The Classical Aristotelian hexagon versus the Modern Duality hexagon

Hans Smessaert
K.U.Leuven Department of Linguistics

1 Aristotelian versus Duality Square

(1)

Piaget (1949)	inversion	réciprocation	corrélation
Gottschalk (1953)	complement	contradual	dual
Löbner (1990)	negation (NEG)	subnegation (SNEG)	dual (DUAL)
Westerstahl (2010)	outer negation	inner negation	dual

(2) NEG (Q1, Q2)

$$
\Leftrightarrow \text { Q1 }(A, B)=\neg \text { Q2 }(A, B)
$$

NEG (All, Not all)
\Leftrightarrow Q2 $(A, B)=\neg$ Q1 (A, B)
SNEG (Q1, Q2)

$$
\leftrightarrow \mathrm{Q} 1(\mathrm{~A}, \mathrm{~B})=\mathrm{Q} 2(\mathrm{~A}, \neg \mathrm{~B})
$$

SNEG (AlI, No)
NEG (Some, No)
SNEG (Some, Not all)

DUAL (Q1, Q2)

$$
\Leftrightarrow \mathrm{Q} 2(\mathrm{~A}, \mathrm{~B})=\mathrm{Q} 1(\mathrm{~A}, \neg \mathrm{~B})
$$

DUAL (All, Some)
DUAL (No, Not all)

Quantifier (domain/restrictor, predicate/nuclear scope) 2-place second-order predicates

$$
\text { All }(\text { children }, \text { be asleep }) \ll \text { et }>,<e t>, \text { t> }
$$

(3) All children are asleep = No children are awake/are not asleep.

No children are asleep = All children are awake/are not asleep.
Some children are asleep = Not all children are awake/are not asleep.
Not all children are asleep = Some children are awake/are not asleep.
(4) All children are asleep = It is not the case that some children are awake/are not asleep.

Some children are asleep
Not all children are asleep
$=$ It is not the case that all children are awake/are not asleep.
= It is not the case that no children are awake/are not asleep.
$=$ It is not the case that not all children are awake/are not asleep.
(5)

Aristotelian relations	Duality relations
4 types:	3 types:
diagonal CD horizontal CR + SCR vertical SAL	diagonal NEG horizontal SNEG vertical DUAL
3 symmetric CD/CR/SCR vs 1 asymmetric SAL	3 symmetric NEG/SNEG/DUAL
non-recursive	recursive (Quaternality)

2 From Square to Hexagon

2.1 The standard quantifiers

2.1.1 Generalizing the square

(6)

$$
U(=A \vee E \text {, all or no }) \quad Y(=I \wedge O \text {, some but not all })
$$

a. $\quad C D(a l l$, not all $)$
b. $\quad \mathrm{CR}($ all, no)
c. SCR(some, not all)
d. SAL(all, some)

SAL(no, not all)

CD(some,no)
CR(all, some but not all)
SCR(some, all or no)
SAL(all, all or no)
SAL(no, all or no)

CD(some but not all, all or no)
CR(no, some but not all)
SCR(not all, all or no)
SAL(some but not all, some)
SAL(some but not all, not all)
(8)

Y
contrary

Y
subcontrary

Y
$+\quad$ contradiction

Y
$=$ Aristotelian Hexagon
(9) NEG (Some but not all, No or all)

It is not the case that some but not all children are asleep = No or all children are asleep
It is not the case that no or all children are asleep $=$ Some but not all children are asleep
(10)

SNEG (Some but not all, Some but not all)
SNEG (No or all, No or all)
Some but not all children are asleep
No or all children are asleep = No or all children are awake/are not asleep.
(11) DUAL (Some but not all, No or all)

Some but not all children are asleep = It is not the case that no or all children are not asleep. $=$ It is not the case that no or all children are awake.
No or all children are asleep = It is not the case that some but not all children are not asleep. $=$ It is not the case that some but not all children are awake.
(12)

(13)

Aristotelian hexagon	Duality hexagon
2 triangles +3 diagonals $=$ "star"	square + pair $=$ "shield and spear"
two extra nodes integrate	two extra nodes remain autonomous

2.1.2 Monotonicity properties

(14) a. D is left-monotone increasing(\uparrow mon $) \equiv\left[D(A, B) \wedge A \subseteq A^{\prime}\right] \rightarrow D\left(A^{\prime}, B\right)$
b. $\quad D$ is left-monotone decreasing ($\downarrow \mathrm{mon}) \quad \equiv\left[D(A, B) \wedge A^{\prime} \subseteq A\right] \rightarrow D\left(A^{\prime}, B\right)$
c. $\quad D$ is right-monotone increasing (mon $) \equiv\left[D(A, B) \wedge B \subseteq B^{\prime}\right] \rightarrow D\left(A, B^{\prime}\right)$
d. $\quad D$ is right-monotone decreasing (mon $\downarrow) \equiv\left[D(A, B) \wedge B^{\prime} \subseteq B\right] \rightarrow D\left(A, B^{\prime}\right)$
(Partee, ter Meulen and Wall, 1990: 381)
(15)
a. Some young women are cycling fast. \rightarrow Some women are cycling fast.
\uparrow mon \uparrow
b. There are no women cycling. \downarrow mon \downarrow
c. Not all young women are cycling. †mon
d. All women are cycling fast. mon \uparrow
\rightarrow Some young women are cycling.
\rightarrow There are no young women cycling.
\rightarrow There are no women cycling fast.
\rightarrow Not all women are cycling.
\rightarrow Not all young women are cycling fast.
\rightarrow All young women are cycling fast.
\rightarrow All women are cycling.
a. DUAL = reverse left-monotonicity
b. SNEG = reverse right-monotonicity
c. NEG = reverse left- and right-monotonicity
(17)
a. Some but not all young women are cycling. \rightarrow Some but not all women are cycling.
b. Some but not all women are cycling fast.
${ }^{*} \rightarrow$ Some but not all women are cycling.
c. Some but not all women are cycling.
${ }^{*} \rightarrow$ Some but not all women are cycling fast. tmon*
d. No or all women are cycling.
\rightarrow No or all young women are cycling.
e. No or all women are cycling fast.

* \rightarrow No or all women are cycling.
f. No or all women are cycling.
* \rightarrow No or all women are cycling fast. lmon*

2.2 Other [+Aristotelian, +Duality] hexagons

2.2.1 One-place second-order predicates: alethic modalities

(18) Quantifier (proposition) Be possible (he is asleep) 1-place second order predicates <t, t>
(19) a. $C D$ (possible, impossible) $C D$ (necessary, not necessary) $C D$ (contingent, not contingent)
b. $\quad C R$ (impossible, contingent, necessary)
c. SCR(possible, not contingent, not necessary)
a. SNEG(possible, not necessary)

It is possible that he is asleep
b. SNEG(impossible, necessary)

It is impossible that he is asleep
c. SNEG(contingent, contingent)

It is contingent that he is asleep
He may but needn't be asleep
It is not necessary that he is awake
(not contingent, not contingent)
It is not contingent that he is asleep It is not contingent that he is awake
He must be or can't be asleep He must be or can't be awake
(21)
a. DUAL(possible, necessary) It is possible that he is asleep
= It is not the case that he is necessarily awake/not asleep
b. DUAL(impossible, not necessary) It is impossible that he is asleep
$=$ It is not the case that he is not necessarily awake/not asleep
c. DUAL(contingent, not contingent)

It is contingent that he is asleep $=$ He may but needn't be asleep
$=$ It is not the case that he must be or can't be awake/not asleep

2.2.2 Two-place second-order predicates: deontic modalities

(22) Quantifier (entity, predicate) Be allowed (he, to stay) 2-place 2nd-order pred. <<e>, <et>,t>
(23)
a. $C D$ (allowed, forbidden) $C D$ (obliged, not obliged)

CD (allowed but not obliged, forbidden or obliged)
b. CR(forbidden, allowed but not obliged, obliged)
c. SCR(allowed, forbidden or obliged, not obliged)
(24) a. SNEG(allowed but not obliged, allowed but not obliged)

He is allowed but not obliged to stay He is allowed but not obliged to leave
b. SNEG(forbidden or obliged, forbidden or obliged)

He is forbidden or obliged to stay He is forbidden or obliged to leave
(25)

DUAL(allowed but not obliged, forbidden or obliged)
He is allowed but not obliged to stay
$=$ It is not the case that he is forbidden or obliged to leave/not to stay

2.2.3 Two-place second-order predicates: proportional quantifiers

(26) Quantifier (domain/restrictor, predicate/nuclear scope) 2-place second-order predicates Less than 20% (of the children, be asleep) <<et>, <et>,t>
a. $\quad \mathrm{CD}$ (less than 20%, at least 20%) $C D$ (more than 80%, at most 80%)

CD(between 20% and 80%, less than 20% or more than 80%)
b. CR(less than 20%, between 20% and 80%, more than 80%)
c. SCR(at least 20%, less than 20% or more than 80%, at most 80%)
(28)
a. SNEG(between 20% and 80%, between 20% and 80%)

Between 20% and 80% of the boys are asleep
Between 20% and 80% of the boys are awake/not asleep
b. SNEG(less than 20% or more than 80%, less than 20% or more than 80%)

Less than 20% or more than 80% of the boys are asleep
Less than 20% or more than 80% of the boys are awake/not asleep
(29) DUAL(between 20% and 80%, less than 20% or more than 80%)

Between 20% and 80% of the boys are asleep
$=$ It is not the case that less than 20% or more than 80% of the boys are awake/not asleep

3 [+Aristotelian, -Duality] hexagons

3.1 One-place first-order predicates

(30)

Quantifier (entity)
Male (John)
a. $\quad C D$ (male, not male) $C D$ (female, not female)

1-place first-order predicates <<e>,t>
(31)
b. $\quad C R($ male, asexual, female)
c. SCR(not male, sexual, not female)
(32)
a. $C D$ (black, not black) $C D$ (white, not white)
b. CR(black, coloured, white)
c. SCR(not black, not coloured, not white)

3.2 Two-place first-order predicates

(33) Quantifier (entity, entity)

2-place first-order predicates <<e>,<e>,t>
=> Blanché's fundamental "ordering" hexagon $<,>,=, \leq, \geq, \neq$

3.2.1 Linear ordering predicates

(34)
a. $\quad C D(A$ precedes B, A does not precede $B)$
$C D$ (A coincides with B, A does not coincide with B)
$C D$ (A follows B, A does not follow B)
b. $\quad C R(A$ precedes B, A coincides with B, A follows $B)$
c. $\quad \operatorname{SCR}(A$ does not precede B, A does not coincide with B, A does not follow $B)$

3.2.2 Temporal ordering predicates

(35)
a. $\quad C D(A$ before B, A not before $B=A$ from B onwards $)$
$C D(A$ at B, A not at $B)$
$C D(A$ after B, A not after $B=A$ until $B)$
b. $\quad C R(A$ before B, A at B, A after $B)$
c. $\quad \operatorname{SCR}(A$ until B, A not at B, A from B onwards)

3.2.3 Comparative quantity predicates

(36) a. $\quad C D(A$ has less money than B, A has at least as much money than B)
$C D(A$ has exactly as much money as B, A does not have exactly as much money as B)
$C D$ (A has more money than B, A has at most as much money than B)
b. $\quad C R(A$ has less money than B, A has exactly as much money as B, A has more money than B)
c. $\operatorname{SCR}(A$ has at least as much money than B, A does not have as much money as B, A has at most as much money than B)

3.2.4 Comparative size predicates

(37) a. $\quad C D(A$ is smaller than B, A is at least as big as $B)$
$C D(A$ is exactly equal to B, A is not exactly equal to $B)$
$C D(A$ is bigger than B, A is at most as big as $B)$
b. $\quad C R(A$ is smaller than B, A is exactly equal to B, A is bigger than $B)$
c. $\quad \operatorname{SCR}(A$ is at least as big as B, A is not exactly equal to B, A is at most as big as $B)$

3.3 Two-place second-order predicates

3.3.1 Numerical quantifiers

(38) a. $\quad \mathrm{CD}$ (More than 5 women are cycling, At most 5 women are cycling)

CD(Fewer than 5 women are cycling, At least 5 women are cycling)
$C D$ (Exactly 5 women are cycling, Not exactly 5 women are cycling)
b. CR(More than 5, Exactly 5, Fewer than 5)
c. SCR (At least 5, Not exactly 5, At most 5)

3.3.2 Standard and numerical quantifiers

(39)
a. $C D$ (some, no)

CD (at most 5, more than five)
$C D$ (some but at most five, no or more than five)
b. $\quad C R($ no, some but at most five, more than five)
c. SCR(some, no or more than five, at most five)

4 Conclusion

(40)	Aristotelian Relations	
	+ Duality Relations	- Duality Relations
first-order		
predicates		

two-place predicates\end{array}\right] $$
\begin{array}{c}\text { (linear and temporal ordering) } \\
\text { (comparative quantity and size) }\end{array}
$$\right]\)

References

Barwise, Jon \& Robin Cooper (1981). Generalized quantifiers and natural language. Linguistics and Philosophy 4, 159-219.
Blanché, Robert (1969), Structures Intellectuelles. Essai sur l'organisation systématique des concepts, Paris: Librairie Philosophique J. Vrin.
Gottschalk, W.H. (1953). The Theory of Quaternality, Journal of Symbolic Logic, 18, 193-196.
Löbner, Sebastian (1990). Wahr neben Falsch Duale Operatoren als die Quantoren natürlicher Sprache. Niemayer, Tübingen, 1990.
Moretti, Alessio (2009).The Geometry of Logical Opposition. PhD Thesis, University of Neuchâtel.
Moretti, Alessio (2009). The Geometry of Standard Deontic Logic. Logica Universalis, 3/1,
Moretti Alessio (2009). The Geometry of Oppositions and the Opposition of Logic to It. In: Bianchi and Savardi (eds.), The Perception and Cognition of Contraries, McGraw-Hill,
Partee, Barbara H., Alice G. B. ter Meulen, and Robert E. Wall (1990). Mathematical Methods in Linguistics. Dordrecht: Kluwer.
Pellissier, Régis (2008). Setting n-Opposition. Logica Universalis 2/2, 235-263.
Peters, Stanley \& Westerståhl, Dag (2006), Quantifiers in Language and Logic, Oxford: Clarendon Press.
Piaget, Jean (1949/2nd ed. 1972): Traité de logique. Essai de logistique opératoire. Paris: Dunod.
Sesmat, Auguste (1951). Logique II. Les Raisonnements. La syllogistique. Paris: Hermann.
Smessaert, Hans (1996). Monotonicity properties of comparative determiners. Linguistics and Philosophy 19/3, 295-336.
Smessaert, Hans (2009). On the 3D-visualisation of logical relations. Logica Universalis 3/2, 303-332. (Online First Publication: DOI 10.1007/s11787-009-0010-5).
Smessaert, Hans (2010a). On the fourth Aristotelian relation of Opposition: subalternation versus non-contradiction. Talk at the Second NOT-workshop (N-Opposition Theory), K.U.Leuven, 23 January 2010.

Smessaert, Hans (2010b). Duality and reversibility relations beyond the square. Talk at the Third NOT-workshop (N-Opposition Theory), Université de Nice, 22-23 June 2010.
Westerståhl, Dag (2010), Classical vs. modern squares of opposition, and beyond. To appear in Jean-Yves Béziau \& Gillman Payette (eds.) New perspectives on the square of opposition. Proceedings of the First International Conference on The Square of Oppositions (Montreux, Switserland, 1-3 juni 2007).

The website of N-Opposition Theory (NOT): http://alessiomoretti.perso.sfr.fr/NOTHome.html

[^0]
The Aristotelian Square versus the Duality Square

The Aristotelian Hexagon

The Duality Hexagon

The Aristotelian Hexagon vs The Duality Hexagon

Aristotelian Octahedron vs Duality Octahedron

Monotonicity Properties in the Duality Hexagon

[^0]: Hans Smessaert
 Department of Linguistics
 K.U.Leuven, Belgium

 Hans.Smessaert@arts.kuleuven.be
 http://wwwling.arts.kuleuven.be/nedling_e/hsmessaert

