theorem is equivalent to the cut-elimination theorem for a sequent system
for CBL [16].

Here we prove these facts for a different formalization of CBL. Our
system admits formulas built from atoms (variables and 1) by means of
connectives ®,! . A, B, C range on formulas, and T, A, ® on finite sequences
of formulas. Sequents are of the form I' = A. This presentation of CBL is
more akin to standard logical formalisms and can naturally be enriched by
other connectives and modalities. In the metalanguage, we use the notation
A™M  defined as a(™ for pregroups. The axiom system looks as follows:

(PIA) T =T
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L= A
L1 17 = A
I,A®n BEn) T/ = A
I, (A® B)2) T = A
I, et AR TV = A

= A A
= A 10, A
= A, A@ BEn) A/
= A (A® B)@) A’
[ = A, Bt A@nt]) A/

(P1L) (P1R)

(P®LO) (P®RO)

P®LI P®R1
( & ) F,(A®B)(2n+1)aF’:>A ( ® ) I‘:A,(A@B)(%'H),A'
L= A = A A
(PIL) [LALAT = A (PIR) I'= AA AL A
= A = A A
P s a8 PN A an
L, Am+n) T/ = A [ = A, Amtn) A/
(AIL) = - T8 (AIR) )

T, (A)m, ' = A [= A, (Am)®, A

The role of ‘P’ in ‘(P1L)’, {(P1R)’ etc. is to distinguish these rules from
analogous rules for L1. (AIL) and (AIR) are called adjoint insertion rules.
Notice that they do nothing, if m-n > 0. If m-n < 0, they introduce some
new adjoint symbols. For instance, from A" = A(=D+3) one gets A",
The rules for ® allow to introduce ® in the scope of adjoint symbols, and
similarly for 1.

One could also consider a different axiomatization, related to axiom sys-
tems for BL, in which the rules for ! would be:

I'=AA A=A

PIL) —F— _—
( )Al,F:>A = A, A

(PIR?)
and similarly for " [20]. Then, one could drop (n) in ®—rules and 1—rules.
Although this axiom system is even more compatible with other logical for-
malisms than ours, it has some disadvantages from our point of view. First,
its derivations are not parallel to those in the rewriting system (they are
parallel in our system). Second, it needs a two-premise (structural) rule:

= A TV= A

(R) T = A, AN

whereas our system admits one-premise rules only, which essentially simpli-
fies its deductive structure. For instance, cut elimination for our system can
be proved in a more elegant way, and it is closely related to the Lambek
normalization theorem.

An expedient simplification is to admit adjoints in contexts p(™ only
and to define A', A" in metalanguage: (p™)! = p(=1  (p())r = pn+1)
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1'=1"=1,(A®B) =B'® A, (A® B)" = B" ® A". The corresponding
sequent system admits (PId), (1L), (1R) (without (n)), (P®L0), (P®RO)
(without (2n)), (PIL), (PIR), (PrL), (PrR). This system will be denoted by
CBL?’; it has been studied in [16]. CBL’ is equivalent to the above sequent
system for CBL with respect to provability. Its virtue is simplicity, its sin
is laziness: some essential parts of logical arguments are not formalized in
it, but left to metatheory.

The above full system is appropriate for the pure CBL, corresponding
to the trivial poset. For a nontrivial poset (P, <), we identify variables with
elements of P (so, they become constants) and add the following rules, for
all p,q € P such that p(™ < ¢("):

L= A, p®™ A
I'= A, ¢, A

L™ 1T = A
Lp) TV = A

(INDL) (INDR)

We sketch the proof of the cut-elimination theorem. First, we consider
the fragment, restricted to sequents = A. Clearly, this is a conservative
fragment of our system, and it employs neither (PId) with I" # ¢, nor left-
introduction rules. We prove that the rules:

=T,4 = A A
=1,A

=T1,4; A" A
=1,A

(1-CUTI) (1-CUTr)

are admissible in the system (this means, the set of provable sequents is
closed under these rules). We need the following lemmas. We write F= A
for ‘= A is provable’.

(L1) Rules (PIR) and (PrR) can be restricted to the scheme: from = I, A
infer = I, p( 1) p(m) A,

(L2) If F= I, A and F= &, then F= I, ®, A.

(L3) If =T and F= A, then F= T, A.

(L4) Rules (P1R), (P®R0), (P®R1) and (AIR) are reversible (this means,
if the conclusion is provable, then the premise is provable).

(L5) If k=T, AL A A or =T, A, A", A, then F= T, A.

The admissibility of (1-CUT!) and (1-CUTr) follows from (L3) and (L5).
To prove (L1), we show that the rule:

=1A
=T, A0 A A

(4)
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is derivable in the restricted system (this rule subsumes (PIR) and (PrR)).
Assume = I, A. We prove = I, At1) A A by induction on A. For
A = p, the rule is given. For A = 1, we use (P1R). Let A = B(™) where
m # 0. By the induction hypothesis, we obtain = I', B(m+n+1) p(m+n) A
whence = T', At AW A by (AIR). Let A= B® C. Let n be even. By
the induction hypothesis, we get = T', C(*t1) B+ B0 () A whence
= [,A®tD A A by (P®R1), (P®R0). If n is odd, the reasoning is
similar.

(L2) can easily be proved by induction on the derivation of = ®. (L3)
is a consequence of (L2). The proof of (L4) proceeds by induction on the
derivation of the conclusion in the system restricted as in (L1); it is easy,
since the designated formula of the conclusion can be introduced by the same
rule only ((AIL), (AIR) are restricted to m -n < 0).

To prove (L5), we show that the rule:

=T, AM A+ A
=TI A (5)

is admissible (not derivable) in the system. We proceed by induction on A.

The case A = p is the most involved. We prove a more general claim: if
= T,p" ¢*tY A is provable and p{™ < ¢(™ then = I, A is provable. We
proceed by induction on the derivation of = I, p™ ¢+ A in the system
restricted as in (L1) (this part of the proof is essentially due to Lambek [34]).
There are two interesting cases: (i) the sequent arises by the scheme from
(L1), introducing p(™ or ¢("*Y, (ii) it arises by (INDR), introducing p(™ or
¢V, For (i), = I', A results from the premise, by (INDR). For (ii), we
apply the induction hypothesis to the premise.

The remainder of the proof is routine. For A = 1, we use (L4). For
A = B where m # 0, and A = B ® C, we use (L4) and apply the
induction hypothesis. The proof of (L5) is finished.

We define T'! and I'" as for the rewriting system (replace t; by A;, and
remember that the adjoint symbols are connectives, not metalanguage op-
erations).

(L6) F= T, Al iff F= A", T.

We prove the ‘only if’ part of (L6). Assume F= T,Al. By (PrR),
F= A" A, whence F= A",T, Al A, by (L2). Then, F= A",T, by (L5).
The proof of the ‘if” part is similar.

We define: - I' = Aiff k= T7,A. By (L6), - I' = A iff = A, T
We also write Fo I' = A, if I' = A is provable in the full system, presented
above.



12 Wojciech Buszkowski

The ‘if” part of (L7) can easily be proved by induction on derivations in
the full system. For the ’only if’ part, one first shows that (R) is admissible in
the full system (induction on derivations). Then, one proceeds by induction
on the derivation of = I'", A in the one-sided system. We consider two cases.
Assume that = IT'", A arises by (PrR), introducing the last formula in I'"
and the first formula in A. Then, I' = (A,T), A = (4, A’), and the premise
is = (T")", A’. By the induction hypothesis, o TV = A’ whence o T' = A,
by (R). Assume that I'", A arises by (PIR), with the introduced formulas as
above. Then, I = (A,I"), A = (A", A’), and the premise is as above. By
the induction hypothesis, Fo IV = A’. We have o A = A", by (PId) and
(AIR), whence 2 I' = A, by (R).

Accordingly, we can prove basic facts on the full system, using properties
of the one-sided system. By (L7), (L3), (L5),(R) the full system admits the
following forms of cut.

I'=3o;, &= A
TRAN ’
( ) '=A
= A T, AT = A I'=AAAN; A= O
(CUTI) re1r=A (CUT2) I'=A® A

(PIL’) ,(PIR’) and analogous rules for " are admissible and reversible in
the full system (the proof is left to the reader).

The full system is complete with respect to pregroups (under assignments
preserving the order in (P, <)), which can be proved like for the Lambek
system (see above).

The system is equivalent to a rewriting system of Lambek style. The
rewriting rules look as follows.

R1) T
R3) T
R4) T
R5) T, (A) () TV = T, Almtn) TV
)
)
)
)

( )T = T,T, (R2) T, AW A+ TV = T T/,
(
(
(
(E1) I,T =T,10. 1, (E2) T,TV = T, A*+D A T/
(
(
(
(

(A®B)(2”) ' =T, A" Ben) 17,
(A ® B)(2n+1) I = T, BertD) A@n+1) 7

E3) T, AC" BCY "= T (A® B)?) T,
E4) T, B@2n+1) A(2n+1) = T, (A®B)(2n+l) F/,
E5) T, Atmtn) T/ = T (Am) (") 17,

IND) (same as for the Lambek rewriting system).
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One easily proves: Fo I' = A iff ' = A in the sense of the rewriting
system. (TRAN) is essential in the proof of the ‘if’ part. R-rules of the
rewriting system correspond to left-introduction rules of the sequent system,
and E-rules to right-introduction rules.

The sequent system employs no interaction between antecedents and
consequents of sequents. Then, every provable sequent has a proof in which
all left-introduction rules precede all right-introduction rules. This yields a
Lambek-style normalization theorem for the rewriting system: if I' = A,
then there exists ® such that I' = ® without E-rules and & = A without
R-rules. Let A = p(™ or A = e. Then, A is not the right-hand side of any
E-rule, nor the left-hand side of any R-rule. Consequently, if I' = A, then
there exists a reduction of I" to A, using R-rules and (IND) only. Similarly,
if A = T, then there exists an expansion of A to I', using E-rules and (IND)
only.

Assuming the normalization theorem, one easily shows that the rewriting
system is equivalent to the full sequent system, without applying (TRAN).
Since the rewriting system admits (TRAN) by definition, this yields the
admissibility of (TRAN) in the sequent system (a cut elimination theorem).
Above we have noted that, using the admissibility of (TRAN) in the sequent
system, the equivalence of both systems can be shown without referring
to the normalization theorem, and it implies this theorem. In this sense,
cut elimination for the sequent system is equivalent to the normalization
theorem.

In the rewriting system, I' = A iff 1 = I'", A (use (L7)). By the normal-
ization theorem, the latter holds iff € can be expanded to I'", A by E-rules
and (IND). The rewriting process, based on E-rules and (IND), can be sim-
ulated by a context-free grammar. This yields a P-TIME decision procedure
for CBL. By an easy adaptation of the proof from [14], one shows that
CBL-grammars are equivalent to e—free context-free grammars.

We note above that (a/((b/b)/c))/c < a is valid in pregroups, but not in
residuated monoids, whence the corresponding sequent is provable in CBL,
but not in L1 (or L*, which is a conservative subsystem of L1). In the
language of L1, one takes the sequent (p/((q¢/q)/r))/r = p, while the trans-
lation in CBL is (p ® ((¢ ® ¢') @ r')!) @ ' = p, according to the rules:
A\B = A"®B, A/B = A® B'. Then, CBL is essentially stronger than L1.

On the other hand, there exists a faithful interpretation of CBL in L1.
This interpretation is based on the normalization theorem. We define a
syntactic map I from formulas of CBL to formulas of L1.

I(p) =p, 1(1™) =1,
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1(p"*t)) = I(p™)\1, for n >0, I(p"~V) = 1/1(p'™), for n <0,
I((AT) M) = 1(A M) I((A® B)®Y) = I(APY) @ T(BCM),
I((A ® B)(2n+1)> _ I(B(2n+1)) ® I(A(2n+1)).

We set I(I") = (I(A1),...,I(Ay)), for I' = (A1,...,Ay), and I(e) =e.

This interpretation involves a reduction of I' to a sequence I, in which
adjoints appear in contexts p() only, preserves p, ® and 1 and translates
p™, for n > 0, into (... (p\1)\---\1)\1 (n copies of 1), and for n < 0, into
1/(1/---/(1/p)...). The following theorem is formulated for the pure CBL
(for the trivial poset (P, =)).

(I) I' = 1 is provable in CBL iff I(I") = 1 is provable in L1.

Notice that I' = A is provable in CBL iff AL, T = 1 is so. Then, in a
sense, (I) interprets the full CBL in L1.

We prove the ‘if” part. Assume that I(I') = 1 is provable in L1. Then, it
is provable in CBL, since CBL is stronger than L1 (residuals are translated
as above). In CBL, I(A) < A is provable (induction on A), whence I' = 1
is provable in CBL, by (CUT1).

We prove the ‘only if” part. Assume that I' = 1 is provable in CBL.
Since 1 = € is provable, then I" = € is provable, by (TRAN). By the normal-
ization theorem, there exists a reduction of I" to €, by R-rules and (IND).
Equivalently, there exists a proof of I' = € in the sequent system; this proof
employs (PID) e = € and left-introduction rules only. Like in (L1), rules
(PIL) and (PrL) can be restricted to the scheme: from I',;T" = A infer
L, p™, p+D TV = A. We show that I(T') = 1 is provable in L1, by induc-
tion on such proofs in the sequent system.

The only interesting case is the restricted form of (PIL) and (PrL). By
the induction hypothesis, I(T'), I(I') = 1 is provable in L1. For n < 0,
I(p™) = 1/I(p™*V), and for n > 0, I(p"*Y) = I(p™)\1. By (1L),
I(I'),1,I(T") = 1 is provable in L1, whence I(T), I(p™), I(p""*tV), I(T") =
1 is provable in L1, by (Id), (/L), (\L).

(I) can be generalized to nontrivial posets (P, <); one must add to L1
new axioms p = ¢ such that p < ¢ in the poset. Since this set of new axioms
is closed under (CUT), cut elimination holds for the extended system [18].

An analogous theorem can be proved with p(™ instead of 1 on the right-
hand side of the sequent:

(I') T' = p™ is provable in CBL iff I(I") = I(p(™) is provable in L1.
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Let n > 0. Assume that I' = p(™ is provable in CBL. Then, p*~ ! T =
1 is provable in CBL (use (CUT1)), whence I(p»~Y), I(I') = 1 is provable
in L1, by (I). Consequently, I(T') = I(p(™) is provable in L1, by (\R) and
the definition of (I). This argument can be reversed, since (\R) is reversible
in L1. For n < 0, the assumption implies I',p(»*) = 1 in CBL. By (1),
I(I), I(p"*Y) = 1 is provable in L1, whence I(I') = I(p™) is so, by
(/R). Again, the argument can be reversed, since (/R) is reversible in L1.
Let n = 0. Assume that I' = p is provable in CBL. Then, I',p" = € is
provable in CBL. By induction on proofs in the full sequent system for
CBL, restricted as in (L1), we show that I(I') = p is provable in L1. The
only interesting case is: p" is introduced by (PrL). Then, I' = (I, p), and
the premise is IV = €. By (I), I(I') = 1 is provable in L1. By (Id) and
(\L), I(I"),1\p = p is provable in L1. Since p = 1\p is provable in L1, by
(Id), (1L), (\R), then I(T") = p is so, by (CUT). The converse implication
can be proved as for the case of (I). Clearly, (I’) also holds for non-trivial
posets (P, <), if L1 is extended as above.

In (I) and ("), the right-hand sequent is provable in the fragment of L1,
restricted to (Id), (1R) and left-introduction rules, which is a variant of AB
with ® and 1.

Let us return to the sequent (p/((¢/q)/r))/r = p. The type on the
right-hand side is denoted by A. We add the clauses I[(A\B) = I(A" ® B),
I(A/B) = I(A® B!) to the definition of I. We have:

IA) =I((p® (g2 d)er)) o

=(Ipel(@ed)er))eIr)=1p U)o l((aged))) @10
= (I(p) @ (I(r'") @ (I(¢") @ I(d)))) @ I(r")
= (e ((1/1/r) @ (1/(1/9)® (1/9))) @ (1/r) = B.

B = p is provable in L1, by (Id), (1L), (/L), (®L).

The interpretation I is implicitly employed by Lambek [34, 35] and other
authors, when they consider pregroup typing of natural languages. More
precisely, they proceed as above except for the last step: they do not apply
1 (p(")). This procedure can also be described as applying translation rules
for residuals and R-rules (R3)-(R5) as far, as possible. After replacing ® by
‘,’, the resulting sequence is reduced to a simple type by (R2), (IND). As we
have seen, the final part of the procedure can be performed in L1 enriched
with poset axioms.

Since L1 is compatible with type-theoretic semantics and sound (not
complete) with respect to language frames, then this final part cannot lead
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to linguistically ill inferences. The first part, based on translation rules and
(R3)-(R5), is more problematic. In the above example, from B = p one
infers A = p, although A = B is not provable in L1 (notice that B = A is
provable in L1, and A < B in CBL).

The above remarks are not intended to object the plausibility of pregroup
typing. They only show that it is based on some algebras different than
language frames. In section 3, we shall discuss these differences in more
detail.

Like L and related systems, CBL can be enriched with new connectives
and modalities.

A pregroup M is called a lattice ordered pregroup (I—pregroup), if (M, <)
is a lattice. In [—pregroups the following equations are true:

(aVb) =d AV, (aVD) =a" AV, (6)
(aAD)! =d VI, (aAD) =a" VI, (7)
a(bVe)=abVac, (aVb)c=acV bc, (8)
a(bAc)=abAac, (aNb)c=acAbc, 9)

for all elements a, b, c. (8) hold in all residuated lattices, but (9) are peculiar
to [—pregroups.

The simplified sequent system CBL’ can be extended to the language of
[—pregroups by the following rules:

AT = A; T,B,T"= A = A A;, A
(PVL) —Fvsr=a PR roaavaa

AT = A F= A AA:T= A, B A
(PAL) — b = (PAR) — ~

T,A A Ap, T/ = A T= A AAB,A

Recall that A!, A” are defined in metalanguage; one must add obvious
clauses for (Ao B)!, (Ao B)", where o is V or A.

For the full system CBL, one needs (n)—variants of these rules. Unfortu-
nately, cut elimination fails: (TRAN), (CUT1), (CUT2) are not admissible.

By (Al), (7), (8):
1< (aVb)(aVb)=alaVb)VblaVb),
is true in [—pregroups, whence = (p® (pV ¢)") V (¢ ® (pV ¢)') is valid. This

sequent is not provable in CBL’ without cut, since each possible proof must
introduce the external V, but sequents = p® (pV q)!, = ¢® (pV ¢)" are not



Type Logics and Pregroups 17

valid (this example comes from [16]). With (TRAN), the system is complete
with respect to [—pregroups. Its decidability remains open.

CBL can be supplied with modalities [20]. It is also reasonable to admit
partial commutation: p®q = ¢®p, for some atoms p, q. We do not elaborate

on these topics, since they are discussed in other papers, included in this issue
[22, 30].

3. Pregroups

Pregroups are models of CBL. They have been defined in section 2. Here
we summarize basic facts about them; for more details, see [14, 15].

Let M = (M, <,-!.7,1) be a pregroup. If \,/ are defined by a\b = a"b,
a/b=ab', then (M, <,-,\,/,1) is a residuated monoid. It satisfies:

a\(be) < (a\b)e, (ab)/e < a(b/e), (10)

for all a,b,c € M. Since > are true in any residuated semigroup, (10) yields
equalities.

Conversely, any residuated monoid, satisfying (10), is a pregroup with
adjoints defined as follows: a! = 1/a, a” = a\1. This is the only possible
pregroup structure on this monoid, since residuals and adjoints are uniquely
determined by the p.o. monoid structure:

a\b =max{z € M : az < b}, b/a = max{z € M : za < b}, (11)

a' (resp. a") is the only b such that ba < 1 < ab (resp. ab <1 < ba). (12)

Of course, if (M, <,-,1) is an arbitrary p.o. monoid, then the above
operations need not be defined for all elements. This means that (11), (12)
define partial operations on arbitrary p.o. monoids.

Every p.o. monoid M contains a largest pregroup. It consists of all
elements a € M such that a(™ exists, for all n € Z. We denote this pregroup
by Pg(M).

For the language frame P(X*), ordered by inclusion, this largest pregroup
is the trivial group {e}, since L1Ls C {e} C LoL; implies L1 = Ly = {e}.
For the relational frame REL(U) = P(U?), with inclusion, relational product
and the identity relation Iy, Pg(REL(U)) consists of bijective relations, i.e.
bijective functions from U into U, and the induced ordering is the identity.
So, Pg(REL(U)) is a group [15].

Let (P,<) be a poset. We consider the p.o. monoid F(P, <), shortly
F(P), of all order-preserving functions from P into P, with function com-
position and pointwise ordering: f < g iff, for all z € P, f(x) < g(x). For
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f € F(P), functions fhor (if exist) satisfy the Galois correspondences:

z < fy)iff fl(z) <y, f(z) <yiffz < f(y), (13)

which are equivalent to:

flz)=min{y e P:2 < f(y)}, f'(z) =max{y € P: f(y) <=z} (1)

Since f!, f” must be defined on all € P, then, for any # € P, there
exist y, z € P such that f(y) <z < f(z). Consequently, if f!, f" exist, then
f must be downward and upward unbounded on P (we use this terminology
for functions defined on a poset, although it sounds naturally for functions
defined on a totally ordered set).

Lambek [34] shows that the set of all downward and upward unbounded,
order-preserving functions on (Z,<) is a pregroup (not a group). It is the
only possible pregroup of that kind; if (P, <) is an at least 3-element, totally
ordered set, and Pg(F(P)) consists of all downward and upward unbounded
functions, then (P, <) is isomorphic to (Z,<) [14]. If (P, <) is a totally
ordered set, then Pg(F(P)) consists, in general, of some (not all) downward
and upward unbounded functions, and similarly for posets (P, <).

Pregroups are closed under products, substructures and order-preserving
homomorphisms. For instance, the product of the Lambek pregroup (from
the above paragraph) by itself is a new pregroup, isomorphic to the pregroup
of all order-preserving functions on {0, 1} x Z with the lexicographic ordering,
which are downward and upward unbounded on both {0} x Z and {1} x Z.

Every pregroup M can be embedded in Pg(F (M, <)), where (M, <) is
the poset underlying M. The embedding is (a — f;)eens, where f(a)(z) =
ax.

If (P, <) is a lattice, then F(P) is also a lattice with fV g, f A g defined
pointwise, but Pg(F(P)) need not be an [—pregroup. It is an [—pregroup,
if (P, <) is a totally ordered set. To prove this fact assume that f,g € F(P)
and f(™, ¢(") exist, for all n € Z. We show that (f V ¢)™ and (f A )™
exist, for all n € Z. We have to prove:

(fvg)(Qn) _ f(Qn) \/9(2"), (f /\g)(Qn) _ f(2n) /\g(2n)’ (15)

(f vg)(2n+1) _ f(2n+1) A g(2n+1)’ (f A g)(2n+1) _ f(2n+1) \/g(Qn-‘rl)_ (16)

Of course, these equalities are true in [—pregroups, but we have not
shown that Pg(F(P)) is an [—pregroup. We argue as follows. By the as-
sumption, the elements on the right-hand side of (15), (16) exist, whence it
follows from (15), (16) that (f V g)™, (f A g)™ exist, for all n € Z.
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To prove (15), (16) we need special cases of (16):
(fvg) =f"ng, (fAg) =F"Vg, (17)

(fva)l=fng, (frg=fvd. (18)

If the functions, defined by the right-hand sides of equations (14), exist,
then they equal f!, ", respectively. For the first equation (17), we have:
y < fH(@)Ag'(x) iff y < f7(2) and y < ¢g"(x) iff f(y) < = and g(y) < =
iff (fV g)(y) < x, which yields the equation. This argument is valid for
any lattice P. For the second equation (17), we have: y < f"(z) V ¢" () iff
y < ff(z) ory < g'(z) iff f(y) < zorgy) <aziff (fAg)(y) <z, which
yields the equation. This argument is valid, if P is a totally ordered set;
then, s <yVziffe <yorz <z,;andax Ay < ziff x < zory <z The
proof of (18) is dual. Now, (15), (16) can easily be proved by induction on
n (first, for n > 0, second, for n < 0).

Let M be a pregroup. An element a is said to be injective, if: ab = ac
implies b = ¢, and surjective, if: ba = ca implies b = c¢. In pregroups, a is
injective iff a'a = 1iff a"a = 1, and a is surjective iff aa’ = 1 iff aa” = 1. (To
prove (=), use aa'a = a, aa"a = a.) Clearly, a is injective (resp. surjective)
iff a! is surjective (resp. injective); a' can be replaced by a”. If ab is injective,
then b is injective; if ab is surjective, then a is surjective. An element is said
to be bijective, if it is both injective and surjective. The bijective elements
of M form the largest group, contained in M.

If every element of M is injective or surjective, then every element of
M is bijective [14]. Observe that ala = 1 iff a" < d!, and ad' = 1 iff
a' < a". In a totally ordered pregroup, a” < a‘ or a' < a”, for all elements a,
whence every element is bijective. Then, every totally ordered pregroup is
a totally ordered group (an o—group). Every finite pregroup is a group (<
is the identity relation) [14]. If (P, <) is a dense, totally ordered set, then
Pg(F(P)) is an I—group [14]. If a pregroup contains the least or the greatest
element, then it is the trivial (one-element) group [15].

In free pregroups F(P, <), defined in section 2, no element a # 1 is
injective or surjective [15]. It suffices to notice that elements [p{™] are not
injective, since € = p»~1) p(® does not hold. Consequently, the Lambek
pregroup Pg(F(Z,<)) is not free.

Analogous results can be obtained for left (resp. right) pregroups, which
are defined as pregroups except omitting " and (Ar) (resp. [ and (Al)) [15].

As we have seen, all pregroups (up to isomorphism) can be obtained as
pregroups of some order-preserving functions on a poset. This characteriza-
tion is not very useful, in practice, since functions are higher-order notions,
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and one does not precisely see the resulting structures. Also, algebras of
bilinear and linear logic, defined by means of a closure operation on the
powerset of a monoid (see section 1), refer to higher-order notions and are
not easy to study. Below we outline another construction of such algebras,
which is essentially first-order (though it employs an inductively defined sub-
set of a monoid). We believe that this construction is more expedient than
the ones, mentioned above, for producing and studying algebras of bilinear
and linear logic as well as pregroups.

Recall that a bilinear algebra is a residuated monoid with a dualizing
element 0, satisfying a = 0/(a\0) = (0/a)\0, for any element a. We present
a general construction of bilinear algebras.

We start from an arbitrary monoid M = (M, ®,0), supplied with an
arbitrary bijection [ : M +— M. (Now, we prefer an additive notation for the
initial monoid.) We write a! for I(a) and a” for [=!(a). Then, the following
equations are true:

a" =a=a", foralla € M. (19)

We define: a\b = a" @b, a/b = a®b. This yields the following equations:

(a\b)/c = a\(b/c), a" = a\0, a' = 0/a, (20)

a=0/(a\0) = (0/a)\0, a®b=a"\b=a/b", a =0"\a=a/0". (21)
We also define a new binary operation a - b= (b' @ a!)". Then:

(a-b)}l=b@d, (a®b)" =b"-d" (22)

Using the first equation (22) and (19), we prove associativity: (a-b)-c=
(o b))y =Ccae®ad) =(dob)oad) =a-(b-c). We also get:

0"-a=a=a-0". (23)

We define 1 = 0". We need an ordering on M. We shall define a quasi-
ordering by means of its positive cone. A set F' C M is called a positive
cone (for 1), if it satisfies the following conditions:

(F1) (a\b) € F' iff (b/a) € F,
(F2) (a/a) € F,
(F3) if (a/b) € F and (b/c) € F, then (a/c) € F,

for all a,b,c € M. Since (F1) can be replaced by two implications, positive
cones are closed under arbitrary meets, and consequently, every monoid M
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with [ contains a least positive cone (for 1), which will be denoted by F ().
Since 1 = 1/1, by (21), then 1 € Frqy), by (F2). Also 0' € Fiuqy), by (21),
(F2), (F1).

We define: a <p b iff (b/a) € F. By (F2), (F3), <p is a reflexive and
transitive relation on M. We define: a ~p b iff a <p b and b <p a. Then,
~p is an equivalence relation on M. We prove:

(P1) 0! ~p 1,

(P2)ifae Fand a <p b, then b € F,
(P3)aec Fiff 1 <p a,

(P4) a <p ¢/biff b <p a\c,

for all a,b,c € M. We have 0' = 0'/1,and 0' € F,s01 <p 0. Also, 1 = 0'\1,
and 1 € F, so 0! <p 1. This yields (P1). Assume a € F and a <p b. Then,
(b/a) € F and (a/1) € F, so (b/1) € F, by (F3), whence b € F'. This yields
(P2). (P3) follows from a = a/1. (P4) follows from (F1) and (20).

(P5) a <p biff b! <padliff b <p a’,

for all a,b € M. Notice b = b/" = b!\0. Then, (b/a) € F iff ((b'\0)/a) € F
iff (b'\(0/a)) € F (use (20)) iff (b!\a') € F. This yields the first equivalence.
The second one follows from the first one, by (19).

We are ready to prove (RES) for the structure (M, <pg,-,\,/). We have:
a-b<pcif @) <pciff d <pb@diff ¢ <pbd/aiff a <p N\ iff
a <p c@®V iff a <p ¢/b. The equivalence for \ follows from the one for /,
by (P4).

From (RES), one easily infers monotonicity laws for -\, /, which also
yields: a <p b implies c®a <p c® b and a ® ¢ <p b® ¢ (use the middle
equation (21)). Consequently, ~f is a congruence in (M, ®,-,\,/,',”). The
quotient-structure is a residuated monoid with the dualizing element [0].
Accordingly, it is a bilinear algebra.

The quotient-operation @ is the par operation in this algebra. Since
(B@ah)" = (b"@a")! is true in bilinear algebras, we get (b'@al)” ~p (" ®a")".
A direct proof looks as follows. We denote the right-hand term by @ o b and
prove that aob <p ciff b <p a\c, as in the above proof of (RES). By (RES),
aob<pciff a-b<pec, for all ¢, whence aob~p a-b.

Before factorization, the structure, constructed above, is a bilinear quasi-
algebra, in which ~p takes the part of equality. Evidently, all bilinear alge-
bras and quasi-algebras can be constructed in this way; one starts form the
underlying monoid or quasi-monoid (M, @, 0) with negations !,” and defines
F={aeM:0" <a}.



22 Wojciech Buszkowski

Let M = (M,®,0) and [ be fixed. (M,<p,-,\,/,1,0) is a bilinear al-
gebra if, and only if, ~p is the identity relation, which is equivalent to the
condition:

for all a,b € M, if (a/b) € F and (b/a) € F then a = b. (24)

Clearly, (24) holds for some positive cone ' C M iff it holds for F ;). In
general, F{ ;) determines the finest bilinear quasi-algebra on (M, ).

For commutative monoids, this construction yields algebras and quasi-
algebras of MLL. For an arbitrary monoid and an involution [ (satisfying
a! = a, and consequently, a' = a”), it yields models of Cyclic MLL [45].

In pregroups a-b = a@®b. It holds in the quotient-structure iff (a ®b)! ~p
b @al. By (19), this condition is equivalent to (a ®b)" ~p b" @ a”. One can
guarantee it by affixing a new clause to (F1)-(F3). One can also begin with
a pair (M, 1), satisfying:

(a®b) =b @d, for all a,b e M; (25)

equivalently (a @ b)" = b" @ a”. This implies 0' = 0" = 0. Then, for any
positive cone F', the quotient-structure is a pregroup, and all pregroups can
be constructed in this way.

We shall characterize the finest quasi-pregroups which can be constructed
in this way on the basis of a free monoid (X*, -, €) and a bijection [ : ¥* +— ¥*;
here ¥ can be infinite (even uncountable). Now 0 = e.

By (25), for x € ¥*, x = a1---ay, where a; € 3, we have b =
(an)t---(a1)!. Also (a;)! € . Otherwise, (a;)! = xy, for some z,y # e,
whence a; = y"z"; then, 2" = € or y" = ¢, which yields x = e or y = .
Similarly, (a;)" € ¥. Accordingly, [ restricted to ¥ is a bijection of ¥ onto
3. This restricted mapping is denoted by 7. It naturally extends to a homo-
morphism 7 : ¥* + ¥* (it is an isomorphism). We get z! = (7(z))%, where
y™ denotes the reversal of y.

For a,b € ¥, we define: a = biff a = 7" (b) or b = 7" (a), for some integer
n > 0 (here 7" denotes the iteration of = n times). = is an equivalence
relation on ¥; the equivalence classes of = are called orbits. Let P be a
selector of the family of all orbits. For p € P, n > 0, by p(™ we denote the
element (7=1)"(p), where 7~ is the converse of 7, and by p{~™ the element
7"(p). The orbit determined by p consists of all p™, for n € Z. If the
orbit is infinite; then, p™) # p(™ for m # n. If it is finite (of cardinality
k > 0), then pO pM . pk=1) are different, and p™ = p( k) for all
n € Z. Clearly, (p™)! = p(®=1) and (p™)" = p(r+1),
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Every string from ¥* is uniquely represented as (p1)*1) - - - (p,,)#») | where
p; € P, and k; € Z, if the orbit of p; is infinite, 0 < k; < k, if the orbit of
pi is of cardinality k. The least positive cone Fs« ;) determines the smallest
quasi-ordering < on 3* such that the resulting structure is a quasi-pregroup.
This quasi-ordering must satisfy (CON) and (EXP) from section 2 (with <
in the place of =); if the orbit of p is of finite cardinality k, then n + 1 is
counted modulo k. Obviously, the smallest quasi-ordering is the reflexive and
transitive closure of the relation defined by (CON), (EXP). The quotient-
construction yields the corresponding pregroup.

We have seen that the finest quasi-pregroups and pregroups, determined
by free monoids with a bijection, satisfying (25), are closely related to free
pregroups on a trivial poset. The only difference is that, for some p, one
may count p{™ modulo a positive integer. The resulting pregroup is a p.o.
group if, and only if, 7 is an involution. (Then, each orbit is of cardinality
at most 2.)

This approach rises many interesting problems which are deferred to
further research. One of them is to characterize those algebras (M, -, 1,r,1)
((M,-,1) is a monoid, [ is a bijection on M, and r is the converse of 1)
which can be expanded to a pregroup (M, <,-',”,1). One easily shows that
they form an elementary class, recursively axiomatizable by quasi-equations.
Can the axiomatization be finite, or equational, or both? Does it consist of
monoid axioms, (19), (25) (write (ab)! = t'a!), and ad'a = a, aa"a = a?
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