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Abstract. We introduce martingales defined by probabilistic strategies, in which random
bits are used to decide whether and how much to bet. We show that different criteria for the
success of computable probabilistic strategies can be used to characterize ML-randomness,
computable randomness, and partial computable randomness. Our characterization of ML-
randomness partially addresses a critique of Schnorr by formulating ML randomness in terms
of a computable process rather than a computably enumerable function.

1. Introduction

The intuitive notion of what it means for a 0/1 sequence to be algorithmically random is
that the sequence should appear completely random to any computable process. This simple
idea has led to a rich and complex theory of algorithmic randomness. Most of this theory is
based on three important paradigms for defining algorithmic randomness: first, using Martin-
Löf tests [10]; second, using algorithmic betting strategies or martingales [15, 16]; and, third,
using Kolmogorov information theory and incompressibility [8, 17]. As it turns out, there
are a number of natural notions of algorithmically random sequences, including Martin-Löf
randomness (1-randomness), partial computable randomness, computable randomness, and
Schnorr randomness, among others. A particularly attractive aspect of these, and other,
notions of randomness is that they have equivalent definitions in all three paradigms.

Martin-Löf randomness is commonly considered the central notion of algorithmic random-
ness. There are several reasons for this. First, although there are a number of different
natural notions of randomness, Martin-Löf randomness is the strongest of these that does
not explicitly use the halting problem or higher levels of the arithmetic hierarchy. Sec-
ond, Martin-Löf randomness was one of the earliest notions of randomness to be given
elegant characterizations in terms of all three paradigms of Martin-Löf tests, martingales,
and (prefix-free) Kolmogorov complexity; in addition, Martin-Löf randomness has several
other equivalent elegant characterizations, e.g., as Solovay randomness. Third, the theory
of Martin-Löf randomness is mathematically elegant and has nice mathematical properties,
such as the existence of universal Martin-Löf tests.
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On the other hand, already Schnorr [15, 16] critiqued the notion of Martin-Löf randomness
as being too strong, based on the fact that the associated martingales are only left c.e.
functions, not computable functions. The problem is that these left c.e. functions do not
correspond in any intuitive way to a computable betting strategy. For this reason, Schnorr
proposed two alternate weaker notion of randomness, now known as computable randomness
and Schnorr randomness.

In recent years, there has been more widespread recognition that Schnorr’s critique casts
serious doubt on the status of Martin-Löf randomness as the best model for algorithmic
randomness. This has led a number of researchers to seek a characterization of Martin-Löf
randomness in terms of more constructive martingales. One example in this direction is the
proposal by Hitchcock and Lutz [6] of computable martingale processes; these exactly char-
acterize Martin-Löf randomness [6, 11]. The drawback of computable martingale processes,
however, is that they do not correspond to any reasonable algorithmic betting strategy. In
another line of work, the open problem of whether Martin-Löf randomness coincides with the
Kolmogorov-Loveland (KL) definition of randomness based on non-monotonic computable
betting strategies [13, 2, 12, 7] is largely motivated by Schnorr’s critique.

The present paper presents a new kind of martingale, one derived from probabilistic strate-
gies, that provides a possible answer to Schnorr’s critique of Martin-Löf randomness. We
present a definition of probabilistic betting strategies: these betting strategies can be carried
out by a deterministic algorithm with the aid of random coin flips. Our main theorems
give exact characterizations of Martin-Löf randomness, partial computable randomness, and
computable randomness in terms of these probabilistic betting strategies. We prove that
Martin-Löf random sequences are precisely the sequences for which a probabilistic betting
strategy has unbounded expected capital, in other words, unbounded expected winnings as
the number of bets increases. Computable randomness and partial computable randomness
are characterized in terms of having unbounded capital with probability one.

Precise definitions are in the next section, but it is easy to informally describe these
probabilistic betting strategies. The probabilistic betting strategy A places a sequence of
bets on the bits of a sequence X ∈ {0, 1}∞. Initially, A has capital equal to 1. At each step,
the strategy A deterministically computes a probability value p ∈ [0, 1] and a stake value
q ∈ [0, 2]. At this point, A either bets with probability p, or with probability 1 − p passes
and does not bet at this time. If A bets, it bets on the next unseen bit of X , betting the
amount (q − 1)C that the bit is zero (equivalently, betting the amount (1 − q)C that the
next bit is one), where C is the current capital held by A. If the bet is correct, the capital
amount is then increased by the bet amount; otherwise, it is decreased by that amount.
If A passes and does not bet, the bit of X is not revealed; in the next step, A will again
probabilistically decide whether to bet on this bit. The probabilistic strategy is defined to
be successful against an infinite sequence provided it gains unbounded capital as winnings
in expectation or, alternately, provided it gains unbounded capital with probability one. It is
the former definition that gives our new characterization of Martin-Löf randomness.

An advantage of our approach is that, unlike the left c.e. martingales that traditionally
correspond to Martin-Löf randomness, our probabilistic betting strategies correspond to
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algorithms that can actually be carried out. The only non-algorithmic aspect is the use
of randomness to decide whether to bet or not at each step. Furthermore, the fact that
betting strategies are allowed to use randomness is entirely natural. In practical terms,
randomness is feasible to implement, for instance by flipping coins or waiting for atomic
decay events. In addition, it seems quite natural that if a sequence is random, then it should
also be random relative to most randomly chosen advice strings. An additional motivation
is that incorporating randomness into deterministic computation is already widely done in
complexity theory to study cryptography and other problems related to the P versus NP
problem, see for instance the texts [3, 5].

Section 2 introduces our new notions of Ex-randomness (expected unbounded winnings)
and of P1-randomness (unbounded winnings with probability one). The reader may wish
to refer to the texts [4, 9, 14] for more background on algorithmic randomness. Section 3
discusses the equivalence of using limsup and lim for the definition of success of probabilistic
martingales. Section 4 proves our main equivalences for Martin-Löf randomness. Section 5
proves our new characterizations for computable randomness. Section 6 then establishes
a similar characterization for partial computable randomness. Section 7 discusses some
counterexamples, showing that certain types of natural definitions for probabilistic betting
strategies are too strong to characterize random sequences; these results discuss theorems
we initially conjectured to be true, but later discovered to be false. We conclude with some
observations and open questions in Section 8.

Our results are summarized in the following figure. The implications and separations
are well-known [1, 13, 17]. The equalities involve our new Ex and P1 concepts, and are
established in this paper.

ML-random = Ex-random
⇓ 6⇑

partial computable random = P1-random = locally weak Ex-random

⇓ 6⇑

computable random = weak P1-random = weak Ex-random

We thank Leszek Ko lodziejczyk for suggestions and corrections, and Logan Axon, Denis
R. Hirschfeldt, Bjørn Kjos-Hanssen, and Joseph S. Miller for helpful comments.

2. Preliminaries

Definition. Let Γ be a finite alphabet. We denote by Γ∗ and Γ∞ the sets of finite and
infinite strings (respectively) over Γ. The empty string is denoted λ. For α ∈ Γ∗ ∪ Γ∞ and
n ≥ 0, we write α(n) to denote the symbol in position n in α: the first symbol of α is α(0),
the second is α(1), etc. For β ∈ Γ∗, we write β ⊑ α (or β < α) to mean β is a (proper)
initial prefix of α. Now suppose α ∈ Γ∗. The length of α is denoted |α|. We let |α|a denote
the number of occurrences of a in α. For α 6= λ, α− is α minus its last symbol. Also, [α]
denotes the set containing the infinite sequences X ∈ Γ∞ for which α < X . We write X↾n
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to denote the initial prefix of X of length n. A set S ⊂ Γ∗ is prefix-free provided there do
not exist σ, σ′ ∈ S with σ < σ′.

Recall the well-known definitions associating martingales and algorithmic randomness.

Definition. A function d : {0, 1}∗ → R≥ is a martingale if for all σ ∈ {0, 1}∗

(1) d(σ) =
d(σ0) + d(σ1)

2
.

It is a supermartingale if the equality = in (1) is replaced by the inequality ≥. A partial
function d : {0, 1}∗ → R≥ is a (super) martingale provided, for all σ ∈ {0, 1}∗, if either
of d(σ0) or d(σ1) is defined, then equation (1) holds with all of its terms defined. A (super)
martingale d succeeds on X ∈ {0, 1}∞ if

(2) lim sup
n→∞

d(X↾n) = ∞.

Martingales have been used to define notions of algorithmic randomness. The intuition
is that an infinite sequence X is random if no effective betting strategy attains unbounded
capital when playing against it. In a fair game, the capital earned by a betting strategy
satisfies the martingale property. Therefore, we have the following definitions.

Definition. The infinite sequence X is called computable random if no computable mar-
tingale succeeds on it. It is partial computable random if no partial computable martingale
succeeds on it. And, it is Martin-Löf random if no computably enumerable martingale
succeeds on it.

Proposition 1. An infinite sequence X is (partial) computable random or ML-random if and
only if limn d(X↾n) 6= ∞ for all (partial) computable or computably enumerable martingales
(respectively).

Proof. Theorem 7.1.3 in [4] proves the equivalence in the case of computable and partial
computable randomness. For ML-randomness, the proof of Schnorr’s theorem (Theorem
6.3.4 in [4]) on the equivalence between the martingale and test characterizations of ML-
randomness shows that if X is not ML-random, then this is witnessed by a computably
enumerable martingale d with limn d(X↾n) = ∞. �

Even though a martingale is a real-valued function, the next proposition shows that
rational-valued functions suffice for describing (partial) computable randomness. A (par-
tial) computable rational-valued function f is a function for which there is an algorithm
which, on input x, halts if and only if f(x)↓ and outputs the exact value of f(x).

Proposition 2 (Schnorr, as attributed in [4, Prop. 7.1.2]). An infinite sequence X ∈ {0, 1}∞

is (partial) computable random if and only if no rational-valued (partial) computable mar-
tingale succeeds on it.

Each of these classical martingales corresponds to a betting strategy in which, after seeing
σ, the strategy bets that X(|σ|) = 0 with stake q(σ) = d(σ0)/d(σ). Our extension to proba-
bilistic strategies A will use both a stake function qA and a betting probability function pA.
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In particular, in addition to the outcome of each bet, we also record decisions of the strategy
to “bet” (b) or “wait” (w). The next definition defines this formally.

Definition. A probabilistic strategy A consists of a pair of computable rational-valued func-
tions pA(π, σ) and qA(π, σ) such that

pA : {b,w}∗ × {0, 1}∗ → Q ∩ [0, 1], qA : {b,w}∗ × {0, 1}∗ → Q ∩ [0, 2].

The input π ∈ {b,w}∗ is a description of the run of the strategy so far, where b corresponds
to a decision to bet and w to wait. The input σ ∈ {0, 1}∗ is to be the string of bits that have
been bet on so far, namely an initial prefix of the infinite string being played against. At
each step during the run of the strategy, the number of bets placed so far, |π|b, should equal
the number of bits that have been revealed after bets, |σ|. Therefore, we always require that
each input pair (π, σ) satisfies |π|b = |σ|; the values of pA and qA are irrelevant when this
does not hold.

The value pA(π, σ) is the probability that the strategy places a bet during this move: this
bet will be on the next bit of X . The value q = qA(π, σ) is the stake associated with this
bet (if it occurs). If q > 1, then the strategy is betting that X(|σ|) = 0; if q < 1, the bet is
that X(|σ|) = 1.

The strings π ∈ {b,w}∗ form a binary tree called the computation tree. The probability
that the strategy A follows a particular path through the computation tree depends on the
pA values, and these depend on the so-far revealed bits of the infinite string being played
against.

Lemmas 12 and 17, establish (super)martingale properties for the capital earned by prob-
abilistic strategies while playing on infinite strings.

Definition. The cumulative probability of π relative to σ, PA(π, σ), is the probability that
the strategy A reaches the node π when running against an infinite string with prefix σ. It
is defined inductively. For the base case, PA(λ, λ) = 1. For non-empty π ∈ {b,w}∗

PA(π, σ) =

{

PA(π−, σ−) · pA(π−, σ−) if π = (π−)b

PA(π−, σ) · (1 − pA(π−, σ)) if π = (π−)w.

The capital at π relative to σ, CA(π, σ), is the amount of capital the strategy has at the
node specified by π when playing against an infinite string with prefix σ. We follow the
convention that the initial capital equals 1, so CA(λ, λ) = 1. For non-empty π ∈ {b,w}∗,
CA is inductively defined by

CA(π, σ) =











CA(π−, σ−) · qA(π−, σ−) if π = (π−)b and σ = (σ−)0,

CA(π−, σ−) · (2 − qA(π−, σ−)) if π = (π−)b and σ = (σ−)1

CA(π−, σ) if π = (π−)w.

For X ∈ {0, 1}∗, pXA (π) abbreviates pXA (π,X↾|π|b), and qXA (π), PX
A (π), CX

A (π) are analogous
abbreviations.
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Lemma 3. For A a probabilistic strategy, π ∈ {b,w}∗, σ ∈ {0, 1}|π|b,

(3)
∑

j∈N

PA(πwj, σ)pA(πwj, σ) = PA(π, σ)
(

1 −
∏

j∈N

(1 − pA(πwj , σ))
)

.

Proof. By definition of PA(πwj, σ), for j ≥ 0,

PA(πwj , σ) = PA(π, σ)

j−1
∏

k=0

(1 − pA(πwk, σ)).

Therefore, it suffices to prove the following holds for m ≥ 0:

(4)
m
∑

j=0

pA(πwj , σ)

j−1
∏

k=0

(1 − pA(πwk, σ)) = 1 −
m
∏

j=0

(1 − pA(πwj , σ)).

This can readily be proved by induction on m. Alternately, and more intuitively, the left-
hand side of (4) is the probability that after reaching π, the strategy A bets on its (j + 1)st
attempt (after j wait events) for some j ≤ m; the right-hand side of (4) equals one minus
the probability of waiting at least m + 1 times after reaching π. From this, it is clear that
equality holds. In the limit as m → ∞, the quantity in (3) is equal to the probability that
for input X ∈ [σ], the strategy A reaches node π in the computation tree and goes on to
place a subsequent bet. �

A classical martingale is successful against an infinite string X if it accumulates unbounded
capital during the play. In the context of probabilistic computation, there are several ways
to define analogous notions.

Definition. Let A be a probabilistic strategy and let X ∈ {0, 1}∞. Then µX
A is the

probability distribution on {b,w}∞ defined on the basic open sets [π], π ∈ {b,w}∗, by
µX
A ([π]) = PX

A (π).

Definition. Let Π ∈ {b,w}∞ and X ∈ {0, 1}∞. A probabilistic strategy A succeeds against
X along Π provided

lim
n→∞

CX
A (Π↾n) = ∞.

Moreover, A succeeds against X with probability one if

µX
A

(

{Π ∈ {b,w}∞ : lim
n→∞

CX
A (Π↾n) = ∞}

)

= 1.

In this case, A is a P1-strategy for X . The infinite sequence X ∈ {0, 1}∞ is P1-random if no
probabilistic strategy is a P1-strategy for X .

An alternate definition of success for a probabilistic martingale uses expectation. In partic-
ular, we will formalize the intuition of the expected capital of the strategy being unbounded.
The definition of expected capital will be defined in terms of the number of bets placed; for
this, we define R(n) to be the set of computation nodes that can reached immediately after
the n-th bet.
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Definition. Let n ∈ N. Then R(n) = {π ∈ {b,w}∗ : |π|b = n, π 6= π−
w}.

Note that R(0) = {λ} and that R(n + 1) can be expressed in terms of R(n) as

R(n + 1) =
⋃

π∈R(n)

{πwj
b : j ∈ N}.

Definition. The expected capital after n bets of a probabilistic strategy A over X ∈ {0, 1}∞

is

(5) Ex
X
A (n) =

∑

π∈R(n)

PX
A (π)CX

A (π).

The expected capital after seeing an initial prefix σ ∈ {0, 1}∗ is Ex
σ
A = Ex

X
A (|σ|) for any X

extending σ.

Definition. A probabilistic strategy A is an Ex-strategy for X ∈ {0, 1}∞ if

lim
n→∞

Ex
X
A (n) = ∞.

The infinite sequence X ∈ {0, 1}∞ is Ex-random if no probabilistic strategy is an Ex-strategy
for X .

We can weaken the above criteria for randomness by only considering probabilistic strate-
gies that don’t “get stuck”. In general, a probabilistic martingale might reach a state where
it never bets on the next bit of X , or more generally has positive probability of never betting
on the next bit. This is disallowed by the next definitions.

Definition. A probabilistic martingale A always eventually bets with probability one provided
that, for all π ∈ {b,w}∗ and all σ ∈ {0, 1}|π|b,

(6) PA(π, σ) ·
∏

i∈N

(1 − pA(πwi, σ)) = 0.

The martingale A eventually bets on X with probability one provided for all π ∈ {b,w}∗

(7) PX
A (π) ·

∏

i∈N

(1 − pXA (πwi)) = 0.

This definition excludes the possibility of A reaching node π with non-zero probability and
having zero probability of ever placing another bet. We thus arrive at weakened versions of
probabilistic randomness.

Definition. A sequence X ∈ {0, 1}∞ is weak P1-random if no probabilistic martingale which
always eventually bets with probability one is a P1 strategy for X .

Definition. A sequence X ∈ {0, 1}∞ is weak Ex-random if no probabilistic martingale which
always eventually bets with probability one is Ex-successful against X .

Definition. A sequence X ∈ {0, 1}∞ is locally weak Ex-random if no probabilistic martingale
which eventually bets on X with probability one is Ex-successful against X .
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It is easy to verify that any P1-strategy for X already satisfies the “locally weak”property,
so we do not need a definition of “locally weak P1-random”.

Proposition 4. Let X ∈ {0, 1}∞.

(a) If X is Ex-random, then X is locally weak Ex-random.
(b) If X is locally weak Ex-random, then X is weak Ex-random.
(c) If X is P1-random, then X is weak P1-random.
(d) If X is Ex-random, then X is P1-random.
(e) If X is weak Ex-random then X is weak P1-random.
(f) If X is locally weak Ex-random, then X is P1-random.

Proof. Parts (a)-(c) are immediate from the definitions. Now, suppose A is a (weak) P1-
strategy for X . The next lemma, Lemma 5, shows that A is a (weak) Ex-strategy for X ;
this suffices to prove parts (d), and (e). Combined with the observation above that any
P1-strategy is “locally weak”, Lemma 5 also gives (f). �

Definition. The probabilistic strategy A succeeds with non-zero probability against X if, for
some T > 0,

(8) µX
A

(

{Π ∈ {b,w}∞ : lim
n→∞

CX
A (Π↾n) = ∞}

)

= T.

Lemma 5. Suppose that A succeeds against X with non-zero probability. Then A also Ex-
succeeds against X.

Proof. Suppose (8) holds with T > 0. We need to show that limn Ex
X
A (n) = ∞. For N > 0

and s > 0, define Ps,N as

Ps,N = {Π ∈ {b,w}∞ : ∀n ≥ N,CX
A (Π↾n) > s}.

Fix s > 0. Then (8) implies that limN µX
A (Ps,N) ≥ T . Therefore, there is some Ns such that

µX
A (Ps,Ns

) ≥ T/2. Therefore, for all n ≥ Ns,

Ex
X
A (n) =

∑

π∈R(n)

PX
A (π) · CX

A (π) > µX
A (Ps,Ns

) · s ≥ (T/2) · s.

The first inequality follows from the fact that R(n) is a prefix-free cover of {b,w}∞ and each
member of R(n) has length at least n ≥ Ns. Therefore, some subset of R(n) covers Ps,n and
hence the sum of PX

A (π) over this set is greater than or equal to µX
A (Ps,Ns

). For each of the
strings, π, in this subset, CX

A (π) > s by definition of Ps,Ns
.

Taking the limit as s → ∞ gives that limn Ex
X
A (n) = ∞ and proves Proposition 4. �

Lemma 6. Let A be a probabilistic strategy and n ∈ N.

(a) Suppose σ ∈ {0, 1}n. Then
∑

π∈R(n)

PA(π, σ) ≤ 1.
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(b) Suppose A always eventually bets with probability one, and let σ ∈ {0, 1}n. Then,
∑

π∈R(n)

PA(π, σ) = 1.

(c) Suppose A eventually bets on X ∈ {0, 1}∞ with probability one. Then,
∑

π∈R(n)

PX
A (π) = 1.

Proof. The intuition is that these quantities represent the probability of betting at least n
times. Part (a) is simply the fact that probabilities are bounded by one. Parts (b) and (c)
follow from the definition of A eventually betting with probability one. Formally, induction
on n can be used to prove each part. We present the proof of part (b) and then mention the
small changes required to adapt it for the other two statements.

The base case of (b) is trivial since R(0) = {λ} and PA(λ, λ) = 1. For the induction step,
∑

π∈R(n+1)

PA(π, σ) =
∑

τ∈R(n)

∑

j∈N

PA(τwj
b, σ) =

∑

τ∈R(n)

∑

j∈N

PA(τwj, σ−)pA(τwj, σ−)

=
∑

τ∈R(n)

PA(τ, σ−)
(

1 −
∏

j∈N

(1 − pA(τwj , σ−))
)

=
∑

τ∈R(n)

PA(τ, σ−) = 1,(9)

where the third equality is Lemma 3, the fourth equality follows from (6), and the last
equality is the induction hypothesis.

Part (c) is proved in exactly the same way, except that σ is assumed to be an initial prefix
of the given infinite string X . For part (a), the last two equalities in (9) are replaced by
inequalities. �

3. Limits and limsups

As we recalled in Proposition 1, the classical notions of ML-randomness and (partial)
computable randomness can be equivalently defined in terms of either limits or limsups.
The notions of P1- and Ex-randomness were defined above in terms of limits; however, as we
discuss next, they can be equivalently defined using limsups.

Definition. A probabilistic strategy A is a limsup-P1-strategy for X provided that

µX
A

(

{Π ∈ {b,w}∞ : lim sup
n→∞

CX
A (Π↾n) = ∞}

)

= 1.

X is limsup-P1-random if there is no limsup-P1-strategy for X . Similarly, A is a limsup-Ex-
strategy for X provided

lim sup
n→∞

Ex
X
A (n) = ∞.

And, X is limsup-Ex-random if there is no limsup-Ex-strategy for X . The notions of weak
limsup-P1, and weak and locally weak limsup-Ex are defined similarly.
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Since having lim supn equal to infinity is a weaker condition than having the ordinary limit
(limn) equal to infinity, it is immediate that the “limsup” notions of randomness imply the
“lim” notions. In fact, the limsup and lim notions are equivalent. We first state and prove
the equivalence of the P1 versions of randomness.

Theorem 7. Let X ∈ {0, 1}∞. Then X is P1-random if and only if it is limsup-P1-random.
Likewise, X is weak P1-random if and only if it is weak limsup-P1-random.

Proof. As just remarked, it is sufficient to prove the forward implications. The proof is
based on the same “savings trick” that works in the case of classical martingales, see [4,
Prop. 6.3.8]. The basic idea is that a probabilistic strategy with an unbounded limsup payoff
can be converted into a probabilistic strategy with payoff tending to infinity by occasionally
saving (holding back) some of the winnings.

Specifically, given a probabilistic strategy A, we define another probabilistic strategy A′

such that pA′(π, σ) = pA(π, σ) for all π, σ (and so µX
A = µX

A′ for all X ∈ {0, 1}∞), but with
a modified stake function that incorporates the savings trick. We must ensure that, for
X ∈ {0, 1}∞ and Π ∈ {b,w}∞, lim supn C

X
A (Π↾n) = ∞ if and only if limn C

X
A (Π↾n) = ∞.

Fix a capital threshold C0 > 1, and a savings increment S0, where 0 < S0 < C0. The new
probabilistic strategy A′ acts as follows: A′ maintains a “current savings amount”, S(π, σ).
Initially, S(λ, λ) = 0. The strategy A′ views S(π, σ) as being permanently saved, and views
the remainder of its capital W (π, σ) := CA′(π, σ)−S(π, σ) as its current working capital. In
other words, W (π, σ) is the amount available for wagering at node π when playing against
any extension of σ. If the working capital ever rises above the threshold, A′ puts more money
in the bank. Formally, we set S(πw, σ) = S(π, σ) and

S(πb, σ) =

{

S(π, σ−) if CA′(πb, σ) ≤ S(π, σ−) + C0

S(π, σ−) + ∆ otherwise,

where ∆ is at least S0 and large enough so that W (π, σ) ≤ C0. Whenever A′ places a bet,
it scales the stake value so as to place the same relative wager as A but only on the amount
of capital available for wagering. That is,

qA′(π, σ) − 1 =
(qA(π, σ) − 1)W (π, σ) + S(π, σ)

W (π, σ) + S(π, σ)

It is not hard to show that for every X ∈ {0, 1}∞ and Π ∈ {b,w}∞, limnC
X
A′(Π↾n) = ∞ iff

lim supn C
X
A (Π↾n) = ∞, since if the latter holds, then A′’s working capital must exceed its

threshold value C0 infinitely often, and thus its savings amount increases without bound. �

It is not so easy to apply the savings trick to Ex-randomness since “savings” cannot be
protected in the same way from events that occur with low probability. Nonetheless, Ex-
randomness, locally weak Ex-randomness, and weak Ex-randomness are equivalent to limsup-
Ex-randomness, locally weak limsup-Ex-randomness, and weak limsup-Ex-randomness, re-
spectively. We shall prove these equivalences in the next three sections while proving their
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equivalences to the notions of ML-randomness, partial computable randomness, and com-
putable randomness (respectively).

4. Theorems and Proofs for Ex-randomness

Theorem 8. Suppose X ∈ {0, 1}∞. If X is ML-random, then X is limsup-Ex-random.

Theorem 9. Suppose X ∈ {0, 1}∞. If X is Ex-random, then X is ML-random.

Recalling that limsup-Ex-random trivially implies Ex-random, we get the following equiv-
alences:

Corollary 10. A sequence X is limsup-Ex-random if and only if it is Ex-random, and if and
only if it is ML-random.

Moreover, while proving Theorem 9, we define a probabilistic strategy which succeeds on
exactly the set of infinite sequences covered by a given ML-test (see the definition below
of ML-tests). The proof of Theorem 9, applied to a universal ML-test, gives the following
corollary.

Corollary 11. There is a universal Ex-strategy.

It will be convenient to work with a definition of ML-randomness in terms of ML-tests.

Definition. A Martin-Löf test (ML-test) is a uniformly c.e. sequence of sets Ui, with µ(Ui) ≤
2−i for all i ≥ 1 (where µ is Lebesgue measure). Furthermore, w.l.o.g., there is an effective
algorithm B which enumerates pairs (i, σ) such that i ≥ 1 and σ ∈ {0, 1}∗ so that

(1) Each Ui =
⋃

{[σ] : (i, σ) is output by B}.
(2) For each i, Ui+1 ⊆ Ui.
(3) If B outputs both (i, σ) and (i, σ′), then [σ] ∩ [σ′] = ∅.
(4) For each i > 0, B outputs infinitely many pairs (i, σ). The σ’s of these pairs can be

effectively enumerated, σi,0, σi,1, σi,2, . . ..

An infinite sequence X ∈ {0, 1}∞ fails the ML-test if X ∈
⋂

i Ui. A sequence X is ML-
random provided it does not fail any ML-test.

We establish two properties of probabilistic strategies before proving Theorem 8. The first
of these properties is that the average capital accumulated by a probabilistic strategy is a
supermartingale.

Lemma 12. If A is a probabilistic strategy and σ ∈ {0, 1}∗ then

Ex
σ
A ≥

Ex
σ0
A + Ex

σ1
A

2
.

Proof. For σ ∈ {0, 1}∗ with |σ| = n and x ∈ {0, 1} and for any j ∈ N,

PA(πwj
b, σ0) = PA(πwj, σ)pA(πwj , σ) = PA(πwj

b, σ1)

and

CA(πwj
b, σ0) + CA(πwj

b, σ1) = CA(π, σ)
(

qA(πwj, σ) + (2 − qA(πwj, σ))
)

= 2CA(π, σ).
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Therefore,

Ex
σ0
A + Ex

σ1
A

2
=

1

2

∑

π∈R(n)

∑

j∈N

(

PA(πwj
b, σ0)CA(πwj

b, σ0) + PA(πwj
b, σ1)CA(πwj

b, σ1)
)

=
∑

π∈R(n)

CA(π, σ)
∑

j∈N

PA(πwj , σ)pA(πwj , σ)

=
∑

π∈R(n)

PA(π, σ)CA(π, σ)
(

1 −
∏

j∈N

(1 − pA(πwj , σ))
)

≤
∑

π∈R(n)

PA(π, σ)CA(π, σ) = Ex
σ
A,

where the third equality is given by Lemma 3. �

Lemma 13. Let σ0 ∈ {0, 1}∗, S ⊆ {0, 1}∗. If S is a prefix-free set of extensions of σ0, and
A is a probabilistic strategy, then

∑

σ∈S

2−|σ|
Ex

σ
A ≤ 2−|σ0|Ex

σ0

A .

Proof. This lemma is analogous to Kolmogorov’s Inequality for classical (super-)martingales
and is proved in a similar way [4, Theorem 6.3.3]. To sketch: it is enough to prove the
inequality for finite sets S, and this can be done by induction via repeated applications of
Lemma 12. �

Proof of Theorem 8. Suppose A is a limsup-Ex-strategy for X ∈ {0, 1}∞. We will define an
ML-test {Ui}i∈N which X fails. Let

Ui = {Y ∈ {0, 1}∞ : ∃n
(

Ex
Y
A(n) > 2i

)

} =
⋃

σ:ExσA>2i

[σ].

These sets are uniformly enumerable since the sum (5) defining Ex
σ
A has all its terms com-

putable and non-negative. Hence the values Ex
σ
A are uniformly computably approximable

from below. To bound µ(Ui), let Si be a prefix-free subset of {0, 1}∗ such that Ex
σ
A > 2i for

all σ ∈ Si and such that Si covers Ui. All strings in Si extend λ, so by Lemma 13

µ(Ui) =
∑

σ∈Si

2−|σ| < 2−i
∑

σ∈Si

2−|σ|
Ex

σ
A ≤ 2−i

Ex
λ
A = 2−i

since Ex
λ
A = 1.

By assumption on X , lim supn Ex
X
A (n) = ∞, and hence for all i there is some n for which

Ex
X
A (n) > 2i. That is, for each i, X ∈ Ui. Therefore, X is not ML-random. �

Proof of Theorem 9. Suppose X is not ML-random, as witnessed by some ML-test {Ui}i∈N,
as enumerated by an algorithm B. The first part of the proof uses B to construct a limsup-
Ex-strategy A which is successful against X . At the end of the proof, we will further prove
that A can be converted into an Ex-strategy A′.
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We think of the strategy A as going through stages. At the beginning of a stage, A has
already made bets against the first n bits of X , for some n ≥ 0, and thus knows the initial
prefix X↾n. The strategy A begins running algorithm B to enumerate the σn+1,j ’s that
specify Un+1, for j = 0, 1, 2, . . .. When σn+1,j is enumerated, set pn+1,j = 2n+1/2|σn+1,j |. Note
that the measure constraint on Un+1 implies that

∑

j pn+1,j ≤ 1. The intuition is that, with

probability pn+1,j, A will bet all-or-nothing that X(k) = σn+1,j(k) for n ≤ k < |σn+1,j|. If
X ∈ [σn+1,j] then all of these bets will be correct and the capital accumulated by A will
increase by a factor of 2|σn+1,j |−n. Otherwise, X /∈ [σn+1,j ] and the capital will drop to zero
along this path of the computation.

Formally, we define pA and qA inductively. Suppose π is a minimal node for which pA(π, σ)
and qA(π, σ) are not yet defined, and let n = |π|b. Then, for each j ∈ N, define pA(πwj, σ)
so that

pA(πwj , σ)

j−1
∏

i=0

(1 − pA(πwi, σ)) = pn+1,j.

Note that since
∑

j pn+1,j ≤ 1, we have pA(πwj , σ) ≤ 1. Also, for all j ≥ 0 and 1 ≤ k <

|σn+1,j| − n, define

pA(πwj
b
k, σ) = 1.

And, for j ≥ 0 and 0 ≤ k < |σn+1,j| − n, define

qA(πwj
b
k, σ) =

{

0 if σn+1,j(n + k) = 1

2 if σn+1,j(n + k) = 0;

Clearly, all pA and qA values are computable from the algorithm B for the ML-test, and
A is a probabilistic strategy. To prove that A is a limsup-Ex-strategy for X , we analyze the
expected capital of A when played against X . We must show that lim supm Ex

X
A (m) = ∞.

Since X ∈
⋂

n Un, there is a (unique) sequence {σn,j′n
}n∈N such that σn,j′n

< X for each n.
This has an infinite subsequence of values σn1,j1, σn2,j2, σn3,j3, . . . such that n1 = 1 and each
ni+1 = |σni,ji|+ 1. We define ℓ0 = 0 and ℓi = |σni,ji|, so that ni+1 = ℓi + 1. Note that ℓi ≥ ni.
Consider the following sequence of nodes πk in the computation tree:

πk = w
j1b

ℓ1w
j2b

ℓ2−ℓ1 · · ·wjkb
ℓk−ℓk−1 .

The nodes πk are chosen so that, when run against X , every bet made on the computation
path to πk is successful. Since |πk|b = ℓk, there are ℓk many bets placed on this computation
path, and since all of them are successful, CX

A (πk) = 2ℓk . We have

Ex
X
A (ℓk) =

∑

π∈R(ℓk)

PX
A (π)CX

A (π)

≥ PX
A (πk)CX

A (πk) = 2ℓk

k
∏

i=1

pni,ji = 2ℓk

k
∏

i=1

2ni

2ℓi
= 2n1

k−1
∏

i=1

2ni+1

2ℓi
= 2k.(10)
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The last equality follows from n1 = 1 and ni+1 = ℓi + 1. Thus, ExXA (ℓk) ≥ 2k. Therefore,
lim supn ExA(X↾n) = ∞.

At this point, we would like to modify the savings trick (see the proof of Theorem 7) to A
to obtain an Ex-strategy A′ for X . The computation showing that lim supn ExA(X↾n) = ∞
used only the probabilities on a single computation path Π = w

j1b
ℓ1w

j2b
ℓ2−ℓ1w

j3b
ℓ3−ℓ2 · · · . A

näıve application of the savings trick would give a probabilistic strategy such that the path Π
is still taken with exactly the same probabilities. The problem with this is that no matter
how much capital is “saved”, the weighted capital PX

A (π)CX
A (π) can still become arbitrarily

small, because the probabilities pni,ji can be arbitrarily small. Thus an alternate technique
is needed: namely, to have the probabilistic strategy choose with a non-zero probability to
permanently switch to wagering evenly (with stake value q equal to 1). Once the strategy
starts wagering evenly, its weighted capital remains fixed for the rest of the execution.

Specifically, a probabilistic strategy A′ is defined to act like A most of the time, but with
the following exception: Every time a string σn+1,j has been completely processed, A′ next
chooses either (a) with probability 1/2, to enter the mode of betting evenly with probability 1
and stake value 1 from that point on; or (b) with probability 1/2, to not bet this step and then
continue simulating the strategy A by enumerating the members of Uℓ+1 where ℓ = |σn+1,j|.
In particular, if π is the node reached immediately following the processing of σn+1,j then
for any k ≥ 0,

PA′(πbk+1, σ) =
1

2
PA′(π, σ) CA′(πbk+1, σ) = CA′(π, σ).

For X , the distinguished computation nodes will now be π′
k, defined as

π′
k = w

j1+1
b
ℓ1w

j2+1
b
ℓ2−ℓ1 · · ·wjk+1

b
ℓk−ℓk−1.

That is, π′
k is the path πk padded by extra w symbols to indicate that A′ continues to

simulate A whenever it has a choice. We can use this notion of padding to relate the values
of PX

A′ and CX
A′ to PX

A and CX
A : for s ≥ 0

PX
A′(π′

kb
s+1) = 2−(k+1) · PX

A (πk) = PX
A′(π′

kw)

CX
A′(π′

kb
s+1) = CX

A (πk) = CX
A′(π′

kw).

By the above and by the string of equalities in (10),

PX
A′(π′

kb
s+1)CX

A′(π′
kb

s+1) =
(

2−(k+1) · PX
A (πk)

)

CX
A (πk) = 2−(k+1)2k =

1

2
.

Therefore, for each n,

Ex
X
A′(n) =

∑

π∈R(n)

PX
A′(π)CX

A′(π) ≥
∑

k : ℓk<n

PX
A′(π′

kb
n−ℓk)CX

A′(π′
kb

n−ℓk) =
∑

k : ℓk<n

1
2
.

Since the sequence of ℓk values is infinite, this sum tends to ∞ as n → ∞. It follows that
limn Ex

X
A′(n) = ∞ as desired, and X is not Ex-random. �
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It is interesting to note that both the limsup and the lim versions of the probabilistic
martingale described above are oblivious to a certain extent. Namely, in defining A (and A′),
the probability pn+1,j is set independently of whether or not X↾n = σn+1,j↾n. Of course, if
they are not equal, it would make more sense to set pn+1,j = 0. However, it does not appear
that taking this into account would lead to any improvement in the analysis in the proof of
Theorem 9.

5. Theorems and Proofs for weak P1-randomness

Theorem 14. Suppose X ∈ {0, 1}∞. If X is weak P1-random, then X is computable
random.

Theorem 15. Suppose X ∈ {0, 1}∞. If X is computable random, then X is weak limsup-
Ex-random.

As an immediate corollary of Proposition 4(e), Theorems 7, 14, and 15, and the fact that
weak limsup-Ex-randomness trivially implies weak Ex-randomness, we obtain the following
set of equivalences.

Corollary 16. The following notions are equivalent: weak P1-random, weak limsup-P1-
random, weak Ex-random, weak limsup-Ex-random, and computable random.

Proof of Theorem 14. Suppose X is not computable random, and let d be a total computable
rational-valued martingale with limn d(X↾n) = ∞. The martingale d immediately gives a
probabilistic strategy; namely, for each π ∈ {b,w}∗ and σ ∈ {0, 1}|π|b, pd(π, σ) = 1 and for
each n ∈ N,

qd(b
n, σ) =

d(σ0)

d(σ)

In particular, there is exactly one infinite path through {b,w}∗ with non-zero probability,
and along this path, the capital accumulated by the probabilistic strategy is exactly equal
to the martingale d. Hence this is a P1-strategy for X . Moreover, it always eventually bets
with probability one since d is total and all bets are made with probability one. It follows
that X is not weak P1-random. �

Proof of Theorem 15. Suppose X is not weak limsup-Ex-random, and let A be a limsup-Ex-
strategy for X which always eventually bets with probability one. Define d : {0, 1}∗ → R≥

to be d(σ) = Ex
σ
A.

Lemma 17. If A always eventually bets with probability one, the function d satisfies the
martingale property (1).

Proof. By Lemma 12, d(σ) is a supermartingale. However, since A always eventually bets
with probability one, (6) gives that for π ∈ R(|σ|),

PA(π, σ)CA(π, σ)
(

1 −
∏

j∈N

(1 − pA(πwj, σ))
)

= PA(π, σ)CA(π, σ).

Hence, the inequality in the proof of Lemma 12 can be replaced by equality in this case. �
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Since A is a (weak) limsup-Ex-strategy, lim supn d(X↾n) = ∞. Thus, Theorem 15 will be
proved if we can show that d is computable. Since d is a martingale by Lemma 17 and since
d(λ) = 1,

(11)
∑

τ∈{0,1}n

d(τ) = 2n

for all n. Define the approximation to d at level M > 0 to be

d(τ,M) =
∑

π∈R(|τ |):|π|w<M

PA(π, τ)CA(π, τ).

This is a finite sum of computable terms and approaches d(τ) from below. It suffices to
describe an algorithm which, given σ ∈ {0, 1}∗ and ǫ > 0, approximates d(σ) to within ǫ of
the true value. To do so, compute

∑

τ∈{0,1}|σ|

d(τ,M)

for increasingly large values of M , until a value for M is found satisfying that this sum is
greater than 2|σ| − ǫ. By (11), this value of M puts the value of d(σ,M) within ǫ of d(σ).
This shows d is computable, and proves Theorem 15. �

6. Theorems and Proofs for P1-randomness

Theorem 18. Suppose X ∈ {0, 1}∞. If X is P1-random, then X is partial computable
random.

Theorem 19. Suppose X ∈ {0, 1}∞. If X is partial computable random, then X is locally
weak limsup-Ex-random.

As an immediate corollary of Proposition 4(f), Theorems 7, 18, and 19, and the fact that
locally weak limsup-Ex-randomness trivially implies locally weak Ex-randomness, we obtain
the following set of equivalences.

Corollary 20. The following notions are equivalent: P1-random, limsup-P1-random, locally
weak Ex-random, locally weak limsup-Ex-random, and partial computable random.

Proof of Theorem 18. Suppose d is a rational-valued partial computable martingale which
succeeds on X . We will define a probabilistic strategy A that eventually bets on X with
probability one and is a P1-strategy for X . The idea is that A waits to bet on σ until it
has seen that both d(σ)↓ and d(σ0)↓ and, at that point, bets the appropriate stake with
probability one. Formally, define for π ∈ {b,w}∗ and σ ∈ {0, 1}|π|b,

pA(π, σ) =

{

1 if it takes |π|w steps for both d(σ), d(σ0) to have converged,

0 otherwise.
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And,

qA(π, σ) =

{

d(σ0)
d(σ)

if pA(π, σ) = 1,

1 otherwise.

Then, when run against X , all but one of the infinite paths through the computation tree
have zero probability. Moreover, since d(X↾n)↓ for all n, there is a (unique) path with
infinitely many bets that is taken with probability one during the run of the strategy on
X . On this probability one path, A behaves exactly as d would on X . Thus, A is a weak
P1-strategy for X . �

Proof of Theorem 19. Let X ∈ {0, 1}∞ and suppose A is a limsup-Ex-strategy for X that
eventually bets on X with probability one. We wish to define a rational-valued partial
computable martingale that succeeds on X .

We will actually define a rational-valued partial computable supermartingale d that suc-
ceeds on X . This will suffice since it is possible to use d to define a rational-valued, com-
putable martingale d0 such that for all σ

d0(σ) ≥ d(σ).

In particular, if lim supn d(X↾n) = ∞ then also lim supn d0(X↾n) = ∞. The construction
of d0 from d is well-known and can be found in [14, 7.1.6]: namely,

d0(σ) = d(σ) +
∑

σ′<σ

(

d(σ′) −
d(σ′0) + d(σ′1)

2

)

.

The intuition is that the supermartingale d(σ) outputs an approximation to Ex
σ
A when

there is evidence that A eventually bets after seeing σ with sufficiently high probability. We
will prove that d(X↾n) is defined for all n and, more generally, that d(σ) satisfies

(12) |d(σ) − Ex
σ
A| ≤ 1

whenever d(σ) is defined. In particular, since lim supn Ex
X
A (n) = ∞, it must be that

lim supn d(X↾n) = ∞.
We first define a partial computable function M : {0, 1}∗ → N by

M(σ) = the least M s.t.
∑

π∈R(|σ|):|π|w<M

PA(π, σ) ≥ 1 − 2−2|σ|.

That is, M(σ) is the threshold “w-distance” required to guarantee that, with high probability,
every bit of σ is bet on. The intuition is that M(σ) gives the number of terms needed to get
a good approximation to the value of ExσA. Lemma 6(a) implies that

(13)
∑

π∈R(|σ|):|π|w≥M(σ)

PA(π, σ) ≤ 2−2|σ|

provided M(σ) is defined. Since A eventually bets on X with probability one, Lemma 6(b)
implies that M(σ) is defined for all σ < X .
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We use another auxiliary computable function, f : N → Q, given by f(n) = 21−n − 1.
This function has a useful inductive definition that we will exploit: f(0) = 1 and f(n+ 1) =
f(n) − 2−n. We have −1 ≤ f(n) ≤ 1 for all n, and f(n) ≤ 0 for all n ≥ 1.

Define d : {0, 1}∗ → Q to be the partial computable function

(14) d(σ) = f(|σ|) +
∑

π∈R(σ):|π|w<M(σ)

PA(π, σ)CA(π, σ).

Note that d(σ) is undefined if and only if M(σ) is undefined. In particular, d(σ)↓ for all
σ < X . By the definition of ExσA,

(15) d(σ) = Ex
σ
A + f(|σ|) −

∑

π∈R(|σ|):|π|w≥M(σ)

PA(π, σ)CA(π, σ).

CA(π, σ) is the capital accumulated after betting |π|b many times on σ, and each bet can
at most double the capital. Therefore, CA(π, σ) ≤ 2|π|

b = 2|σ| for π ∈ R(|σ|). This fact
and (13) imply that

(16)
∑

π∈R(|σ|):|π|w≥M(σ)

PA(π, σ)CA(π, σ) ≤ 2−|σ|.

Combining (15), (16), and the definition of f , we get

Ex
σ
A − (1 − 2−|σ|) ≤ d(σ) ≤ Ex

σ
A − (1 − 21−|σ|)

whenever d(σ) is defined. It follows that (12) holds.
We have shown that d is partial computable and that, for all σ < X , d(σ) is defined and

approximates Ex
σ
A with bounded error. It remains to prove that d is a supermartingale.

It is a simple observation that M(σ0) = M(σ1) since PA(π, σ0) = PA(π, σ1) always holds.
In addition, if M(σ0) is defined then M(σ) is defined and M(σ) ≤ M(σ0). This is because
the w-distance M(σ0) which suffices to guarantee that all bits of σ0 are bet on with high
probability certainly suffices to guarantee that all bits of σ are bet on with at least the
same probability. Therefore, if either d(σ0)↓ or d(σ1)↓, then all three of d(σ)↓, d(σ0)↓, and
d(σ1)↓.

Finally, we prove that the supermartingale property holds for d. We have

d(σ0) + d(σ1)

= Ex
σ0
A + Ex

σ1
A + 2f(|σ| + 1) −

∑

π∈R(|σ|+1):|π|w≥M(σ0)

PA(π, σ0)(CA(π, σ0) + CA(π, σ1))

≤ Ex
σ0
A + Ex

σ1
A + 2f(|σ| + 1)

≤ 2(ExσA + f(|σ|) − 2−|σ|)

≤ 2 · d(σ)

where the second inequality uses the supermartingale property for ExσA from Lemma 12 and
the definitions of f and CA, and the third inequality follows from (15) and (16). This
establishes the supermartingale property d(σ0) + d(σ1) ≤ 2d(σ) for all σ. �
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In fact, the proof of Theorem 18 yields yet another characterization of partial computable
randomness. Consider probabilistic strategies where, at each stage, the probability of betting
is either zero or one. That is, pA(π, σ) ∈ {0, 1} for all π, σ. If A is a probabilistic strategy
with this property that succeeds on an infinite sequence X , call it a w-strategy for X . We
say that X is w-random if there is no w-strategy for X . Intuitively, w-strategies can be seen
as interpolating between classical (non probabilistic) strategies and probabilistic strategies.
Nonetheless, the following equivalence holds.

Corollary 21. The following notions are equivalent: P1-random and w-random.

7. Counterexample to an alternate definition

The definition of Ex-randomness is based on unbounded expected success of a probabilistic
strategy A with respect to snapshots of the computation of A at finite times. Specifically,
the expected capital value is computed over computation paths π ∈ R(n). Before defining
Ex-randomness in this way, we considered a more general alternate definition: namely, we
considered studying nested sequences of arbitrary finite portions of the computation tree
and defining Ex-randomness in terms of the expected capital at the leaves of these partial
computation trees. However, this turned out to be too powerful a notion, as it excludes all
but measure zero many strings from being random, contradicting our intuition that “typical”
sequences are random.

Since this notion of randomness seemed very natural to us, we feel it is interesting to
present the counterexample which convinced us that this attempt at a more general notion
of randomness had failed. The counterexample is interesting also for the reason that it can
be adapted to rule out other possible definitions of randomness.

In the definitions below, the definition of a probabilistic strategy A is unchanged; the only
difference is the definition of the expected capital of the strategy.

Definition. A partial computation tree is a finite set f ⊆ {b,w}∗ which is downward closed
and whose maximal elements cover all computation paths. That is, if π ∈ f then all π′

< π
are in f , and πb ∈ f ⇔ πw ∈ f . Thus, f is a binary tree. A maximal node π ∈ f is called a
leaf node.

Definition. Let f be a partial computation tree. The expected capital earned by strategy A
playing on X ∈ {0, 1}∞ up to f is given by

Ex
X
A (f) =

∑

π a leaf of f

PX
A (π)CX

A (π).

We say that X ∈ {0, 1}∞ is I-random if there is no probabilistic strategy A and computable
sequence of nested partial computation trees {fi}i∈N such that lim supn Ex

X
A (fn) = ∞.

Note that the sets {R(n)}n∈N in the definition of Ex-random play the roles of the sets
{fi}i∈N in definition of I-random. However, since each R(n) is infinite, the sequence {R(n)}n∈N
cannot witness the success of a strategy in the I-randomness setting. In developing the the-
ory of probabilistic strategies, we initially considered using I-random in place of Ex-random.
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However, as it turns out, nearly no A is I-random. (The “I” stands for “(nearly) impos-
sibly”.) That is, for almost all X , there is a probabilistic strategy that succeeds on X in
the sense of I-randomness. It is striking that there is a single choice for A and {fi}i∈N that
works for all these X :

Theorem 22. There is a probabilistic strategy A and a computable sequence of partial com-
putation trees F = {fi}i∈N such that

µ{X : lim sup
n→∞

Ex
X
A (fn) = ∞} = 1.

The measure, µ, is Lebesgue measure.

The probabilistic strategy A is very simple; the complexity in the proof lies in the choice
of partial computation trees. The algorithm for A does the following, starting with Step α:

Step α: With probability 1/2, bet all-or-nothing (stake q = 2) that the next bit is 0,
and return to Step α. Otherwise place no bet (that is, wait) and go to Step β.

Step β: With probability 1, bet all-or-nothing (stake q = 0) that the next bit is 1. Then
go to Step α.

The strategy A is not biased towards any particular sequence X ∈ {0, 1}∞. Indeed, for each
bit, A places two bets with probability 1/2 each: first that the bit equals 0 and then that
the bit equals 1. It is the partial computation trees fi that will bias the expectation towards
particular sequences X .

Lemma 23. Let K ≥ 3
2
and ǫ > 0. There is a finite sequence {fi}i≤L such that

µ{X : max
i

Ex
X
A (fi) ≥ K} ≥ 1 − ǫ.

Furthermore, for all X, there is at least one leaf node π of fL such that PX
A (π)CX

A (π) > 0.

The proof of Lemma 23 will show that L and the fi’s are uniformly constructible from K
and ǫ. Before proving the lemma, we sketch how it implies Theorem 22.

Proof sketch for Theorem 22. Choose an unbounded increasing sequence of values Kj, say
Kj = j + 1. Let ǫj = 2−j, so limj ǫj = 0. Initially pick the family F1 of partial computation
trees {fi}i≤L1

as given by Lemma 23 with K = K1 and ǫ = ǫ1.
Suppose Fj has been chosen; we construct Fj+1. Let fL be the final partial computation

tree in Fj. Let nL = max{|π|b : π ∈ fL}. Then the behavior of A on any X up to fL is
determined by the first nL bits of X . Lemma 23 guarantees that for each σ ∈ {0, 1}nL there
is at least one leaf node π ∈ fL with PA(π, σ)CA(π, σ) > 0; call the least of these nonzero
PA(π, σ)CA(π, σ) values wσ. Then, define w = min{wσ : σ ∈ {0, 1}nL}. Note that w > 0 and
is computable from fL and A. Let K = Kj+1/w and ǫ = ǫj+1, and choose {f ′

i′}i′≤L′ as given
by Lemma 23 for these parameters. Define fL ◦ fi′ to be the result of attaching a copy of fi′
to each leaf of fL; namely, to be the partial computation tree containing the strings π ∈ fL
plus the strings ππ′ such that π is a leaf node in fL and π′ is in fi′. Finally define Fj+1 to
be Fj plus the partial computation trees fL ◦ fi′ for i′ ≤ L′.



PROBABILISTIC ALGORITHMIC RANDOMNESS 21

It is not hard to show that the X ’s that have Ex
X
A (f) ≥ Kj+1 for some f ∈ Fj+1 form a

set of measure ≥ 1 − ǫj+1. Now, form F by taking the union of the sequences Fj. �

Proof sketch for Lemma 23. The proof is by induction. The base case is K = 3/2. After
that, we argue that if the lemma holds for K, then it holds also for K + 1/2.

Let K = 3/2 and ǫ = 2−j. Define the strings πi = (wb)i; namely, πi represents the situation
where, for i times in a row, the strategy A does not bet (w) in Step α and bets (b) in Step β.
Define fi = {πk, π

−
k w, πkb, πkw : k ≤ i}. Clearly, each fi is a partial computation tree and

the sequence {fi}i∈N is nested and computable. Suppose that 1k0 < X . It is straightforward
to calculate that PX

A (πkb)CX
A (πkb) = 2−(k+1)2k+1 = 1, and PX

A (πkw)CX
A (πkw) = 2−(k+1)2k =

1/2. Therefore, ExXA (fk) ≥ 3/2. (In fact, equality holds, as all other leaves have capital equal
to zero for X .) Letting F = {fi}i≤j, this suffices to prove the K = 3/2 case of the lemma
since only a fraction ǫ = 2−j of X ’s start with 1j.

Now suppose we have already constructed a sequence F ′ = {f ′
i′}i′≤L′ which satisfies the

lemma for K with ǫ = 2−(j+1). We will construct a sequence F ′′ that works for K + 1/2 and
ǫ = 2−j. The idea is to start with the F = {fi}i≤j just constructed for the K = 3/2 and
ǫ = 2−(j+1) case. We interleave the construction of members of F with copies of F ′ added
at the leaf node πib of each fi ∈ F . For this define f ′′

0 = f0 and

f ′′
i,i′ = f ′′

i ∪ πibf
′
i′ and f ′′

i+1 = f ′′
i,L′ ∪ fi+1.

where πibf
′
i′ = {πibτ : τ ∈ f ′

i′}. This forms a nested sequence of partial computation trees;
taken together they form the sequence F ′′. We leave it to the reader to verify that F ′′

satisfies the desired conditions of Lemma 23. �

8. Conclusions and Open Questions

We conclude with a few open problems. First, we ask for characterizations of other notions
of randomness in terms of probabilistic strategies. In particular, what natural conditions on
the class of strategies are equivalent to Schnorr randomness? Algorithmic randomness has
also been studied relative to weaker models of computation (primitive recursive functions,
polynomial-time computation, etc.). Do probabilistic strategies shed light on randomness in
this setting as well?

Second, we note that the definition of unbounded expected success requires some subtlety.
In Section 4 we showed that defining this notion via Ex

X
A characterizes ML-randomness,

whereas Section 7 showed that another definition of expected value gives a trivial notion
of randomness. One can redefine I-randomness to use limn instead of lim supn. Does this
revised version notion of I-randomness make sense? Does the set of I-random sequences
now have measure one?

Finally, what happens when the definition of probabilistic strategies is extended to non-
monotonic Kolmogorov-Loveland randomness? Consider non-monotonic probabilistic strate-
gies which are similar to the probabilistic strategies defined here but also have an integer-
valued function nA(π, σ) which specifies which bit to bet on. The string σ now codes the
values of the bits X(n) that have already been bet upon, and the index nA(π, σ) must not
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specify a bit that has already been bet on. The non-monotonic probabilistic strategy A bets
with probability pA(π, σ) on the bit X(nX(π, σ)) using stake value qA(π, σ). Is there a coher-
ent definition of Ex-randomness that applies to non-monotonic probabilistic strategies; for
instance, one that has a set of measure one as its random sequences? Unfortunately, it is pos-
sible to adapt Theorem 22 to show that the obvious way of defining limsup-Ex-randomness for
non-monotonic probabilistic martingales does not work. In another direction, it is straight-
forward to extend the notions of P1-randomness to non-monotonic probabilistic strategies.
How do these various definitions of P1-randomness for non-monotonic strategies compare to
each? How do they compare to Martin-Löf randomness and Kolmogorov-Loveland random-
ness?
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