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Abstract:
I present aspects of causal set theory (a research programme in quantum gravity) as being en
route to achieving a reduction of Lorentzian geometry to causal sets.

I take reduction in philosophers’ sense; and I argue that the prospects are good for there
being a reduction of the type envisaged by Nagel. (I also discuss the prospects for the stronger
functionalist variant of Nagelian reduction, that was formulated by Lewis.)

One main theme will be causal set theory’s use of a physical scale (viz. the Planck scale)
to formulate how it recovers a Lorentzian manifold. This use illustrates various philosophical
topics relevant to reduction, such as limiting relations between theories, and the role of analogy.
I also emphasise causal set theory’s probabilistic method, viz. Poisson sprinkling: which is used
both for formulating the reduction and for exploring its prospects.
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1 Introduction: reducing geometry

The aim of this paper is to present aspects of causal set theory, which is a research programme
in quantum gravity, as being en route to achieving a reduction of Lorentzian geometry to causal
sets: a reduction in philosophers’ sense that a theory Tt is shown to be part of, i.e. encompassed
by, another theory Tb.

1

Agreed, the fact that causal set theory aims for such a reduction is not news. That much
is clear from a brief perusal of the causal set literature, despite differences in the jargons of
physicists and philosophers. Indeed, it is clear from the paper that launched the programme
(Bombelli et al. 1987). For it gives a detailed proposal about in what sense a Lorentzian
manifold approximates a causal set: or in converse jargon (which I will also use), in what sense
a causal set recovers a Lorentzian manifold.2

But as a case-study in reduction, causal set theory has many features that make it merit
a more detailed examination by philosophers. Most, though not all, of these features relate to
two current themes in philosophy of physics: (i) the contrast between reduction and emergence,
and (ii) spacetime functionalism. So I will introduce these features by recalling these themes:
in Sections 2 and 3 respectively. As we will see, the themes are related: for one version of
functionalism is functionalist reduction.

Causal sets are discrete: so the proposal that a Lorentzian manifold approximates a causal
set raises the general topic of what we should mean by a continuous structure approximating a
discrete one. So Section 4 addresses this in general terms. Then Section 5 reports how Section
4’s ideas play out in causal set theory’s proposal.

These Sections and the paper as a whole have a limited scope, as regards both physics
and philosophy. As to physics, I will set aside causal set theory’s treatment of matter and
radiation (which involves “decorating” causal sets with appropriate fields), and the theory’s
proposed treatment of quantum theory (which emphasises path integrals). So I focus on just
the relation between continuous and discrete conceptions of spacetime, taken as both vacuum
and non-quantum. I will also downplay dynamics: indeed, in two senses. First, I set aside
the effort to define a class of causal sets appropriate for recovering Lorentzian manifolds by
formulating a rule for generating them over time. Second, I set aside the effort to recover the
Einstein field equations (the holy grail of general relativity); i.e. for a vacuum spacetime, the
Ricci tensor being zero. For all these topics in physics, it must here suffice to say that causal
set theory has since 1987 delivered plenty of positive results; though there remains, of course,
plenty still to do.3

The paper also has a limited philosophical scope, in two main ways. First, I will set aside

1Section 2 gives details about reduction. But as to the mnemonics: ‘t’ is my mnemonic for ‘top’, ‘tangible’
or ‘tainted’, and ‘b’ is my mnemonic for ‘bottom’, ‘basic’ or ‘better’. It is more common to talk of T1 and
T2. But this can make it confusing which theory is reduced, i.e. is shown to be a part, and which does the
reducing, i.e. is shown to be the whole. And it can be more confusing since physicists often use ‘reduce’ for the
converse relation. That is, their jargon is often that the ‘bottom’, basic or better theory reduces to the ‘top’ or
tainted one, especially in some limit. For example, they say that special relativistic particle mechanics reduces
to Newtonian particle mechanics as c→∞. I shall adopt the former, philosophers’, jargon.

2Details of this founding paper’s proposal are in Section 5. Another note about jargon: It is common to
call a diffeomorphism equivalence class of Lorentzian manifolds (M, g) (M a manifold, g a Lorentzian metric) a
Lorentzian geometry G, so that one writes e.g. G = {(M, g)}; or with square brackets for an equivalence class,
G = [(M, g)]. And I shall adopt this usage when needed, as it sometimes is: after all, the idea of diffeomorphism
invariance makes a Lorentzian geometry, rather than a single Lorentzian manifold, the (kind of) object that
causal set theory must recover. But ‘Lorentzian geometry’ has an even more entrenched usage as the name of
our mathematical theory of Lorentzian manifolds. So while I of course “aspire” to diffeomorphism invariance,
I shall mostly talk of Lorentzian manifolds, causal sets recovering such manifolds etc.

3For example, as to positive results: even the founding paper addresses how to recover the Einstein field
equations (cf. Bombelli et al. 1987, p. 523-524); and cf. the references below, including in footnotes 29 and
32).
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controversies about how to conceive of physical theories. In the last fifty years, the main
debate has been whether we should take a theory to be (i) a set of sentences that is closed
under deduction (called ‘the syntactic conception’) or (ii) a set of models, where a model is,
roughly speaking, a solution or approximate solution to the theory, taken not as a linguistic
object but as a model in the sense of model theory and formal semantics (called ‘the semantic
conception’). But I concur with recent critiques of this debate, urging that the contrast has
been overplayed. In brief, I think critics of the syntactic conception (a) ignored the fact
that it of course took the sentences to be interpreted, and almost always to be in a natural
language, not a formal one, and (b) neglected the fact that our only access to models is through
(interpreted!) language, so that the semantic conception is after all closer to the syntactic one;
cf e.g. Lutz (2017).4

Second, since space is short: I will not comment in detail on recent philosophical discussion
of causal set theory, which has indeed emphasised the themes of the reduction of Lorentzian
geometry, and of spacetime functionalism; especially two papers by Lam and Wuthrich (2018,
2021) and Huggett and Wuthrich’s discussions in (2023, Chapters 2.4 and 3.3). My reason, in
brief, is twofold. First: I for the most part agree (especially with the discussions in the later
book); and where their expositions complement mine, I simply cite them. Second: my main
disagreement can wait till Section 8.2.

We will see that despite this limited scope, there is plenty to say: both by way of reporting
causal set theory’s results so far, and relating these results to philosophical themes.

Broadly speaking, Sections 5 to 7 report results about the progress so far in reducing
Lorentzian geometry to causal sets, with an eye on the more general themes of Sections 2 to
4. After I recall the basics of causal sets (Section 5.1), Section 5.2 reports a construction for
rigorously obtaining a Lorentzian manifold as the continuum (ultra-violet) limit of a suitably
chosen sequence of causal sets that are spatiotemporally located ever more densely. But as I
emphasise (already in Section 2.1): for causal set theorists, the physical interest of a causal set
recovering a Lorentzian manifold lies in the regime before the continuum limit. More precisely,
the interest lies in the regime of length-scales at and above the Planck length. This raises the
question (both technical and conceptual) how we should make precise the idea of a discrete
structure recovering a continuum, only at and above a certain length-scale (and thus differently
than in Section 5.2).

Though this question is addressed in Sections 4 and 5 using broadly geometric tools, no
agreed proposal emerges. A bit more precisely, using the jargon of causal set theory: what
has come to be called the Hauptvermutung, i.e. ‘the main conjecture’, is yet to be formulated
precisely, and proven. But as I go on to discuss in Sections 6 and 7, there is plenty of favourable
evidence. (So the ‘en route’ in my title is a double entendre: it signals both that the physical
interest lies in the regime before the continuum limit, and that causal set theory’s reduction
of Lorentzian manifold is work in progress.)

I will concentrate on one important theme—the use of probability as an investigative tool.
Thus causal set theory has explored which causal sets are appropriate for recovering Lorentzian
manifolds by selecting points from such a manifold randomly, i.e. by a certain probabilistic
process, and defining a causal set on the selected points by endowing them with the causal
relations to each other that they had within the manifold, i.e. “before” they were selected.
This process assumes equiprobability for equal spatiotemporal volumes; more specifically, it
is a Poisson process. So it is called Poisson sprinkling. (But I think that since the causal
structure is inherited from the manifold, a better name would be ‘Poisson extracting’ or ‘Poisson

4 As this brief and perhaps contentious summary suggests, my sympathies lie with the syntactic conception;
so that my notations Tt, Tb can be read as sets of sentences. I am also sympathetic to the traditional Nagelian
account of reduction (for further details, cf. Sections 2 and 3). But I believe that the paper’s main points, even
in the concluding discussion of reduction (Section 8), will carry over to a semantic conception of theories.
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harvesting’.).5

This idea of Poisson sprinkling is “turned around” by another strategy for addressing the
question, i.e. for formulating the Hauptvermutung, that causal set theorists have adopted since
2000. This strategy is reported in Section 6. In short, instead of probability being a tool for
probing geometry, one uses probability to define a geometric notion. More precisely: the idea
(Bombelli 2000) is to define a distance between Lorentzian manifolds in terms of the statistical
angle (in probabilists’ usual sense of that phrase) between the probability distributions that
they each define over the causal sets that can be obtained from each geometry, by Poisson
sprinkling. This notion of distance turns out to have many merits.6

Furthermore, Poisson sprinkling turns any function of sprinkled causal sets (or as I prefer:
harvested causal sets) into a random variable. For the causal sets that can be obtained by
sprinkling from a given Lorentzian manifold7 form a probability space, with its distribution
defined by the sprinkling. Thus Section 7 reports how this opens up the prospect of showing
that such a function, that encodes a discrete analogue of a feature of continuum geometry that
we want to recover (such as manifold dimension, or the length of a timelike geodesic), has
statistical properties that make it a good estimator of that continuum feature. For example,
we can hope to show good behaviour of its mean and of its variance. As we shall see, causal
set theorists have several such success stories.

The concluding Section 8 returns us to the philosophical themes of reduction, emergence and
spacetime functionalism, presented in Sections 2 and 3. It uses the details about causal sets,
in Sections 4 to 7, to assess the prospects for a reduction (perhaps a functionalist reduction)
of Lorentzian manifolds to causal sets.

2 Reduction and emergence

In general philosophy of science, it is usual to take reduction and emergence as contraries, i.e.
as excluding each other. The reason is that while in reduction, Tt is a part of Tb, and so “says
nothing additional” to Tb, in emergence, the emergent theory in some sense “says something
additional”. Although it is suitably linked to the theory from which it emerges, it has some
kind of autonomy, or “a life of its own”.

Of course, authors vary about how to make these notions precise. In this paper, I will focus
on the traditional idea of reduction, largely due to Nagel (1961, 1979). He adopts the syntactic
conception of a theory as a set of sentences closed under deduction, and so conceives reduction
as deduction, i.e. as a matter of Tt being deduced from Tb. (But I think my main points will
carry over to the semantic conception; cf. Section 1, footnote 4 and Section 8.)

The idea, simply put, is that Tb not only:
(i) implies Tt’s predictions about observable states of affairs (within error-bars at least as

good as Tt’s), but also:
(ii) implies Tt’s statements about unobservable states of affairs.

5 So this is a very different use of probability than occurs in probabilistic proposals for causal set dynamics,
such as Rideout and Sorkin (2000). There, one undoubtedly takes the probabilities as irreducible objective
chances. But here, all the basic probabilities concern sampling one object i.e. one spacetime point, rather than
another. So one answers the usual philosophical question ‘Are these probabilities subjective or objective, and
in what sense?’ with whatever is one’s background philosophical view about random sampling. Thus suppose
you believe your random number generator, or what-not, that determines which point is selected uses objective
chances, while another philosopher thinks it uses subjective probabilities. Then nothing in the philosophy or
the physics of causal sets will tilt the debate between you, one way or the other.

6In particular, it is diffeomorphism-invariant, i.e. independent of which manifold within a diffeomorphism
equivalence class one picks. So in the jargon of footnote 2, it defines a function on Lorentzian geometries, not
just on Lorentzian manifolds.

7Or geometry: cf. footnote 6.

5



For doing only (i) would be compatible with Tb’s being a rival or replacement of Tt, rather than
a reduction of it.8

For the moment, we only need to add to this sketch of reduction as deduction, two main
qualifications: qualifications that are agreed by all hands, including Nagel.

(1): Bridge laws: Usually, Tt has concepts unmentioned (in linguistic terms: pred-
icates unused) by Tb; so that for the deduction to succeed, statements linking these to Tb’s
concepts or predicates must be added to Tb. So it will be Tb together with these statements that
jointly give the implications (i) and (ii) above. These statements, called bridge laws, can be
(but might not be) definitions, in logicians’ sense of a statement that determines the extension
(i.e. set of instances) of the concept or predicate concerned.. This will be a topic in Section 3.

(2): Allowing analogy: Often, what is deducible from Tb is not exactly the given
(maybe: historical predecessor) Tt, but a theory T ∗t that is analogous to it. Though there can
surely be no general account of what counts as a strong enough analogy to justify the name
‘reduction’ (as against calling T ∗t a rival or replacement of Tt), one surely wants the obvious
revisions of (i) and (ii) above; as follows.

(i’): The deduced T ∗t implies Tt’s predictions about observable states of affairs (within
error-bars at least as good as Tt’s); and

(ii’): T ∗t implies appropriate analogues of Tt’s statements about unobservable states
of affairs.
A standard example is the reduction of Galileo’s law of free fall (implying that a falling body
has the same acceleration at different heights) by Newton’s theory of gravity. For the latter
implies that the acceleration decreases with height—but so slightly as to be unobservable with
bodies dropped from usual heights, e.g. the Tower of Pisa; (condition (i’)). And the concepts
and vocabulary of Newton’s theory, for both the observable and the unobservable, such as mass,
inertia and force, are sufficiently analogous to Galileo’s,9 that condition (ii’) is satisfied.10 We
will see this allowance of an analogous theory T ∗t in our discussion of causal set theory’s recov-
ery of Lorentzian geometry: already in Section 2.1 and throughout the paper, culminating in
Section 8.

So much by way of sketching the notion of reduction.11 Prima facie, it seems opposed to
emergence, even allowing for (2). For one expects an emergent theory to have more of a life of
its own than is compatible with being an analogue of some consequences of a putative reducing
theory.

But in recent philosophy of physics, several authors make reduction and emergence precise
in such a way that they are compatible. (Of course, there can be no debate over stipulative
definitions: the debate is over whether the classifications that ensue from an author’s definitions
illuminate the details of the theories, and of how they are applied.) In this reconciliation, one
common idea has been that:

(A): for some physical theories, novel mathematical and conceptual structures
(and associated phenomena) can be proven to appear, at the limit of some parameter; and

8Of course, in order for Tb to be an improvement on Tt, even while reducing it, we would expect there to
be other reasons for favouring it over Tt. For this, the obvious, and traditionally emphasised, reason is novel
predictions, i.e. that Tb makes confirmed predictions outside the domain of Tt’s empirical success. But there
are also other reasons (often dubbed ‘theoretical virtues’), which are less easily analysed and more controversial
than empirical success; such as theoretical unity and simplicity.

9At least, if we read him with hindsight: cf. Heilbron (2010, especially Chapter 4) for a magisterial antidote
to the temptations of anachronism.

10And as to being an improvement on Tt (i.e. Galileo’s theory), not just reducing it (cf. footnote 8): Newton’s
theory has of course a wealth of confirmed predictions outside the domain of Tt’s success, and other theoretical
virtues.

11For defences of the Nagelian account, cf. Dizadji-Bhamani et al. (2010), Schaffner (2012); my own efforts
include Butterfield and Gomes (2023, Sections 2 and 3) and Butterfield (2014, Sections 1.2, 4).
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(B): in such cases, the theory obtained in the limit should be classified as emergent
from (since so different from) the theory before the limit, and yet also as reduced to it (since
rigorously derived from it using the limiting operation).
This is indeed my own view. Well-known examples in thermal physics include (a) the number
of microscopic constituents of e.g. a gas sample, going to infinity, and (b) the length of the
lattice-spacing in a lattice-system going to zero.12

This view also accords with physicists’ usage in their discussions of how any theory of
quantum gravity is expected to reproduce the success, within appropriate regimes, of our
current well-confirmed theories of quantum fields defined on a continuum spacetime. Thus
they usually talk of ‘the emergence of classical spacetime from quantum gravity’, while clearly
intending this to be also a case of reduction in philosophers’ sense. (Oriti (2023) is a fine review
of the issues; for our purposes, cf. especially its Section 4.)

In particular, this applies to our topic, causal set theory. For as we shall see in detail
(Sections 5 to 7): causal set theory seeks to define an appropriate class of causal sets each
of which underpins an essentially unique solution of general relativity (Lorentzian manifold).
Here, common synonyms for ‘underpins’ are ‘recovers’ and ‘reduces’. So ‘reduces’ is used, not
only for the relation between theories, where each theory has many solutions; but also for the
relation between individual solutions or states, from one in the reducing theory, to one in the
reduced/emergent theory.13

There are two points here, which will be centre-stage from Section 2 onwards: and which I
explain in Section 2.1. They are both about the fact that the scale that is relevant to a causal
set’s recovery of a Lorentzian manifold is before the continuum limit. I stress that here ‘before’
has no temporal meaning; it just means ‘away from’, i.e. at some non-zero length-scale. But
this usage is established; so I will continue to say ‘before’.

2.1 Before the limit

The first point is that I italicised ‘essentially unique’ in order both: (a) to signal that this needs
to be made precise (Section 5 et seq.); and (b) to signal, for philosophers, that uniqueness would
be the idea of supervenience, and that essential uniqueness is, rather, the idea of approximate
supervenience.

That is: just as in philosophy, to say that the T -facts supervene on (are determined by) the
B-facts is to say that once the B-facts are set (given), so are the T -facts (‘there is no wiggle-
room’); so also in causal set theory: to say that a causal set underpins a unique solution of
general relativity (Lorentzian manifold) would be to say that once a specific causal set (in the
appropriate class) is given, so is a Lorentzian manifold—there is ‘no wiggle-room’, for variety
about the manifold.

But I stress that causal set theorists do not seek such uniqueness, such complete elimination
of wiggle-room or variety. (Hence I wrote ‘would be to say’.) For as we shall see, a causal set has
structure at the Planck length and at larger scales (in length and time), whereas a Lorentzian
manifold has structure on all length(time)-scales, no matter how minuscule. So a causal set can
only be expected (no matter how one might define the appropriate class of them) to underpin,
or recover, a Lorentzian manifold’s structure at the Planck length and above (i.e. at longer
lengths and times). It cannot encode structure on smaller scales, and so cannot discriminate

12I developed this view in (2011, 2011a, 2014). But my focus on limiting systems was of course unoriginal:
it owed much to discussions by physicists, such as Berry (1994), Kadanoff (2009) and Landsman (2006) and
philosophers such as Batterman (2002). More details, and later developments, of (A) and (B), especially
including phase transitions in thermal physics, can be found in e.g. Landsman (2013), Lavis et al. (2021),
Palacios (2022, especially Chapter 2), and van de Ven (2023).

13And for the converse relation, causal set theorists often talk of a Lorentzian manifold ‘approximating a
causal set’: a jargon I will also adopt.
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between two Lorentzian manifolds that differ in their structures only at some such smaller
scale. Thus the aim of capturing manifold-structure at the Planck length and above, but being
silent about it below the Planck length, is expressed in the phrase ‘essentially unique’: which,
all hands agree, needs to be made precise—as remarked in (a) above.14

The second point develops this idea of approximate supervenience. My mention of the
Planck length hints that there is to be a limiting relation between causal sets and Lorentzian
manifolds (more precisely: between appropriate classes of them; or if one prefers, between
appropriate classes of theories of them); and that the relevant parameter in taking this limit
is to be the Planck length and its going to zero (or equivalently: the Planck energy going to
infinity). True enough. But as we will see (Section 4 onwards), the scientific and philosophical
focus is not on what happens at the limit—though the summary I first gave (in (1) and (2) at
the start of Section 2) makes one expect it to be there.

Rather, the focus is on what happens before the limit. (Again, ‘before’ is not really temporal:
it just means ‘away from’.) More precisely: what matters, both scientifically and philosoph-
ically, is that the novel structures and their associated phenomena (the emergent behaviour)
that are rigorously deduced to occur in the limit are foreshadowed in the regime before the
limit. That is: a “rough version”, or an analogue, of the emergent behaviour is seen en route to,
i.e. before, the limit. This happens in the examples, often drawn from thermal physics, treated
in the references given in footnote 12. As I put it (in 2011a, Section 1.2): for a parameter N
that tends to infinity (for example the number of atoms in a gas sample), though N = ∞ is
physically unreal: ‘There is a weaker, yet still vivid, emergent behaviour that occurs before we
get to the limit, i.e. for finite N. And it is this weaker behaviour which is physically real’.15

And the same is true of this paper’s case-study, causal set theory. For it proposes that a causal
set in the appropriate class whose discreteness scale is set at the physically real, i.e. actual,
Planck length (viz. Planck length Lp :=

√G~
c3

= 1.6× 10−33 cm; equivalently, at Planck energy
Ep = 1.2 × 1019 GeV) exhibits a rough version, or analogue, of the continuum geometry of a
Lorentzian manifold—where the rough version or analogue is of course understood in terms of
restriction to facts about the continuum geometry above the Planck length. (Again, all hands
agree that this ‘restriction to facts above the Planck length’ needs to be made precise; cf. (a)
above.)16

These two points can be summed up in terms of an image: an image that connects with
another familiar idea (and jargon) in physics, viz. coarse-graining. Thus we think of coarse-
graining as loss of information by setting aside the values of some quantities. In the paradigm
case of classical statistical mechanics, a phase space Γ, whose elements (microstates) are given

14This paragraph’s apparent conflation of the distinction between reduction and supervenience is entirely
deliberate. For let us take reduction, following Nagel, as deduction using judiciously chosen definitions of the
reduced theory’s notions; as in (1) at the start of Section 2. This implies that supervenience (also known as
‘determination’ and, among model-theorists, as ‘implicit definition’) turns out to be generalised reduction, in
which the definitions are allowed (but not required) to be infinitely long. For example, it can be an infinite
disjunction of the sort philosophers discuss in the multiple-realizability argument; (cf. my (2011, Section 4),
(2011a, Sections 4.2.3, 5.2.3 and 6.3.4) and Butterfield and Gomes (2023, Section 3)). I also argued (in 2011a,
under the label ‘(3:Herring)’) that this finite/infinite contrast is, by and large, not important, scientifically or
even philosophically. A clarification: note that this is a very different finite/infinite contrast from the one at
issue in the reconciliation given by (A) and (B) above—which is indeed important.

15Landsman (2013, p. 382) and van de Ven (2023, p. 2) generously call this ‘Butterfield’s Principle’, My
(2011a) had used the label ‘(2: Before)’; and had labelled my scepticism about the scientific and philosophical
importance of supervenience, recalled in footnote 14, ‘(3:Herring)’.

16I stress that my saying that the focus, or what matters scientifically and philosophically, is the situation
en route to, i.e. before, the limit—in our case-study: the situation at the Planck length and above—does not
mean there is no interest in studying the limit. Just as in the cases, e.g. in thermal physics, discussed in the
studies in footnote 12, studying the limit teaches us a lot about the passage towards the limit. We shall see
several examples of this from Section 5.2 onwards.
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by the values of very many quantities (treated as real-valued functions on Γ), is partitioned
into cells, i.e. equivalence classes (macrostates). A cell or macro-state is given by the values
of a small number of quantities: an elite minority which are typically collective quantities,
e.g. totals or averages of quantities on the microscopic constituents. So a cell or macrostate
is given as the intersection of level-surfaces of this small set of (typically collective) quantities.
If we think of Γ as a region of the plane, e.g. a rectangle, then it is partitioned into mutually
exclusive and jointly exhaustive sub-regions. And just as fixing a point in the region Γ fixes
which sub-region it is an element of, so also fixing a microstate fixes the macrostate: in the
metaphor I used above, there is no wiggle-room.17

So the above two points, about emergence before the limit, amount to a warning about this
image. Namely: it is the image of the scenario, i.e. the relation between the two theories Tt
and Tb in the limit, where reduction (or supervenience) rigorously obtains. It is not an image
of the scenario en route to the limit. That is: It is not an image of what I called ‘approximate
supervenience’; i.e. in causal set theory, the scenario of each causal set in the appropriate class
determining only an “essentially unique” Lorentzian manifold—where, again, all hands agree
that “essentially unique” needs to be made precise. In this scenario, to fix a causal set is to
fix—not a single Lorentzian manifold—but a set of them that are approximately isometric in
the sense of matching, within appropriate error-bars, each other as regards the facts about
continuum geometry above the Planck length.

So returning to the phase space Γ and our image of it as a region of the plane: this scenario
corresponds, not to a single partition of Γ into sub-regions, but to a set of partitions, so that
to fix a causal set is to fix—not a single cell (Lorentzian manifold, macrostate)—but a set of
cells. Besides, the boundaries between the cells in one partition of Γ are to be suitably close, in
some sense, to the boundaries between suitably corresponding cells in another partition of Γ.
And here again, ‘suitably close’ and ‘suitably corresponding’ are to be made precise in terms
of the cells (the Lorentzian manifolds, the macrostates) approximately matching each other as
regards long length-scale facts about continuum geometry.

Finally, it is worth stating this last idea in terms of how (as I mentioned) statistical mechan-
ics defines a cell or macrostate as the intersection of level-surfaces of a small set of (typically
collective) quantities. For as we shall see (Section 7), causal set theory formulates this last idea
in a very similar way. An appropriate causal set determines an “approximate isometry class”
of Lorentzian manifolds, rather than a unique such manifold; (and so causal set theory works
with a set of partitions). That is: causal set theory envisages that an approximate isometry
class of Lorentzian manifolds will be given by an approximate intersection (in some sense)
of level-surfaces of appropriate functions on the set of causal sets: where for a function to
be appropriate, its values must suitably encode some long length-scale facts about continuum
geometry.18

3 Spacetime functionalism

This paper’s second background theme, spacetime functionalism, is the application to spacetime
of a philosophical ‘ism’, ‘functionalism’, that arose in the 1960s’ debate about the mind-body
problem, i.e. the problem of how mental and bodily facts (facts involving mental and bodily

17Notice that this idea, and this image, is indifferent to the contrast between reduction and supervenience.
It makes no difference whether some, or even all, of the elite minority of quantities whose values define the
macrostates can only be defined in terms of the many quantities on the microscopic constituents, by some
infinitary construction such as taking a limit. Cf. footnote 14.

18Besides, as announced in Section 1: the idea of approximate intersection will be made precise in terms of
probability theory. Indeed, the appropriate functions on the set of causal sets will be random variables that
are estimators of continuum quantities like dimension and curvature.
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concepts) are related. For example, is the mind, i.e. the realm of mental facts, separate from,
though interacting with, the body, the realm of bodily facts: like two nations, say France and
Italy, which are neither a part of the other but have many and varied (e.g. causal and legal)
interactions? (This is usually called ‘dualism’.) Or is the mind reducible to the body? That
is: is the realm of mental facts really a part of the realm of bodily facts: like a Département
is a part of France? (This is often called ‘materialism’.) As my phrasing, ‘one realm being a
part of another’ suggests, materialism is often formulated more precisely in terms of reducing
(cf. the start of Section 2) a theory of mind, a theory of the mental facts, to a theory of bodily
facts.

Being an ‘ism’, the word ‘functionalism’ was vague, with different meanings for different
authors. But broadly speaking, most took it as analogous to emergence in the more general
reduction/emergence contrast: mental facts, or a theory of them, “say something additional
to” bodily facts, or a theory of them—they “have a life of their own”. A bit more precisely:
the idea of functionalism was twofold.

(A) One should philosophically understand mental concepts such as pain or belief
by focussing on the concept’s web of relations to other concepts, both mental and bodily (this
web being called the concept’s functional role).

(B) More specifically: by focussing on functional roles, one could see correctly
how mental facts “fitted in the landscape” of bodily facts: they are not a separate realm à la
dualism, nor are they merely a sub-realm of the bodily facts, i.e. reducible to them.
But beware: (B) is rough speaking. As we will see in a moment, one very influential formulation
from the mid-1960s (viz. Lewis’ (1966, 1970, 1972, 1994)), which was later called ‘functionalist’,
explicitly allowed that, while (A) is indeed true, there is nevertheless a reduction.

Accordingly, spacetime functionalism is the doctrine that one should philosophically under-
stand a spatiotemporal concept, especially a chrono-geometric concept (and even the concept of
spacetime itself) by focussing on the concept’s web of relations (again called functional role) to
other concepts, both spatiotemporal and material (where ‘material’ includes radiation as well
as matter). This doctrine was formulated (and named) by Knox (2014, Section 2; 2019, Sec-
tion 4). These papers advocated a specific version saying that the functional role of spacetime
itself is (no more than) to define a structure of local inertial frames (ibid. p. 122): a version
which has faced criticisms (e.g. Read and Menon 2021), But the general idea of spacetime
functionalism has garnered a lot of interest, for two reasons.

First, the chrono-geometric/material contrast (echoing the mind/body contrast) obviously
relates to the perennial debate between substantivalist and relationist conceptions of space and
spacetime. So it has been natural to ask whether relationist doctrines to the effect (roughly
speaking) that the physics of matter and radiation determines, and maybe even explains,
chrono-geometry should be understood and assessed in terms of functionalism. (And simi-
larly, it has been natural to relate Brown (2005)’s dynamical account of chrono-geometry to
functionalism.)

Second (and more relevant here), it has been natural to ask whether proposals by quan-
tum gravity physicists about ‘the emergence of classical spacetime’ from their posited non-
spatiotemporal fundamental degrees of freedom should be understood and assessed in terms of
functionalism. Indeed, this paper’s topic—causal set theory’s endeavour to recover Lorentzian
manifolds using causal sets—has been a case-study of this: cf. Lam and Wuthrich (2018,
Section 4; 2021, Section 4), Huggett and Wuthrich (2023, Chapters 2.4 and 3.3).

So much by way of introducing spacetime functionalism. I myself have two stakes in this
game: as explained in each of the next two Subsections.
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3.1 Lewis’ position about mind and body

First, Gomes and I (2023, Sections 4 and 5) have urged philosophers to recall what Lewis’
position really was; (whether or not they agree with it, of course). For the subtlety and precision
of his position has been lost in the slew of literature in the philosophy of mind, advocating
some non-Lewisian versions of functionalism as the best form of non-reductive materialism.

Thus Lewis (1966, 1970, 1972, 1994) filled out (A) and (B) (at the start of Section 3) as
follows. I will present his proposals using the case of mind and body. But it will be clear
that they can apply perfectly well to theories about other subject-matters, including spacetime
theories; (this generality is very clear in Lewis 1970).

Lewis’ first point is that (A) misses a trick. It is not just, as (A) says, that one can
specify a mental concept by its functional role; for after all, almost all concepts can be thus
specified. Also, one can simultaneously specify several concepts by their roles, even though
each of these roles mentions some or all of the other concepts. Think of how the role of pain
includes not just relations to bodily concepts, like being typically caused by tissue-damage, and
causing aversive behaviour, but also relations to other mental concepts (like typically causing
distress)—whose roles mention pain. This interconnectedness of functional roles makes one
fear a vicious logical circle of definition. But Lewis showed in detail that all can be well: such
simultaneous specification can avoid a vicious circle.

Furthermore, Lewis pointed out that (B) is compatible with a reduction. For after we
assert our theory of mind and body, our melange of mental and bodily propositions (‘the
long conjunction of platitudes of everyday psychology’, as Lewis puts it (1972: 256)) from
which one extracts functional roles, and which Lewis then shows (as I just reported) to provide
simultaneous specifications of all the mental concepts: we may perhaps develop a second theory
that contains the same functional roles—but which also describes the occupants of those roles
(i.e. the referents of the long definite descriptions, ‘the F ’, that express the roles) using other
concepts (in linguistic terms: in other vocabulary), than occurred in our first theory, i.e. in
our melange or long conjunction.

So in terms of my mnemonics: our first theory is Tt, and the second theory is Tb. And I
wrote ‘after we assert’ only for brevity. For the temporal order is not relevant: what matters is
that the second theory is logically independent from the first. Of course, for the case of mind
and body, this development of the second theory has indeed happened, thanks to the rise of
neurophysiology. For that science has theories in which pain, i.e. the occupant of the pain-
role, is—not just uniquely specified simultaneously with other concepts, à la Lewis—but also
described with neurophysiological (not just bodily) vocabulary. (The philosophical literature,
ignoring the contingent scientific details, abbreviates such a description as ‘C-fibre firing’.)

Lewis shows that in such a situation, there is a reduction in the Nagelian sense of a deduction
of Tt from the conjunction of: (i) Tb and (ii) the statements connecting each of those concepts
in Tt that are specified by their functional role in Tt, to Tb. That is: there is a deduction from
the conjunction of Tb with the bridge laws (cf. (1) at the start of Section 2).

But notice that in this setting, the notion of reduction is logically stronger than the original
Nagelian notion, in the sense that this setting requires (while Nagel does not) simultaneous
specifications of concepts by their inter-connected functional roles; indeed both at the bottom
and at the top level.

Accordingly, Lewis does not claim that this logically stronger reduction is bound to be
possible: he claims only that in some cases, it is—including, he contends, the case of mind
and body. He also discusses cases where nothing exactly fulfils a given functional role, but
something nearly does, and does so better than anything else. This sort of case, of near-
realizers, is of course logically weaker than the “pure” Lewisian proposal which (for clarity)
I first expounded. So this sort of impure case is more widespread—and I will return to it in
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Section 8.2.
Lewis also emphasises that in such a reduction, the bridge laws are mandatory, not op-

tional. They are contingent statements, of the identity of an object (or of co-extensiveness
of properties). But they are conclusions of a deductive argument, whose premises come from
both theories, Tt and Tb. They are not hypotheses or verbal stipulations motivated by some
methodological virtue such as theoretical simplicity; (as previous advocates of such a reduction,
often called ‘mind-brain identity theory’, had said).

For later comparison with spacetime cases, it is worth summing up this discussion using
the standard mind-body example of a bridge law: ‘pain is C-fibre firing’. The point will be
that it is derived: not guessed nor stipulated. Thus consider:—

(i): Accepting the characterization of pain given by everyday psychology (its being
typically caused by tissue-damage etc.), we endorse the premise: pain is the unique occupant
of so-and-so role.

(ii): Accepting neurophysiology, we endorse the premise: C-fibre firing is the unique
occupant of so-and-so role. (Here again, ‘C-fibre firing’ is the ignorant philosopher’s catch-all
for a technical description using the vocabulary of neurophysiology.)

(iii): So by the transitivity of identity (i.e. ‘if x = y and z = y then x = z’), we
must infer: pain is C-fibre firing.

So much by way of reporting Lewis’ proposals. For more details (and for the contempo-
raneous though less precise and detailed positions about mind and body, of Armstrong and
Putnam), cf. Butterfield and Gomes (2023, Sections 1.1, 2.1, 4 and 5). Gomes and I thus
proposed a label for a reduction that ensues when the second theory, Tb, has the same roles
(with occupants differently described) as are simultaneously specified in Tt. Namely, we call it
a functionalist reduction.

3.2 Functionalist reduction for spacetime theories

But our point in that paper was not just an admonition about the literature’s treatment of
the mind-body problem. More important (and this is my second ‘stake in the game’): we also
argued that spacetime theories give well-worked out examples of functionalist reduction (which
we presented in Gomes and Butterfield (2022, 2024)). And so we accused the literature about
spacetime functionalism of missing a trick, i.e. of not noticing that Lewis’ proposals were a
“golden oldie” predecessor. More’s the pity, since as I said at the start of Section 3.1, it was
always clear (especially in Lewis 1970) that the proposals can apply perfectly well to theories
about subject-matters other than mind and body.19

Thus for this paper, the question arises: is causal set theory en route to providing, not just
a Nagelian reduction, but a functionalist reduction, of Lorentzian geometry?20

To prepare for addressing that question (in Section 8.2), I should here review one such
well-worked out example.

My example is simultaneity in special relativity. More specifically: my example is the
definition of simultaneity as a relation between spacetime points, in terms of their being causal

19This is not say that such an application is easy or common: I am not an imperialist about functionalist
reduction. For as I also said in Section 3.1, the requirement of simultaneous specifications of concepts makes
functionalist reduction logically stronger than traditional Nagelian reduction. Of course, this makes it all the
more striking that spacetime theories give well-worked out examples.

20As I mentioned (Section 1 and the start of Section 3), philosophers have recently addressed this question.
But I disagree with parts of Lam and Wuthrich (2018, Section 4; 2021, Section 4). For (like most of the
literature about spacetime functionalism) they do not cite Lewis, nor engage with the ideas of simultaneous
specification and functionalist reduction. No matter: Huggett and Wuthrich (2023, Chapters 2.4 and 3.3) make
amends; and as I mentioned, my remaining disagreement with them can wait till Section 8.2.
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connectible (i.e. connectible by a signal at most as fast as light). As the mention of causal
connectibility suggests, this example will be very relevant in Section 5.21

There are two key points, which will yield (respectively) premises analogous to those in (i)
and (ii) in Section 3.1; and so the derivation of a bridge law analogous to ‘pain is C-fibre firing’.

First: using the ideas of special relativity, one can prove there is a unique equivalence
relation on the spacetime points satisfying conditions that, most physicists would agree, are
part of the meaning of the term ‘simultaneity’. The idea here is to go beyond saying ‘two points
are simultaneous iff they cannot be connected by any signal no matter how fast’. Agreed: in
a Newtonian spacetime with arbitrarily fast signals, this suggestion is true; for it specifies
simultaneity as the two points being in the same absolute 3-dimensional hyperplane, as one
intuitively wants. But in Minkowski spacetime, understood as limiting any signal’s speed to
that of light, this suggestion specifies simultaneity as identical with being spacelike-related—
which is not an equivalence relation.

However, we can go beyond this suggestion, and secure simultaneity being an equivalence
relation relative to an inertial observer, by considering which spatially distant events such an
observer would judge simultaneous with events on her worldline, assuming that she uses the
radar method (i.e. organizes a light-signal to bounce off a mirror located at the distant event)
and takes the speed of light to be independent of spatial direction. These considerations lead,
of course, to the famous, indeed revolutionary, frame-dependence, or relativity, of simultaneity,
presented in the opening paragraphs of Einstein’s 1905 paper. For us, the important points
are that:

(a) nowadays, the theory is so well understood and accepted that most physicists
agree these considerations are part of the meaning of the term ‘simultaneity’; (cf. above: being
caused by tissue-damage etc. is part of the meaning of the term ‘pain’); and

(b) these considerations can be formulated as conditions that are satisfied only, i.e.
uniquely, by the (orthodox, textbook) frame-dependent simultaneity relation.
Summing up, we have our analogue of the premise in (i) of Section 3.1. Namely, a premise
(understood as justified by the meanings of the words) along the lines:

(i’): Simultaneity relative to an inertial worldline L = the unique equivalence relation
on spacetime points, SimL, such that it holds between two points iff an observer on L, using
the radar method with an isotropic speed of light, would judge them simultaneous.22

The second key point, yielding a premise analogous to that in (ii) of Section 3.1, is more
technical, i.e. less well-known. (So again, this will be analogous to the premise in (ii) being
warranted by technical neurophysiology.) Over the years, logicians have developed axiomatic
theories of the kinematical structure of special relativity, i.e. of Minkowski geometry, written
in formal logical languages, such as predicate calculus. Among these, the theory relevant here
is Robb’s theory (1914, 1936). It has a single binary predicate After(x, y) (read as: ‘x lies in
or on the future light-cone based at y’), subject to a set of axioms so rich that every model
(in the logicians’ sense) of the axioms is isomorphic to Minkowski spacetime. So this is a
rigorous axiomatization of geometry based on causal connectibility and without any invocation
of coordinate systems: it is a synthetic rather than analytic axiomatization, analogous to what
Hilbert had done in 1899 for Euclidean geometry.23

It turns out that in this theory, simultaneity with respect to an inertial worldline L is
explicitly definable in terms of After, i.e. with no other non-logical vocabulary or concepts
being invoked. In other words, orthogonality (in the sense of Minkowski geometry) to L is

21For more details, and other examples, cf. Gomes and Butterfield (2022, 2024).
22I say ‘along the lines’ because of course the right-hand-side’s use of ‘judge simultaneous’ needs spelling out.
23Winnie (1977, especially Sections V, VI) and Goldblatt (1987, Appendix B) are modern expositions em-

phasising logical rigour. Sklar (1977, 1977a) are philosophical discussions, including the idea of a “causal theory
of time”—which is of course kin to causal set theory.
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causally definable. It is just that the definition is a lot longer and subtler than the suggestion,
‘events are simultaneous iff not causally connectible’, with which our discussion began. (For
details of the definition, cf. ibid. and Malament (2009, Section 3.4)). This provides our
analogue of the premise in (ii) of Section 3.1:

(ii’): Orthogonality to L (causally defined)= the unique equivalence relation on
spacetime points, SimL, such that it holds between two points iff an observer on L etc.

And thus we derive the bridge law. We must identify simultaneity, as understood in terms
of an observer’s judgments using the radar method (‘simultaneity in Tt’), with orthogonality,
as given by the long causal definition (‘orthogonality in Tb’). That is:—

(iii’) By the transitivity of identity (i.e. ‘if x = y and z = y then x = z’), we must
infer: simultaneity relative to L is orthogonality relative to L.24

So much by way of illustrating how spacetime theories can illustrate functionalist reduction.
As I said, Section 8 will address the question whether causal set theory illustrates some version
of functionalism, such as functionalist reduction.

4 The endeavour of recovering a continuous space

I turn now to the endeavour of recovering a continuous space from a discrete one; or in other
words, showing a continuous space to approximate a discrete one. This Section discusses this
endeavour in very general terms; (the next Section turns to causal sets). Indeed, in this Section
we need not choose some exact definition of ‘discrete’ and ‘continuous’: we can make do by
keeping in mind the three paradigm cases of—in one dimension—the integers (denumerable,
not dense), the rationals (denumerable, dense), and the reals (non-denumerable, dense but
indeed continuous).

So I take our endeavour to be: to find non-continuous structures that recover (underpin)
our current—and supremely successful—models of space and time as continua. A bit more
precisely: we take ourselves to have a theory Tc which posits a continuous space and-or space-
time, with (what we believe to be) good features/results G, and bad features/results B; and
we seek a theory Td with a discrete space and-or spacetime, that (to as high a precision as we
can probe): has G or most of G, and lacks B or most of B.

4.1 An ever-finer mesh?

Prima facie, it is tempting to think that we are guaranteed to succeed in this endeavour,
thanks to the finite precision of any measurement we can ever make. One thinks: ‘the finite
precision of measurements of length and time implies that we can reproduce Tc’s results with
a discrete space or time whose lattice-spacing is below that precision. And so we can succeed
in the endeavour.’ But of course, this implication is not firm. For from the time of Zeno,
there has been controversy about the coherence of discrete models of space and time; (I take
the development of the calculus, and in particular of the concept of instantaneous velocity,
to have resolved controversy about the coherence of continuous models). The general issue is
that there are various ways in which a discrete structure, no matter how minuscule the scale

24This example is of course better known for a different purpose than illustrating a derived bridge law, or
the idea of functionalist reduction. Namely, as causing trouble for Reichenbach and Grunbaum’s doctrine
that simultaneity in special relativity is conventional, largely because it seemed to them not to be causally
definable. (They had in mind the suggestion, ‘events are simultaneous iff not causally connectible’; and did
not know about Robb’s work.) This critique is mostly credited to Malament (1977): who indeed added to
their trouble by proving (his Proposition 2) that the orthodox, textbook notion of simultaneity (relative to an
inertial worldline L) is the unique non-trivial equivalence relation on Minkowski spacetime that is (even just
implicitly) definable from causal connectibility (or equivalently: After), together with membership of L.
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of discreteness, could imply features (either structural features or specific phenomena) that
are detectable at a macroscopic scale and contrary to what a continuous model of space or
spacetime implies—and that might be contradicted by our experience. One example is the
obstruction to modelling chiral fermions on a discrete spacetime, summed up in the no-go
theorem of Nielsen and Ninomiya (cf. Wipf 2013, Chapter 15).25

But even allowing that we are not guaranteed to succeed, it is natural to try by thinking
of an ever-finer mesh or lattice. That is, one envisages a sequence of discrete theories Tdi that
tends in a suitable sense to the continuous theory Tc. Or in terms of the spaces themselves,
rather than theories of them: one envisages a sequence of ever-finer meshes or lattices which
tends to a continuous space. The obvious prototypes here are: (i) decimal expansions of
numbers that terminate after their ith place, and these expansions’ limits, the real numbers;
and (ii) a sequence of lattice systems, with the lattice spacing going to zero.

The rest of this Section will develop this strategy of formulating an ever-finer mesh or
lattice. I will first explain two ways it could be misleading. This will lead in Section 4.2 to a
trio of desiderata, and then to a formulation of what “shape” the recovery of the continuum
from the discrete should take.

This strategy could be misleading in two related ways; both of which will apply to the case
of causal sets. First: note that there is no a priori need for a limiting process. For we seek
“only” a discrete theory that obtains (in my jargon above) the good features G and avoids
the bad features B, to within the required precision, i.e. to as high a precision as we can
probe. This is a matter of “getting things right”—more precisely: getting things as right as
the continuous theory Tc gets them—before the continuum limit, not at it. In other words: to
explain our success in modelling space and time as continua—to recover the continuum as an
approximation—it is not mandatory to obtain a theorem stating that the continuum, or even
just its successful good features G, rigorously hold in some limit. (But this is not to say that
such theorems, if available, are not useful or not illuminating. Of course, they can be: and
again, causal set theory will give examples.)

The second way that this ever-finer strategy could be misleading is subtler. It will be
clearest to introduce it by considering a heuristic that the strategy suggests. (It is a heuristic
that causal set theory has adopted; so it is relevant to this paper.) Namely, the strategy prompts
one to seek the desired discrete space or structure by studying meshes/lattices that are defined
by selection from the continuum. The idea is to select points from the continuous space or
spacetime, endow them with whatever continuum notions make sense once restricted to such
a “bare” set of selected points—and then see how these notions, as defined by restriction, fare
as “ingredients” for underpinning or recovering the original continuous space or spacetime.26

This heuristic is all very well: and in Sections 6 and 7, we will see causal set theory adopt it.
But it brings out a special feature of the continuum, or more precisely of the idea of a manifold.
Namely: much of its mathematical structure, such as it being a Hausdorff topological space
or the integer value of its dimension, is defined at all scales, no matter how small.27 And the
point is: physical space or spacetime might well not be like that.

There are, of course, countless possibilities. So in recent decades, mathematicians have
investigated and classified many of these possibilities; for example, the idea of a stratified
manifold (roughly speaking, a connected topological space that decomposes into manifolds of

25This is a very advanced example, which is not as well known among philosophers of space and time as it
should be. But for introductory details about the general issue, both historical and philosophical, cf. e.g. Van
Bendegem (2019) and Kragh and Carazza (1994).

26 Clearly, this selection will need to be made uniformly, in some sense, across the manifold, so as to avoid
lacunae: that is, so as to not omit regions whose contents encode features of the continuous space that are not
encoded in other regions; e.g. a region that contains a topological hole.

27Agreed, not all structure is defined at arbitrarily small scales: some features are “global”, e.g. the existence
of a topological hole. Cf. footnote 26.
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different dimension). In this paper, I will not need details of these possibilities; (Anderson
(2014) is a physicist’s survey). I only need to register their existence. More precisely: if we
think of recovering the continuum (or the continuous theory Tc) from some posited discrete
structure (or theory Td), by successively “zooming out” the scale, then we must allow that at
a sequence of intermediate scales, we might see a sequence of different structures, both metric
and topological. For example, as we zoom out, the dimension might change as in a stratified
manifold.

4.2 The shape of the recovery

We can sum up this discussion of the “ever-finer” strategy, as the following trio of statements,
(A)-(C), about what we should seek, and what we should not seek, when recovering a continuous
space from a discrete space; (similarly of course for spacetime).

(A): Since we think of the discrete space and its associated structures (or discrete
theory Td) as representing the true physics which is to recover the continuous space as effective
(in other jargon: to recover the successes of the continuous theory Tc): we should not require
that there is a limit theorem, i.e. a theorem that the continuous space (or Tc, or its good
features G) rigorously exist in the limit of vanishing discreteness scale.

(B): On the other hand: we do need to demand that the discrete space (or theory
Td) gives no, or at most small, variation in the values of those quantities that are to recover
the empirical success of the continuous space (or theory Tc). Typically, this success is on scales
that are very large compared to the discreteness scale. And for these large scales, the discrete
space’s (or theory’s) values of these quantities must not differ much from what the continuous
space (or theory) describes.28

(C): We need to allow for (though not of course demand) the discrete space (or
theory Td) having arbitrarily large variation in the values of these quantities, in regimes “far
from” the empirical success of the continuous space (or theory Tc): i.e. typically, on very small
length scales, close to the discreteness scale. In these regimes and scales, the discrete space (or
theory’s) values can vary wildly from what the continuous space (or theory) describes. And
similarly, we should allow for wild mathematical structures; cf. footnote 28.

The natural way to implement this trio of statements, (A)-(C)—which is, indeed, the way
adopted by causal set theory—is to impose them as conditions on an appropriate injective map
from the discrete space to the continuous space.

Thus we envisage a continuous space (M,SM) (where M a manifold, and SM are various
structures on M) and a discrete space (X,SX) (where SX are various structures on X). Then
it is natural to say that for (M,SM) to be an approximation to (X,SX) requires that:

(1): there is an injective function i : X → M that induces, in the usual “push-
forward” way, a definition of structures i∗(SX) on M ;

(2): some sort of coarse-graining procedure Co is defined on i∗(SX); so that the
result Co[i∗(SX)] matches, up to the required precision, the structures SM that are given on
M . We write Co[i∗(SX)] ≈ SM ; while of course accepting (cf. the previous Subsection) that
the notation ≈ needs to be made precise, e.g. in terms of small-enough differences in the values
of quantities.

In effect, the formulation (1) and (2) encodes the idea that a recovery, or underpinning, of

28 For brevity, I have stated desideratum (B) in terms of quantities, which one thinks of as number-valued
functions of the state. But of course, a similar desideratum applies to mathematical structures that are not
naturally thought of as a number-valued function: such as being a topological space, or being Hausdorff. How
to make precise ‘no or small variation from the values and structures described by the continuous space (or
theory) in the regime of its empirical success’ will of course be a subtle affair, and depend on the quantity or
structure concerned. Recall the discussion of approximate supervenience in Section 2.1.
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(M,SM) exists, viz. by (X,SX). Besides, this formulation does not require a limit theorem:
which accords with (A) above.

But there are questions—to put it in mathematical jargon—of uniqueness, as well as of
existence. That is to say: we also want (X,SX) to be “rich” or “logically strong” enough to fix
an “essentially unique” (M,SM). Recall again footnote 28, and the discussion of approximate
supervenience in Section 2.1. That is: it is natural to require the approximate uniqueness, of
(M,SM), in the following sense; which I label ‘(b)’ so as to match the label (B) above.

(b): If i1 : X → M1 and i2 : X → M2 are two embeddings of (X,SX) satisfying (1)
and (2), then the image spaces (M1,SM1), (M2,SM2) are related by an approximate isomor-
phism, say θ : M1 → M2, of the structures SM , where θ respects the embeddings of X in the
sense that θ ◦ i1 = i2. (Here again, we of course accept that ‘approximate isomorphism’ needs
to be made precise.)

On the other hand, we should not want the corresponding approximate uniqueness of
(X,SX), for given (M,SM). That is: we do not want the following condition; which I la-
bel ‘(c)’ so as to match the label (C) above.

(c): if i1 : X1 →M and i2 : X2 →M are embeddings of (Xi,SXi
) satisfying (1) and

(2), then the domain spaces (X1,SX1), (X2,SX2) are related by an approximate isomorphism,
say θ : X1 → X2, of the structures SX , where θ respects the embeddings of X in the sense that
i2 ◦ θ = i1.
In short: condition (c) is not justified, since we should allow the discrete space to be “wild”,
and so various, on scales so microscopic as to be beyond the regime of (M,SM)’s empirical
success.

5 Causal sets: the Hauptvermutung

So much by way of discussing the general endeavour of recovering a continuous space from a
discrete one. I turn to how causal set theory implements the ideas of Section 4. Recall from
Section 1 that I specialise to Lorentzian manifolds: I set set aside causal set theory’s treatments
of matter and radiation, of quantum theory, and even of dynamics. This will mean that Section
4.2’s idea of approximate isomorphism will boil down to approximate isometry for Lorentzian
manifolds.

So for my limited purposes,29 the following five points will suffice as an introduction to
causal sets.

(1): A causal set is a partially ordered set (poset) (C,≺) that is locally finite in that
for any x, y, the order-interval (Alexandrov set) {z : x ≺ z ≺ y} is finite.

(2): The elements of C are interpreted as point-like events (“atoms”) in a discrete
spacetime, and ≺ represents causal connectibility.

(3): So the proposal is that this is an adequate basis for recovery—in philosophical

29Reviews including the treatments which I set aside, as well as what I do need, include Brightwell and
Luczak (2015), Sorkin (1991, 1991a, 2005) and Surya (2019). This last is especially helpful, being detailed as
well as recent. It treats matter and radiation in its Section 5, and dynamics (both classical and quantum) in
its Section 6 (with kinematical prerequisites in its Sections 4.4 and 4.5). Carlip, Carlip and Surya (2023) is a
fine recent article about quantum dynamics. I will also draw on Sections 3.3 and 3.4 of Butterfield and Dowker
(2023); whose Section 6 reviews dynamics.

For a philosophical exposition complementary to mine: Huggett and Wuthrich present this basic “classical
vacuum kinematics” (2023, Chapters 2.2 and 3.2). Also like me (in Sections 7 and 8), they discuss causal
set theory’s “replacements” for manifold dimension, and for timelike geodesic distance (their Chapter 2.3.3
and 2.3.5 respectively). But they also go beyond my remit: they discuss (mostly classical) dynamics, how to
accommodate the idea of temporal becoming, the idea of effective Lorentz symmetry, and the subtle role of
non-locality in dynamics (Chapters 3.2.2, 3.4 and 3.5). Also, Morgione (2024) discusses causal set theory’s
relation to philosophers’ proposals for a “causal theory of time”; cf. footnote 23.
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terms, for reduction—of Lorentzian geometry, with its manifold structure, metric and derivative
notions like geodesics and curvature. This is bound to seem a tall order, even to someone
sympathetic to the idea of a causal theory of time and aware of Robb’s causal axiomatisation of
special relativity (cf. Section 3.2, especially footnote 23). After all, familiar rigorous accounts
of the empirical basis of Lorentzian geometry (such as Ehlers, Pirani and Schild (1972); cf.
Adlam et al (2022), Linnemann and Read (2022)) invoke a much richer set of primitives than
just a binary relation of causal connectibility.

(4): But there is a theorem supporting the proposal, due to Hawking et al (1976), and
Malament (1977a). It says that in general relativity, causal structure does indeed determine
almost all the manifold and metric structure. Here, we must restrict ‘general relativity’ to
Lorentzian manifolds that are of dimension ≥ 3, and distinguishing—which is a mild restriction
of good causal behaviour, viz. that at every point p ∈M , every neighbourhood of p has a sub-
neighbourhood which no future-directed, nor any past-directed, non-spacelike curve through
p intersects more than once. And my phrase ‘almost all’ signals that the metric is fixed up
to a conformal factor i.e. a dilation of the metric varying from point to point (so given by a
positive scalar on the manifold). Thus the theorem is: Given two distinguishing Lorentzian
manifolds, (M, g), (M ′, g′): if a bijection ψ : M →M ′ is a causal isomorphism, then M,M ′ are
diffeomorphic and ψ is a smooth conformal isometry, i.e. an isometry upto a conformal factor.

(5): Then causal set theory proposes to recover the conformal factor in the metric,
by an idea reminiscent of Riemann’s suggestion in his great Habilitationschrift (1854) that in a
discrete space, counting gives a uniquely natural measure. That is, one recovers the conformal
factor (giving the volume of spacetime regions) by having the causal set’s points be embedded
in the Lorentzian manifold at a density of one per Planck spacetime-volume. In “lab units”,
this is of course a very high density, viz. about 7× 10138 cm−3· sec−1. (More precisely, in light
of the probabilistic ideas developed in Section 6 below: this is to be the mean density.) This
proposal is in causal set theory’s founding paper: ‘When we measure the volume of a region
of spacetime, we are merely indirectly counting the number of ‘point-events’ it contains. No
attempt to “pack more points into the same volume” could change their density, because it
would only increase the physical volume of the region in which they were placed’ (Bombelli et
al. 1987, p. 522).

We can sum up (1) to (5), especially (4) and (5), in the slogan: Causal order + Number =
Geometry.

5.1 The Hauptvermutung for Lorentzian manifolds

With these five points in hand, we can state what has come to be called the Hauptvermutung
(‘main conjecture’) of causal set theory: which is, in effect, the theory’s version of Section 4.2’s
conditions (1), (2) and (b) for the recovery of a continuous space from a discrete one.30

This Hauptvermutung was formulated already in the founding paper by Bombelli et al.
(1987). First, they give a definition; (albeit not a mathematically exact one, since the prob-
abilistic idea of a mean unit density per Planck spacetime-volume was only sketched, viz. in
their footnote 9—but the idea is developed in Section 6 below). They say that an injective
function i : C → M from a causal set (C,≺) to a Lorentzian manifold (M, g) is a faithful
embedding iff:

1]: it preserves causal relations; i.e. writing as usual the causal past of a point

30I stress that despite the name, the success of causal set theory by no means depends on the Hauptvermutung
being proven. For it sets aside causal set theory’s proposals about matter, radiation and quantum theory: and
it could turn out that the successful recovery of even vacuum classical general relativity somehow depends on
the details of those proposals—so that the purely geometric formulation of the Hauptvermutung dealt with here
falls by the wayside, as not needed in the overall endeavour of recovering (within error-bars) all the empirical
successes of general relativity, which are of course mostly non-vacuum.
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p ∈M as J−(p): i(x) ∈ J−(i(y)) iff x ≺ y;
2]: i(C) is distributed uniformly, with unit density per Planck spacetime-volume,

in (M, g): (but allowing for Poisson-type fluctuations);
3]: the characteristic length λ over which the geometry of (M, g) varies apprecia-

bly is everywhere much greater than the mean spacing between embedded points.
Evidently, this definition’s clause 1] implements Section 4.2’s condition (1), about “pushing

forward” discrete structures so as to recover a continuous space.
As to Section 4.2’s condition (2), about a coarse-graining procedure Co, Bombelli et al. also

have this idea.31 It is not just that their clause 2] avoids the mistake of lacunae, i.e. of omitting
important features of the macroscopic structure; cf. footnote 26. Also their clause 3] obviously
corresponds to Section 4.2’s statement (C). That is: they explicitly allow the discrete space to
have a wild or various microscopic structure, undetected in our macroscopic measurements—by
combining clause 2]’s mean unit density in natural units, with clause 3]. Thus their footnote
10 (p. 524) says (in my notation):

Notice that clause 2] on the density would not help us to detect a unique approxi-
mate metric if we did not also have clause 3] on the characteristic length λ: Given
any manifold with the right causal structure, i.e. conformal metric, we could al-
ways arrange the density to be unity by setting the conformal factor appropriately;
but in doing so we would in general introduce an unreasonably large curvature, or
other small characteristic lengths. However, it seems plausible that clauses 2] and
3] alone determine the continuum geometry “up to arbitrary variations on small
scales, and small variations on arbitrary scales” (where small scale means size unity
or smaller).

The last sentence of this quote is in effect a summary of the Hauptvermutung; which is formu-
lated in their main text as follows (in my notation, p. 522).

... [if a faithful embedding of a given causal set (C,≺) into some Lorentzian manifold
(M, g) exists], then our discussion up to now leads us to expect that it is essentially
unique. In other words, we can expect that any pair of faithful embeddings i1 :
C → (M1, g1) and i2 : C → (M2, g2) are related by a C-preserving diffeomorphism
θ : M1 → M2, which is an approximate isometry of g1 to g2. (By C-preserving, we
mean i2 = θ◦ i1). A precise formulation and proof of this statement would establish
rigorously that the continuum approximation is well defined, and therefore that a
causal set has a structure rich enough to imply all the geometrical properties we
attribute to continuous spacetimes.

Obviously, this formulation echoes Section 4.2’s statement (B), and its corresponding condition
of approximate uniqueness, (b). Recall again footnote 28, and the discussion of approximate
supervenience in Section 2.1.

Accordingly, since this formulation in 1987, the hunt has been on to find a precise definition
of approximate isometry between Lorentzian manifolds, that provides a precise formulation and
proof of the Hauptvermutung. So I now briefly review this hunt: looking first at a geometric
strategy (Section 5.2), and then at a probabilistic strategy (Sections 6 and 7). As I announced
at the end of Section 1, there are several “success stories”, especially for the probabilistic
strategy.32

31 Cf. in addition to the main text to follow: their p. 523, and Sorkin (1991a, p. 7; 2005, p.11).
32 For a more detailed review, cf. Butterfield and Dowker (2023: Sections 3.3 and 3.4). In particular, Section

5.2’s strategy is not the only geometric one. For I here set aside the effort to try and define a metric on the
set of Lorentzian manifolds, by adapting the Gromov-Hausdorff distance between metric spaces to metrics of
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5.2 A Lorentzian manifold as the completion of a set of causal sets

Bombelli and Meyer (1989) pursue a version of Section 4.1’s strategy of an ever-finer mesh,
using heuristics drawn from classical analysis’ completion of the rationals to give the reals.
They succeed in the sense that they prove that a given Lorentzian manifold is completely
recovered from the causal sets that it defines. So this is our first success story; (though their
description is a sketch, citing unpublished work).

They proceed in two stages. The first stage combines the idea of a direct limit with the
Hawking-Malament theorem (recall (4) in Section 5). Recall that: if

(i) (I,≤) is a directed set (i.e. ≤ is a reflexive transitive relation on I such that any
two elements have an upper bound), and

(ii) {Ai : I ∈ I} is a family of algebraic objects (e.g. groups, vector spaces, or as in
our case: posets) indexed by I, with homomorphisms fij : Ai → Aj for all i ≤ j, that obey:
fii = idAi

and fik = fjk ◦ fij for i ≤ j ≤ k: then
the direct limit of the family {Ai} is defined to have as its underlying set the disjoint

union of the Ai, modulo the equivalence relation, written ∼, defined by: xi ∼ xj iff there is a
k with i ≤ k, j ≤ k such that fik(xi) = fjk(xj).
So the intuitive idea is that two elements in the disjoint union are equivalent if and only if they
“eventually become equal”.

So given a Lorentzian manifold (M, g), Bombelli and Meyer consider the set, C(M), of all
the causal sets embeddable in M . These causal sets are then the algebraic objects, ordered by
subposethood (i.e. with the fij being injective ≺-preserving functions), that obey (ii) above.
And although in the disjoint union, a point in the manifold gets dis-identified into many copies,
across the many causal sets (considered as subsets of the manifold) that it is an element of,
the quotienting by the equivalence relation ∼ re-identifies these copies. Thus the direct limit
of the family C(M) is the points of M , endowed with their causal relations.

Now Bombelli and Meyer invoke the Hawking-Malament theorem. That is: Since C(M)
determines the points of M endowed with their causal relations, it also determines the topolog-
ical and differential structure of the manifold, and also the metric except for a local conformal
(or volume) factor.

The second stage addresses recovering the conformal factor. It consists of two steps. First,
motivated by the idea that spacetime volume is given by the number of causal set points
(recall (5) in Section 5) they consider the subset of C(M) consisting of those causal sets that
are uniformly embeddable in (M, g). They then consider a sequence of such causal sets, each
of which is a subposet of the next and each of which is uniformly embeddable in (M, g) (with
increasing densities, of course). They also here invoke probabilistic ideas: they envisage each
causal set in the sequence being the outcome of a Poisson process (which means, roughly
speaking: independent trials with equal spacetime volumes getting equal probabilities). This
implies that the direct limit of such a sequence is a causal set, written Cω, such that any given
point in the original manifold M has only zero probability of being in Cω. This last fact means
that in order to get M , Cω must somehow be completed.

So in the second step, Bombelli and Meyer show that for an arbitrary poset P , there is a
Dedekind-cut-like construction of the completion of P , P , that uses the sets of upper bounds
of increasing sequences of points of P , and the sets of lower bounds of those sets of upper
bounds. By applying this construction to Cω, they then show that with probability one (again,
in the Poisson-process sense), the completion Cω consists of the points of M endowed with
their causal relations.

Lorentzian signature: the hope being that two manifolds that are metrically close are in some appropriate
sense approximately isometric. Cf. Bombelli and Noldus 2004 and its reference 6 and 7; Belot (2011, Chapter
1.3, and Appendix B) is a superb introduction for philosophers to ideas and results about Gromov-Hausdorff
distance.
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So as before, by the Hawking-Malament theorem: the topological, differential and conformal
structures are recovered. But now (unlike the end of the first stage): since each causal set in
the chosen sequence is uniformly embedded, there is probability one that the conformal factor
at a dense set of points is determined. So by continuity, it is determined everywhere. Thus all
the information in the Lorentzian manifold (M, g) is recovered.

But we should note that this success in recovering the Lorentzian manifold is limited in
two ways. First, the discussion is entirely about a fixed, though arbitrary, distinguishing
Lorentzian manifold. So it does not give us information about which causal sets, among the
vast plethora of causal sets, are embeddable in such a manifold. Second: by proceeding to
the continuum limit (in each of its stages), it does not relate to Section 2.1’s theme that the
regime of primary physical significance is the regime before the limit, not at it; specifically, the
regime of the Planck scale and above.33 Sections 6 and 7 will report some efforts to address
these limitations.

6 Poisson sprinkling: a statistical distance between geometries

So far, I have said about Poisson sprinkling only that (i) it is a process of selecting points of a
given (M, g) at some density, with independent trials, and equiprobability for equal spacetime
volumes (hence ‘Poisson’) and (ii) endowing the selected points with their spacetime causal
order—thus producing a causal set that is random in the sense of the Poisson process. (Cf.
Section 1 and the mention in Section 5.2.) The aim of this Section is to present the proposal
(Bombelli 2000) to use Poisson sprinkling to define a distance function on (pairs of) Lorentzian
geometries. Section 6.1 presents the proposal; then Section 6.2 reports how it provides sugges-
tive formulations of the Hauptvermutung.

6.1 Bombelli’s proposal

To present this proposal, I will not need precise definitions of the notions of independence
and equiprobability (for which cf. e.g. Bombelli’s Section 2). But I should note two general
points. First: by Poisson sprinkling into manifolds (M, g) whose geometry varies only over
length scales much greater than the Planck length, we get a rich source of faithful embeddings,
in the sense of Bombelli et al (1987); (and defined in Section 5.1). Thus Poisson sprinkling
has been an important tool for investigating which kind of causal set, in the vast multitude of
them, can recover Lorentzian manifolds; and so also, which sub-kinds recover specified kinds
of Lorentzian manifold; and so also, for investigating the Hauptvermutung.

Second, this raises the question whether Poisson sprinkling “covers” the faithfully embed-
dable causal sets. That is: does a causal set faithfully embed in (M, g) only if it is a typical
outcome of a Poisson sprinkling? This is not known, but there is positive evidence for it.
Thus Saravani and Aslanbeigi (2014) show that, roughly speaking, causal sets that are typical
outcomes of a Poisson sprinkling are best at realising the number-volume correspondence, i.e.
clause 2] of the definition of faithful embedding. Indeed, they do so even for arbitrarily small
regions; (2014, Theorem 1).

I said above that Bombelli defines a distance function on (pairs of) Lorentzian geometries.
Here ‘geometries’ means isometry classes of Lorentzian manifolds; cf. footnote 2. For the
function will have the merit of taking the same value whichever Lorentzian manifolds we choose
as representative elements of the isometry classes. The function will also have the merit of being

33I say ‘primary physical significance’, because, as I admitted in Section 2.1: theorems and constructions
about the continuum limit are indeed often illuminating, and even physically significant. But I think that
significance lies in what information they imply about the regime before the limit: in other words, a continuum
limit is evidence of a continuum approximation “nearby”.
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scale-dependent in such a way that it expresses insensitivity to structure below the given scale
(for us, the Planck scale): just as we would want for the Hauptvermutung.

Bombelli (2000)’s proposal has two main ideas. First, he associates to each appropriate
Lorentzian manifold (M, g) (equivalently: Lorentzian geometry) the probability distribution
over finite causal sets given by the Poisson sprinkling process into that manifold. More specif-
ically, he works with distinguishing Lorentzian manifolds (M, g) of finite volume VM ; and for
each positive integer n, he considers the set Cn of causal sets (with the points unlabelled) C,
each with n elements. Using the definition of the Poisson process, he deduces a formula for the
probability, written Pn(C/M, g), that a Poisson sprinkling from (M, g) yields the unlabelled
causal set C (his equation 8). Due to the finite volume, the integer n behaves like a discrete-
ness parameter, with larger n implying a smaller discreteness scale (“a finer grain”) VM/n. So
the upshot is that we are to think of the manifold (M, g) in terms of the sets of probabilities
{Pn(C/M, g)|C ∈ Cn} that it defines; and as n increases (so that VM/n decreases), the set of
probabilities {Pn(C/M, g)|C ∈ Cn} gives increasing information about (M, g).

So the task now is to define a notion of distance between two such sets of probabilities (with a
common n) for two manifolds (M, g) and (M ′, g′), i.e. a distance between {Pn(C/M, g)|C ∈ Cn}
and {Pn(C/M ′, g′)|C ∈ Cn}: a distance such that whenever it is small, the manifolds are close
at volume scales that are large compared to VM/n and VM ′/n.

And here is Bombelli’s second main idea. He applies a definition, which is standard in
probability theory and statistics, of the distance between probability distributions (called the
‘Bhattacharyya angle’, or ‘statistical angle’). This definition also has the attraction that it has
a simple geometric interpretation (which will justify the word ‘angle’); as follows.

Think of any total ordering of the elements of Cn; (no matter which one—it can be regardless
of the structures of the causal sets in Cn). Given any such ordering, the set of probabilities
{Pn(C/M, g)|C ∈ Cn} defines a vector in the high-dimensional real vector space IR|Cn|: here,
I write |X| for the number of elements in a set X. So if we take the square-roots of the
components of this vector, i.e. the

√
(Pn(C/M, g)) as C runs through Cn, we get a unit-length

vector in IR|Cn| (Pythagoras’ theorem). That is: the
√

(Pn(C/M, g)) are the components of a
unit-length vector in IR|Cn|. Then the statistical angle between two such vectors (probability
distributions), written dn((M, g), (M ′, g′)), is defined by:

dn((M, g), (M ′, g′)) :=
2

π
arccos [ΣC∈Cn

√
(Pn(C/M, g)).

√
(Pn(C/M ′, g′))] . (6.1)

Thus dn((M, g), (M ′, g′)) is the angle between two such unit vectors; except that we have
rescaled by the pre-factor 2

π
so as to be at most 1.

Example: For finite n, the condition dn((M, g), (M ′, g′)) = 1 requires that the argument of
the arccos function in eq. 6.1 is zero, i.e. that there is no C ∈ Cn for which both Pn(C/M, g)
and Pn(C/M ′, g′) are non-vanishing, i.e. which can be embedded in both geometries.

So to sum up these two ideas: two Lorentzian manifolds are taken to be close iff when we
sample the same number of points at random with uniform density in each of the manifolds,
the probability of obtaining any given induced causal set is about the same in the two cases.34

Before I turn to how this proposal prompts interesting probabilistic formulations of the
Hauptvermutung (Section 6.2), let me make two remarks which relate the proposal back to
Section 5.2’s result about completing an appropriate set of causal sets so as to recover the
entire Lorentzian manifold (M, g). So these remarks involve considering limits as the number

34This summary makes clear, as Bombelli emphasises, that the proposal does not require any identification of
points between manifolds, and is thus diffeomorphism invariant. That is: the distance function is well-defined
on isometry classes of Lorentzian manifolds, i.e. on Lorentzian geometries in the sense of footnote 2. In other
words, we can replace my words ‘sample ... in each of the manifolds’ above, by ‘sample ... in one representative
of each of the geometries’.
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n of points goes to infinity. (Both remarks follow Bombelli: after his equation (10), and his
Section V, respectively.)

Firstly: since the number |Cn| of causal sets that can be made out of n points is finite (though
it grows very fast—faster than exponentially (Kleitman and Rothschild 1975), the value of
dn((M, g), (M ′, g′)), for any n, depends on a finite number of parameters, so that it cannot
capture all the information in the manifolds (geometries) (M, g) and (M ′, g′). This implies
that dn((M, g), (M ′, g′)) is not positive-definite, in the sense that there are non-isometric pairs,
(M, g) and (M ′, g′), such that for all n, dn((M, g), (M ′, g′)) = 0. So dn cannot be a distance
function on the infinite-dimensional space of Lorentzian manifolds (nor the space of Lorentzian
geometries), in the sense of metric space theory, viz. that dn(x, y) = 0 implies that x = y.
Thus Bombelli calls dn a ‘pseudo-distance function’.

This prompts one to consider the limit n → ∞, returning one to Section 5.2’s result.
That result means that a sequence of causal sets {Cn}, where each Cn (i) has n elements (i.e.
Cn ∈ Cn) and (ii) is a sub-causal set of the next one, Cn ⊂ Cn+1, can be embedded in at most
one manifold (M, g) (upto isometry: i.e. in at most one Lorentzian geometry). This means
that for any such sequence {Cn}

lim
n→∞

Pn(C/M, g)Pn(C/M ′, g′) = 0. (6.2)

Then although the number of terms in the sum in eq. 6.1 grows faster than exponentially,
nevertheless the limiting value of dn((M, g), (M ′, g′)), for (M, g), (M ′, g′) not isometric, could
yet be 1. For although many causal sets are embeddable in both (M, g) and (M ′, g′) (cf. the
example after eq. 6.1), all the products of probabilties in eq. 6.2 go to zero fast enough to
overcome the super-exponentially increasing number of terms in the sum.

In such a situation, d∞((M, g), (M ′, g′)) := limn→∞ dn((M, g), (M ′, g′)) is a distance func-
tion, in that it discriminates (does not vanish on) non-isometric (M, g), (M ′, g′). However, it
does not distinguish (like the dn do not) between different values of the total manifold volume
VM and VM ′—simply because the number of sprinkled points was a “control parameter” chosen
by us as the same for both manifolds. This limitation prompts the second remark.

Secondly: Bombelli shows that by:
(i) making the number n of sprinkled points be itself a random variable, subject to a

Poisson distribution in the elementary sense, i.e. for the manifold (M, g), Pµ(n) := (e−µµn)/n!,
and choosing the parameter i.e. mean µ to be proportional to the volume VM ; and similarly for
(M ′, g′) (which can even have a different dimension than M), requiring Pµ′(n) := (e−µ

′
µ′n)/n!;

(ii) relating the parameters µ, µ′ to a common length scale l, which is to be a mean
spacing between sprinkled points, the same in both manifolds; and

(iii) revising eq. 6.1 accordingly, by having the argument of the arccos function be
also a sum from n = 0 to ∞;
we obtain a distance function dl (now parametrized by the mean point spacing l; cf. his
equation 41) that compares manifolds of different volumes, and indeed of different dimensions,
with the intuitively correct scaling properties.

More specifically, and most relevantly for our purposes: the merit of this distance function
dl is that it has most of the contribution to the distance between two manifolds come from
probabilities about features “around” the mean point spacing l. Or in more physical terms,
choosing l to be the Planck length: the Poisson processes, and so the distance function dl, give
for each manifold (a) greatest probabilistic weight to those (embeddable) causal sets whose
cardinality lies in the range N ±

√
N , where N is volume of the manifold in Planck units; and

(b) very small weight to causal sets that are much larger than this. In this way, the distance
function is constructed to be insensitive to structure on scales below l.

Furthermore, returning to Section 5.2’s result: Bombelli also shows that this result implies
that if dl((M, g), (M ′, g′)) = 0, then—with probability one (according to the Poisson process)—
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(M, g) and (M ′, g′) are isometric. So this distance function is, with probability one, positive-
definite.

6.2 Probabilistic formulations of the Hauptvermutung

Finally, I report how Bombelli’s function dn prompts interesting probabilistic formulations of
the Hauptvermutung; (so I now set aside dl). He suggests three such: of which I will report
two (viz. his (ii) and (iii) above his equation 12), since they involve notions I have introduced.

Firstly: recall the start of my first remark above, viz. that since dn((M, g), (M ′, g′))
depends on a finite number of parameters, it is not positive-definite. This prompts Bombelli to
conjecture: For any subset of geometries labeled by a finite number of parameters (analogous
to the “minisuperspaces” used for spatial geometries), there is a finite n such that dn is a true
distance function on this set.

Secondly: Bombelli to conjectures that for any two arbitrary distinguishing, finite-
volume non-isometric manifolds, (M, g) and (M ′, g′), there is a finite n such that dn((M, g), (M ′, g′)) >
0, with dn((M, g), (M ′, g′))→ 1 as n→∞.35

Bombelli calls both these conjectures ‘reasonable’: with which I think all would concur (though
of course the first needs a precise definition of ‘geometry labeled by a finite number of param-
eters’). But they remain unproven—and so, an invitation to mathematicians.

Indeed, more generally: I hope this Section and Section 5 has conveyed how alluring the
Hauptvermutung is. It expresses an idea that is both natural in itself (cf. Section 4.1), and
conceptually central to the causal set programme: that causal sets are an adequate basis for
recovering—in philosophical terms: reducing—Lorentzian geometry above the Planck scale
(Section 2.1 about the importance of before the limit; and Section 5.1). And yet for thirty-five
years, no precise formulation has been settled on as best; let alone proved (Section 5.2 and this
Section).

But this predicament is no reason for scepticism about causal set theory: and not just
because a task’s being hard should make it more alluring for us all. There are also two other
reasons. (1): As I stressed in footnote 30, causal set theory does not have to establish some
purely geometric formulation of the Hauptvermutung. For its recovery of Lorentzian geometry
could ensue as a consequence of its proposals about matter, radiation and quantum theory,
proposals that this paper has set aside. (2): In any case, there is plenty of evidence that some
purely geometric formulation along the lines this paper considers is indeed true. Much of this
evidence uses Poisson sprinkling to turn functions on causal sets into random variables, which
can then be assessed as estimators (in the sense of probability theory) of continuum quantities
such as the dimension of a manifold—as we will see in Section 7.

7 Estimating continuum geometry from a causal set

The idea of this Section is that since in a probabilistic framework, any function on causal sets
becomes a random variable, a function that we judge to be a discrete analogue of a continuum
quantity of interest can be assessed as an estimator, in the sense of probability theory, of that
continuum quantity.

35An apparently equivalent formulation is given in Brightwell and Luczak’s review (2015: p.9). They use the
idea, for a region U of a Lorentzian manifold of finite volume, and a finite causal set C, of a density t(C;U),
which is defined as the probability that a Poisson sampling of |C| elements from U yields a causal set isomorphic
to C. Then their formulation is: if U and V are regions of Lorentzian manifolds of finite volume, such that
there is no measure-preserving diffeomorphism between the two, then there is some finite causal set C such
that t(C;U) 6= t(C;V ).
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For example, one takes a function that encodes (at least when evaluated on appropriate
causal sets that are large enough) a discrete or coarse-grained analogue of a feature of continuum
geometry, such as manifold dimension or the length of a timelike curve: a feature we are
concerned to recover, albeit only at and above a certain length-scale. For some continuum
features, such as causal pasts and futures, or the volume of a spacetime region, the definition
of the function is obvious. For example, the volume of a region is to be given by the number
of causal set elements it comprises. But in general, it will take ingenuity to formulate the
pattern in causal sets that is relevant to the continuum feature: e.g. the pattern of causal
connectibility that underpins, i.e. is a harbinger of, the causal set being embeddable in a
manifold of a prescribed dimension.36

Given such a function, one then assesses it by looking at the behaviour of the function’s
mean and variance on faithfully embedded causal sets that are Poisson-sprinkled into a given
(M, g), as the density ρ of the sprinkling (and so the size n of the causal set) grows. Thus
one hopes to show that such a function’s statistical properties make it a good estimator of e.g.
manifold dimension, or timelike length.

For example, one hopes to show that: (a) its expectation tends to the value of the continuum
quantity (in the Lorentzian manifold that one aims to recover); and (b) its variance decreases
appropriately (e.g. tends to zero), for larger and larger causal sets. And again, proving a limit
theorem is illuminating for, but not a sine qua non of success: for we seek recovery at and
above a certain length-scale. (Cf. Section 2.1 and footnote 33.)

So, writing the estimator function on causal sets as G (‘G’ for ‘geometry’), and writing G
for the analogous continuum quantity that we take G to estimate: we envisage the following
three steps.

(i): The expected value, < G > of the random variable, and its limit as ρ→∞ are
calculated; and shown to equal the value of G in a Lorentzian manifold (M, g).

(ii): The value of < G > at finite ρ is shown to be close to its limiting value when
the discreteness scale set by ρ is small compared to any curvature scale of (M, g). (Again:
clause 3] in Section 5.1’s defnition of faithful embedding; and the theme of before the limit.)

(iii): The fluctuations around the expected value are shown to be small so that the
continuum value of G (as ascertained within error-bars) can be read off from G evaluated on
a single faithfully embedded Poisson-sprinkled causal set C.

Causal set theorists have several such success stories; (though in some examples, the fluc-
tuation analysis (iii) remains to be done, and-or the results are for sprinkling into a flat space-
time). These examples go well beyond the obvious cases such as causal pasts and futures, or
the volume of a spacetime region, that I mentioned above.

For brevity, I will report just two, about manifold dimension and the length of a timelike
geodesic. These are natural choices since (i) they show ingenuity in the definition of the
estimator, (ii) they are readily summarised (and discussed in some of the reviews), and (iii)
they have the historical interest of being treated, albeit briefly, in Myrheim’s precursor paper
(1978). But these are just two examples: several others are summarised in Section 3.4.2 of
Butterfield and Dowker (2023).

So first, spacetime dimension: several estimators of dimension, based on different underlying
ideas, have been studied. The simplest one (in a class that gives, in general, non-integer values
and was studied by Myrheim and Meyer) is the ordering fraction of the causal set. It is
the fraction of pairs of elements that are related. For a causal set Poisson-sprinkled into an
Alexandrov interval (i.e. the intersection of a point’s future lightcone, with the past lightcone
of a point in that cone) of Minkowski spacetime, its expectation is a known monotonically

36Of course, Robb’s causal theory of Minkowski spacetime required similar ingenuity, as the formulation of
bridge laws in reduction usually does (cf. Section 3.2). But unlike Robb, we here cannot exploit the global and
linear structure of the spacetime we wish to recover.
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decreasing function of dimension. Thus this function being decreasing reflects the idea that
a higher dimension gives more room for points to be unrelated. Furthermore, this function’s
variance accurately determines the dimension d for large enough causal sets. For details, cf.
Myrheim (1978, p. 11), Sorkin (1991, p. 10; 1991a, 11-15; 2005, p. 11), Surya (2019, Section
4.1).

For the length of a timelike geodesic, the obvious suggestion for an estimator is to count the
number of elements in the longest chain (i.e. the linearly ordered set of maximum cardinality)
between the two corresponding elements in the sprinkled causal set. For the longest chain is
the natural analogue of the timelike geodesic. And indeed: for sprinklings in flat spacetime of
dimension d, the cardinality of the longest chain multiplied by the fundamental length, L—
where ρ = L−d with ρ the sprinkling density—is a good estimator, for long enough geodesics, of
the associated timelike geodesic’s continuum-length (times a dimension-dependent constant).
For details, cf. Myrheim (1978, p. 5-8, 11), Sorkin (1991, p. 11; 1991a, p. 17; 2005, p. 12),
Brightwelll and Luczak (2015, p. 5-8), Surya (2019, Section 4.3). Besides, this good behaviour
is reproduced for curved spacetimes, at least in the continuum limit (Bachmat (2008, Theorems
1.1 and 1.2)).

8 Hopes for reduction

In this concluding Section, I return to philosophy. That is: I will discuss, in Section 8.1, how
the details of causal set theory (Sections 4 et seq., especially Sections 5 to 7) illustrate Section
2’s topic of reduction, especially reduction before the limit. Then in Section 8.2, I discuss the
prospects for their illustrating Section 3’s idea of functionalist reduction.37

Broadly speaking, my conclusion will be that the pressure is on the physics, not on the phi-
losophy. That is: causal set theory still has much to do, in its endeavour to recover Lorentzian
geometry; (more precisely, the theory of distinguishing Lorentzian manifolds). But its tasks
lie in theoretical and mathematical physics, not in philosophy. For nothing in that endeav-
our undermines, or militates against, the traditional Nagelian account of reduction. Nor does
anything in that endeavour undermine or militate against a functionalist reduction: though
achieving a functionalist reduction will surely be a harder task simply because, as I said in
Section 3.1, it is a logically stronger concept of reduction.

So in short: causal set theory’s endeavour to recover Lorentzian geometry has the wealth
of ideas and results, the success stories, that I have reviewed in Sections 5 to 7. It is indeed en
route to reduction, but it still has a way to go...

8.1 The prospects for Nagelian reduction

Recall from (2) at the start of Section 2 that the Nagelian account of reduction allows the
theory that is reduced, i.e. deduced with the help of bridge laws, to be—not the given (perhaps:
historical predecessor) “top” theory Tt—but an analogous theory T ∗t . Here, the Nagelian agrees
that the notion of analogy is very likely to be specific to the theories concerned, but it will be
subject to constraints such as (i’) and (ii’) at the start of Section 2.

Evidently, causal set theory’s overall strategy, of showing Lorentzian manifolds to be ap-
proximations to appropriate causal sets, is a case of endeavouring to deduce just such an

37As I said in Section 1, I will not comment in detail on recent philosophical discussions by Lam, Huggett
and Wuthrich, since for the most part I agree with them. In short, we agree that causal set theory is en route
to reduction: promising but not there yet. But Section 8.2 will record one disagreement. Also: as I said in
footnote 4 and the start of Section 2: I focus on the syntactic conception of a theory, and so on Nagelian
reduction. But I believe my main points will carry over to a semantic conception of theories.
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analogous theory T ∗t . For the idea of analogies between the continuum space and the pos-
tulated discrete underpinning has been centre-stage for us, from Section 2.1’s introduction of
the Planck scale right through to Section 7’s report of the behaviour of some estimators of
continuum quantities such as manifold dimension. These analogies are too clear to be worth
rehearsing again seriatim.

But on the other hand, as I said in this Section’s preamble: causal set theory is still far from
having a fully explicit Nagelian reduction of Lorentzian geometry to causal sets, even allowing
for deducing an analogous theory T ∗t , rather than the given Tt, i.e. Lorentzian geometry. That
lack is no surprise, let alone a defect: for even apart from causal set theory, the formulation
of Lorentzian geometry in a form rigorous enough for us to explore the project of deducing it
from other theories is in its infancy.38

So in the absence of such a formulation, the remaining point that is worth noting in this
paper is that there are two broad approaches with which one can take causal set theory’s
prospective reduction to illustrate the Nagelian account.

These two approaches can be labelled with slogans or catchphrases, as: either
(A): we deduce at the top t level what causal set theory is committed to; or
(B): we take the top/bottom contrast, t/b, to be given by the continuum/discrete

contrast.
I shall briefly present (A) and (B) in turn; and then remark that so far as I can see, it makes
no odds which of these two approaches we adopt.39

(A): The idea is, first, to take Tt to be general relativity. Of course, general relativity is
really a whole science, not a single theory; so one must be more precise. We have confined
ourselves to vacuum; and we have also seen that causal set theory restricts itself to causal
sets without closed causal chains, and correspondingly it endeavours to reduce the class of
distinguishing spacetimes (recall the Hawking-Malament theorem). So we might take Tt to
be (a precise formulation of) the theory of distinguishing Lorentzian manifolds. Or we might
build in to the specification of Tt a restriction to “unwrinkly” geometries, i.e. to Lorentzian
manifolds with curvature only above the Planck scale; (a restriction that, as we have seen, is
yet to be made precise). Or, nodding to the semantic conception of theory: we might take Tt
to be, not a linguistic formulation, but a (suitably structured) class of models, e.g. the class of
distinguishing Lorentzian manifolds; or the class of those that have curvature only above the
Planck scale.

Then we take the analogous theory T ∗t —that we aim to deduce from our Tb, i.e. from causal
set theory—to be the theory of those causal sets that faithfully embed into the “unwrinkly”
manifolds of our Tt.

40 Or, nodding again to the semantic conception: we might take T ∗t to be
the (suitably structured) class of those causal sets.

Then the Hauptvermutung will be a (precisified) claim to the effect that T ∗t is indeed
analogous to Tt. So it is an intra-level claim about the top t level. And this claim is to
be justified by a proof: which will presumably in some way exploit, or at least be witnessed
by, the good behaviour, reported in Section 7, of estimators of manifold quantities such as
dimension.

So to sum up this approach (A):— Causal set theory Tb is to give a reduction of the
geometry of distinguishing spacetimes Tt; with the theory of faithfully embedded causal sets as
the analogous theory T ∗t , and the Hauptvermutung as the claim of analogy, supported by the

38Cf. Andreka et al (2007), especially Section 3.6.
39For further discussion, especially of levels and of kinds of emergence, cf. Oriti (2023, especially Sections

1.2 and 4).
40I note again that characterising which causal sets can be thus faithfully embedded is a task for causal

set theory’s dynamics: agreed, a major task in view of the vastly many causal sets that will not thus embed
(Kleitman and Rothschild 1975). But I have set this aside; cf. again the references in footnote 29, e.g. Carlip,
Carlip and Surya (2023).
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good behaviour of estimators of dimension etc.
(B): In this approach, we take the top/bottom contrast, t/b, to match the continuum/discrete

contrast. So we can take Tt exactly as in the first paragraph of (A) above: for example, as (a
precise formulation of) the theory of distinguishing Lorentzian manifolds. But unlike (A), all
the doctrine about causal sets is to be at the bottom level. So Tb comprises not just causal
set theory in general, but also the theory of those causal sets that faithfully embed into the
“unwrinkly” manifolds of our Tt. (Or, nodding yet again to the semantic conception: we might
take Tb to be the (suitably structured) class of those causal sets.) So the Hauptvermutung
is now an inter-level claim. Furthermore: since on this approach, the top level contains only
doctrines about continuum objects, there is on this approach no distinctive analogous top level
theory T ∗t . One can, however, think of the completion of a sequence of faithfully embedded
causal sets (cf. Section 5.2) as the deduction of the continuum limit; and so as a transition
from the bottom level to the top.

So to sum up this approach (B):— As on approach (A), causal set theory Tb is to give
a reduction of the geometry of distinguishing spacetimes Tt. But the theory of faithfully
embedded causal sets is here part of Tb; it is not the analogous top-level theory T ∗t . So the
Hauptvermutung is an inter-level claim: needing, again, to be proved, and supported by the
good behaviour of estimators of dimension etc.

As I said, I think it makes no odds which of these two approaches (A) and (B) we adopt.
For on either approach, the detailed work (mostly in theoretical and mathematical physics, not
in philosophy) that needs to be done is the same.

8.2 The prospects for functionalist reduction

I turn to functionalist reduction. Achieving a functionalist reduction will surely be a harder
task than Nagelian reduction, simply because (as I said in Section 3.1) it is a logically stronger
concept. For it adds the requirement of simultaneous specifications of items by their inter-
connected functional roles; indeed at both the bottom and the top levels (and so making the
bridge laws mandatory). Thus as I said in Section 3.2, the question arises: is causal set theory
en route to providing, not just a Nagelian reduction, but a functionalist reduction, of Lorentzian
geometry?

The main thing to stress is that such a reduction will be uphill work. For consider, to begin
with, just the top level, about Lorentzian geometry. It is clear from Section 8.1 that we do not
now have a formulation rigorous enough to provide precise functional roles for the concepts of
interest, such as manifold-dimension, or length of a timelike geodesic or curvature; or to settle
whether they are indeed simultaneously specifiable by their functional roles (i.e. whether the
formulation is rich enough to entail such specifications). The subject is just not yet sufficiently
developed; (cf. footnote 38).

Furthermore, even if we had such a formulation, both rigorous and rich enough to entail such
specifications, so that the top level ’s Tt (or T ∗t ) was a good candidate for functionalist reduction:
nevertheless, the functional roles of the concepts of interest, e.g. manifold-dimension, will of
course not be exactly filled at the bottom level, i.e. by some feature of causal sets—because of
the deep differences between continuous and discrete spaces. Such differences have been centre-
stage throughout this paper. But recall in particular, from the start of Section 7, how defining
an estimator on causal sets for a continuum quantity often calls for ingenuity. So obviously
we are back at the “impure” case mentioned towards the end of Section 3.1 (and discussed
already by Lewis, e.g. (1970: 432, 443-446)), where a functionalist reduction depends on there
being near-realizers. That is, one hopes that the functional roles at issue are nearly filled at
the bottom level by concepts (quantities), each of which fills its role better than anything else
does.
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Ascertaining whether this is so will need detailed work, comparing the behaviour of various
bottom-level quantities. In particular, in the probabilistic framework of Section 7, one would
need to compare various proposed estimators of each continuum concept or quantity of interest,
such as dimension. Such comparisons would of course draw, not just on mathematical work,
but also on judgments of analogy as discussed in Section 8.1. Again, I think it would make no
odds which of the approaches (A) and (B) we adopt.

Let me sum up this discussion. Whether we adopt approach (A) or approach (B) of Section
8.1, a functionalist reduction requires two main results.

(i): In the continuum theory (for example, of all distinguishing Lorentzian mani-
folds): one needs to argue that dimension, timelike length, curvature etc. are simultaneously
specified by their functional roles, i.e. their relations to each other.

(ii): In causal set theory: one needs to argue that the analogous functional roles
(of, for example, Section 7’s estimators) provide a simultaneous specification of them, that is
sufficiently analogous to (i), so as to give a functionalist reduction. For example: causal set
theory’s dimension estimator needs to be near enough the realizer of the functional role of
continuum-dimension.
In short, at the bottom level as well as at the top, a functionalist reduction will need detailed
work.

So much by way of presenting my prognosis, ‘uphill work’. But causal set theory’s still
having plenty of work to do does not mean that one should be sceptical or down-hearted! For
as I have reported (Sections 5.2 to 7), the Hauptvermutung has had a good number of what I
called success stories. So causal set theorists have reason to be confident that the detailed work,
and its supporting arguments like judgments of analogy, will deliver a reduction. Of course,
they can be more confident of achieving a Nagelian reduction, than the logically stronger idea
of a functionalist reduction—but should we not try to reach for the stars?41

Acknowledgements:— I am very grateful to Silvia De Bianchi and the other editors and or-
ganizers of the ERC Proteus Final Conference, and to the audience there; to Silvia De Bianchi
and Nick Huggett for comments on earlier versions; to Fay Dowker for many discussions and
much help; and to audiences at the Black Hole Initiative annual conference 2023, the European
Foundations of Physics biennial conference 2023 in Bristol U.K, and a seminar in Oxford.

41I should briefly compare my discussion with Huggett and Wuthrich’s forthcoming discussion (2023; espe-
cially Chapter 2.4 at pp. 15-16, and Chapter 3.5.4). The main point is that, broadly speaking, we agree. (Here,
I am grateful to Nick Huggett for clarifying correspondence.)

They point out that (as we have seen) causal set theory admits many causal sets that do not correspond to
a classical spacetime. So they stress (and I agree) that the theory thus needs to earn physical significance by
linking its posited causal sets to such spacetimes, at least to the extent of recovering (at least much of) our
evidence for our established physical theories postulating such spacetimes. Here, there is a contrast with the
mind-body example of Section 3.1: where the neurophysiological bottom-level is not considered problematic,
or as needing to earn physical significance. But they allow that discreteness is itself no bar to earning physical
significance. More positively, they recall (2023, Chapter 3.5.4) that causal set theory can claim observational
evidence of a striking kind, which furthermore fits the philosophical stereotype of a novel prediction turning
out to be true (cf. my footnotes 8 and 10). Namely, it predicts that the cosmological constant has a small but
positive value: this prediction was first made by Sorkin in (1991, p. 22), some twenty years before observational
confirmation.

With all this, I of course concur.
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