
Lüders Rule1

The Lüders rule describes a change of the state of a quantum sys-
tem under a selective measurement: if an → observable A, with eigen-
values ai and associated eigenprojections Pi, i = 1, 2, . . ., is mea-
sured on the system in a → state T , then the state transforms to
T̃k := PkTPk/tr [TPk] on the condition that the result ak was obtained.
This rule was formulated by Gerhart Lüders [1] as an elaboration of
the work of John von Neumann [2] on the measurement process and
it is an expression of the → projection postulate, or the collapse of the
wave function.

From the perspective of quantum→ measurement theory, the Lüders
rule characterizes just one (albeit distinguished) form of state change
that may occur in appropriately designed measurements of a given
observable with a discrete spectrum. In general, the notion of → in-
strument is used to describe the state changes of a system under a mea-
surement, whether selective or not. The Lüders instrument IL consists
of the → operations IL

X of the form IL
X(T ) =

∑
ai∈X PiTPi, and it is

characterized as a repeatable, ideal, nondegenerate measurement [3,
Theorem IV.3.2], see also [7, Theorem 4.7.2]. In such a measurement,
with no selection or reading of the result, the state of the system under-
goes the transformation T 7→ IL

R (T ) =
∑

i PiTPi =
∑

i tr [TPi]T̃i, the
projection postulate then saying that if ak is the actual measurement
result, this state collapses to T̃k.

Lüders measurements offer an important characterization of the com-
patibility of observables A,B with discrete spectra: A and B commute
if and only if the expectation value of B is not changed by a nonselec-
tive Lüders operation of A in any state T [1]. This result is the basis for
the axiom of local commutativity in relativistic quantum field theory:
the mutual commutativity of observables from local algebras associ-
ated with two spacelike separated regions of spacetime ensures, and is
necessitated by, the impossibility of influencing the outcomes of mea-
surements in one region through nonselective measurements performed
in the other region.

The Lüders rule is directly related to the notion of conditional prob-
ability in quantum mechanics, conditioning with respect to a single
event. According to → Gleason’s theorem, the generalized probability
measures µ on the projection lattice P(H) of a complex Hilbert space
H with dimension dim(H) ≥ 3 are uniquely determined by the state
operators through the formula µ(P ) = tr [TP ] for all P ∈ P(H). For
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any µ and for any P such that µ(P ) 6= 0 there is a unique generalized
probability measure µP with the property: for all R ∈ P(H), R ≤ P ,
µP (R) = µ(R)/µ(P ). The state operator defining µP is given by the
Lüders form: if µ is determined by the state T , then µP is determined
by the state PTP/tr [TP ] [4].

The Lüders rule is also an essential structural element in axiomatic
reconstructions of quantum mechanics. As shown in [5], it occurs in
various disguised forms as an axiom in→ quantum logic; for example, it
plays a role in the formulation of the covering law; see also [8, Chapter
16], [9].

The Lüders rule has a natural generalization to measurements with a
discrete set of outcomes a1, a2, . . . , represented by a positive operator
measure such that each ai is associated with a positive operator Ai.
The generalized Lüders instrument, defined via the operations T 7→
IL

X(T ) = A
1/2
i TA

1/2
i , is known to have approximate repeatability and

ideality properties [6]. The Lüders theorem extends to generalized
measurements under certain additional assumptions [10] but is not valid
in general [11].

The Lüders rule is widely used as a practical tool for the effective
modeling of experiments with quantum systems undergoing periods
of free evolution separated by iterated measurements. It is success-
fully applied in the quantum jump approach [12]. The single- and →
double-slit experiments with individual quantum objects are the classic
illustrations of the physical relevance of the Lüders rule.
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