Smart Grid: Communication-Enabled Intelligence for the Electric Power Grid

Front Cover
John Wiley & Sons, Mar 31, 2014 - Technology & Engineering - 576 pages
This book bridges the divide between the fields of power systems engineering and computer communication through the new field of power system information theory.

Written by an expert with vast experience in the field, this book explores the smart grid from generation to consumption, both as it is planned today and how it will evolve tomorrow. The book focuses upon what differentiates the smart grid from the "traditional" power grid as it has been known for the last century. Furthermore, the author provides the reader with a fundamental understanding of both power systems and communication networking. It shows the complexity and operational requirements of the evolving power grid, the so-called "smart grid," to the communication networking engineer; and similarly, it shows the complexity and operational requirements for communications to the power systems engineer.

The book is divided into three parts. Part One discusses the basic operation of the electric power grid, covering fundamental knowledge that is assumed in Parts Two and Three. Part Two introduces communications and networking, which are critical enablers for the smart grid. It also considers how communication and networking will evolve as technology develops. This lays the foundation for Part Three, which utilizes communication within the power grid. Part Three draws heavily upon both the embedded intelligence within the power grid and current research, anticipating how and where computational intelligence will be implemented within the smart grid. Each part is divided into chapters and each chapter has a set of questions useful for exercising the readers' understanding of the material in that chapter.

Key Features:

  • Bridges the gap between power systems and communications experts
  • Addresses the smart grid from generation to consumption, both as it is planned today and how it will likely evolve tomorrow
  • Explores the smart grid from the perspective of traditional power systems as well as from communications
  • Discusses power systems, communications, and machine learning that all define the smart grid
  • It introduces the new field of power system information theory
 

Contents

2
190
1
197
DemandResponse and the Advanced Metering Infrastructure
235
15 4 6LoWPAN ROLL and
244
11
255
Contents ix
276
Distribution Automation
301
Standards Overview
333
About the Author xiii
488
Smart Grid Simulation Tools
489
Index
507
7
524
255
534
Preface
xv
Acknowledgements
xxiii
THE MAIN COMPONENT
1

Part Three EMBEDDED AND DISTRIBUTED INTELLIGENCE FOR
357
Contents
360
State Estimation and Stability
389
Synchrophasor Applications
415
Contents xi
435
Future of the Smart Grid
465
Contents
44
Generation
55
Transmission
89
Contents vii
116
5
151
Copyright

Other editions - View all

Common terms and phrases

About the author (2014)

Dr Stephen F. Bush, General Electric Global Research, USA
Stephen received the B.S. degree in electrical and computer engineering from Carnegie Mellon University, Pittsburgh, PA, the M.S. degree in computer science from Cleveland State University, Cleveland, OH, and the Ph.D. degree from the University of Kansas, Lawrence. He is currently a Researcher at General Electric Global Research, Niskayuna, NY. Before joining GE Global Research, he was a Researcher at the Information and Telecommunications Technologies Center (ITTC), University of Kansas. He has been the Principal Investigator for many DARPA and Lockheed Martin sponsored research projects including: Active Networking (DARPA/ITO), Information Assurance and Survivability Engineering Tools (DARPA/ISO), Fault Tolerant Networking (DARPA/ATO), and most recently, Connectionless Networks (DARPA/ATO), an energy aware sensor network project.

Bibliographic information