
Propositional Proofs and

Reductions between NP Search Problems

Samuel R. Buss

Department of Mathematics

University of California, San Diego

La Jolla, CA 92093-0112

sbuss@math.ucsd.edu

Alan S. Johnson

Department of Mathematics

University of California, San Diego

La Jolla, CA 92093-0112

asj002@math.ucsd.edu

July 6, 2011

Abstract

Total NP search problems (TFNP problems) typically have their
totality guaranteed by some combinatorial property. This paper proves
that if there is a polynomial time Turing reduction between two TFNP
problems, then there are quasipolynomial size, polylogarithmic height,
constant depth, free-cut free propositional (Frege) proofs of the combina-
torial property associated with the first TFNP problem from the property
associated with the second problem. In addition, they have Nullstellen-
satz derivations of polylogarithmic degree. These results extend the prior
work of Buresh-Oppenheim and Morioka firstly by applying to Turing
reductions in place of many-one reductions and secondly by restricting
the height of the Frege proofs. As a corollary, PLS-complete problems
are not polynomial time Turing reducible to PPA problems relative to a
generic oracle. We establish a converse construction as well, by showing
that a polynomial time Turing reduction can be obtained from a family of
quasipolynomial size, polylogarithmic depth, propositional proofs which
are based on “decision tree” substitutions. This establishes the optimality
of our constructions, and partially resolves an open question posed by
Buresh-Oppenheim and Morioka.

We observe that the classes PPA, PPAD, PPADS, and PLS are closed
under Turing reductions, and give an example of a TFNP class that is
not closed under Turing reductions.

1 Introduction

Total NP search problems, called “TFNP” problems as an acronym for “total
function NP”, are multi-valued functions (relations) which are of polynomial
growth rate, are total, and have graph in NP. There are a number of
commonly studied classes of total NP search problems. In particular, Johnson,

1

Papadimitrious and Yanakakis [17] introduced the class PLS of polynomial local
search problems, and Papadimitriou [22] introduced a wider range of classes,
notably, PPP, PPA, and PPAD. These are all subclasses of the total NP
multifunctions (TFNP) as defined by Megiddo and Papadimitriou [19].

A key property of TFNP functions is that they are total; namely, a solution
(or answer) exists for all possible inputs. In most cases, the totality follows from
a combinatorial property. For example, the class PPP contains search problems
that are total by virtue of the pigeonhole principle. Similarly, the class PPA is
based on the combinatorial principle that any graph of degree two or less has an
even number of nodes of degree one. Another example is the class PLS, which
is based on the existence of a local minimum for search problems which have a
local search heuristic that respects a positive integer valued cost function.

Many of the interesting TFNP classes have multiple equivalent characteri-
zations. For example, PLS can equivalently be characterized in terms of finding
a local optimum for the Lin-Kernighan heuristic for the traveling salesman
problem, or alternately in terms of solving the problem, FLIP, of finding an
input to a boolean circuit that provides locally minimal output value [22]. The
class PPAD is defined in terms of the principle that a directed graph in which all
nodes have total degree ≤ 2 cannot contain exactly one node of total degree 1.
This is known to be equivalent to a problem SPERNER based on Sperner’s
lemma about the existence of a panchromatic complex in a triangulation of a
trichromatic triangle [22]. Surprisingly, the class PPAD can equivalently be
defined in terms of the problem NASH of finding a Nash equilibrium; this was
established for three or more players by [14], and for two players by [11].

The various TFNP classes were originally defined explicitly in terms of their
associated combinatorial principle, see [22]. For instance, PPP was defined
as the class of functions which could be computed by finding inputs where a
polynomial time Turing machine M fails to compute a counterexample to the
pigeonhole principle. Beame et. al [1] formulated these definitions somewhat
differently. For example, for PPP they defined a “generic” or “type-2” version
of the pigeonhole principle. They then defined the class PPP to be the set of
total NP problems which are many-one reducible to the generic PPP problem.
(Henceforth, “reducible” or “reduction” always means in polynomial time. We
define all these concepts more precisely below.) Of course, this is essentially
equivalent to the original definition of [22]. But [1] also considered a (potentially
larger) version of the class PPP, namely the set of total NP search problems
that are Turing reducible to the generic PPP problem.

The exact computational complexity of these classes is unknown. For
instance, if P = NP, then all TFNP problems are solvable in polynomial
time. Thus, the different TFNP classes cannot be separated without solving
the P = NP problem. Conversely, however, various inclusions between TFNP
classes are known to hold. Some of these are shown in Figure 1.

It is commonly conjectured that no other reductions exist between the classes
shown in Figure 1. This cannot be established without showing P 6= NP, but
one can instead consider oracle separations. It was for this purpose that Beame
et. al [1] reformulated the TFNP classes in terms of type-2 search problems.

2

TFNP

PPAD

PPADS

PPPPPA

Figure 1: The known relationships for some TFNP search classes. The class
PLS (not shown) does not contain PPAD and is not contained in PPA; it is open
whether PLS is contained in PPADS or PPP. This figure is adapted from [1].

By [13], a type-2 search problem Q1 is (many-one or Turing) reducible another
type-2 search problem Q2 if and only if Q1 is similarly reducible to Q2 relative
to a generic oracle.

In the type-2/generic oracle setting, [1] proved that there are no reduc-
tions between the classes pictured in Figure 1 beyond those already shown.
Specifically, they proved that PPADSG 6≤T PPAG and PPPG 6≤T PPADSG and
PPAG 6≤T PPPG, where≤T denotes Turing reducibility and the superscript “G”
indicates the class relativized by a generic oracle.

Morioka [20] extended the separation results of [1] by showing that PPADG is
not Turing reducible to PLSG.1 This implies also that none of PPAG, PPADSG

or PPPG is Turing reducible to PLSG. This left open the question of whether
there are any reductions in the reverse directions. As a partial answer to this
question, Buresh-Oppenheim and Morioka showed that PLSG is not many-one
reducible to PPAG. An interesting aspect of their proof is that, building on
constructions from [2, 1], it uses known separation results from proof complexity.
Broadly speaking, the idea is that type-2 TFNP search problems can be coded
as purely existential, first-order formulas. From this, particular instances of
TFNP search problems become constant depth propositional formulas. Then,
polynomial time reductions between TFNP search problems can be translated

1Another way to prove this is by noting that Theorem 21 of [7] (also reported as
Theorem 4.1 in [21]) holds for Turing reducibility as well as for many-one reducibility. This
theorem states that any existential first-order sentence without built-in function or relation
symbols which is true in some infinite structure cannot be reduced to PLS.

3

into constant depth propositional proofs. In particular, [7, 21] proved that if
there is a many-one reduction between two TFNP search problems expressed
by first-order existential formulas, then there are quasipolynomial size, constant
depth Frege (LK) proofs relating the underlying combinatorial principles which
justify the totality properties of the TFNP search problems. In addition, they
established similar results for polylogarithmic degree Nullstellensatz proofs in
place of constant depth propositional proofs. From these results, prior known
separations in proof complexity implied that there can be no polynomial time
many-one reductions between the corresponding TFNP search problems.

The main goal of the present paper is to extend the constructions of
Buresh-Oppenheim and Morioka to apply to Turing reductions instead of to
only many-one reductions. We are able to carry this out completely. In
particular, Theorem 3.3 establishes that if a type-2 TFNP problem Q1 is
Turing reducible to another type-2 TFNP problem Q2, and if the totality
of Q1 and Q2 are expressible by purely existential first-order formulas, then
there are quasipolynomial size, polylogarithmic height, constant depth, free-cut
free LK proofs of the propositional formulas expressing the totality of Q1 from
those expressing the totality of Q2. Theorem 3.5 sharpens this construction by
limiting the kinds of substitution instances of formulas expressing the totality
of Q2 that may be used in the propositional proofs. It allows only “decision
tree” substitution instances to be used: decision tree substitutions are ones
that can be computed by low-depth decision trees and thus are in non-uniform
polynomial time.

Buresh-Oppenheim and Morioka further show that a many-one reduction
gives rise to low-degree Nullstellensatz refutations. Theorem 4.5 extends this
by showing it is sufficient to have a Turing reduction instead of a many-one
reduction. As a corollary, we establish the new result that there is no Turing

reduction of PLSG to PPAG. The results of Section 6 (discussed below) give an
alternate proof of this corollary; indeed, Theorem 6.1 shows that many-one and
Turing reducibility are equivalent for reductions to several classes, including to
PPAG. It is still open, however, whether PLSG is Turing reducible to PPPG.

As an additional new result, we can partially reverse our constructions of LK
proofs. Namely, we prove that if there are sufficiently uniform, quasipolynomial
size, polylogarithmic height, cut free, LK proofs of the propositional formulas
expressing the totality of Q1 from decision tree substitutions of the formulas
expressing the totality of Q2, then there is a Turing reduction from Q1 to Q2.
In effect, this says that constant depth, cut free reducibility in the propositional
proof setting is the exact (non-uniform) analogue of Turing reducibility between
TFNP search problems. The condition that there are no cuts can be somewhat
relaxed to allow cuts on polylogarithmic size formulas.

We have been unable to establish a analogous reversal for polylogarithmic
degree Nullstellensatz proofs. In fact, we would not expect to be able to do
so since it would entail putting restrictions on Nullstellensatz refutations that
would make them identical to quasipolynomial size, polylogarithmic height,
free-cut free Frege proofs.

The outline of the rest of the paper is as follows. Section 2 includes the

4

detailed definitions of type-2 TFNP and related concepts, as well as some
conventions that will be used throughout the paper. Section 3 establishes the
translation from a Turing reduction between TFNP problems to constant depth,
free-cut free LK proofs. The main results of this section are Theorems 3.3
and 3.5; we refer to these as the “forward direction”. Section 4 proves the
forward direction in the Nullstellensatz setting. Section 5 introduces the notion
of “decision tree substitution” and then proves the reverse direction for LK
proofs; namely, that a Turing reduction can be obtained from sufficiently
restricted LK proofs.

In Section 6 we consider more carefully the distinction between many-one
and Turing reducibility. First, we prove that PPA, PPAD, PPADS, and PLS
are all closed under Turing reductions. On the other hand, we conjecture that
PPP is not closed under Turing reductions. We also give an example of two
TFNP search problems Q1 and Q2 such that Q1 is Turing reducible to Q2 but
not many-one reducible. Q2 is the problem of searching for a solution to either
a PPP or a PPA problem, and Q1 is the problem of searching for solutions to
both a PPP and a PPA problem.

The relation between many-one and Turing reductions has been studied by
Hanika in [15], where it is shown there are problems A and B such that A is
Turing reducible to B, but if A is many-one reducible to B then P = NP. This
result does not fit into our context since A and B are not in TFNP (in particular
solutions to A and B are not polynomial time verifiable unless P = NP).

2 Preliminaries

An NP search problem is any problem for which solutions are recognizable in
polynomial time. It is total provided that, for each input there is at least one
solution.

Definition 2.1. Let R(x, y) be a polynomial-time predicate such that R(x, y)
implies |y| ≤ p(|x|), for some polynomial p. The problem QR is: “Given x, find
y such that R(x, y).” This is called an NP search problem. Let QR(x) be the
set {y|R(x, y)}. The problem QR is total if, for all x, QR(x) 6= ∅. TFNP is the
set of all total NP search problems.

By convention x, y, u, v, . . . denote binary strings (type-0 objects); we only
consider binary strings, so “string” always means “binary string”. As defined
above, TFNP problems take only a string as input; we call these “unrelativized”
or “type-1” because they take as arguments type-0 objects. A Turing machine
that only takes string inputs is also called a type-1 Turing machine. It is useful
to work with a “relativized” version of TFNP, denoted TFNP2. The superscript
“2” indicates that the class contains type-2 problems, namely, problems that
also take functions (type-1 objects) as inputs. Similarly, a Turing machine that
takes strings and functions as inputs is called a type-2 Turing machine.

We shall only consider type-1 inputs f whose arguments are strings of (the
same) length n, and output strings of length n. Let Un denote the set {0, 1}n

5

of strings of length n. The integer n serves as a size parameter: a type-2 Turing
machine M with type-0 inputs (strings) and type-1 inputs (functions) will be
invoked with type-0 inputs all of length n and constrained to only query its
functions with values from Un. The machine M is said to run in polynomial

time if there is a polynomial p such that for all type-0 inputs of length n and all
type-1 functions f as above, M runs in time ≤ p(n), where calls to the function
oracles count as a single time step.

Definition 2.2. A type-2 search problem Q of input signature (ℓ, k1, . . . , kr)
and output arity s assigns a set Q(f1, . . . , fr, x1, . . . , xℓ) ⊆ Us

n to each choice of
functions fi : U

ki
n → Un and strings xj ∈ Un. It is required that ℓ ≥ 1, r ≥ 0,

and ki ≥ 1. Then Q is the following search problem: “Given f1, . . . , fr and
x1, . . . , xℓ, find y1, . . . , ys such that ~y ∈ Q(~f, ~x)”. If the property ~y ∈ Q(~f, ~x)
is decided by a type-2 polynomial time Turing machine, then Q is a type-2 NP
search problem. If in addition Q(~f, ~x) 6= ∅ for all n > 0, all fi : Uki

n → Un,
and all xj ∈ Un, then Q is total. The set of total type-2 NP search problems is
denoted TFNP2.

The reason for requiring ℓ ≥ 1 is so that there is at least one string input, as
otherwise M would have no way of knowing the value of n. If there is no need
for a particular string input, the input 0n can be used as a placeholder.

Our definition of type-2 NP search problems effectively requires the search
problems to have linear growth rate; that is, the length of the output ~y is
linear in the length of the string inputs. It is more common to allow NP
search problems to have polynomial growth rate. We use the linear growth
rate convention however, since it fits the formalizations into first-order formulas
better. In addition, the restriction to linear growth rate makes no essential
difference since polynomial growth rate search problems can be simulated by
appropriate polynomial padding.

We next define many-one and Turing reductions between two type-2 prob-
lems [1]. (Recall our convention that reductions are always assumed to be
polynomial time.) These reductions allow a Turing machine to use a search
problem Q as a subroutine. The key is to define how a Turing machine M can
use a search problem as an oracle; we first give the definition for the case where
M is type-1.

Definition 2.3. A type-2 search problemQ(~g, ~y) is used as an oracle by a type-1
Turing machine M in the following manner: M has special query tapes for the
string inputs to Q and for each of the input functions gi to Q. M presents
a query (g1, . . . , gr, y1, . . . , yℓ) to Q by writing ~y on the query tapes for the
string inputs and writing a Turing machine description of each function gi on
its designated query tape. Each gi must be given an explicit polynomial time
clock pi as part of its description. In the next step, M receives an answer ~z to
Q(~g, ~y).

Letting m be the common length of the string values yi, this call to Q counts
as maxi pi(m) steps for the runtime of M . The machine M runs in polynomial

time relative to Q provided M always halts within p(n) steps for some fixed
polynomial p, where n is the length of the input to M .

6

If M is type-2 instead of type-1, then M may use an oracle Q(~g, ~y) in
much the same way; however, now the functions g1, . . . , gr are described by
oracle Turing machines that are allowed to query the functions input to M .
Specifically, suppose that the inputs of the Turing machineM include functions
f1, . . . , fr′ , each fi being k′i-ary. Then, when M invokes Q with functions
g1, . . . , gr, each gi is described by a type-2 Turing machine Mi that has
r′ function oracles. The runtime of M is defined as before. Note that when a
Turing machine gi invokes a function fj this counts as a single time step; this
reflects the fact that fj is an oracle and does not have a runtime.

We can now define the notions of many-one and Turing reductions.

Definition 2.4. Let Q1(~f, ~x) and Q2(~g, ~y) be type-2 search problems. A type-2
oracle Turing machine M is a Turing reduction from Q1 to Q2 if for any input
(~f, ~x) to Q1, M outputs some ~z ∈ Q1(~f, ~x) in polynomial time relative to Q2

(and ~f). In this case, Q1 is said to be Turing reducible to Q2, and we write
Q1 ≤T Q2. If Q1 ≤T Q2 and Q2 ≤T Q1, then Q1 and Q2 are Turing equivalent,
Q1 ≡T Q2.

If M makes at most one query to Q2, then M is a many-one reduction,
and Q1 is many-one reducible to Q2, written Q1 ≤m Q2. If Q1 ≤m Q2 and
Q2 ≤m Q1, then Q1 and Q2 are many-one equivalent, Q1 ≡m Q2.

The definition of reductions applies immediately also to type-1 search prob-
lems Q1; the only change is that the oracle machine M is type-1 instead of
type-2. This lets us define the standard classes of (type-1) TFNP problems in
terms of reductions to type-2 problems.

Definition 2.5. Let Q2 be a type-2 search problem. The class Cm(Q2),
respectively CT(Q2), is the set of type-1 search problems which are many-one,
respectively Turing, reducible to Q2.

With these definitions in place, we now introduce Buresh-Oppenheim and
Morioka’s method [7, 21] of defining TFNP2 search problems and TFNP classes
in terms of first-order formulas. As a example, consider the following formula
from [12, 10]:

0 < f(0) ∧ ∀x[x ≤ f(x)] → ∃x[x < f(x) ∧ f(f(x)) = f(x)]. (1)

The formula characterizes the iteration principle, ITER, and thereby the class
PLS. It is intended that this formula will be interpreted in the structure Un

with < and ≤ corresponding to lexicographic ordering on n bit strings and with
the constant symbol 0 denoting the string 0n. It is clear that (1) is valid in all
such structures. We think of this formula as expressing the totality of the type-2
NP search problem ITER: “Given 0n as a size parameter and f : Un → Un,
find u ∈ Un such that of the following holds: (a) f(0n) = 0n, or (b) f(u) < u,
or (c) u < f(u) and f(f(u)) = f(u).” As is well known, ITER is many-one
complete for PLS, and thus PLS = Cm(ITER). (In fact, also PLS = CT(ITER)
as we show in Section 6.)

7

The example of ITER generalizes to other existential sentences valid in Un.
These first-order sentences will generally use both uninterpreted function sym-
bols (e.g., the function f above) and interpreted constant symbols, relation
symbols and function symbols (e.g., 0, <, and ≤). The intent is that the
interpreted symbols depend only on n and thus have a fixed meaning in Un,
while the uninterpreted symbols will be the type-1 inputs.

We may assume without loss of generality that there are no relation symbols
and no uninterpreted constant symbols. Each uninterpreted constant symbol c
can be replaced a new unary function symbol fc, using the term fc(0) in place
of c. Relation symbols R, whether interpreted or uninterpreted, may be replaced
with a new function symbol fR for the graph of R and then using fR(~t) = 0
in place of R(~t). This works since, as usual, we disallow empty structures, so
n ≥ 1 and the universe has at least two members. The advantage of removing
interpreted relation symbols is that the only atomic formulas are equalities of
the form s = t for terms s and t. The equality sign, =, always denotes true
equality. The purpose of eliminating uninterpreted constant symbols is to avoid
the oddity of having 0-ary functions as inputs to a predicate; the type-0 inputs
play the same role and could be viewed as 0-ary function symbols. (We could
have also eliminated interpreted constant symbols, but this yields no advantage,
so we refrain from this.)

Following [7], interpreted constants and function symbols are called “built-
in”. The interpretation of built-in symbols depends only on n. Commonly used
built-in symbols include 0, 1, f≤, and f<, and are interpreted by 0n, 1n, and
the graphs of ≤ and <, respectively. Any use of ≤ and < is to be understood
as shorthand notation for formulas using f≤ and f<.

Definition 2.6. A language L is basic if it is finite and contains only the
following symbols: built-in constant symbols and function symbols, equality
(=), and the non-built-in function symbols f1, . . . , fr.

Definition 2.7. An ∃-formula is a formula of the form ∃~xφ(~x) over a basic
language, where φ is quantifier-free. If ∃~xφ(~x) has no free variables, then it
is an ∃-sentence. An ∃-sentence is total if it is true in all Un under arbitrary
interpretations for the function symbols fi.

∃-sentences give rise to NP search problems in the obvious way.

Definition 2.8. Let Φ be the ∃-sentence ∃~xφ(~x). The type-2 search problem
QΦ is: “Given the string 0n and interpretations for the fi’s, find ~u ∈ Un such
that φ(~u) holds.”

If Φ is total, then clearly QΦ is in TFNP2. The string input 0n to QΦ serves
only as a size parameter.

We already defined PLS above as Cm(ITER). The four classes that are
shown in Figure 1 are defined as follows.

PPAD. Let Φ be the prenex form of the formula

g(0) = 0 ∧ f(0) 6= 0 → ∃x[x 6= g(f(x)) ∨ (x 6= 0 ∧ x 6= f(g(x)))].

8

This gives the onto pigeonhole principle, OntoPIGEON = QΦ. Note that
g acts as the inverse of f . The class PPAD is Cm(OntoPIGEON).

PPADS. Let Φ be the prenex form of the formula

g(0) = 0 ∧ f(0) 6= 0 → ∃x[x 6= g(f(x))]. (2)

Define LeftPIGEON to be QΦ. Note that g is a left inverse of f . Then
PPADS is Cm(LeftPIGEON).

PPA. Let Φ be the prenex form of the formula

f(0) = 0 → ∃x[x 6= f(f(x)) ∨ (x 6= 0 ∧ x = f(x))].

Define LONELY to be QΦ. Then LONELY expresses the following parity
principle, or mod 2 counting principle. If f pairs elements, and pairs 0 with
itself, then there is another node paired with itself. Since the universes Un

have even cardinality, LONELY is total. Let PPA be Cm(LONELY).

PPP. Let Φ be a prenex form of the formula

∀x[f(x) 6= 0] → ∃x, y[x 6= y ∧ f(x) = f(y)].

This expresses the standard pigeonhole principle. Let PIGEON be QΦ

and PPP be Cm(PIGEON).

The above definitions of PPAD, PPADS and PPA are slightly different from
the prior definitions by [22, 1, 7]. It is more common to define them in terms of
the search problems SourceOrSink, SINK, and LEAF, respectively. It is easy,
however, to see that the above definitions are equivalent.

We next establish some definitions and conventions that will simplify the
technical details of working with ∃-sentences. The first simplification is to
require that atomic formulas be “basic”:

Definition 2.9. Let Φ be an ∃-sentence ∃~xφ(~x). Then Φ is basic if φ(~x) is
in disjunctive normal form (DNF)

∨
j∈J φj(~x), and, for each j ∈ J , φj(~x) is a

conjunction of formulas of the form g(~u) = v, v = w, or v 6= w, where ~u, v, w
are either variables or constant symbols.

It is easy to see that every ∃-sentence is equivalent to a basic formula.
Complex terms may be eliminated by introducing new existentially quantified
variables: for example, f(g(x)) = h(y) can be replaced with ∃u, v[g(x) = u ∧
h(y) = v ∧ f(u) = v]. Formulas of the form g(~u) 6= v may be replaced with
∃x[g(~u) = x ∧ x 6= v].

In a formula g(~u) = v, the function g may be either built-in or one of the
uninterpreted (input) functions fi. If g is built-in, and ~u, v ∈ Un are fixed, then
g(~u) = v has a fixed truth value that depends only on n and not on the choice
of fi’s. Similarly, if v, w ∈ Un are fixed, then v = w will be either true or false,
independently of the choice of fi’s.

9

Our second simplification is to assume that there is only one uninterpreted
(non-built-in) function symbol f in the language L of Φ. If there are multiple
function symbols f1, . . . , fr in Φ, then let i be a built-in constant symbol with
value equal to the binary expansion of i in all sufficiently large Un. (We won’t
consider the case when i > 2n, and it is irrelevant as we are only interested in
asymptotics anyway). Let f have arity equal to one plus the maximum arity
of the fi’s. Then we can replace each occurrence of fi(~x) in Φ with f(i, ~x,~0)
where ~0 represents extra inputs that pad out to the arity of f . Letting Φ′ be
the resulting formula, we clearly have QΦ ≡m QΦ′ .

As an example, applying these simplifications to the formula (2) defining
LeftPIGEON yields

∃x, y, z, w[(f(2, 0)=w ∧ w 6=0) ∨ f(1, 0)=0 ∨ (f(1, x)=y ∧ f(2, y)=z ∧ z 6=x)],

where f is now a binary function. The occurrences of f(t) and g(t) in (2)
have been replaced by f(1, t) and f(2, t), respectively, where 1 and 2 are to
be interpreted as 0n−11 and 0n−210 in Un, respectively. Also, note that the
quantifier-free subformula is in disjunctive normal form.

Propositional proofs. Sections 3 and 4 deal with two types of propositional
proof systems: constant depth LK (Frege) proofs formalized with the sequent
calculus, and the Nullstellensatz proof system. Our conventions for both systems
are standard. We presume the reader is already familiar with these proof
systems, but quickly review some terminology.

Our results are not particularly sensitive to the precise formulation used for
LK proofs, but we will assume the rules of inference are as given in Figure 2. The
connectives are ∧, ∨, ¬, ⊤ and ⊥. Negations are allowed only on propositional
variables, and ¬x is usually denoted x. LK proofs can be measured by their size,
their depth, their height and their cut complexity; see [5] or [18] for instance.
The depth of a formula is based on counting the alternations of ∧’s and ∨’s.
Depth 0 formulas are literals. Fix a size parameter S. Then depth 0.5 formulas
are conjunctions (or disjunctions) of at most logS many literals. Depth d + 1
formulas are the depth d formulas together with conjunctions (or disjunctions)
of at most S many depth d formulas. The depth, d(P), of a proof P is the
maximum depth of any formula in any sequent in the proof. The size, s(P),
of P is the total number of symbols in P , and it is required that s(P) ≤ S.
The height, h(P), of P is the height of the tree representation of P , i.e., the
maximum number of sequents along any branch from an initial sequent to the
conclusion.

When determining the depth of a proof, it is useful to note that the cut
inferences are the only inferences for which a formula in the lower sequent
might not appear as a (sub)formula in an upper sequent of the inference.
Conseqeuently, every formula appearing in a proof P must be a subformula
of either a formula appearing in an initial sequent or the endsequent, or a cut
formula. It is thus useful to bound the depth of cut formulas, and we will mostly
work with proofs that contain no free-cuts. The notion of “free-cut” is defined

10

Γ, A,B→∆

Γ, A ∧B→∆
∧ : left

Γ→∆, A Γ→∆, B

Γ→∆, A ∧B
∧ : right

Γ, A→∆ Γ, B→∆

Γ, A ∨B→∆
∨ : left

Γ→∆, A,B

Γ→∆, A ∨B
∨ : right

Γ→∆, A

Γ,¬A→∆
¬ : left

Γ, A→∆

Γ→∆,¬A
¬ : right

Γ→∆, A A,Γ→∆

Γ→∆
Cut

p→p
Logical Axiom

→⊤
⊤

⊥→ ⊥

Γ, A,A→∆

Γ, A→∆
Contract:left

Γ→∆, A,A

Γ→∆, A
Contract:right

Γ→∆
Γ′→∆′

Weakening

Figure 2: Γ′ and ∆′ are sets of formulas such that Γ ⊆ Γ′ and ∆ ⊆ ∆′.

in the general way of [6]: in the present paper, it means any cut for which the
cut formula is not a (descendant of a) formula that appears in an initial sequent.

We are interested in the asymptotic growth rates of families of constant depth

proofs Pn. The size of Pn will be bounded by S(n) = 2n
O(1)

, and its height
will be bounded by nO(1). Letting N = 2n, we have the size of Pn bounded

by 2(logN)O(1)

and its height bounded by (logN)O(1); the formulas proved
by these proofs will be constant depth and will have size quasipolynomially
bounded by N . We measure the complexity of proofs with respect to the size
of the sequent it proves. Thus, (Pn)n will be a family of quasipolynomial size,
polylogarithmic height, free-cut free proofs. It follows that the Pn’s are constant
depth.

For information on the Nullstellensatz system, see [2, 9]. A Nullstellensatz
proof consists of a polynomial over a field F , with variables that are intended
to range over the field elements 0 and 1 representing the values “False” and
“True”, respectively. Starting from a set of initial polynomials qi, intended to
express a set of propositional conditions φ, a Nullstellensatz refutation is a set
of polynomials pi such that

p1q1 + p2q2 + · · · pmqm = 1.

This serves to prove that the qi’s cannot be simultaneously all equal to zero;
thus the propositional formulas φ cannot be simultaneously satisfied. The
polynomials x2 − x are included among the qi’s to enforce the condition that
the variables x are 0/1-values. It is common to measure the complexity of a
Nullstellensatz refutation in terms of its total degree, i.e., the maximum total
degree of the polynomials piqi. Our Nullstellensatz refutations will have degree
(logN)O(1), that is, polylogarithmic degree.

11

3 Forward Direction, Propositional LK

Suppose Q1 and Q2 are TFNP problems and Q1 ≤T Q2. The goal of the present
section is to use the Turing reduction M from Q1 to Q2 to build constant depth
LK proofs which prove that the totality of Q2 implies the totality of Q1. As
discussed above, this was carried out already by [7] for many-one reductions.
Our constructions extend this by allowing M to be a Turing reduction and by
giving a more careful analysis of the height and cut complexity of the LK proofs.
In addition, we do not need the model extension property that was assumed
by [7]. In Section 5, we reverse the construction.

We begin by describing the propositional formulas that express the totality
of a NP search problem QΦ, where Φ is the ∃-sentence ∃~xφ(~x). Let Φ be a
basic formula over a basic language with one uninterpreted function symbol f .
For n ≥ 1, we define a propositional sequent FΦ,n→GΦ,n which expresses
the totality of the search problem QΦ on inputs of length n. The sequent
FΦ,n→GΦ,n uses propositional variables x~u,v, for all ~u, v ∈ Un, which define
the graph of f : the intended meaning of x~u,v is that f(~u) = v. For the x~u,v’s
to properly define a function, there should be exactly one value v ∈ Un for
each ~u ∈ Un such that x~u,v holds. This condition is expressed by the following
formulas:

Definition 3.1. TotΦ,n is the set of formulas

{∨
v∈Un

x~u,v : ~u ∈ Un

}
.

The notation
∨

is shorthand for 2n − 1 many binary disjunctions: these
disjunctions are to be applied in a balanced fashion.

FuncΦ,n is the set of formulas

{x~u,v ∨ x~u,v′ : ~u, v, v′ ∈ Un, v 6= v′} .

The sets TotΦ,n and FuncΦ,n both contain 2n
O(1)

many formulas. Specifically,
if the function f has arity k, then TotΦ,n contains 2kn many formulas, each
of size O(2n), and FuncΦ,n contains 2(k+2)n − 2(k+1)n many formulas, each a
disjunction of two literals.

The formulas
∧
TotΦ,n and

∧
FuncΦ,n are formed as balanced conjunctions.

The antecedent FΦ,n is the cedent
∧
TotΦ,n,

∧
FuncΦ,n.

FΦ,n expresses the well-definedness of the interpreted function symbol f ;
note it depends only on n and the arity k of f . The formula GΦ,n, defined
below, expresses the totality of the search problem QΦ.

Definition 3.2. Let Φ be in disjunctive normal form ∃~x
∨J

j=1 φj(~x), with each
φj a conjunction of literals ℓj,1, . . . , ℓj,ij . Let ~x be a vector of s variables
x1, . . . , xs; fix n ≥ 1; and let ~u = u1, . . . , us be a vector of fixed values in the
universe Un. The intent is that ~u assigns values to the xi’s, namely, val~u(xi) =
ui. We extend this notation to built-in constant symbols c by letting val~u(c)
equal the interpretation of c in Un.

12

Each literal ℓ ∈ {ℓj,i}i,j is of the form g(~a) = b or b = c or b 6= c, where
each ~a, b, c is either a variable xi or a built-in constant symbol. Note that
g may be either a built-in function or the uninterpreted function symbol f . The
propositional translation JℓK~u of ℓ under the assignment ~u is defined as follows.

a. If ℓ is f(~a) = b, then JℓK~u is xval~u(~a),val~u(b). The subscript val~u(~a) denotes
the vector of the values of the members of the vector ~a.

b. Otherwise ℓ involves only built-in symbols and variables that have been
assigned values by ~u. In this case, JℓK~u is either ⊤ or ⊥, depending on
whether ℓ is true or false in Un with these assigned values.

The propositional translation JφjK~u of the disjunct φj in φ is defined to be the
conjunction of the translations of the literal in φj , namely,

Jℓj,1K~u ∧ Jℓj,2K~u ∧ · · · ∧ Jℓj,ij K~u

The formula SolnΦ,n is defined to be the set of formulas JφjK~u, where j =
1, . . . , J , and ~u ranges over all values from Un. The formula GΦ,n is defined to
be
∨
SolnΦ,n, namely, a balanced disjunction of the formulas in SolnΦ,n.

That completes the definition of the sequent FΦ,n→GΦ,n, which expresses
the totality of the search problem QΦ.

We next state the main theorem of this section. It states that if QΦ ≤T QΨ,
then there are “well-behaved” LK-proofs of the sequents FΦ,n→GΦ,n from
substitution instances of sequents FΨ,m→GΨ,m, where m = nO(1). A “substi-
tution instance” of FΨ,m→GΨ,m means any sequent obtained by uniformly
substituting arbitrary propositional formulas λ~u,v for the variables x~u,v of
FΨ,m→GΨ,m. The substitution instances will required to be of depth 1.5;
that is, the formulas λ~u,v will be depth 1.5. (In fact, the substitutions defined
below by (4) will be “decision tree substitutions” as defined in Section 5.)

Theorem 3.3. Suppose QΦ ≤T QΨ. Then there are proofs Pn of the sequents

FΦ,n→GΦ,n

such that:

(a) The initial sequents of Pn are either logical axioms or are depth 1.5 substi-

tution instances of sequents FΨ,m→GΨ,m;

(b) Pn has size 2n
O(1)

, height nO(1), and constant depth; and

(c) There are no free-cuts in Pn.

The values m are implicitly bounded by m = nO(1) since the entire proof Pn,
and hence each substitution instance of a sequent FΨ,m→GΨ,m, has size

bounded by 2n
O(1)

. Recall that a non-free-cut is one whose cut formula is
a descendant of a formula in an initial sequent, in this case, a formula from a
substitution instance of a sequent FΨ,m→GΨ,m.

13

Corollary 3.4. Suppose that QΦ ≤T QΨ and that the sequents FΦ,n→GΦ,n do

not have quasipolynomial size, constant depth proofs, where size is measured in

terms of the size of the endsequent. Then the sequents FΨ,n→GΨ,n do not have

polynomial size, constant depth proofs.

The corollary follows immediately from Theorem 3.3, since the proofs
from Theorem 3.3 can be combined with substitution instances of proofs of
FΨ,m→GΨ,m to obtain proofs of FΦ,n→GΦ,n.

The proof of Theorem 3.3 will use the possible executions of a Turing
reduction M to construct the proofs Pn. For each n, we will construct a set of

depth 1.5 substitutions σ1, . . . , σr, for r = 2n
O(1)

. A substitution will substitute

a big (size 2n
O(1)

) disjunction of small (size nO(1)) conjunctions of variables.
In order to enforce the condition that negations apply only to variables, when
substituting for a negated atom, De Morgan rules are used to push the negations
down to atoms; that is to say, a negated atom is replaced by a big conjunction
of small disjunctions of negated variables.

Theorem 3.5. Suppose QΦ ≤T QΨ. Then there is a set of depth 1.5 substitu-

tions σ1, . . . , σr, and a set of sizes m1, . . . ,mr such that the following sequents

have a cut free LK proofs of size 2n
O(1)

and height nO(1):

(a) (
∧
TotΦ,n)→ (

∧
TotΨ,mi

)σi, for each i = 1, . . . , r,

(b) (
∧
FuncΦ,n)→ (

∧
FuncΨ,mi

)σi, for each i = 1, . . . , r,

(c)
∧r

i=1 (
∨
SolnΨ,mi

)σi, FΦ,n→GΦ,n.

As Section 5 discusses, the conditions (a) and (b) imply that the σi’s are
decision tree substitutions; indeed, the conditions (a) and (b) are a little stronger
than what is required for decision tree substitutions.

Theorem 3.3 follows immediately from Theorem 3.5. To see this, first use
cuts with the substitution instances FΨ,mi

σi→GΨ,mi
σi and the proofs from

parts (a) and (b) to derive the sequents

FΦ,n→GΨ,mi
σi.

Since GΨ,mi
σi is (

∨
SolnΨ,mi

)σi, applying ∧:right in a balanced manner derives
the sequent

FΦ,n→
r∧

i=1

(∨
SolnΨ,mi

)
σi. (3)

Finally, cut this against the sequent (c).
The rest of this section gives the proof of Theorem 3.5. After some work to

describe the substitutions, Lemma 3.8 will prove parts (a) and (b); Lemma 3.10
will prove part (c).

Suppose that M is a Turing reduction of QΦ to QΨ. The machine M takes
as input (α, 0n) where α : Uk

n → Un, and ~x ∈ Un. (The type-0 input is just 0n

since w.l.o.g. Φ is an ∃-sentence and has no free variables.) M makes queries to

14

the input function α and to the search problem QΨ. A call to QΨ(β, 0
m) passes

a function β : Uk′

m → Um; the function β is specified by describing a polynomial
time oracle Turing machine M ′ such that, for all ~v ∈ Um, M ′(~v) computes the
value of β(~v). The machineM ′ is allowed to make oracle calls to α but otherwise
runs deterministically. Accordingly, for particular ~v ∈ Um, the computation
of M ′(~v) can be described by a (α, n)-decision tree TM ′,~v such that the internal
nodes of TM ′,~v represent queries to α and each leaf of TM ′,~v is labeled with an
output value:

Definition 3.6. An (α, n)-decision tree is a tree where each internal node is
labeled α(~w) for some ~w ∈ Un. Each internal node has 2n children, with the
edges to its children labeled with values y, one edge for each y ∈ Un. Leaves
may be labeled by any member z of Um.

In TM ′,~v, an internal node labeled α(~w) corresponds to a query to α(~w),
an outgoing edge labeled y corresponds to an oracle response that α(~w) = y,
and a leaf labeled with z indicates that M ′(~v) outputs z = β(~v). It is clear
that if M ′(~v) has runtime bounded by r, then there is a canonical way to build
a corresponding (α, n)-decision tree of height ≤ r which faithfully represents
the computation of M ′(~v). (Our use of decision trees to represent oracle
computations repeats many prior works, including [2, 1, 7].)

To simplify some aspects of our proofs, we use the convention that all nodes
have 2n children, even if a particular value α(~v) is queried twice on the same
branch in the tree. Paths that contain a contradictory pair of answers do not
apply to any actual computation of M ′.

A branch in a tree is any path that starts at the root and descends to
a leaf. The set of branches in T is denoted br(T), and brz(T) is the set of
branches that end at leaf with label z. The complementary set of branches
is brz(T)

c = br(T) \ brz(T), namely the set of branches that with leaf labels
z′ 6= z. The length |P | of a branch P is the number of edges in P . The
height h(T) of T is the maximum length of any branch. The size s(T) of T
is the number of nodes in T . The oracle queries to QΨ invoked by the Turing
reduction M : QΦ ≤T QΨ give rise to decision trees TM ′,~v which have height

nO(1), and therefore size (2n)n
O(1)

= 2n
O(1)

.

Definition 3.7. If P is a branch in an (α, n)-decision tree, then we identify P
with the conjunction ∧

i∈I
x~wi,yi

,

where {α(~wi) = yi}i∈I is the set of α values set by the edge labels of P . The
formula P is defined to be

∨
i∈I x~wi,yi

: this expresses the negation of P .
When using P in an antecedent, it is convenient to replace the ∧’s with

commas to control the complexity of formulas appearing in proofs. Accordingly,
P̂ is used to denote the cedent containing the literals x~wi,yi

, for i ∈ I.

The proofs that will be constructed for Theorem 3.5 contain substitution
instances of FΨ,m→GΨ,m. These substitution instances will be defined from

15

families of (α, n)-decision trees. Namely, suppose T is a set of (α, n)-decision
trees, T = {T~w : ~w ∈ Um}. The intent is that the decision tree T~w computes
the value of β(~w) ∈ Um. The substitution σT uses formulas λT , ~w,y defined by

λT , ~w,y =
∨

P∈bry(T~w)

P. (4)

Note that this formula is a “big” disjunction of “small” conjunctions, since P is
identified with the conjunction of literals along a branch of length nO(1), and

there are potentially 2n
O(1)

many branches P in bry(T~w). The substitution σT
acts by replacing any positively occurring variable x~w,y with the formula λT , ~w,y.
Negatively occurring variables are replaced with the negation λT , ~w,y, namely,
the formula

∧
P∈bry(T~w) P .

Substitutions are denoted with postfix notation, so AσT indicates the result
of applying the substitution to the propositional formula A.

Lemma 3.8. Let T and σT be as above, and suppose m = nO(1). Then the

following two sequents have LK proofs which have size 2n
O(1)

, have depth nO(1),

and are cut free: (∧
TotΦ,n

)
→

(∧
TotΨ,m

)
σT , (5)

(∧
FuncΦ,n

)
→

(∧
FuncΨ,m

)
σT . (6)

Proof of Lemma 3.8. We first prove (5). (
∧
TotΨ,m)σT is a balanced conjunc-

tion of the formulas TotT ,~v defined as

∨

z∈Um

∨

P∈brz(T~v)

P,

one such formula for each choice of ~v ∈ Um. Together the two big disjunctions
range over all branches P in T~v. For each branch P , it is trivial that P̂→P

is provable with a cut free proof. Therefore, using ∨:right introductions, we
obtain a cut-free LK proof PP of P̂→TotT ,~v.

Fix ~v ∈ Un. Let P̂↿i be the cedent containing the first i members of P̂ . We

construct LK proofs PP,i of the sequents
∧
TotΦ,n, P̂↿i→TotT ,~v by induction,

with i varying from |P | down to 0. For i = |P |, PP,i is obtained from PP by

a weakening inference. For the induction step, let the (i + 1)st member of P̂
be x~wi+1,yi+1

. Since the P ’s come from the decision tree T~v, there are paths

Py′ such that (P̂y′)↿i+1 = P̂↿i, x~wi+1,y′ for every y′ ∈ Un. The induction hy-

pothesis gives proofs PPy′ ,i+1 for the sequents
∧
TotΦ,n, P̂↿i, x~wi+1,y′→TotT ,~v.

Combining these with ∨:left inferences in a balanced fashion gives a proof of∧
TotΦ,n, P̂↿i,

∨
y′(x~wi,y′)→TotT ,~v. The introduced disjunction is a member of

TotΦ,n. The desired proof PP,i is obtained by weakening and then applying

∧:left inferences and a contraction. If i = 0, then P̂↿0 is empty, and PP,0 is a
proof of the sequent

∧
TotΦ,n→TotT ,~v.

16

Combining all these proofs with ∧:right inferences gives the desired LK proof
of (5). The size bounds and the cut-free property are easy to verify.

Now we prove (6). The formula (
∧
FuncΨ,m)σT is a big conjunction of the

formulas FuncT ,~v,z,z′ defined as

(∧

P∈brz(T~v)

P
)
∨
(∧

P ′∈brz′(T~v)

P
′
)
, (7)

with ~v, z, z′ ∈ Um and z 6= z′. Fix ~v, z, z′. Any pair of branches P ∈ brz(T~v)
and P ′ ∈ brz′(T~v), as distinct paths in a single decision tree, must contain
a clashing assignment to α. That is to say, there is some pair of literals

x~w,y on P and x~w,y′ on P ′ with y 6= y′. This means P and P
′
contain

x~w,y and x~w,y′ as disjuncts (respectively). We thus get simple cut free proofs

of the sequent
∧
FuncΦ,n→P , P

′
. Combining these proofs with ∧:right in-

ferences (as usual, in a balanced fashion), we obtain proofs of the sequents∧
FuncΦ,n→P ,

∧
P ′∈bry(T~w) P

′
. Combining these proofs with more balanced

∧:right inferences, and then a single ∨:right inference, gives a proof of the
sequent

∧
FuncΦ,n→(7).

Finally, letting ~w, y, y′ vary, using ∧:right inferences gives the desired proof
of
∧
FuncΦ,n→ (

∧
FuncΨ,m)σT . The size bounds and the cut free property

left to the reader to verify.

We now define decision trees for the computation of the machine M which
computes a Turing reduction from QΦ to QΨ. This is more complicated than
the (α, n)-decision trees used for M ′ above, since M makes queries to instances
of Ψ as well as to α. For n ∈ N, the decision tree TM,n for the computation
of M(α, 0n) is defined as follows: Each internal node of the decision tree is
labeled either (a) with label α(~w) for some ~w ∈ Un, or (b) with label Ψ(β, 0m)
with β described as a polynomial time oracle Turing machine M ′. A node
with label α(~w) has 2n children and outgoing edges labeled with values y, one
outgoing edge per y ∈ Un. As before, traversing the outgoing edge labeled y

indicates that α(~w) = y. The nodes labeled with Ψ(β, 0m) have J ′ · 2s
′m

children, where s′ is the output arity of QΨ; the outgoing edges are labeled
with all possible values (j,~a) with 1 ≤ j ≤ J ′ and ~a ∈ Us′

m . The intuition
is that the edge with label (j,~a) may be traversed if ~a is a solution to the
search problem Ψ(β, 0m) and the jth disjunct of Ψ is satisfied by setting the
existentially quantified variables of Ψ equal to ~a. The leaf nodes of TM,n are
labeled with the value output byM(α, 0n) after the computation leading to that

leaf; thus, each leaf node is to be labeled with a tuple of values ~b which provides
solution to the search problem QΦ (with the exception that an arbitrary value
may be given for a contradictory path through TM,α). Since M has polynomial

runtime nO(1), the height of TM,n is nO(1). Each node has 2n
O(1)

children, and

hence the tree has size 2n
O(1)

.
The nodes labeled Ψ(β, 0m) in TM,n require more explanation. First, note

that the outgoing edges are labeled with values (j,~a), that is to say, the outgoing

17

edge label specifies both the solution to the NP search problem Ψ(β, 0m) and
the index j of the disjunct of Ψ which is satisfied by ~a. On the other hand,
when M calls the oracle Ψ(β, 0m), only a value ~a is returned, not the value of j.
Nonetheless, we can assume w.l.o.g. that the oracle call also returns j since
M can quickly determine a value for j by evaluating Ψ with its existentially
quantified variables set equal to ~a. Second, a path in the decision tree TM,n

may contain contradictions not only in the values given for α, but also contain
“implicit” contradictions if the edge labels (j,~a) on path specify solutions that
are incompatible with the values of α specified elsewhere on the path. Of course,
M could recognize such contradictions quickly by evaluating the jth disjunct
of Ψ with the values ~a. The machine M is not required to check for these
contradictions, but the LK proofs constructed below will be constructed as if
M does immediately verify the correctness of edge labels (j,~a). Indeed, we next
define the notion of a “trace” of a path in TM,n for exactly this purpose.

Definition 3.9. Let µ be a node in TM,n. Let Pµ denote the path from the
root of TM,n to the node µ. We define the set of traces to µ by induction on the
length of Pµ. Any trace to µ will consist of a sequence of literals x~w,y intended
to indicate the conditions that α(~w) = y. The following constructions may be
used to form traces:

(a) For the base case, if µ is the root node and Pµ has length zero, then the
only trace to µ is the empty sequence.

(b) Suppose node µ is labeled with a query α(~w), and let µ′ be a child of µ
with the edge (µ, µ′) labeled by y ∈ Un. If Λ is a trace to µ, then Λ, x~w,y

is a trace to µ′.

(c) Now suppose µ is labeled with a query Ψ(β, 0m), and let µ′ be a child of µ
that is reached by an edge labeled with (j,~a). Letting ψj(~x) be the jth

disjunct of Ψ, consider ψj(~a). If ψj(~a) contains a conjunct g(~y) = y′ or
y = y′ or y 6= y′ which is false, then there is no trace to µ. (Here, y, y′ are
uninterpreted constants or members of ~a, and g is built-in.) Otherwise,
let T = {T~w}~w∈Um

be the family of (α, n)-decision trees for β, and let
β(~wi) = yi, where i = 1, . . . , r, be the atomic formulas of ψj that involve β.
In this case, for any trace Λ to µ and any choice of paths Pi in bryi

(T~wi
),

the sequence Λ, P̂1, . . . , P̂r is a trace to µ′.

The motivation for part (c) of the definition is that in order for ψj(~a) to be
true, each of β(~wi) = yi must hold. That is to say, there must be some choice
for branches P1, . . . , Pk such that all literals in the sequence are true.

For µ a node in a tree T , let Tµ be the subtree of T rooted at µ.

Lemma 3.10. Let there be r nodes in TM,n which are labeled with calls to Ψ.

To fix notation, for i = 1, . . . , r, there are integers mi and calls to Ψ(βi, 0
mi)

in TM,n, where the function βi is defined by a Turing machine M ′
i. Each

machineM ′
i generates a family T i of (α, n)-decision trees T i = {T i

~w : ~w ∈ Umi
}.

Let σi be σT i .

18

Let µ be a node in TM,n, and let Λ be a trace to µ. Then there is a cut-free

proof Pµ of the sequent

Λ,

r∧

i=1

(
∨
SolnΨ,mi

)σi, FΦ,n→GΦ,n, (8)

such that Pµ has size 2n
O(1)

and height nO(1).

Although it is suppressed in the notation, Pµ depends on both µ and Λ.

Proof. The trace Λ contains variables x~w,y with ~w, y ∈ Un. We define Λ to be
contradictory if it contains two literals x~w,y, and x~w,y′ where y 6= y′. If Λ is
contradictory, then there is an easy cut free proof of

∧
FuncΦ,n,Λ→. From

this, (8) can be inferred by weakening.
For traces which are not contradictory, we prove the existence of the

proofs Pµ by induction on the depth of µ in the decision tree TM,n. To establish
the size bounds, we show that each Pµ has height nO(1) · (1 + hµ) where hµ is
the height of the subtree Tµ. The induction progresses from the leaves to the
root.

For the base case, let µ be a leaf, and Λ be a trace to µ. As a leaf node,
µ corresponds to a halting configuration of M . Once the execution of M
reaches µ, M is finished querying α and Ψ, and it then runs deterministically
to output values ~a in Un that satisfy some disjunction φj(~a) of φ(~a). The
propositional translation JφjK~a of φj(~a) is a conjunction of variables x~w,y plus
possibly occurrences of ⊥ and ⊤.

We claim that ⊥ does not occur in JφjK~a, and that every variable in JφjK~a
also appears in Λ. To prove this claim, it is sufficient to note that the trace Λ
contains enough information to ensure that there is a correct computation ofM
that reaches the node ν in the decision tree. And, since M is, in actuality,
a Turing reduction from QΦ to QΨ, it follows that the output ~a is valid and
thus makes some φj(~a) true. This implies that no conjunct in φj(~a) is false.
Therefore, ⊥ does not appear in JφjK~a. In addition, every variable x~w,y in JφjK~a
must appear in the trace Λ, since, if not, the value of α(~w) could be set to some
value y′ 6= y and still be consistent with the values specified by Λ. This cannot
happen, by virtue of M ’s being a correct Turing reduction.

It follows that the sequent Λ→JφjK~a has a cut free proof (containing only
∧:right inferences). Adding weakening inferences and ∨:right inferences yields
the desired proof Pµ of the sequent (8). It is clear that this proof has height
nO(1).

Now suppose that µ is an internal node labeled with an α query, α(~w). For
each y ∈ Un, µ has a child µy. By the definition of trace, Λ, x~w,y is a trace to µy.
Consider the proofs Pµy

given by the induction hypothesis of the sequents

Λ, x~w,y,

r∧

i=1

(
∨
SolnΨ,mi

)σi, FΦ,n→GΦ,n.

19

Combining these with ∨:left inferences eliminates the x~w,y’s in the antecedent
and gives a member of TotΦ,n. The desired proof Pµ is obtained by weakening
and adding ∧:left inferences and a contraction on

∧
TotΦ,n. The height of Pµ

is at most nO(1) greater than the maximum height of any Pµy
.

Finally suppose that µ is an internal node labeled Ψ(β, 0m) with the
function β described by Turing machine M ′ and induced family T = {T~w}~w

of decision trees. Each child µ′ of µ is reached by an edge labeled with (j,~a);

any trace to µ′ has the form Λ, P̂µ′,1, . . . , P̂µ′,kµ′
, where the cedents P̂µ′,i are in

bryi
(T~wi

) for β(~wi) = yi the i
th conjunct of ψj(~a) that involves β.

The induction hypothesis, and weakening, gives proofs of the sequents

Λ, P̂µ′,1, . . . , P̂µ′,kµ′
,

r∧

i=1

(
∨
SolnΨ,mi

)σi, FΦ,n→GΦ,n.

To form the proof Pµ it will suffice to show the sequent

(
∨

SolnΨ,m)σi→ (9)

can be proved from the set of sequents

Pµ′,1, . . . , Pµ′,kµ′
→ (10)

with a cut free proof of height nO(1).
For the moment, we fix µ′, and hence j and ~a. Let

∨
Pµ′,i denote

the balanced disjunction taken over all members of bryi
(T~wi

). For fixed
Pµ′,1, . . . , Pµ′,kµ′−1, we use balanced ∨:left inferences to combine sequents (10)
to obtain

Pµ′,1, . . . , Pµ′,kµ′−1,
∨
Pµ′,kµ′

→.

Continuing to apply ∨:left inferences in the same way on kµ′ − 1 down to 1,
yields ∨

Pµ′,1, . . . ,
∨
Pµ′,kµ′

→.

Note that each
∨
Pµ′,i is one of the conjuncts of (JψjK~a)σi. Thus, applying

a constant number of ∧:inferences (and possibly a weakening to introduce ⊤),
gives a proof of the sequent (JψjK~a)σi→.

(A different construction is needed in case ⊥ is in JψjK~a. In this case, there
are no traces to µ′. However, it is easy to derive (JψjK~a)σi→ from the logical
initial sequent ⊥→.)

Finally, applying ∨:left inferences to these last sequents, letting j and ~a vary
over all possible values, gives a cut free proof of (9) from the sequents (10) as
desired. It is easy to verify that this cut free proof has height nO(1).

Part (c) of Theorem 3.5 follows immediately from Lemma 3.10 by taking µ
to be the root of TM,n since the trace to the root is empty. Parts (a) and (b) of
the theorem were already established in Lemma 3.8. This completes the proof
of Theorem 3.5 and hence of Theorem 3.3.

20

Existing upper and lower bounds on the complexity of proofs of FΦ,n→GΦ,n

in conjunction with Corollary 3.4 give Turing separations between various
TFNP2 problems. The separations (a)-(c) of Corollary 3.11 were already
proved in [1]. However, Corollary 3.11 gives new proofs of these facts as well as
emphasizes the connection to proof complexity theory. Previously, [7] used proof
complexity results to recreate these separations only with respect to many-one
reductions, not Turing reducibility.

Corollary 3.11. (a) PIGEON 6≤T ITER. [20]
(b) LONELY 6≤T ITER. [20]
(c) LONELY 6≤T PIGEON. [1]

Proof. [3] shows that FΦ,n→GΦ,n require exponential size bounded depth
proofs when Φ is LONELY or PIGEON. By [7], FΦ,n→GΦ,n have
quasipolynomial size bounded depth proofs when Φ is ITER. The sep-
arations (a) and (b) therefore follow from Corollary 3.4. It is shown
in [4] that proving FLONELY,n→GLONELY,n from substitution instances of
FPIGEON,n→GPIGEON,n requires exponential size bounded depth proofs.
Therefore (c) holds by Theorem 3.3.

4 Nullstellensatz

This section shows that if Q1 ≤T Q2 and there are polylogarithmic degree
Nullstellensatz proofs that Q2 is total, then there are polylogarithmic degree
Nullstellensatz proofs that Q1 is total. This extends the results of [7] which
proved this result with respect to many-one reductions.

Definition 4.1. Suppose p is a polynomial and F = {fi} is a set of polynomials.
Write p ∈ 〈F, d〉 if and only if there exist polynomials gi such that p =

∑
i figi

and the maximum degree of the figi’s is at most d. The gi’s are a Nullstellensatz

proof of p from F . If p is 1, the gi’s are a Nullstellensatz refutation of F . If q is
a polynomial, then p ∈ q + 〈F, d〉 if there is an r ∈ 〈F, d〉 such that p = q + r.

Let QΦ be the NP search problem where Φ is the ∃-sentence ∃~xφ(~x), such
that Φ is a basic formula over a basic language. A Nullstellensatz proof that QΦ

is total will actually be a Nullstellensatz refutation of the fact that QΦ is not
total. We define a set of polynomials FΦ,n, which when simultaneously set 0,
encode that Φ fails to be total on inputs of length n. The polynomials in FΦ,n

use variables x~u,v to define the graph of f . The intended meaning is that x~u,v is
1 if f(~u) = v and x~u,v is 0 if f(~u) 6= v. To ensure that the x~u,v’s are 0/1-valued
we define the following set of formulas.

Definition 4.2. Let BoolΦ,n be {x2~u,v − x~u,v|~u ∈ Un, v ∈ Un}.

Polynomials are satisfied by an assignment if they are set 0. It is clear that
any assignment that satisfies BoolΦ,n sets each x~u,v to either 0 or 1.

The following sets ensure that f is a total function.

21

Definition 4.3. Let TotΦ,n be {
∑

v∈Un
x~u,v − 1|~u ∈ Un} and FuncΦ,n be

{x~u,vx~u,v′ |~u ∈ Un, v 6= v′ ∈ Un}.

If TotΦ,n is satisfied then f is total and if FuncΦ,n is satisfied then f is single
valued. Further, it is easy to see that x2~u,v − x~u,v is in 〈TotΦ,n ∪ FuncΦ,n, 2〉.
Therefore, if S is a set of formulas such that TotΦ,n∪FuncΦ,n ⊆ S and p ∈ 〈S, d〉,
then p ∈ 〈S\BoolΦ,n, d + 2〉. Since in applications d is nO(1), we omit BoolΦ,n

from further arguments.
Finally, to express the fact that Φ is not total, we need to encode the fact

that φj(~u) is false, for each choice of j, ~u. Recall the propositional translation
J·K~u of Section 3.

Definition 4.4. Let Φ be in disjunctive normal form ∃~x
∨J

j=i φj(~x), where
each φj is a conjunction of literals ℓj,1, . . . , ℓj,ij . Let ~x be a vector of s variables
x1, . . . , xs. Fix n ≥ 1 and let ~a = a1, . . . , as be a vector of fixed values from Un.

The Nullstellensatz translation p~a(¬φj) of ¬φj under the assignment ~a is

the polynomial Π
ij
i=1p~a(ℓj,i), where

p~a(ℓj,i) =





1 if Jℓj,iK~a is ⊤

0 if Jℓj,iK~a is ⊥

x~u,v if Jℓj,iK~a is x~u,v

Define FailureΦ,n to be the set {p~a(¬φj)|1 ≤ j ≤ J,~a ∈ Un}. Define FΦ,n to be
the union of TotΦ,n, FuncΦ,n, and FailureΦ,n.

If p~a(¬φj) is set 0, then some factor p~a(ℓj,i) of p~a(¬φj) is 0. There are two
ways p~a(ℓj,i) can be 0. The first is if Jℓj,iK~a is ⊥ and the second is if p~a(ℓj,i) is
x~u,v and f(~u) 6= v. In either case φj(~a) is false. Therefore when FailureΦ,n is
satisfied each solution to QΦ is ruled out.

Theorem 4.5 is the main result of this section.

Theorem 4.5. If M is a Turing reduction from QΦ to QΨ and

1 ∈ 〈FΨ,m,m
O(1)〉, then 1 ∈ 〈FΦ,n, n

O(1)〉.

In particular, if there are degree nO(1) Nullstellensatz proofs that QΨ is

total, but any Nullstellensatz proof that QΦ is total requires degree 2n
O(1)

, then
Theorem 4.5 implies that QΦ 6≤T QΨ. This fact is used to obtain the separations
in Corollary 4.10 below.

The proof of Theorem 4.5 closely follows the proof of Theorem 3.3. Namely,
given a Turing reduction M from QΦ to QΨ we use the (α, n)-decision trees
for the β’s on which M queries QΨ to define a substitution. Then we prove
Lemma 4.7, which involves general traces in TM,n. Theorem 4.5 is just the
special case of Lemma 4.7 applied to the trace to the root.

Branches in (α, n)-decision trees are now associated with polynomials.

Definition 4.6. If P is a branch in an (α, n)-decision tree, then we identify P
with the product ∏

i∈I

x~ui,vi ,

22

where {α(~ui) = vi}i∈I is the set of α values set by the edge labels in P .

A family of (α, n)-decision trees, T = {T~w|~w ∈ Um}, induces a substitution
σT in much the same manner as in Section 3. Let λT , ~w,y be

∑

P∈bry(T~w)

P.

Given a polynomial p(x~w1,y1
, x~w2,y2

, . . .) in the variables {x~w,y}~w,y∈Um
the

polynomial pσT is the polynomial p(λT , ~w1,y1
, λT , ~w2,y2

, . . .).
Recall the definition of trace in Definition 3.9. If Λ is a trace, then identify

Λ with the polynomial
∏

x~u,v∈Λ x~u,v.

Lemma 4.7. Let M be a Turing reduction from QΦ to QΨ, and suppose

1 ∈ 〈FΨ,m,m
O(1)〉. If Λ is a trace to µ, then Λ ∈ 〈FΦ,n, n

O(1)〉.

Before proving Lemma 4.7, we first prove two lemmas that will be needed
in the proof.

Lemma 4.8. Let T = {T~w} be a family of (α, n)-decision trees such that each

T~w ∈ T has height at most d. Then (TotΨ,m)σT ⊆ 〈FΦ,n, d〉.

Proof. We begin by proving the following claim:
Claim: For any (α, n)-decision tree T of height at most d,

∑
P∈br(T) P − 1 ∈

〈TotΦ,n, d〉.
The proof proceeds by induction on the structure of T . For the base case, if

T is a single node then there is only one empty branch. Since the empty branch
corresponds to the polynomial 1, the result is trivial.

Otherwise, pick a node µ of T labeled α(~u) whose children are leaves and
let T ′ be T with µ’s children pruned. Then by the induction hypothesis,∑

P ′∈br(T ′) P
′ − 1 ∈ 〈TotΦ,n, d

′〉, where d′ is the height of T ′. Let P ′
µ be the

branch in T ′ that ends at µ. The branches in T and T ′ coincide except the
branch P ′

µ in T ′ is replaced by the branches P ′
µx~u,v in T for each v ∈ Un. Thus

∑

P∈br(T)

P − 1 =
∑

P ′∈br(T ′):
P ′ 6=P ′

µ

P ′ + P ′
µ

∑

v∈Un

x~u,v − 1 =

∑

P ′∈br(T ′):
P ′ 6=P ′

µ

P ′+

(
P ′
µ(
∑

v∈Un

x~u,v − 1) + P ′
µ

)
−1 =

∑

P ′∈br(T ′)

P ′−1+P ′
µ(
∑

v∈Un

x~u,v−1).

Thus
∑

P∈br(T) P − 1 is in

〈TotΦ,n, d
′〉+ 〈TotΦ,n, |P

′
µ|+ 1〉 ⊆ 〈TotΦ,n, d〉

since d′ ≤ d and |P ′
µ| ≤ d− 1.

To prove the lemma let p ∈ (TotΦ,mi
)σT be

∑
y∈Un

∑
P∈bry(T~w) P − 1; note

that p is equal to
∑

P∈br(T~w) P − 1. The claim implies p ∈ 〈TotΦ,n, d〉, since the
height of T~w is at most d.

23

Lemma 4.9. Let T = {T~w} be a family of (α, n)-decision trees and m be nO(1).

Then (FuncΨ,m)σT ⊆ 〈FΦ,n, n
O(1)〉.

Proof. Any polynomial in (FuncΦ,m)σT is a sum of monomials of the form
P1P2, where P1 ∈ bry(T~w), P2 ∈ bry′(T~w), and y 6= y′. Since P1 and P2

have different outputs, there is a first query where they differ, say it is α(~u).
Then x~u,v is a factor of P1 and x~u,v′ is a factor of P2, for some v 6= v′. Thus
P1P2 ∈ 〈FuncΦ,n, n

O(1)〉, and the result follows.

Proof of Lemma 4.7: The proof proceeds in a manner similar to the proof of
Lemma 3.10 to show that Λ ∈ 〈FΦ,n, n

c〉 for a suitably large constant c. The
constraints on c will be made apparent during the proof, but c must strictly
dominate the constants of Lemmas 4.8 and 4.9, plus nc must strictly dominate
the runtime of QΦ and the implicit polynomial bounds on the runtimes of the
calls to QΨ.

Define Λ to be contradictory if it contains two factors x~u,v and x~u,v′ where
v 6= v′. If Λ is contradictory, then Λ ∈ 〈FuncΦ,n, n

c〉 ⊆ 〈FΦ,n, n
c〉, provided

c > c1 where nc1 bounds the length of a trace.
Let hµ be the height of the subtree of TM,n rooted at µ. For traces that are

not contradictory, we will prove that Λ ∈ 〈FΦ,n, n
c(hµ+1)〉, by induction on hµ.

For the base case, let µ be a leaf of TM,n and Λ be a trace to µ. As in the proof of
Lemma 3.10, when the execution of M reaches µ, M deterministically produces
an output ~a that satisfies a disjunct φj(~a) of φ(~a). Consider p = p~a(¬φj). Since
φj(~a) is true, p is not the zero polynomial. Also, each factor x~u,v of p must be a
factor of Λ since otherwise the value of α(~u) could be set to some v′ 6= v that is
consistent with the other values of α specified by Λ. But this would imply that
φj(~a) is not true, which cannot happen since M is a correct Turing reduction.
Since each factor of p is a factor of Λ, we have Λ ∈ 〈p, nc〉 ⊆ 〈FΦ,n, n

c〉,
Now let µ be an internal node. There are two cases based on the label of µ.

Suppose µ is labeled α(~u). Let µ′ be a child of µ with the edge (µ, µ′) labeled
α(~u) = v. By the induction hypothesis, Λx~u,v is in

〈FΦ,n, n
c · (hµ′ + 1)〉.

Rewrite Λ as
Λ
∑

v∈Un

x~u,v + (1−
∑

v∈Un

x~u,v)Λ.

Thus, Λ ∈ 〈FΦ,n, S +1〉+ 〈TotΦ,n, n
c〉 ⊆ 〈FΦ,n,max{S+ 1, nc}〉, where S is the

maximum of nc · (hµ′ + 1) taken over all children µ′ of µ. This immediately
implies Λ ∈ 〈FΦ,n, n

c · (hµ + 1)〉.
Now let µ be labeled Ψ(β, 0m). Let µ′ be a child of µ such that the edge

from µ to µ′ is labeled (j,~a). Let p = p~a(¬ψj) and suppose p is
∏I

i=1 x~wi,yi
.

Then Λ(pσT) is

Λ
I∏

i=1

∑

Pi∈bryi (T~wi
)

Pi =
∑

P1∈bry1(T~w1
),...,PI∈bryI (T~wI

)

Λ
I∏

i=1

Pi.

24

By induction each term of this sum is in 〈FΦ,n, n
c · (hµ′ + 1)〉. Therefore

Λ((p~a(¬ψj))σT) ∈ 〈FΦ,n, n
c · (hµ′ + 1)〉 ⊆ 〈FΦ,n, n

c · hµ〉 (11)

for all possible choices of j,~a. (If p is 0 then the induction fails as then there
would be no trace to µ′. However, in this case, Λ(pσT) = 0 and is trivially in
〈FΦ,n, n

c · hµ〉.)
By hypothesis, 1 ∈ 〈FΨ,m,m

c2〉 for suitable constant c2. This implies 1 ∈
〈(FΨ,m)σT ,m

c2 +nc3〉 after the substitution of the λT , ~w,y’s for variables, where
the constant c3 is chosen so that nc3 bounds degree of the λT , ~w,y’s. This can
be expressed, with polynomials fi and qi, as

1 =
∑

gi∈TotΨ,m∪FuncΨ,m

fi(giσT) +
∑

pi∈FailureΨ,m

qi(piσT). (12)

We have m ≤ nc4 for some constant c4. Each term in (12), and therefore each
fi and qi, has degree bounded by nc4c2 + nc3 . Multiplying by Λ gives

Λ =
∑

gi∈TotΨ,m∪FuncΨ,m

Λfi(giσT) +
∑

pi∈FailureΨ,m

qiΛ(piσT).

Letting c5 dominate the exponents for the bounds of Lemmas 4.8 and 4.9, each
term in the first summation is in 〈FΦ,n, n

c1 + nc4c2 + nc3 + nc5〉. And, by (11),
each term in the second summation is in 〈FΦ,n, n

c4c2 + nc3 + nc · hµ〉. With c

strictly greater than c1, c4c2, c3, and c5, this gives Λ ∈ 〈FΦ,n, n
c · (hµ + 1)〉.

This finishes the proof by induction.

Similar to the propositional LK case, we can use existing upper and lower
bounds on the degree of Nullstellensatz refutations of various principles to prove
separation results. The separations (a) and (b) were shown by direct methods
in [1]. The separations (c) and (d) are new; they were previously known only
with respect to many-one reducibility [7].

Corollary 4.10. (a) PIGEON 6≤T OntoPIGEON. [1]
(b) PIGEON 6≤T LONELY. [1]
(c) ITER 6≤T OntoPIGEON.
(d) ITER 6≤T LONELY.

Proof. It is shown in [1] that FPIGEON,n requires polynomial (in 2n) degree
Nullstellensatz refutations and [8, 12] shows the same for FITER,n. On the
other hand, [7] shows that FΦ,n has polylogarithmic degree Nullstellensatz
refutations when Φ is OntoPIGEON or LONELY. Thus the separations hold
by Theorem 4.5.

The results of Section 6 below give an alternate proof of (c) and (d). Namely,
Theorem 6.1 implies that Turing and many-one reducibility are equivalent for
reductions to either OntoPIGEON and LONELY. From this, the results of [7]
for many-one reducibility immediately give (c) and (d).

25

In addition, note that since OntoPIGEON ≤T LONELY one could also prove
ITER 6≤T OntoPIGEON from ITER 6≤T LONELY. It is still unknown whether
ITER is many-one or Turing reducible to LeftPIGEON or PIGEON. A partial
result along this line is shown in [7].

5 Propositional LKReversal

This section proves a converse of Theorem 3.5, namely, that a Turing reduction
between NP search problems can be extracted from proofs of the sequents (a),
(b), and (c) of Theorem 3.5. In fact, we will prove a slightly stronger result by
using a weaker condition (a′) in place of (a), and omitting (b) altogether.

It is worth explaining why the reversal requires there to be proofs of sequents
(a) and (b) at all. Or, in other words, why we do not reverse Theorem 3.3 instead
of Theorem 3.5. The following two facts are relevant: First, the substitutions σi
are depth 1.5 and, moreover, map variables x~w,y to big disjunctions of small
conjunctions. Second, the validity of the sequents (a) and (b) means that any
x~w,y can also be expressed as

∧
y′ 6=y x~w,y′ . Thus, σi maps the variables x~w,y to

conditions that are expressible both as disjunctions of small conjunctions and
as conjunctions of small disjunctions. As is well known, this in turn implies
that there are polynomial height (height nO(1)) decision trees for computing
the values βi(~w) of the function βi : U

k
m → Um coded by the formulas x~w,yσi.

Having these decision trees means there are (perhaps non-uniform) algorithms
for computing β(~w), and this corresponds to the fact that the Turing reduction
between the NP search problems must be polynomial time. (The fact that
the LK proofs are uniform will enable us to remove the non-uniformity of the
algorithm.)

To illustrate this in a more general setting, we define a notion of “decision
tree substitution” that applies to arbitrary propositional variables, not just to
the variables of the type x~u,v used above which are required to define a single-
valued, total function.2 Suppose we wish to prove Γ→∆ from substitution
instances of non-logical sequents Πj→Λj . A decision tree substitution σ is a
pair (σ′, σ′′) of substitutions, such that the following hold:

(i) Both σ′ and σ′′ are depth 1.5 substitutions. σ′ maps variables to big dis-
junctions of small conjunctions, and σ′′ maps variables to big conjunctions
of small disjunctions.

(ii) For each propositional variable x, there is an LK proof of

Γ→∆, xσ′, xσ′′. (13)

(iii) For each propositional variable x, there is an LK proof of

xσ′, xσ′′,Γ→∆. (14)

2We never use decision tree substitutions in this general setting, but it should help
motivate the formulation of Theorem 5.1.

26

Conditions (ii) and (iii) ensure that either Γ→∆ is true, or xσ′ is equivalent
to xσ′′. In particular, when proving Γ→∆, it can be assumed xσ′ and xσ′′

are equivalent. Since xσ′ and xσ′′ are disjunctions of small conjunctions, this
means there is a small height decision tree for xσ′.

When the above general notion of decision tree substitution is specialized
to variables that code the graph of a function β, the sequents (13) and (14),
respectively, become

FΦ,n→GΦ,n,
(∧

TotΨ,mi

)
σi (15)

and
FΦ,n→GΦ,n,

(∧
FuncΨ,mi

)
σi. (16)

To understand this, consider letting the variable x in (13) and (14) be x~w,y, and
letting its negation x be

∨
y′ 6=y x~w,y′ . It is not difficult to check that then the

set of sequents (13) and (14) are valid iff the set of sequents (15) and (16) are
valid.

Note how (15) and (16) are weaker than the sequents (a) and (b) of
Theorem 3.5.

We now state the reversal of Theorem 3.5. It is somewhat stronger than just
the converse of Theorem 3.5 for several reasons. First, because sequent (a) is
replaced by (a′); second, because sequent (b) is omitted; and, third, because the
substitutions σi may map variables to disjunctions of conjunctions of literals (as
compared to disjunctions of conjunctions of unnegated variables). We require
that the LK proofs be uniform: this has the usual meaning that there is a
polynomial time algorithm which can calculate the structure and content of any
formula in any sequent of the proof based on the path taken in the proof tree
from the conclusion of the proof to the sequent.

Theorem 5.1. Let Φ and Ψ be total ∃-sentences. Suppose there are substitutions
σ1, . . . , σr such that each σi is a depth 1.5 substitution that sends each variable

to a disjunction of conjunctions of literals. Further suppose there are polynomial

time uniform LK proofs of size 2n
O(1)

and height nO(1) of the following sequents:

(a′) FΦ,n→GΦ,n, (
∧
TotΨ,mi

)σi, for each i = 1, . . . , r, and

(c)
∧r

i=1 (
∨
SolnΨ,mi

)σi, FΦ,n→GΦ,n.

Finally suppose that the LK proofs are either cut free, or involve cuts only on

formulas of size nO(1). Then there is a Turing reduction M from QΦ to QΨ.

We fix the conventions for the proof of Theorem 5.1. The input to QΦ is
(α, 0n). Assume the arity of α is k and the arity of solutions to QΦ is s, so that
QΦ(α, 0

n) ⊆ Us
n and α : Uk

n → Un. Assume the arity of functions β input to
QΨ is k′ and the arity of solutions to QΨ is s′, so that QΨ(β, 0

m) ⊆ Us′

m and
β : Uk′

n → Un. Let Di, ~w,y be the set of disjuncts of x~w,yσi, so that x~w,yσi is∨
P∈Di,~w,y

P . Note how Di, ~w,y is playing the role that bry(T
i
~w) played earlier;

27

however, now the P ’s can be arbitrary conjunctions and may no longer explicitly
correspond to paths in a decision tree.

We will prove Theorem 5.1 by traversing backwards through the proof
of sequent (c). When the traversal reaches an inference that introduces a
(
∨
SolnΨ,m)σi it queries QΨ. The query to QΨ requires a description of a

function βi computed by a polynomial time Turing machine with access to
α; for this, Lemma 5.2 shows how to construct βi by traversing the proof of
the sequent (a′). Given that we can define βi, the traversal of the proof of
sequent (c) makes queries to α and QΨ(βi, 0

mi) that make formulas on the left
true. Therefore, it must eventually make a formula on the right true, which
must be a member of GΦ,n, which solves QΦ(α, 0

n) and finishes the reduction.
The proof of Lemma 5.2 defines βi in terms of an algorithm that traverses

the proof of sequent (a′), while making queries to α. These queries will make
formulas in the antecedent true. Since the proof is correct, the traversal must
eventually visit a sequent in which a formula A in the succedent is made true.
If A is a disjunct of

∨
~u∈Umi

∨
P∈Di,~u,v

P , a member of TotΨ,mi
σi, then βi(~u)

is defined to be v. If A is a disjunct of JφjK~a, a member of SolnΦ,n, then the
computation of βi(~u) has failed; however, this is not a problem since in this
case we have already solved QΦ(α, 0

n). Lemma 5.2 formalizes this intuition by
constructing two functions βi and γi from the proof of sequent (a′) such that if
the computation of βi(~u) fails then γi(~u) computes a solution QΦ(α, 0

n).

Lemma 5.2. Assume there are proofs of (a′) as in Theorem 5.1. Then, for each

i = 1, . . . , r, there functions βi : U
k′

mi
→ Umi

and γi : U
k′

mi
→ Us

n computed by

polynomial time Turing machines with access to α with the following properties.

Let ~u ∈ Uk′

mi
and suppose γi(~u) = ~a 6∈ QΦ(α, 0

n). Then, if βi(~u) = v, the

computation of βi(~u) specifies enough of α to satisfy some P ∈ Di,~u,v.

Proof. We describe an algorithm that calculates the values βi(~u) and γi(~u)
simultaneously. The algorithm traverses a branch in proof of (a′) starting at the
endsequent and without backtracking. We construct the traversal mentioned
in the preceding paragraph. Let αt be the partial function defined by the
answers to all the α queries the traversal has made after visiting t sequents.
Then αt defines a partial assignment τt, where τt � x~w,y (resp. τt 6� x~w,y)
if αt(~w) = y (resp. αt(~w) = y′ 6= y). As the traversal proceeds, the partial
assignment defined by αt will make certain formulas (called “p.s.-settable”) in
the tth sequent true or false:

Definition 5.3. A formula appearing in the proof of (a′) is p.s.-settable provided
it is a subformula of one of the following formulas:

•
∨

v∈Un
x~u,v, for ~u ∈ Un. (These are subformulas of FΦ,n.)

• x~u,v ∨ x~u,v′ , for ~u, v 6= v′ ∈ Un. (These are also subformulas of FΦ,n.)

• JφjK~a, for j ≥ 0 and ~a ∈ Un. (These are subformulas of GΦ,n.)

• P ∈ Di, ~w,y, for ~w, y ∈ Umi
. (These are subformulas of (

∧
TotΨ,mi

)σi.)

28

• Any ancestor of a cut-formula.

The phrase p.s.-settable means that the formula is settable by specifying a
polynomial size (p.s.) part of α. A p.s.-settable formula A is set true (resp.
false) by a partial assignment τ provided each variable x~w,y appearing in A is in
the domain of τ , and under this assignment the value of A is true (resp. false).

The traversal will be defined so that, at the tth sequent, one of the following
holds:

(1) Every p.s.-settable formula in the tth antecedent (resp. succedent) is set
true (resp. false) by τt. Furthermore, if

∨
j Aj is a p.s.-settable formula in

the tth antecedent, then the traversal knows a j such that Aj is set true
by τt.

(2) The traversal has found j,~a by step t such that JφjK~a is set true by τt.
The algorithm then halts, and the value of γi(~u) is defined to be ~a, and
βi(~u) is defined arbitrarily.

(3) The traversal has found v by step t such that P ∈ Di,~u,v is set true by τt.
The algorithm then halts, and the value of βi(~u) is defined to be v, and
γi(~u) is defined arbitrarily.

The second sentence of (1) applies to subformulas of
∨

v∈Un
x~u,v; for these

formulas the traversal must know the value v of α(~u) and thus know that x~u,v
is true. Note that (1) cannot hold for the initial sequents of the proof, thus the
traversal ends at either case (2) or (3), which defines βi(~u) and γi(~u). Since the
proof is polynomial height, the traversal wil be polynomial time, and hence βi
and γi are polynomial time. From (2) and (3) it is clear that βi and γi have the
required properties.

The algorithm breaks into cases on the type of inference. We show the most
interesting cases.

∧:right: Let S be Γ→∆, A ∧B, let S0 be Γ→∆, A, let S1 be Γ→∆, B, and
let S be derived from S0 and S1 by ∧:right. If A ∧B is not p.s.-settable, then
it is a subformula of (

∧
TotΨ,mi

)σi of the form

∧
~w∈W

(∨
y∈Umi

x~w,yσi

)
,

where W ⊆ Uk′

mi
. Since we are attempting to define βi(~u), the traversal moves

to S0 or S1 according to which of A or B contains the conjunct
∨

y∈Umi

x~u,yσi.

Otherwise, A ∧ B is p.s.-settable. By (1) A ∧ B is set false by τt, so the
traversal moves to S0 (resp. S1) if A (resp. B) is set false, and (1) still holds.

∨:left: Let S be Γ, A ∨B→∆, let S0 be Γ, A→∆, S1 be Γ, B→∆, and let S
be derived from S0 and S1 by ∨:left. Then A∨B must be p.s.-settable, therefore

29

the traversal knows that A is set true or B is set true. The traversal moves to
S0 in the former case and S1 in the latter. The condition (1) still holds.

∧:left: Let S be Γ, A ∧B→∆, S0 be Γ, A,B→∆, and let S be derived from
S0 by ∧:left. The only case with something to show is when A and/or B is
p.s.-settable but A∧B is not (we only show the case when A is p.s.-settable and
B is not, the other cases are similar). This can only arise when A is

∨
y∈Un

x~w,y

or x~w,y∨x~w,y′ , for some ~w, y, y′ ∈ Un. In either case, the traversal queries α(~w),
and keeps track of the literal that sets A true. Then (1) holds for S0.

∨:right: Let S be Γ→∆, A ∨ B, let S0 be Γ→∆, A,B, and let S be derived
from S0 by ∨:right. Again, the only case with something to show is when A

and/or B is p.s.-settable but A ∨ B is not (we only show the case when A is
p.s.-settable and B is not, the other cases are similar). This only arises when
A is P ∈ Di,~u,y or is JφjK~a. Either way, A is polynomial size, and the traversal
queries the variables in A. If A is set true and A is JφjK~a, then case (2) holds.
If A is set true and A is P ∈ Di,~u,y, then case (3) holds. Otherwise, A is set
false and case (1) holds for S0.

cut: Let S be Γ→∆, let S0 be Γ→∆, A, let S1 be A,Γ→∆, and let S be
derived from S0 and S1 by a cut. Since A is a cut-formula it is polynomial size,
and the traversal queries all the variables in A. If A is set true (resp. false) the
traversal proceeds to S1 (resp. S0). Then (1) still holds.

We now prove Theorem 5.1.

Proof of Theorem 5.1. The algorithm for the Turing reduction from QΦ to QΨ

traverses the proof of the sequent (c) in a manner similar to the traversal of
Lemma 5.2. Let τt be as in the proof of Lemma 5.2. Expand the notion of
p.s.-settable to include subformulas of (

∨
SolnΨ,mi

)σi. Note that (
∨

SolnΨ,mi
)σi

is of the form

∨
j,~a

(JψjK~a)σi =
∨

j,~a

∧H

h=1

∨
P∈Di,~wh,yh

P,

where H depends on j and ~a. We extend the notion of setting a p.s.-settable
formula true to include these new types of p.s.-settable formulas. (We do not
need to update the notion of setting a p.s.-settable formula false since the new
types of p.s.-settable formulas appear only in the antecedent.) A p.s.-settable
formula A is set true by a partial assignment τ providing the following hold: If
A is a x~w,y (resp. x~w,y), then A is set true if τ � A (resp. τ 6� A). If A is

∨
j Aj ,

then A is set true by τ if there is a known Aj set true by τ . If A is
∧

j Aj , then
A is set true by τ if each Aj is set true by τ . For example, (

∨
SolnΨ,mi

)σi is
set true by τ if and only if the traversal knows values j,~a and knows disjuncts
P1, . . . , PH such that, for each h, Ph is in Di, ~wh,yh

and τ sets Ph true.
The traversal does a polynomial amount of work at the tth sequent (relative

to α and QΨ) and at each step one of the following hold:

30

(1) If A is in the tth antecedent (resp. succedent) and is p.s.-settable then A
is set true (resp. false) by τt.

(2) The traversal has found values j,~a by step t such that JφjK~a is set true by
τt. The algorithm then halts, and the reduction outputs ~a.

The second sentence of (1) requires that the traversal keep track of both
α and QΨ queries. Then when the traversal visits an ∨:left inference that
introduces a subformula of either

∨
v∈Un

x~u,v or
∨

j,~a(JψjK~a)σi it knows how to
proceed. It is clear that (1) cannot hold for the initial sequents of the proof,
so the correctness of the proof implies case (2) must eventually hold, at which
point the reduction outputs ~a.

It remains to show that the traversal preserves (1) and (2). We show only
the ∧:left case, as it is the only case that differs significantly from the cases in
the proof of Lemma 5.2.

∧:left: Let S be Γ, A∧B→∆, let S0 be Γ, A,B→∆, and let S be derived from
S0 by ∧:left. The new case to consider is when (w.l.o.g.) A is (

∨
SolnΨ,mi

)σi.
Use Lemma 5.2 to obtain βi and γi. The traversal queries QΨ(βi, 0

mi) receives
answer ~a ∈ Umi

. Let ψj be a conjunct of ψ that is made true by the function
βi with the existential variables of Ψ set equal to ~a. Let JψjK~a be

∧H

h=1
x~wh,yh

so that (JψjK~a)σi is ∧H

h=1

∨
P∈Di,~wh,yh

P.

The traversal algorithm does not know the correct value of j, but there are
only a constant number J ′ of values for j, so it can try them all. For a given
value of j, the traversal calculates γi(~wh) for each 1 ≤ h ≤ H . If there is an h
such that γi(~wh) = ~a ∈ QΦ(α, 0

n), then case (2) holds. Otherwise, for each h,
βi(~wh) = yh and enough of α has been specified to make a P in Di, ~wh,yh

true.
Thus (JψjK~a)σi is set true, so that (1) holds for S1.

6 Many-one versus Turing reductions

This section shows that for many common TFNP classes Turing reducibility is
equivalent to many-one reducibility. This includes the classes PPAD, PPADS,
PPA, and PLS. On the other hand, we give an example where Turing reducibil-
ity does not imply many-one reducibility. It is an open question whether Turing
reducibility implies many-one reducibility for the class PPP.

Theorem 6.1. Let Q1 be a type-1 or type-2 NP search problem, and let Q2 be

any of OntoPIGEON, LeftPIGEON, LONELY, or ITER. Then Q1 ≤m Q2 if

and only if Q1 ≤T Q2.

31

As a consequence of Theorem 6.1 we get the following corollary.

Corollary 6.2. Let Q be any of OntoPIGEON, LeftPIGEON, LONELY, or

ITER, then Cm(Q) = CT(Q).

Therefore, the classes PPAD, PPADS, PPA, and PLS could have been
equivalently defined with respect to Turing reducibility. On the other hand,
Theorem 6.3 constructs problems for which many-one and Turing reducibility
are not equivalent. Hanika [15, Thm 3.12] proves a related conditional separa-
tion; however that result does not apply to NP search problems.

Theorem 6.3. There exist type-2 NP search problems Q1, Q2 such that

Q1 ≤T Q2, but Q1 6≤m Q2.

We first prove Theorem 6.1 and then Theorem 6.3.

Proof of Theorem 6.1. We only consider the case when Q2 is ITER, the others
are similar and are left to the reader. Let M be a Turing reduction from Q1 to
ITER. The intuition is that M makes multiple calls ITER(g, 0m) and that these

can be combined into a single call to ITER(F, 0n
O(1)

), for some appropriate F .
The rest of the proof defines F and shows how to use it in a many-one reduction.
For simplicity we assume that Q1 has no type-1 input.

Without loss of generality, each call to ITER byM has the same size param-
eter m, since ITER has the instance extension property of Buresh-Oppenheim
and Morioka [7]. For notational convenience, assume that solutions to Q1 are
vectors of length 1. Finally, let p(n) be a bound on the runtime of M and let ε
be the empty sequence.

Let ~x be the string input to Q1. The function F depends on ~x, and takes as
input 〈u; y1, . . . , yℓ; v〉, where u ∈ Un, y1, . . . , yℓ, v,∈ Um, and ℓ ≤ p(n). Since
F must take strings as arguments, we encode F ’s input as

u1y11y2 · · · 1yℓ0
(m+1)(p(n)−ℓ)v ∈ Un+(m+1)p(n)+m.

A 1 in the (n + (m + 1)i + 1)th position (0 ≤ i < p(n)) indicates that yi+1 is
an answer to the (i + 1)st query to ITER. A 0 in the (n + (m + 1)i + 1)th bit
indicates that no (i + 1)st query to ITER has been made yet. The intended
meaning for the inputs is as follows: u is either 0n or equals the output of M ;
y1, . . . , yℓ is a valid sequence of answers to the first ℓ queries to ITER made by
M ; and if y1, . . . , yℓ determine an (ℓ + 1)st call ITER(g, 0m) by M(~x), then v

is an element of the domain of g. A sequence y1, . . . , yℓ is a valid sequence of
answers to the first ℓ queries to ITER if for all 1 ≤ i ≤ ℓ, y1, . . . , yi−1 determines
an ith query to ITER and yi is a valid solution to that query. It is clear there
is a polynomial time procedure to determine if y1, . . . , yℓ is valid.

If u 6= 0n or y1, . . . , yℓ not valid, then let F (〈u; y1, . . . , yℓ; v〉) =
〈u; y1, . . . , yℓ; v〉. Otherwise, let u = 0n and y1, . . . , yℓ be valid. Define
F (〈u; y1, . . . , yℓ; v〉) as follows:

32

1. Suppose answering the first ℓ calls to ITER with y1, . . . , yℓ causes M to
halt and output a ∈ Q1(~x). Then let

F (〈u; y1, . . . , yℓ; v〉) = 〈a; ε; 0m〉.

2. Suppose answering the first ℓ calls to ITER with y1, . . . , yℓ causes M to
make an (ℓ + 1)st query to ITER. Suppose the query is ITER(g, 0m).

a. If v ∈ ITER(g, 0m) then let

F (〈u; y1, . . . , yℓ; v〉) = 〈0n; y1, . . . , yℓ, v; 0
m〉.

b. If v 6∈ ITER(g, 0m) then let

F (〈u; y1, . . . , yℓ; v〉) = 〈0n; y1, . . . , yℓ; g(v)〉.

We now give the many-one reduction M ′ from Q1 to ITER using F . On
input ~x ∈ Un, M

′ returns 0n if 0n is a solution to Q1(~x). The reason for
this will be apparent below. Otherwise, M ′ queries ITER(F, 0n+(m+1)p(n)+m)
and receives answer 〈u; y1, . . . , yℓ; v〉. We claim that u is a solution to Q1(~x).
Assuming this claim, M ′ finishes by outputting u. The rest of the proof shows
that the claim holds.

In general, if w is a solution to ITER on input g then there are three
possibilities. Either (1) w = 0 and g(0) = 0 (2) g(w) < w or (3) g(w) > w and
g(g(w)) = g(w). If

w = 〈u; y1, . . . , yℓ; v〉 ∈ ITER(F, 0n+(m+1)p(n)+m)

we show the first two cases cannot happen and that in the third case, u is a
solution to Q1(~x).

Consider computing F (0); note the input 0 codes the empty sequence of
oracle calls to ITER. This sequence either leads M to make a call to ITER or
causesM to halt and produce an output a. (Here a 6= 0 since 0 was immediately
ruled out as a solution.) In the first case, the (n+ 1)st bit of F (0) is 1, and in
the second case the first n bits of F (0) are not all zero. Therefore F (0) 6= 0.

It is straightforward to check that the coding conventions (specifically that
a 1 in the (n+ (m+1)i+1)th bit indicates a query to ITER) and the fact that
0n is ruled out as a solution imply that F (w) ≥ w. Thus case (2) is ruled out.

Thus it must be that F (w) > w and F (F (w)) = F (w) for any solution w =
〈u; y1, . . . , yℓ; v〉 to ITER(F, 0m). Let F (〈u; y1, . . . , yℓ; v〉) = 〈a; b1, . . . , bk; c〉.
From the definition of F , F (〈a; b1, . . . , bk; c〉) = 〈a; b1, . . . , bk; c〉 if and only if
a 6= 0n or b1, . . . , bk is not valid. Suppose b1, . . . , bk is not valid. Then, by
definition of F , there is no string t such that F (t) = 〈a; b1, . . . , bk; c〉, which is a
contradiction since we could take t to be 〈u; y1, . . . , yℓ; v〉. Now suppose a 6= 0n.
F was defined so that in this case a is a solution to Q1(~x). Thus the claim is
proved, and that finishes the proof of the theorem.

A similar argument holds if Q1 has a type-1 input.

33

The proof of Theorem 6.3 is based on the fact that LeftPIGEON 6≤T

LONELY and LONELY 6≤T PIGEON [1]. We will let Q1 be the problem
of solving both LeftPIGEON and LONELY, and Q2 be the problem of solving
either PIGEON or LONELY. Since [1] shows LeftPIGEON ≤m PIGEON, it will
be clear that two calls to Q2 can solve Q1, and hence Q1 ≤T Q2. However, being
able to solve Q1 with only a single call to Q2 is tantamount to having either
LeftPIGEON ≤m LONELY or LONELY ≤m PIGEON, which is a contradiction.
The following proof fills in the details.

Proof sketch of Theorem 6.3. Let Q1 be the problem: “Given 0n and f, g, h :
Un → Un, find u ∈ LeftPIGEON(f, g, 0n) and v ∈ LONELY(h, 0n).” Let Q2 be
the problem: “Given 0n and f : Un → Un, if f(0) 6= 0 find u ∈ PIGEON(f, 0n),
and if f(0) = 0 find u ∈ LONELY(f, 0n).”

Suppose M is a many-one reduction from Q1 to Q2. Let n be sufficiently
large. We show how to specify f, g, h at step i of M ’s computation such that
either a polynomial part of f, g have been specified and f, g do not contain a
solution to LeftPIGEON, or a polynomial part of h has been specified and h

does not contain a solution to LONELY. Assuming this, M is forced to output
a solution for both LeftPIGEON and LONELY, even though, for one of them,
there is no solution on the polynomial part of the underlying graph which has
been set. Therefore, since M returns an answer involving the unspecified part
of the input, M ’s answer is wrong. Thus M is not a correct reduction, which is
a contradiction.

We now show how to set f, g, h. It is clear how to do this if M queries
f , g or h at step i since M can only make polynomially many queries and
there is an exponential search space. Now suppose M queries Q2(F, 0

m).
Calculate F (0) by arbitrarily answering queries to f, g, h without solving either
LeftPIGEON(f, g, 0n) of LONELY(h, 0n). Suppose F (0) 6= 0. Arbitrarily fix
f, g and shorten the decision tree for each F (u) to only involve h. Lemma
4 of [1] shows how to specify a polynomial portion of h to correctly answer
PIGEON(F, 0m) without solving LONELY(h, 0n). If F (0) = 0, then arbitrarily
fix h and shorten the decision tree for each F (u) to only involve f, g. Then
Theorem 6 of [1] shows that there is a way to specify a polynomial part of f
and g that solves LONELY(F, 0m) without solving LeftPIGEON(f, g, 0n).

We finish by mentioning a recently obtained improvement to Theorem 6.3.
Let Q1 ≤k Q2 denote that there is a Turing reduction M from Q1 to Q2 such
that M makes at most k calls to Q2. Then Theorem 6.3 proves there exists
Q1, Q2 such that Q1 ≤2 Q2 but Q1 6≤1 Q2. In an earlier version of this paper,
we conjectured that this result extends to all k:

Conjecture 6.4. For each k ≥ 2 there exists Q1, Q2 such that Q1 ≤k+1 Q2 but

Q1 6≤k Q2.

To understand the motivation for this conjecture, fix a prime p > 2 and let
MODp be QΦ, where Φ is

∃x[f(x) 6= x→ fp(x) 6= x]

34

This is a total ∃-sentence since p > 2 and the universe being partitioned has
size a power of 2. If p = 2 then MODp is LONELY. It seemed natural that
Conjecture 6.4 holds for Q1 and Q2 which are combinations of the MODp

principles defined using the ⊗ and & operations defined next.
Given Q1(f1, x1) and Q2(f2, x2), let (Q1 ⊗ Q2)(f1, f2, x1, x2) be the NP

search problem “Given f1, f2, x1, x2 find yi ∈ Qi(fi, xi) for i = 1, 2.” Let y
be 0 or 1, and let (Q1&Q2)(f1, f2, x1, x2, y) be the NP search problem “Given
f1, f2, x1, x2, y find y1 ∈ Q1(f1, x1) if y is 0 and find y2 ∈ Q2(f2, x2) if y is
1.” The symbols ⊗ and & are motivated by linear logic, where Γ→A ⊗ B

means Γ has enough resources to solve both A and B and Γ→A&B means
Γ has enough resources to solve either one of A or B. Theorem 6.3 es-
sentially states that LeftPIGEON ⊗ LONELY ≤2 PIGEON&LONELY but
LeftPIGEON⊗ LONELY 6≤1 PIGEON&LONELY.

This next theorem extends this intuition to apply to multiple MODp princi-
ples for multiple distinct primes p. This suffices to prove that Conjecture 6.4 is
true.

Theorem 6.5. Let p1, . . . , pk+1 be distinct primes. Then

MODp1 ⊗ · · · ⊗MODpk+1 ≤k+1 MODp1& · · ·&MODpk+1

but

MODp1 ⊗ · · · ⊗MODpk+1 6≤k MODp1& · · ·&MODpk+1 .

It is clear that k + 1 calls suffices for a reduction between these problems.
However, with only k calls, the reduction would have to solve some MODpi

counting principle by only using MODpj principles for i 6= j. The intuition is
that this cannot happen since [2] have defined a counting principle related to
the MODp principles and proved that there are no polynomial size proofs of
the counting mod pi principle from the counting mod pj principle, for distinct
primes pi and pj .

The proof of Theorem 6.5 is too long include in the present paper, but can
be found in Johnson [16].

References

[1] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi,
The relative complexity of NP search problems, Journal of Computer and
System Sciences, 57 (1998), pp. 3–19.

[2] P. Beame, R. Impagliazzo, J. Kraj́ıček, T. Pitassi, and P. Pudlák,
Lower bounds on Hilbert’s Nullstellensatz and propositional proofs, Proceed-
ings of the London Mathematical Society, 73 (1996), pp. 1–26.

[3] P. Beame, R. Impagliazzo, J. Kraj́ıček, T. Pitassi, P. Pudlák, and

A. Woods, Exponential lower bounds for the pigeonhole principle, in Pro-
ceedings of the 24-th Annual ACM Symposium on Theory of Computing,
1992, pp. 200–220.

35

[4] P. Beame and T. Pitassi, An exponential separation between the parity

principle and the pigeonhole principle, Annals of Pure and Applied Logic,
80 (1996), pp. 195–228.

[5] A. Beckmann and S. R. Buss, Separation results for the size of constant-

depth propositional proofs, Annals of Pure and Applied Logic, 136 (2005),
pp. 30–55.

[6] , Corrected upper bounds for free-cut elimination. Typeset manuscript,
in preparation, 2009.

[7] J. Buresh-Oppenheim and T. Morioka, Relativized NP search prob-

lems and propositional proof systems, in Proc. 19th IEEE Conference on
Computational Complexity (CCC), 2004, pp. 54–67.

[8] S. R. Buss, Lower bounds on Nullstellensatz proofs via designs, in Proof
Complexity and Feasible Arithmetics, P. Beame and S. Buss, eds., Ameri-
can Mathematical Society, 1998, pp. 59–71.

[9] S. R. Buss, R. Impagliazzo, J. Kraj́ıček, P. Pudlák, A. A.

Razborov, and J. Sgall, Proof complexity in algebraic systems and

bounded depth Frege systems with modular counting, Computational Com-
plexity, 6 (1996/1997), pp. 256–298.

[10] S. R. Buss and J. Kraj́ıček, An application of Boolean complexity to

separation problems in bounded arithmetic, Proc. London Math. Society, 69
(1994), pp. 1–21.

[11] X. Chen and X. Deng, Settling the complexity of two-player Nash equilib-

rium, in Proceedings of the 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’06), 2006, pp. 261–272.

[12] M. Clegg, J. Edmonds, and R. Impagliazzo, Using the Groebner

basis algorithm to find proofs of unsatisfiability, in Proceedings of the
Twenty-eighth Annual ACM Symposium on the Theory of Computing,
1996, pp. 174–183.

[13] S. A. Cook, R. Impagliazzo, and T. Yamakami, A tight relationship

between generic oracles and type-2 complexity theory, Information and
Computation, 137 (1997), pp. 159–170.

[14] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, The

complexity of computing a Nash equilibrium, in Proceedings of the Thirty-
Eighth Annual ACM Symposium on Theory of Computing (STOC’06),
2006, pp. 71–78.

[15] J. Hanika, Search Problems for Bounded Arithmetic, PhD thesis, Charles
University, February 2004. Available at Electronic Colloquium on Compu-
tational Complexity (ECCC), theses.

36

[16] A. S. Johnson, Reductions and Propositional Proofs for Total NP Search

Problems, PhD thesis, Univ. of California, San Diego, August 2011.

[17] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, How easy

is local search?, J. Comput. System Sci., 37 (1988), pp. 79–100.

[18] J. Kraj́ıček, Bounded Arithmetic, Propositional Calculus and Complexity

Theory, Cambridge University Press, Heidelberg, 1995.

[19] N. Megiddo and C. Papadimitriou, On total functions, existence the-

orems and computational complexity, Theoretical Computer Science, 81
(1991), pp. 317–324.

[20] T. Morioka, Classification of search problems and their definability in

bounded arithmetic, master’s thesis, University of Toronto, 2001.

[21] , Logical Approaches to the Complexity of Search Problems: Proof

Complexity, Quantified Propositional Calculus, and Bounded Arithmetic,
PhD thesis, University of Toronto, 2005.

[22] C. H. Papadimitriou, On the complexity of the parity argument and other

inefficient proofs of existence, Journal of Computer and System Sciences,
48 (1994), pp. 498–532.

37

