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Wittgenstein’s atomist picture, as embodied in his Tractatus, is initially very appealing.
However, it faces the famous colour-exclusion problem. In this paper, I shall explain
when the atomist picture can be defended (in principle) in the face of that problem;
and, in the light of this, why the atomist picture should be rejected.

I outline the atomist picture in §1. In §2, I present a very simple necessary and suf-
ficient condition for the tenability (in principle) of the atomist picture. The condition
is: logical space is a power of two. In §§3–4, I outline the colour-exclusion problem, and
then show how the cardinality-condition supplies a response to exclusion problems.
In §5, I explain how this amounts to a distillation of a proposal due to Moss (2012),
which goes back to Carruthers (1990: 144–7). And in §6, I show how all this vindicates
Wittgenstein’s ultimate rejection of the atomist picture. The brief reason is that we have
no guarantee that there are any solutions to a given exclusion problem but, if there are
any, then there are far too many.

1 Wittgenstein’s atomist picture

Wittgenstein’s atomist picture provides uswith an extremely elegant, combinatorial pic-
ture of modality. Possibilities are generated by combinations of atomic propositions,
which are in turn generated by combinations of simples. In what follows, I shall think
of the possibilities as points in a logical space. (We can equally call these possibilities
‘possible words’, and call logical space ‘the possible universe’; nothing will turn on this
terminology.)

Here is the atomist picture inmoredetail. Theatomicpropositionshave aparticular
form (Wittgenstein 1921: 2–2.0212, 4.22):

Simples-Recombination. Atomic propositions consist of concatenations of (names
for) simples. Subject only to constraints on their logical types, any arbitrary re-
combination of simples yields an atomic proposition.
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So: given an atomic proposition, a, replacing the (names for) simples in a with (names
for) other simples of the same logical type yields another atomic proposition. These
atomic propositions then generate the possibilities in logical space, via two principles
(1921: 4.211, 4.26–4.28, 5.134):

Modal-Valuationism. Each possibility in logical space uniquely corresponds to a valu-
ation of the atomic propositions. A valuation assigns either truth or falsity (never
both) to each atomic propositions.

Atomic-Independence. The atomic propositions are logically independent from one
another: no assignment of a truth value to any atomic propositions determines
the truth values of any other atomic propositions.

So: any combinatorial possible assignment of truth values to atomic propositions yields
a possibility. These three principles record the atomist picture. And it provides an ele-
gantly simple of logical space. It would be lovely, if it were true.

2 An elementary cardinality-constraint

I have described the atomist picture as combinatorial. In fact, it is intimately connected
to an elementary cardinality-constraint. Stated briefly, this constraint is: logical space is
a power of two. I use this phrase, to abbreviate the following claim: for some cardinal
a, the cardinality of logical space is 2a, i.e. there are exactly 2a possibilities. Note that I
shall not insist that a is finite; indeed, transfinite values of a are probably to be expected.

Our cardinality-constraint is obviously a necessary condition for the tenability of
the atomist picture, i.e.:

If logical space can be described by the atomist picture, then logical space is a power of two.

I say that this is obvious, because the atomist picture is so closely tied to the idea of truth
tables (Wittgenstein 1921: 4.26–4.31, 4.442, 1929: 170–1; Ramsey 1923: 470), and a truth
table with a atomic propositions has exactly 2a lines. But it is worth running through
this point in detail, not least to ensure that it holds for ‘infinite’ truth tables (that is,
when a is infinite).

Suppose, then, that logical space can be described by the atomist picture. So we
have some set, A, of atomic propositions. These propositions must each have exactly
one truth value, by Modal-Valuationism, and their truth values are logically indepen-
dent, by Atomic-Independence. So the number of possible complete assignments of
truth/falsity to the atomic propositions is just the number of distinct functions from A
to the set {True,False}. Where A’s cardinality is a, there are exactly 2a such functions.
So, by Modal-Valuationism, there are 2a possibilities, as required.
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In fact, this necessary condition is also a sufficient condition on the in-principle
tenability of the atomist picture. That is:

If logical space is a power of two, then logical space can be described by the atomist picture.

To show this, I shall assume that logical space is a power of two, and use this assumption
to construct a toy model which satisfies the atomist picture.

Suppose, then, that there are 2a possibilities. Let S be any set with cardinality a,
and call S’s members Switches. Every Switch is a simple. There is one further simple,
Flicked. The atomic propositions are now all and only the concatenations of (the name
of) Flicked together with (the name of) any Switch. Call the set of atomic propositions
A. Call each v ∈ ℘(A) a valuation; if a ∈ v, say that v makes a true; if a ∉ v, say that v
makes a false.

It remains to show that this toy model satisfies the atomist picture.
Concerning Simples-Recombination. The atomic propositions consist of any arbi-

trary concatenation of (names of) simples, subject to a constraint on their logical type
which we can think of as follows: Flicked is a one-place property and the Switches are
just first-order objects.¹

Concerning Modal-Valuationism. We are treating ℘(A) as the set of all possible val-
uations. Clearly both A and S have cardinality a, so that the cardinality of ℘(A) is 2a.
Since we assumed that there are also 2a possibilities, there is a bijection between the set
of possibilities and the set of valuations, i.e. every possibility uniquely corresponds to
a valuation. Moreover, each valuation v ∈ ℘(A) says, of each atomic proposition in A,
either that it is true, or that it is false, but never both.

Concerning Atomic-Independence. We are treating any v ∈ ℘(A) as a valuation, i.e.
an assignment of truth/falsity to the atomic propositions. So any combinatorially inde-
pendent assignment of truth/falsity to the atomic propositions is legitimate.

As such, our toy model satisfies all three principles of Wittgenstein’s atomist pic-
ture, thereby establishing the sufficient condition. So we now obtain an elementary
necessary and sufficient condition for the in-principle tenability of the atomist picture:

Logical space can be described by the atomist picture iff logical space is a power of two.

¹This follows Potter (2009: 232–3), who holds that Tractarian simples can be universals (see also
Canfield 1976). This view has been controversial among Tractatus scholars; for example, Carruthers
(1990: 6–8, 137) explicitly rejects it. So, Carruthers would have to regard the atomic propositions, in
this analysis, simply as the individual names for Switches (and nothing else). However, Carruthers is
also a little hesitant about thinking that propositionsmight consist of just a single name. SoCarruthers
might deny that this kind of analysis is admissible. Nonetheless, in the cases which will matter most—
where a is infinite—there will be an abundance of toy analyses which would satisfy Carruthers; see
§6.
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3 Exclusion problems

I have set out the atomist picture, and shown how its combinatorial nature naturally
leads to an elementary cardinality-constraint. I now want to outline the famous colour-
exclusion problem. This was raised against Atomic-Independence by Wittgenstein him-
self (1921: 6.3751, 1929, 1979: 67–8).

Apparently,² the proposition that O is red and the proposition that O is blue can-
not both be true together: different colours exclude one another. So, if atomic proposi-
tions are logically independent fromone another, as Atomic-Independence states, then
colour-ascriptions cannot be atomic propositions. But colour-ascriptions seem like ex-
cellent candidates for atomic propositions. The example gives the problem its name,
the colour-exclusion problem.

It is worth emphasising that colour-exclusion is just one example of an exclusion
problem. Other examples are legion. No region can have multiple different temper-
atures; no object can have multiple different locations, masses, volumes or velocities;
and so forth (1921: 6.3751). More generally, exclusion arises whenever a property can
come by degree (1929, 1964: viii.91). Indeed, onemight well say that exclusions are not
the exception but the ‘rule’ (1979: 64).

Faced with these exclusion problems, Wittgenstein ultimately abandoned Atomic-
Independence (1929: 167–9, 1964: viii.78–84, 1979: 63–4, 74–6). I shall argue that he
was right to do so, and for reasons which are intimately connected with the elementary
cardinality-constraint outlined in §2. Crudely stated, the cardinality-constraint allows
for a ‘cheap response’ to exclusion problems, whose cheapness undercuts the atomist
picture.

²Pun intended. I suspect that colour-exclusion is not a matter of necessity (whether logical, gram-
matical, or conceptual). Roughly put: I suspect it is merely a biological fact that we do not see colours
like we hear musical chords.

Such suspicions need not just result from abstract thought-experiments; we can actually get some
concrete sense of what seeing a red-blue colour-chord might be like. Just place two identically sized
rectangles, one red and one blue, besides each other, and then go cross-eye, so that your visual images
of the two rectangles overlap completely. (This simple approach is described in Billock andTsou 2010;
they also outline a much more controlled experiment.) If an object could look like that through just
one eye, why not say it is both red and blue? Or, if you prefer to ascribe colours to patches in the visual
field, rather than objects, why not say that patch is both red and blue?

Wittgenstein himself largely describes colour exclusion as necessary (1921: 6.3751, 1929: 167, 1964:
IV.39, viii.77–78, 1979: 67, 78, 241).However, there is a glimmerof the alternative, in his response (1979:
79) to Waismann’s suggestion that psychologists might empirically investigate colour-exclusion.
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4 A cheap response to exclusion problems

To illustrate the ‘cheap response’, I shall focus on a particular exclusion problem gener-
ated by a toy logical space.

Heat Space. Our toy logical space consists of the possible assignments of temperature prop-
erties to the points of spacetime. We can think of the points of spacetime as quadruples of real
numbers (describing points relative to some coordinate system), and we can think of the tem-
peratures as non-negative real numbers (describing temperature in Kelvins). Any assignment
of temperature properties to points of spacetime is possible, subject to two constraints:

(a) Each spacetime point has exactly one temperature property.
(b) The distribution of temperature properties must be continuous.

Whilst still a toy, Heat Space gives rise to an exclusion problem which is a little more
interesting than usual. On a minor level: rather than considering (colour-)exclusion
for a single object, it considers (temperature-)exclusion for continuum-many objects
(the spacetime points) simultaneously.³ Much more interestingly: two kinds of ex-
clusion operate in Heat Space. Constraint (a) gives us temperature-exclusion at each
point: nothing can be both 17○K and 18○K at the same time. But constraint (b) gives
us temperature-exclusion across points: whilst you can consistently assign any temper-
atures to any two points, certain patterns of temperature distribution are ruled out; for
example, there cannot be any abrupt local heat spikes. So, Heat Space is certainly a toy,
but the restrictions it imposes are not wholly trivial.

Let us now see how the cardinality-considerations of §2 apply to Heat Space.
Given the description of Heat Space, the number of possibilities is precisely the

number of continuous functions from R4 to [0,∞). In effect, (a) tells us to consider
functions, and (b) tells us that they must be continuous. A little mathematics will con-
vince us that there are exactly 2ℵ0 such functions.⁴ So, by the cardinality-considerations
of §2, we know thatHeat Space can, in principle, be described using the atomist picture.
Indeed, we can build a toymodel which seems to describe Heat Space, by insisting that
there are ℵ0 atomic propositions which decompose, under logical analysis, into ℵ0 dis-
tinct Switches, each concatenated with Flicked. Call this the Flicked-Switch Analysis of
Heat Space.

This is a very ‘cheap response’, in that it brushes aside Heat Space’s exclusion prob-
lem(s) with a mere gesture at our elementary cardinality-constraint. But, given the
availability of this cheap response,we are forced to askwhyanyonehas ever even thought
that exclusion problems raises serious problems for the atomist picture.

³On this point, compare Carruthers’s (1990: 144–7) model.
⁴LetC be the set of continuous functions fromR4 to [0,∞). Constant functions are continuous;

so ∣C∣ ≥ 2ℵ0 . Conversely, if f, g ∈ C and f(p) = g(p) for all p ∈ Q4, then f = g, since f and g are
continuous; but the total number of functions fromQ4 to [0,∞) is (2ℵ0)ℵ0 = 2ℵ0 ; so ∣C∣ ≤ 2ℵ0 .
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Two obvious answers present themselves. First, unlike our toy Heat Space, logical
space itself might not be a power of two. In that case, the cardinality-considerations of
§2 would show that the atomist picture is in principle untenable. Second, the Flicked-
Switch Analysis, just offered, might just feel too cheap. As I shall explain in §6, both
answers are basically correct. Moreover, this explains why we should reject the atomist
picture.

5 Moss’s approach

First, though, Imust embark on a slight detour, and considerMoss’s (2012) recent claim
to have solved the colour-exclusion problem. I want to show that Moss’s solution ulti-
mately boils down to the ‘cheap response’ which I just offered, so that the problems
concerning the ‘cheap response’ are also problems for Moss. But I should add that it
is no coincidence that Moss’s solution boils down to mine; my paper was prompted by
trying to isolate the moving parts of Moss’s paper.

Moss’s solution. The core of Moss’s response to colour exclusion is the following ar-
gument:⁵

(1) ‘given an arbitrary set S of propositions, we can always find 2a (for some a) mu-
tually exclusive propositions such that anymember of S is a conjunction of some
of them.’ (2012: 846)

(2) ‘for any 2a mutually exclusive propositions, we can find a logically independent
propositions such that the mutually exclusive propositions are truth-functional
combinations of them.’ (2012: 845)

So: given an arbitrary set Sof propositions, we can find logically independent propo-
sitions such that the propositions in S are truth-functional combinations of the
logically independent propositions.

The conclusion of this argument amounts to a statement that the atomist picture is ten-
able in principle. In that sense, it invites comparison with my elementary cardinality-
constraint from §2. However, I should deal with one immediate difference. In §2, I
reasoned about logical space; Moss, by contrast, discusses (sets of) propositions. This
difference, however, is shallower than it might seem, since Moss ‘take[s] propositions
to be sets of possible worlds’ (2012: 842). As mentioned in §1, nothing turns on calling
the possibilities ‘possible worlds’. So, in my terminology, Moss’s propositions are just

⁵I have compressed the argument, and numbered the steps. Additionally, in these quotes, and in
subsequent quotes fromMoss throughout this section, I have silently (but harmlessly) changed several
minor points of notation.
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regions (rather than points) of logical space. As such, our considerations are commen-
surable.

I shall revisit this point below. First, I shall consider howMoss defends the premises
of her argument. To establish (1), Moss defines a relation on the possible worlds as
follows:

wRx iff p is true at w iff p is true at x, for all p ∈ S

She then defines a set, S☆, as ‘the set of equivalence classes of worlds under’ R (2012:
846). Her argument for (1) now proceeds by cases:

(1a) The cardinality of S☆ is 2a, for some a.
In this case, ‘we are done’. After all, S☆ is a set of sets of worlds, and hence (for
Moss) a set of propositions, which itself has the required properties.

(1b) The cardinality of S☆ is not 2a, for any a.
In this case, we should ‘repeatedly replace any single member of S☆ with mutu-
ally exclusive propositions whose disjunction [i.e. union] is that member. In this
way, we can increase the cardinality of S☆ until it contains 2a mutually exclusive
propositions.’ (2012: 846)

Below, I shall discuss the assumptionwhich is required to license this ‘replacing’ in (1b).
(Spoiler alert: it is that logical space be a power of two.) But we shall take (1) as estab-
lished for now.

In defence of (2), Moss works through a particular example, namely, the fact that
an object, O, can only have one of continuum-many colours. She observes that, just
as there are continuum-many colours, so there are ‘continuum-many infinitely long se-
quences of 0’s and 1’s.’ So Moss ‘fix[es] a bijection between these sets, a mapping from
possible colors of O to infinite binary strings.’ Call this bijection f. Then Moss asks us
to consider, for each natural number i, the proposition:⁶

Fi: that f maps O’s colour to a string with a 1 in the ith place

These propositions are logically independent from one another. Moreover, for each
subset,C, of the natural numbers, the infinite conjunction⋀i∈C Fi∧⋀i∉C ¬Fi pins down
a unique colour forO. So ‘each ordinary language color proposition [concerningO] is a
truth-functional combination of the Fi propositions’ (2012: 845).Moss then generalises
from this observation, to arrive at (2), by noting that the case of O’s colour was just an
illustrative example in which a = ℵ0.

⁶This fixes (what I take to be) a small typesetting error in Moss’s paper. I have also incorporated
the bijection f explicitly into the (statement of) each proposition; this is both strictly-speaking neces-
sary and more than mere pedantry (see below).
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This completesmy summary ofMoss’s argument. In the remainder of this section, I
shall try to show that the key take-away fromMoss’s solution is precisely the cardinality-
constraint of §2, with its concomitant ‘cheap response’ to exclusion problems.

Onordinary language. I shall start by revisiting thedifference I raised at the start of this
section, concerning Moss’s focus on propositions. She does this, because she wants to
deliver on the claim that ‘we can completely analyze all ordinary language propositions’
(2012: 841). In this regard, my approach diverges from hers, since I did not mention
‘ordinary language’ anywhere in §§1–3. This difference, however, is rather superficial.

Moss’s approach certainly seems to be quite tightly connected with ordinary lan-
guage. Indeed, in defending (2),Mossmay seem to have defined each Fi within ordinary
language. But appearances here are misleading. In defining each Fi, Moss appealed to
a bijection, f. But she did not explicitly specify f. Instead, she ‘fixed’ it, as the mathe-
maticians say. And she is forced to ‘fix’ it, for English contains no names for particular
maps from colours to infinite binary strings, nor the means for defining any explicitly.
Otherwise put: we know that the Fis exist, but we have no means to express them in
ordinary language.

The separation between ordinary language andMoss’s solution grows deeperwhen
we considerMoss’s discussion of case (1b). Wemaywell want to ‘repeatedly replace any
single member of S☆ with mutually exclusive propositions whose disjunction is that
member’. But there is no guarantee that ordinary language provides us with the words
for such mutually exclusive propositions. Again: there is no guarantee that ordinary
language allows us to express the atomic propositions which Moss ends up with.

Indeed, the only real bridge which Moss builds to ‘ordinary language propositions’
is in her decision to ‘take propositions to be sets of worlds’ (2012: 842). But this just
returns me to the point I made at the start of the section. Nothing prevents me from
taking propositions—ordinary language, or otherwise—to be sets of possibilities, i.e.
regions of logical space.⁷

In sum: despite initial appearances,Moss’s approach gives us no closer relationship
to ordinary language than my own.

On arbitrary propositions. There remains a difference, in that Moss allows us to start
with arbitrary sets of propositions—i.e. sets of regions of logical space—whereas I leap
straight into logical space itself.

In fact, starting with arbitrary sets of propositions can lead to oddities. Let p be the
proposition that the present King of France is bald, and let S = {p}. Following Moss’s
argument for (1), we form S☆ from S. This partitions the possible universe into two
sets: the set of worlds where p is true, and the set of worlds where p is false. Since the

⁷Indeed, this is quite Tractarian; see Wittgenstein 1921: 4.4–4.431. On this picture, if there are a
atomic propositions, then there are 2(2

a) propositions, i.e. 2(2
a) sets of possible worlds.
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cardinality of S☆ is 2, we are in case (1a), and ‘we are done’. Wenow apply (2) to S☆, and
so find exactly one (logically independent!) proposition such that the propositions in
S☆ are truth-functional combinations of it. Plainly, that proposition is p itself. And this
encourages us to think of p as an atomic proposition. But, of course, p is not atomic.

To get closer to the genuinely atomic propositions, we must start with a richer set
than {p}. There is no better set in this regard than the set of all propositions. Call this
set P and, as before, form P☆ from P. Following Moss, we now reason by cases. In case
(1a), there are 2a propositions in P☆, for some a, and ‘we are done’. But in case (1b) we
run into trouble.⁸ We are supposed to ‘repeatedly replace any singlemember ofP☆ with
mutually exclusive propositions whose disjunction is that member’. Unfortunately, we
cannot do this. By assumption, P was the set of all propositions, so that P☆ is the finest
equivalence class on the possible universe. In short, for Moss’s approach to work, she
must simply assume that case (1b) cannot arise here. Otherwise put: she must assume
that the cardinality of P☆ is 2a for some a. Since a moment’s reflection will convince us
that P☆ is the set of all singletons of possible worlds, we can restate the point again as
follows: to defend (1), Moss must assume that logical space is a power of two.

Now, for reasons in precisely this ballpark, Moss herself suggests that we should
assume that ‘the number of worlds is a power of 2’. This is all to the good. However,
she describes this as a ‘weak assumption’ which ‘suffices’ for her defence of the atomist
picture (2012: 846, 847). Here, I demure. The point of §2 is that this supposedly ‘weak
assumption’ is notmerely sufficient for the in-principle-tenability of the atomist picture,
but also necessary for it. (Moreover, since the assumption is logically equivalent to the in-
principle-tenability of the atomist picture, we might well question whether it really is
‘weak’; I return to this in §6.)

Themain point of all this is as follows. Allowing arbitrary sets of propositions leads
to odd verdicts concerning the atomic propositions. And, when we strip matters back
to the key case—the set of all propositions—the only point to extract is the simple fact
that logical space can be described by the atomist picture if and only if logical space is a
power of two. That, of course, was the point of §2.

On colours, functions, and strings. The final point I want to emphasise is that Moss’s
approach does not give us any clue about the correct logical analysis of the atomic propo-
sitions.⁹

There are some obvious similarities between my considerations in §2 and Moss’s
discussion of O’s colour.¹⁰ Indeed, Moss’s Fis are quite similar to the atomic propo-
sitions I provided in my Flicked-Switch Analysis of Heat Space. Just think of the ℵ0

⁸My argument in this paragraph assumes—as Moss surely does—that worlds are identical iff ex-
actly the same propositions are true in them.

⁹But nor does my own, as we shall see in §6.
¹⁰And also with Carruthers 1990: 144–7.
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Switches as arranged in an ω-sequence, and write a ‘1’ beneath a flicked switch and a ‘0’
beneath a non-flicked switch.

However, I want to emphasise that Moss’s Fis do not provide us with a good logical
analysis of the propositions involved in colour-exclusion. In a sense this is obvious: her
Fis were given whilst considering a toy example which arose just by considering the
set of propositions stating O’s possible colours. But the point I want to make is rather
more general, namely: atomic propositions cannot consist of anything like (names for)
colours and functions and strings.¹¹ We can see this in two ways.

First Argument. Moss used the map f from colours to strings. Let us consider a
different map, g, as follows: where f maps the colour c to the string s, let g map c to s’s
‘binary opposite’, i.e. to the string which has a 1 wherever s has a 0 and vice versa. Using
g, we then consider, for each natural number i, the proposition:

Gi: that g maps O’s colour to a string with a 1 in the ith place

The Gis are as logically independent from each other as were the Fis. However, there
are dependencies between the Fis and theGis: since f and gmap the same colour to ‘op-
posite’ strings, exactly one of Fi and Gi is true (for each i), regardless of O’s colour. This
is, of course, just another exclusion problem. But no exclusion problems can remain in
the final analysis.

Second Argument.¹² Let us assume that colours are simple.¹³ Nevertheless, a term
of the form ‘f(c)’—which is supposed to pick out the string which f sends c to—is ob-
viously complex. So, by Simples-Recombination, ‘f(c)’ cannot appear in an atomic
proposition. A good Tractarian must therefore replace the occurrence of the map f, in
each Fi, with some propositional function. But, since we are assuming that the colours
are simples, it follows from Simples-Recombination (again) that there is some world,
w, where all the colours satisfy exactly the same propositional functions as each other.
Accordingly, inw, every colour is ‘mapped’ to the same string. As such, we cannot regard
O’s colour in w as a truth-functional combination of the Fis.¹⁴

The upshot of both arguments is that the atomic propositions cannot consist of
anything like (names for) colours and functions and strings. Once we have appreciated
this point, though, we see that Moss’s discussion of colours and functions and strings
is just a vivid illustration of her point (2), which provides us with no guide at all to the
logical form of the atomic propositions. The key point to extract—once again—is just
an observation about cardinality.

¹¹Moss (2012: 848–50) discusses a related but different problem, namely, that the propositions she
generates via (1) will likely contain apparent names for logical constants, such as ‘or’. Her response to
that problem, in brief, is that simplicity is relative to a language. This does not affect my point.

¹²Thanks to Rob Trueman for this observation; for related discussion, see Trueman 2011: 296.
¹³See Canfield 1976.
¹⁴And of course the same issue arises for binary strings, since strings are functions from the natural

numbers to 0 and 1 .

10



6 Abandoning Atomic-Independence

Returning from my discussion of Moss, here is the story of the paper so far. We saw
in §2 that the in-principle-tenability of the atomist picture reduces to an elementary
cardinality-constraint. Moreover, this provides us with a ‘cheap response’ to exclusion
problems, as I showed by applying the cardinality-constraint of §2 to Heat Space in
§4. The upshot was a particular toy analysis—the Flicked-Switch Analysis—whereℵ0

atomic propositions generate the 2ℵ0 possible temperature distributions inHeat Space.
To close the paper, I want to explain how unsatisfying the Flicked-Switch Analysis is,
and thereby to vindicate Wittgenstein’s rejection of Atomic-Independence.

In the Flicked-Switch Analysis of Heat Space, we have a bijection between configu-
rations of Switches (flicked or not) and the possibilities inHeat Space. So, we know that
if you change whether a particular switch is flicked or not, you change the way in which
temperatures are assigned to points. But there is no a priori constraint on how these
changes occur. Starting from some given possibility: by ‘toggling’ Switch 1, everything
whichwas hotmight become cold; by then ‘toggling’ Switch 2, an unmeasurable collec-
tion of points might become freezing; and by ‘toggling’ Switch 1 again, the world may
turn uniformly balmly. Or not. The relationship between the states of the Switches, on
the one hand, and the temperatures at each point, on the other, is entirely opaque.¹⁵

This is one reason to be dissatisfied with the Flicked-Switch Analysis. A second
reason is that genuinely alternative logical analyses are available. We showed that Heat
Space comprises 2ℵ0 possibilities. It follows that, if the atomist picture is to be applied
to Heat Space, there must be ℵ0 atomic propositions. However, there is no reason to
think that theymust decompose, under logical analysis, into Flicked Switches. Instead,
the atomic propositions might decompose according to the following Yin-Yang Anal-
ysis: there are ℵ0 Yins and ℵ0 Yangs, and the atomic propositions are all and only the
concatenations of (the name of) any Yin with (the name of) any Yang.

The Yin-Yang Analysis is consistent with the atomist picture. To show that it sat-
isfies Simples-Recombination, we just need to specify that the Yins and the Yangs are
simples of different logical types. Indeed, we can regard the Yins as first-order objects
and the Yangs as one-place properties, or vice versa (cf. Ramsey 1925). Moreover, since
ℵ0 ⋅ ℵ0 = ℵ0, the Yin-Yang Analysis also yields ℵ0 atomic propositions. But the Yin-
Yang and the Flicked-Switch analyses are genuinely different. According to the Flicked-
Switch Analysis, every Switch occurs in exactly one atomic proposition, and the prop-
erty Flicked occurs in every atomic proposition. By contrast, according to the Yin-Yang
Analysis, each Yin and each Yang both occur in, and are absent from, exactly ℵ0 atomic
propositions. (And inevitably, just as we had no idea how flicking Switches will affect
the temperature assignment, so we have no idea how coupling or decoupling Yins and
Yangs affects temperatures.)

¹⁵This is connected with the point, above, that Moss simply ‘fixed’ some bijection, f.

11



We need not stop at the Yin-Yang Analysis: any way to generate ℵ0 atomic propo-
sitions from simples will provide us with a toy analysis of Heat Space. For example, we
can turn the Yin-Yang Analysis into the Aristophanean Analysis, by treating the atomic
propositions as arbitrary concatenations of any (distinct) Yins andYangs. Alternatively,
here is a schema for generating infinitely many rival analysis: let there be ℵ0 different
kinds of simples; let there be ℵ0 instances of each kind; and let the atomic propositions
be all and only the concatenations of names for n distinct entities drawn from exactlym
different kinds (with 0 < m ≤ n < ω).

I could keep going, but the examples given already suffice to raise a pressing ques-
tion: What is the correct logical analysis of Heat Space, and how does that analysis relate to
temperature distributions?

There seems to be no a prioriway to answer the pressing question. Nothingmore is
given, a priori, by the specification ofHeat Space and the desire to apply the atomist pic-
ture to it, than that there must be ℵ0 atomic propositions. This both underdetermines
the logical form of the atomic propositions, and tells us nothing about their relation-
ship to temperature distributions. In principle, perhaps, maybe, some further a priori
constraint could be deployed, which provides us withmore information. But I, for one,
just cannot see what it would look like.

Equally, there seems to be no a posterioriway to answer the pressing question.¹⁶ To
have an a posteriori route to the correct analysis of logical space, physics, or ordinary
language, would have to be pushing towards a language within which exclusion prob-
lems did not arise. Unfortunately, as Wittgenstein himself noted, we seem unavoidably
to use numbers (or other devices of gradation) in representing propositions, and there
are exclusion problems whenever there are gradations (1929: 165–7).

So we seem unable to answer the pressing question. And this point generalises be-
yond the toy example of Heat Space, to logical space itself. Proponents of the atomist
picture seem forced to accept that we can neither determine the correct analysis of the
atomic propositions, nor say in any detail how their constituents relate to the ‘manifest’
possibilities. Consequently, proponents of the atomist picture seem forced to embrace
Ramsey’s (1925: 417) conclusion ‘that we know and can know nothing whatever about
the forms of atomic propositions’. But, as Wittgenstein (1979: 182–4) himself came to
stress: it is one thing to think that we do not know the forms of atomic propositions; it
is vastly less palatable to suggest that we cannot know anything about them.¹⁷

To ice the unpalatable cake, there remains fact that the atomist picture demands
that logical space be a power of two. If we are not already committed to the correctness
of the atomist picture, why on earth would we have any beliefs about the cardinality
of logical space? A priori reasons here seem thin on the ground. A posteriori evidence

¹⁶Wittgenstein (1921: 5.55–5.551) initially seemed to reject a posteriori routes to logical form; but
later (1929: 163–4) became more receptive.

¹⁷See also Wittgenstein (1921: 5.55, 5.5571); Medina (2003: 371, 377–8, 384).
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might just about be available, since a scientific theory might predict that logical space
is a power of two—consider again the case of Heat Space—but there is no real reason
to be optimistic on that front.

All told, then, Atomic-Independence comes across as a dogma with unpalatable
consequences. Ultimately, the issue is not that we can find no solution to the exclusion
problem. The issue is rather as follows: we have no guarantee that there is a solution to
the exclusion problem; but if there are any, then there are too many.¹⁸
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