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Algorithms that aim to solve optimisation problems by combining heuristics and mathematical programming have attracted
researchers’ attention. These methods, also known asmatheuristics, have been shown to perform especially well for large, complex
optimisation problems that include both integer and continuous decision variables. One common strategy used by matheuristic
methods to solve such optimisation problems is to divide themain optimisation problem into several subproblems.While heuristics
are used to seek for promising subproblems, exact methods are used to solve them to optimality. In general, we say that both
mixed integer (non)linear programming problems and combinatorial optimisation problems can be addressed using this strategy.
Beside the number of parameters researchers need to adjust when using heuristic methods, additional parameters arise when
using matheuristic methods. In this paper we focus on one particular parameter, which determines the size of the subproblem.
We show howmatheuristic performance varies as this parameter is modified. We considered a well-known NP-hard combinatorial
optimisation problem, namely, the capacitated facility location problem for our experiments. Based on the obtained results, we
discuss the effects of adjusting the size of subproblems that are generated when using matheuristics methods such as the one
considered in this paper.

1. Introduction

Solving mixed integer programming (MIP) problems as well
as combinatorial optimisation problems is, in general, a
very difficult task. Although efficient exact methods have
been developed to solve these problems to optimality, as the
problem size increases exact methods fail to solve it within an
acceptable computational time. As a consequence, nonexact
methods such as heuristic andmetaheuristic algorithms have
been developed to find good quality solutions. In addition,
hybrid strategies combining different nonexact algorithms
are also promising ways to tackle complex optimisation
problems. Unfortunately, algorithms that do not consider
exact methods cannot give us any guarantee of optimality
and, thus, we do not know how good (or bad) solutions found
by these methods are.

One hybrid strategy that combines nonexact methods
are memetic algorithms, which are population-based meta-
heuristics that use an evolutionary framework integrated
with local search algorithms [1]. Memetic algorithms provide
lifetime learning process to refine individuals in order to
improve the obtained solutions every iteration or generation;
their applications have been grown significantly over the
years in several NP-hard optimisation problems [2]. These
algorithms are part of the paradigm of memetic computa-
tion, where the concept of meme is used to automate the
knowledge transfer and reuse across problems [3]. A large
number of memetic algorithms can be found in the litera-
ture. Depending on its implementation, memetic algorithms
might (or might not) give guarantee of local optimality:
roughly speaking, if heuristic local search algorithms are
considered, then no optimality guarantee is given; if exact
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methods are considered as the local optimisers, then local
optimality could be ensured.

To overcome the situation described above, hybrid meth-
ods that combine heuristics and exact methods to solve
optimisation problems have been proposed. These methods,
also known asmatheuristics [4], have been shown to perform
better than both heuristic and mathematical programming
methods when they are applied separately. The idea of com-
bining the power of mathematical programming with flex-
ibility of heuristics has gained attention within researchers’
community. We can found matheuristics attempting to solve
problems arising in the field of logistics [5–9], health care
systems [10–13], and puremathematics [14, 15], among others.
Matheuristics have been demonstrated to be very effective
in solving complex optimisation problems. Some interesting
surveys on matheuristics are [16, 17]. Although there is some
overlapping between memetic algorithms and matheuristic
ones, in this paperwe have chosen to label the studied strategy
as matheuristic, as we think matheuristics definition better
fits the framework we are interested in.

Because of their complexity, MIP problems as well as
combinatorial optimisation problems are often tackled using
matheuristic methods. One common strategy to solve this
class of optimisation problems is to divide the main opti-
misation problem into several subproblems. While heuristics
are used to seek for promising subproblems, exact methods
are used to solve them to optimality. One advantage of this
approach is that it does not depend on the (non)linearity of
the resulting subproblem. Instead, it has been pointed out that
it is desirable that the resulting subproblem would be convex
[11]. Having a convex subproblem would allow us to solve it
to optimality, and thus comparing solutions obtained at each
subproblem becomes more senseful. This strategy has been
successfully applied to problems arising in fields as diverse as
logistics and radiation therapy.

In this paper we aim to study the impact of parameter
tuning on the performance of matheuristic methods as the
one described above. To this end, the well-known capacitated
facility location problem is used as an application of hard
combinatorial optimisation problem. To the best of our
knowledge, no paper has focused on parameter tuning for
matheuristic methods.

This paper is organised as follows: Section 2 shows the
general matheuristic framework we consider in this paper.
Details on the algorithms that are used in this study are also
shown in this section. In Section 3 the capacitated facility
location problem is introduced and itsmathematicalmodel is
described in Section 3.1. The experiments performed in this
study are presented and the obtained results are discussed
in Section 3.2. Finally, in Section 4 some conclusions are
presented and the future work is outlined.

2. Matheuristic Methods

This section is twofold. We start by describing a general
matheuristic framework that is used to solve both MIP
problems and combinatorial optimisation problems and how
it is different from other commonly used approaches such

as memetic algorithms and other evolutionary approaches.
After that, we present the local-search-based algorithms we
consider in this work to perform our experiments. We finish
this section by introducing the parameter we will be focused
on in this study.

2.1. General Framework. Equations (1a) to (1f) show the
general form of MIP problems. Hereafter we will refer to this
problem as the MIP(𝑥, 𝑦) problem or themain problem.

MIP (𝑥, 𝑦) : min
𝑥,𝑦

𝑓 (𝑥, 𝑦) (1a)

s.t. 𝑔𝑗 (𝑥, 𝑦) ≤ 𝑏𝑗 for 𝑗 = 1, . . . , 𝑚, (1b)

𝑔𝑗 (𝑥) ≤ 𝑏𝑗 for 𝑗 = 1, . . . , 𝑚, (1c)

𝑔𝑗 (𝑦) ≤ 𝑏𝑗 for 𝑗 = 1, . . . , 𝑚, (1d)

𝑦 ∈ {0, 1}𝑜 , (1e)

𝑥 ∈ R
𝑛, (1f)

where 𝑓(𝑥, 𝑦) is an objective function, 𝑚 is the number
of inequality constraints on 𝑥 and 𝑦, 𝑚 is the number of
inequality constraints on 𝑥, 𝑚 is the number of inequality
constraints on 𝑦, 𝑜 is the number of binary (≥0) decision
variables 𝑦, and 𝑛 is the number of continuous decision
variables. Combinatorial optimisation problems, as the one
we consider in this paper, can be easily obtained by either
removing the continuous decision variable from the model
or making it integer (i.e., 𝑥 ∈ Z𝑜≥).

Although there exist a number of exact algorithms that
can find an optimal solution for the MIP(𝑥, 𝑦), as the size of
the problem increases, exact methods fail or take too long.
Because of this, heuristic methods are used to obtain good
quality solutions of the problem within an acceptable time.
Heuristic methods cannot guarantee optimality though.

During the last two decades, the idea of combin-
ing heuristic methods and mathematical programming has
received much more attention. Exploiting the advantages of
each method appears to be a senseful strategy to overcome
their inherent drawbacks. Several strategies have been pro-
posed to combine heuristics and exact methods to solve
optimisation problems such as the MIP(𝑥, 𝑦) problem. For
instance, Chen and Ting [18] and Lagos et al. [8] com-
bine the well-known ant colony optimisation (ACO) algo-
rithm and Lagrangian relaxation method to solve the single
source capacitated facility location problem and a distribu-
tion network design problem, respectively. In these articles,
Lagrangian multipliers are updated using ACO algorithm.
Another strategy to combine heuristics and exact methods
is to let heuristics seek for subproblems of MIP(𝑥, 𝑦) which,
in turn, are solved to optimality by some exact method. One
alternative to obtain subproblems of MIP(𝑥, 𝑦) is to add a
set of additional constraints on a subset of binary decision
variables.These constraints are of the form 𝑦𝑖 = 0, with 𝑖 ∈ I
andI being the set of index that are restricted in subproblem
MIPI(𝑥, 𝑦) (see (1a) to (1f)). The portion of binary decision
variables 𝑦𝑖 that are set to 0 is denoted by 𝛼 (i.e., #I = 𝛼× 𝑜),
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with 𝑜 being the number of binary variables 𝑦𝑖. Then, the
obtained subproblem, which we call MIPI(𝑥, 𝑦), is

MIPI (𝑥, 𝑦) : min
𝑥,𝑦

𝑓 (𝑥, 𝑦) (2a)

s.t. 𝑔𝑗 (𝑥, 𝑦) ≤ 𝑏𝑗

for 𝑗 = 1, . . . , 𝑚,
(2b)

𝑔𝑗 (𝑥) ≤ 𝑏𝑗 for 𝑗 = 1, . . . , 𝑚, (2c)

𝑔𝑗 (𝑦) ≤ 𝑏𝑗 for 𝑗 = 1, . . . , 𝑚, (2d)

𝑦𝑖 = 0 𝑖 ∈ I, (2e)

𝑦 ∈ {0, 1}𝑜 , (2f)

𝑥 ∈ R
𝑛. (2g)

In this paper we assume that a constraint on the 𝑖th
resource of vector 𝑦 of the form 𝑦𝑖 = 0, that is, 𝑖 ∈ I,
means that such a resource is not available for subproblem
MIPI(𝑥, 𝑦). We can note that, as the number of constrained
binary decision variables 𝑦𝑖 associated withI increases, that
is, as (1 − 𝛼) increases, the subproblem MIPI(𝑥, 𝑦) becomes
smaller. Similarly, as the number of constrained binary
decision variables 𝑦𝑖 associated with I gets smaller, that is,
(1 − 𝛼) decreases, the subproblem MIPI(𝑥, 𝑦) gets larger,
as there are more available resources. It is also easy to note
that, as (1 − 𝛼) increases, we can obtain optimal solutions of
the corresponding subproblem MIPI(𝑥, 𝑦) relatively faster.
However, quality of the obtained solutions is usually impaired
as the solution space is restricted by the additional constraints
associated with the set I. Similarly, as (1 − 𝛼) gets smaller,
obtaining optimal solutions of the associated subproblems
might take longer but the quality of the obtained solutions
is, in general, greatly improved. Finally, when 𝛼 = 0 we have
that subproblemMIPI(𝑥, 𝑦) is identical to themain problem,
MIP(𝑥, 𝑦). We assume that optimal solution of subproblem
MIPI(𝑥, 𝑦), (𝑥, 𝑦), is also feasible for theMIP(𝑥, 𝑦) problem.
Moreover, we can note that there must be a minimal set
I, for which an optimal solution (𝑥, 𝑦) of the associated
subproblem MIPI(𝑥, 𝑦) is also an optimal solution (𝑥∗, 𝑦∗)
of the main problem MIP(𝑥, 𝑦).

In some cases, the value of 𝛼 might be predefined by
the problem that is being solved. For instance, the problem
of finding the best beam angle configuration for radiation
delivery in cancer treatment (beam angle optimisation prob-
lem) usually sets the number of beams to be used in a beam
angle configuration (see Cabrera-Guerrero et al. [11], Li et
al. [19], and Li et al. [20]). This definition is made by the
treatment planner and it does not take into account the
algorithm performance but clinical aspects. Unlike this kind
of problems, there are many other problems where the value
of 𝛼 is not predefined and, then, setting it to an efficient value
is important for the algorithm performance. Figure 1 shows
the interaction between the heuristic and the exact method.

One distinctive feature ofmatheuristics is that there exists
an interaction between the heuristic method and the exact
method. In the method depicted in Figure 1 we have that,

Heuristic
method

Exact
method

(x∗, y∗)

Seeks for new ℐ

ℐ

３ＩＦＰ？Ｍ －）０ℐ(x, y)

Figure 1: Interaction between a heuristic method and an exact
method.

on one hand, the heuristic method influences the solver
by passing onto it a set of constraints, I, that defines the
subproblem to be solved by the exact method. On the other
hand, we have that the solution obtained by the solver is
returned to the heuristic method such that it can be used
to influence the selection of the elements in the next set of
constraints; that is, the solution of a subproblem might be
used by the heuristic to obtain some useful information to
generate next subproblems.

As mentioned above, there is one parameter that is not
part of the set of parameters of the heuristic method nor
part of the set of parameters of the exact method. This
parameter, which we call 𝛼, only comes up after these two
methods are posed together. Then, in this paper we are
interested in how the choice of 𝛼 canmodify the performance
of the proposed strategy in terms of the quality of the
obtained solutions of themain problem. Sincemany different
matheuristic frameworks might be proposed to solve the
MIP(𝑥, 𝑦) problem, we restrict this study to local-search-
based matheuristics. Thus, in this study, three local-search-
based matheuristic algorithms are implemented and their
results compared. Additionally, we implement a very simple
method which we call “blind algorithm” as a baseline for this
study. Next sections explain these algorithms.

2.2. Local Search Algorithms. As mentioned in previous
sections, the aimof this paper is not to provide a “state-of-the-
art” algorithm to solve MIP problems but, instead, to study
the effect that changing the size of subproblems has on the
quality of the obtained solutions when using local-search-
based matheuristic methods as the one described in Sec-
tion 2.1.Thus, three local search algorithms are implemented,
namely, steepest descent (SD), next descent (ND), and tabu
search (TS). Local search algorithms need a neighbourhood
N to be defined bymeans of a neighbourhoodmovement.We
define the same neighbourhood movement for the all three
methods.

Since the local search algorithms move on the sub-
problem space, that is, the local search algorithms look for
promising subproblemsMIPI(𝑥, 𝑦), or, equivalently, look for
promising sets I, then we need to define a neighbourhood
within the same search space. Thus, the neighbour set of I,
which we denote by N(I) or simply I, corresponds to
all resources 𝑦𝑖 such that they either are not considered in
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Input:𝛼 (portion of the resources included inI)
Output: (𝑥, 𝑦) (locally optimal solution)

(1) begin
(2) 𝑘 = 0;
(3) I𝑘 = selectBinaryVariablesRandomly(𝛼);
(4) (𝑥, 𝑦) = solve MIPI𝑘

(𝑥, 𝑦);
(5) repeat
(6) localOptimum = true;
(7) 𝑘 = 𝑘 + 1;
(8) foreachI𝑘−1 ∈ N(𝐼𝑘−1) do
(9) (𝑥, 𝑦) = solve MIPI

𝑘−1

(𝑥, 𝑦);
(10) IfMIP(𝑥, 𝑦) < MIP(𝑥, 𝑦) then
(11) (𝑥, 𝑦) = (𝑥, 𝑦);
(12) I𝑘 = I𝑘−1;
(13) localOptimum = false;
(14) until localOptimum;
(15) return (𝑥, 𝑦);

Algorithm 1: Steepest descent algorithm.

the optimal solution of MIPI(𝑥, 𝑦) or are actually part of
I. Since the number of resources 𝑦𝑖 that meet these criteria
might be above or below the number of elements set I
must contain according to the parameter 𝛼 that is being
considered, we randomly select among the variables that
meet these criteria until the neighbour set I is completed.
This neighbourhood movement ensures that those resources
𝑦𝑖 that are part of the optimal solution of subproblem
MIPI(𝑥, 𝑦), that is, 𝑦𝑖 ∉ I and 𝑦𝑖 = 1, will continue to be
available for sets I ∈ N(I). Thus, the set of resources 𝑦𝑖
that can potentially be part of sets I ∈ N(I) is defined as
follows:

I
 ∈ N (I) = {𝑦𝑖 : 𝑦𝑖 ∈ I or (𝑦𝑖 ∉ I, 𝑦𝑖 = 0)} , (3)

where (𝑥, 𝑦) is the optimal solution ofMIPI(𝑥, 𝑦).The initial
setI local search methods start with is set randomly for the
all three algorithms implemented in this paper.

2.2.1. Steepest Descent Algorithm. The steepest descent algo-
rithm starts with an initial I0 for which its associated
subproblem, MIPI0

(𝑥, 𝑦), is labelled as the current subprob-
lem. For this current subproblem, its entire neighbourhood
N(I0) is generated, and the neighbour that leads to the best
objective function value is selected. If the best neighbour
subproblem is better than the current one, then the best
neighbour is set as the new current solution. If the best
neighbour is not better than the current subproblem, then
the algorithm stops and the optimal solution of the current
subproblem is returned as a locally optimal solution of the
mainMIP(𝑥, 𝑦) problem. Algorithm 1 shows the pseudocode
for the steepest descent algorithm implemented in this paper.

Although the steepest descent algorithm can be con-
sidered, in general, a deterministic algorithm, in the sense
that, given an initial solution, it converges to the same local
optima, in our implementation the algorithm does not visit
all possible neighbours and, therefore, it becomes a stochastic
local search. Since only one local optimum is generated at

each run, we repeat the algorithm until the time limit is
reached. Same is done for both ND and TS algorithms we
introduce next.

2.2.2. Next Descent Algorithm. Asmentioned in Section 2.2.1,
the steepest descent might take too long to converge if the
size of the neighbourhood is too large or solving an individual
subproblem is too time-consuming. Thus, we include in this
paper a local search algorithm called next descent that aims
to converge faster than the steepest descent, without a major
impact on the solution quality. Algorithm 2 shows the next
descent method.

Just as in the steepest descent algorithm, the next descent
algorithm starts with an initial solution, which is labelled
as the current solution. Then, a random element from the
neighbourhood of the current solution is selected and solved,
and the objective function value of its optimal solution is
compared to the objective function value of the current solu-
tion. Like in the SD algorithm, if the neighbour solution is not
better than the current solution, another randomly selected
set I from the neighbourhood N(I𝑘−1) is generated and
compared to the current solution.Unlike the SD algorithm, in
the ND algorithm, if the neighbour is better than the current
solution, then the neighbour is labelled as the new current
solution andnootherI ∈ N(I𝑘−1) is visited.The algorithm
repeats these steps until the entire neighbourhood has been
computed with no neighbour resulting in a better solution
than the current one, in which case the algorithm stops.

2.2.3. Tabu Search Algorithm. Unlike the algorithms de-
scribed in the previous sections, tabu search is a local
search technique guided by the use of adaptive or flexible
memory structures [5], and thus, it is inherently a stochastic
local search algorithm. The variety of the tools and search
principles introduced and described in [21] are such that the
TS can be considered as the seed of a general framework
for modern heuristic search [22]. We include TS as it has
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Input:𝛼 (portion of the resources included inI)
Output: (𝑥, 𝑦) (locally optimal solution)

(1) begin
(2) 𝑘 = 0;
(3) I𝑘 = selectBinaryVariablesRandomly(𝛼);
(4) (𝑥, 𝑦) = solve MIPI𝑘

(𝑥, 𝑦);
(5) repeat
(6) localOptimum = true;
(7) 𝑘 = 𝑘 + 1;
(8) foreachI𝑘−1 ∈ N(𝐼𝑘−1) do
(9) (𝑥, 𝑦) = solve MIPI

𝑘−1

(𝑥, 𝑦);
(10) ifMIP(𝑥, 𝑦) < MIP(𝑥, 𝑦) then
(11) (𝑥, 𝑦) = (𝑥, 𝑦);
(12) I𝑘 = I𝑘−1;
(13) localOptimum = false;
(14) break;
(15) until localOptimum;
(16) return (𝑥, 𝑦);

Algorithm 2: Next descent algorithm.

been applied to several combinatorial optimisation problems
(see, e.g., [5, 23–27]) including, of course, mixed integer
programming problems as the one we consider in this study.

As in the algorithms introduced above, TS also starts
with an initial set of constraints I0 for which its associated
subproblem MIPI0

(𝑥, 𝑦) is solved. Then, as in the SD algo-
rithm, the “entire” neighbourhood of the current solution
is computed. As explained before, since the neighbourhood
N has a stochastic component, it is actually not possible to
generate the entire neighbourhood of a solution; however,
we use the term “entire” to stress the fact that all the
generated neighbours of N are solved. This is different from
the ND algorithm, where not all the generated neighbours
are necessarily solved. The number of generated neighbours,
ns, is, as in the algorithms above, set equal to 10. Moreover,
TS implements a list called tabu list that aims to avoid cycles
during the search. Each time a neighbourhood is generated,
thewarehouses removed from 𝐼(𝑘−1) aremarked as tabu.Once
we have solved the subproblems MIPI

𝑘

(𝑥, 𝑦), with I𝑘 ∈
N(𝐼𝑘), its optimal solutions are ranked and the one with the
best objective function value is chosen as candidate solution
for the next iteration. If the candidate solution was generated
using amovement within the tabu list, it should be discarded,
and the next best neighbour of the list should be chosen as the
new candidate solution. However, there is one exception to
this rule: if the candidate solution is within the tabu list but
its objective function value is better than the best objective
function found so far by the algorithm, then the so called aspi-
ration criterion is invoked and the candidate solution is set as
the new current solution and passed on to the next iteration.

Unlike the algorithms introduced above, TS does not
require next current solution to be better than the previous
one. This means that it is able to avoid local optimal by
choosing solutions that are more expensive as they allows the
algorithm to visit other (hopefully promising) areas in the
search space. However, in case the algorithm cannot make

any improvement after a predefined number of iterations,
a diversification mechanism is used to get out from low-
quality neighbourhoods and “jump” to other neighbour-
hoods. The diversification mechanism implemented here is a
restart method, which set the current solution to a randomly
generated solution without losing the best solution found so
far. Termination criterion implemented here is the time limit.

The tabu search implemented in this paper is as follows.
As Algorithm 3 shows, tabu search requires the following

parameters:
(i) Time limit: total time the algorithm will perform.
(ii) DiversBound: total number of iteration without

improvements on the best solution before diversifica-
tion criterion (restart method) is applied.

(iii) TabuListSize (ts): size of tabuList. Number of itera-
tions for which a specific movement remains banned.

2.2.4. Blind Algorithm. We finally implement a very simple
heuristic method we call blind as it moves randomly at
each iteration. Pseudocode of this method is presented in
Algorithm 4.

As we can see, no additional intelligence is added to the
blind algorithm. It is just a random search that, after a pre-
defined number of iterations (or any other “stop criterion”),
returns the best solution it found during its search. Thus, we
can consider this algorithm as a baseline of this study.

We apply the all four algorithms described in this section
to two prostate cases. Details on this case and the obtained
results are presented in the next section.

2.3. Subproblem Sizing. All the algorithms above perform
very different as the value of the input parameter 𝛼 varies.
On the one hand, setting 𝛼 to a very small value provokes
that either the solver fails to solve the subproblem because
of lack of memory or it takes too long to find an optimal
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Input:𝛼 (portion of the resources included inI𝑘)
Output: (𝑥, 𝑦) (approximately optimal solution)

(1) begin
(2) 𝑘 = 0;
(3) I𝑘 = selectBinaryVariablesRandomly(𝛼);
(4) (𝑥𝑐, 𝑦𝑐) = solve MIP𝑘(𝑥, 𝑦); // set current sol

(5) (𝑥, 𝑦) = (𝑥𝑐, 𝑦𝑐); // set best sol

(6) Y = 0; // tabu list initially empty

(7) 𝑛𝑜Im𝑝𝑟𝑜V𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 0;
(8) repeat
(9) C = 0;
(10) 𝑘 = 𝑘 + 1;
(11) foreachI𝑘−1 ∈ N(𝐼𝑘−1) do
(12) (𝑥𝑛, 𝑦𝑛) = solve MIPI

𝑘−1

(𝑥, 𝑦);
(13) C = C ∪ {(𝑥𝑛, 𝑦𝑛)};
(14) Sort(C);
(15) foreach {(𝑥𝑛, 𝑦𝑛)} ∈ C do
(16) if isTabu((𝑥𝑛, 𝑦𝑛)) then
(17) ifMIP(𝑥𝑛, 𝑦𝑛) < MIP(𝑥, 𝑦) then
(18) Y = 𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡(Y, (𝑥𝑐, 𝑦𝑐), (𝑥𝑛, 𝑦𝑛), ts);
(19) (𝑥𝑐, 𝑦𝑐) = (𝑥𝑛, 𝑦𝑛);
(20) (𝑥, 𝑦) = (𝑥𝑛, 𝑦𝑛);
(21) I𝑘 = I𝑛𝑘−1;
(22) 𝑛𝑜Im𝑝𝑟𝑜V𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 0;
(23) break;
(24) else
(25) Y = 𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡(Y, (𝑥𝑐, 𝑦𝑐), (𝑥𝑛, 𝑦𝑛));
(26) (𝑥𝑐, 𝑦𝑐) = (𝑥𝑛, 𝑦𝑛);
(27) I𝑘 = I𝑛𝑘−1 if MIP(𝑥𝑛, 𝑦𝑛) < MIP(𝑥, 𝑦) then
(28) (𝑥, 𝑦) = (𝑥𝑛, 𝑦𝑛);
(29) 𝑛𝑜Im𝑝𝑟𝑜V𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 0;
(30) else
(31) 𝑛𝑜Im𝑝𝑟𝑜V𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + +;
(32) break;
(33) if 𝑛𝑜Im𝑝𝑟𝑜V𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ≥ 𝑑𝑖V𝑒𝑟𝑠𝐵𝑜𝑢𝑛𝑑 then
(34) I𝑘 = selectBinaryVariablesRandomly(𝛼);
(35) until time limit is reached;
(36) return (𝑥, 𝑦);

Algorithm 3: Tabu search algorithm.

// To find an (approximately) optimal solution for MIP(𝑥, 𝑦)
Input:𝛼 (portion of the resources included inI𝑘)
Output: (𝑥, 𝑦) (approximately optimal solution)

(1) begin
(2) 𝑘 = 0;
(3) I𝑘 = selectBinaryVariablesRandomly(𝛼);
(4) (𝑥, 𝑦) = solve (MIPI𝑘

(𝑥, 𝑦));
(5) while !stopCriterion do
(6) 𝑘 = 𝑘 + 1;
(7) I𝑘 = selectBinaryVariablesRandomly(𝛼);
(8) (𝑥𝑐, 𝑦𝑐) = solve (MIPI𝑘

(𝑥, 𝑦));
(9) if MIP(𝑥𝑐, 𝑦𝑐) < MIP(𝑥, 𝑦) then
(10) (𝑥, 𝑦) = (𝑥𝑐, 𝑦𝑐);
(11) I𝑘 = I𝑘−1
(12) return (𝑥, 𝑦);

Algorithm 4: Matheuristic method using the blind algorithm.
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solution of the subproblem.On the other hand, setting𝛼 close
to the total number of binary decision variables provokes
that the algorithm fails to find a solution for the generated
subproblems as there is no feasible solution to it (i.e., the
subproblems are too restrictive). Thus, we have to find a
value of 𝛼 such that exact methods can solve the obtained
subproblems within an acceptable time. Further, 𝛼 should
allow local search methods to iterate as much as needed.
Solving the obtained subproblems within few seconds is
critical to matheuristic methods as they usually need several
iterations before to converge to a good quality solution.This is
especially true for matheuristics that consider local search or
population-based heuristic methods. Then, there is a trade-
off between the quality of the solution of subproblems and
the time that is needed to generate such solutions. Therefore,
finding a value of 𝛼 that gives us a good compromise between
these two aspects is critical for the overall performance of the
matheuristic methods explained before. It is interesting that
the problem of finding efficient values of 𝛼might be seen as a
multiobjective optimisation problem.

In next section we explain the experiments that we
perform to study how the choice of 𝛼 hits local-search-based
matheuristics performance. Based on the results, we draft
some guidelines to set value of parameter 𝛼 at the end of next
section.

3. Computational Experiments

This section starts briefly introducing the problem we con-
sider in this paper.Then, the experiments performed here are
presented and their results are discussed.

3.1. The Capacitated Facility Location Problem. The capac-
itated facility location problem (CFLP) is a well-known
problem in combinatorial optimisation. The CFLP has been
shown to be NP-hard [28]. The problem consists of selecting
specific sites at which to install plants, warehouses, and
distribution centres while assigning customers to service
facilities and interconnecting facilities using flow assignment
decisions [23]. In this study we consider the CFLP problem
to evaluate the performance of a very simple matheuristic
algorithm. We consider a two-level supply chain in which a
single plant serves a set of warehouses, which in turn serve
a set of end customers or retailers. Figure 2 shows the basic
configuration of our supply chain. Thus, the goal is to find a
set of locations that serves the entire set of customers in an
optimal way. As Figure 2 shows, each customer (or cluster) is
served only by one warehouse.

The optimisation model considers the installation cost
(i.e., the cost associated with opening a specific warehouse)
and transportation or allocation cost (i.e., the cost of trans-
porting one item from a warehouse to a customer). The
mathematical model for the CFLP is

CFLP (𝑥, 𝑦) : min
𝑥,𝑦

𝑛

∑
𝑖=1

(𝑓𝑖𝑦𝑖) +
𝑛

∑
𝑖=1

𝑚

∑
𝑗=1

(𝑐𝑖𝑗𝑑𝑗𝑥𝑖𝑗) (4a)

s.t.
𝑚

∑
𝑗=1

𝑑𝑗𝑥𝑖𝑗 ≤ 𝐼cap𝑖 𝑦𝑖 ∀𝑖 = 1, . . . , 𝑛, (4b)

Customers
(clusters)

Warehouse 1

Warehouse 2

Warehouse 3

warehouse
Plant or central

Figure 2: Distribution network structure considered in this study.
It consists of one central plant, a set of potential warehouses, and a
set of customers or retailers [23].

𝑛

∑
𝑖=1

𝑥𝑖𝑗 = 1 ∀𝑗 = 1, . . . , 𝑚, (4c)

𝑥𝑖𝑗 ≤ 𝑦𝑖

∀𝑖 = 1, . . . , 𝑛; ∀𝑗 = 1, . . . , 𝑚,
(4d)

𝑦𝑖, 𝑥𝑖𝑗 ∈ {0, 1}

∀𝑖 = 1, . . . , 𝑛; ∀𝑗 = 1, . . . , 𝑚.
(4e)

Equation (4a) is the total system cost.The first term is the
fixed setup and operating cost when openingwarehouses.The
second term is the daily transport cost between warehouse
and customers which depends on the customer demand
𝑑 and distance 𝑐𝑖𝑗 between warehouse 𝑖 and customer 𝑗.
Inequality (4b) ensures that total demand of warehouse 𝑖 will
never be greater than its capacity 𝐼cap𝑖 . Equation (4c) ensures
that customers are served by only one warehouse. Equation
(4d) makes sure that customers are only allocated to available
warehouses. Finally, (4e) states integrality (0−1) for the binary
variables 𝑥𝑖𝑗 and 𝑦𝑖. Other versions of the CFLP relax this
constraints by making 𝑥 ∈ R𝑛×𝑚 with 0 ≤ 𝑥𝑖𝑗 ≤ 1. In that
case, the CFLP would be just as the MIP(𝑥, 𝑦) problem.

3.2. Experiments. In this paper three benchmarks for the
CFLP are considered. The first benchmark corresponds to
problem sets A,B, and C from the OR Library [29].
Instances in problem setsA,B, andC consider 1,000 clients
and 100 warehouses. Warehouses capacity for instances A1,
A2, A3, and A4 are equal to 8,000; 10,000; 12,000; and
14,000, respectively. Warehouses capacity for instances B1,
B2, B3, and B4 are equal to 5,000; 6,000; 7,000; and 8,000,
respectively. Warehouses capacity for instances C1, C2, C3,
and C4 are equal to 5,000; 5,750; 6,500; and 7,250, respec-
tively. Table 1 shows these instances and their corresponding
optimal values obtained by the MILP solver. Column 𝑡 shows
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(b) Clients uniformly distributed

Figure 3: Example of the instances considered in this study.

Table 1: Instances for the first benchmark used in this study (OR Library).

OR Library
Instances |𝐼| × |𝐽| 𝐼cap 𝑓(𝑥∗) 𝑡 (sec)
A1 1,000 × 100 8,000 19,240,822.45 1,745
A2 1,000 × 100 10,000 18,438,046.54 1,778
A3 1, 000 × 100 12,000 17,765,201.95 199
A4 1,000 × 100 14,000 17,160,439.01 8
B1 1,000 × 100 5,000 13,656,379.58 136
B2 1,000 × 100 6,000 13,361,927.45 151
B3 1,000 × 100 7,000 13,198,556.43 256
B4 1,000 × 100 8,000 13,082,516.50 27
C1 1,000 × 100 5,000 11,646,596.97 155
C2 1,000 × 100 5,750 11,570,340.29 70
C3 1,000 × 100 6,500 11,518,743.74 31
C4 1,000 × 100 7,250 11,505,767.39 24

the time needed by the MILP solver to reach the optimal
solution.

The second benchmark is a set of instances where clients
and warehouses are uniformly distributed over an imaginary
square of 100×100[distance units]2 (see Figure 3(a)).We call
this set DS1𝑈. The number of clients considered in instances
belonging to setDS1𝑈 ranges from 500 to 1000 (500, 600, 700,
800, 900, and 1,000) while the number of warehouses consid-
ered varies between 500 and 1,000.Thus, set DS1𝑈 consists of
12 problem classes (500×500, 500×600, . . . , 500×900, 500×
1000, 1000 × 500, . . . , 1000 × 1000). For each problem class,
10 instances are randomly generated using the procedure
proposed in [30] and that was also used in [5, 23]. We do this
in order to minimise any instance dependant effect. Table 2
shows the average values for each class of problems.

Finally, a third benchmark consisting on clients that are
organised in clusters is considered. We call this benchmark

DS1𝐶 (see Figure 3(b)). Instances in DS1𝐶 are generated
very similar to the ones in DS1𝑈. The only difference is that
clients in DS1𝐶 are not uniformly distributed and, thus, those
warehouses that are within (or very close to) a cluster have an
installation cost slightly higher than those warehouses that
are far away from the clusters.

Table 2 shows the results obtained by theMIP solver from
Gurobi when solving each instance of DS1𝐶. As we can see,
the MIP solver is able to solve all the instances to optimality.
Further, the solver finds the optimal solution for almost all
the instances in less than 1,800 secs. Columns 𝑡avg, 𝑡min, and
𝑡max in Table 2 show the average time and both minimum
and maximum times, respectively. This is because we solve
10 different instances for each instance class. As mentioned
before, we do this to avoid any instance dependent effect.

After we have solved the problem using the MIP solver,
we apply the all three local-search-based matheuristics and
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Table 2: Instances for the DS1𝑈 and DS1𝐶 benchmarks.

Instances DS1 𝑈 DS1 𝐶
|𝐼| × |𝐽| 𝑓(𝑥∗) 𝑡avg 𝑡min 𝑡max 𝑓(𝑥∗) 𝑡avg 𝑡min 𝑡max

(1) 500 × 500 120670.3 170 95 287 123900.7 191 99 410
(2) 500 × 1000 110534.5 267 194 356 113527.1 262 201 410
(3) 600 × 500 149539.9 261 105 424 149343.2 287 120 522
(4) 600 × 1000 141847.7 399 309 568 137451.4 331 255 501
(5) 700 × 500 182434.9 427 128 674 181149.3 292 96 645
(6) 700 × 1000 161882.7 726 263 1515 161872.9 596 306 1673
(7) 800 × 500 209319.5 455 227 748 207036.9 343 131 648
(8) 800 × 1000 193647.7 761 399 1679 188859.7 1040 590 1828
(9) 900 × 500 243403.7 391 179 681 236287.7 428 178 1024
(10) 900 × 1000 211302.4 1228 672 1787 215410.7 1158 507 1564
(11) 1000 × 500 270449.9 448 189 1484 265805.9 407 154 642
(12) 1000 × 1000 243625.0 1187 670 1791 239519.8 1419 588 2653
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Figure 4: Average results obtained by the local search algorithms for each value of (1 − 𝛼) for 𝑂𝑅𝐿𝑖𝑏A instances.

the blind algorithm to each instance and allow them to run
for 2,000 secs. The proposed algorithms solve each instance
10 times for each value of (1 − 𝛼). Table 3 shows the results
obtained by the local-search-based matheuristic methods for
instances A, B, and C for four different values of (1 −
𝛼). As expected, the blind algorithm consistently obtains
GAP values much higher than the other three methods.
Further, local-search-based algorithms are able to find the
optimal solution for the majority of the instances. While the
average GAP for the blind algorithm is 1.65%, the average
GAP for the SD, ND, and TS methods is 0.33%, 0.36%,
and 0.15%, respectively. As expected, the best average value
is obtained by the TS algorithm while difference between
SD and ND algorithms is negligible. Regarding the time
needed by the algorithms to converge, the blind algorithm

is the one that takes longer (770 secs). As mentioned before,
the ND algorithm is, in average, the fastest one with 299
seconds, while the SD algorithm almost doubles this time
with 547 seconds, in average. TS algorithm takes 371 seconds,
in average, before convergence.

Figures 4(a), 5(a), and 6(a) show the evolution of the
GAP, as parameter (1 − 𝛼) increases. As we expected, the
larger the value of (1 − 𝛼) is set to, the smaller the GAP.
Also, it is clear that the blind algorithms obtain higher GAP
values than the other three algorithms considered in this
study. As we mentioned before, the blind algorithm works
as our baseline algorithm. It is interesting to note that,
for all algorithms, the worst performance is obtained for
(1 − 𝛼) = 0.1. This is mainly because for this value not
enough facilities are available and the algorithms open a set
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Figure 5: Average results obtained by the local search algorithms for each value of (1 − 𝛼) for 𝑂𝑅𝐿𝑖𝑏B instances.
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Figure 6: Average results obtained by the local search algorithms for each value of (1 − 𝛼) for 𝑂𝑅𝐿𝑖𝑏C instances.

of facilities randomly so the problem has a feasible solution.
However, this repairing process is completely random and,
thus, algorithms performance is impaired.

Since the problems from theORLibrary are onlymedium
size instances, local-search-based matheuristics consistently
find the optimal solution for almost all instances for (1−𝛼) =
{0.3, 0.5, 0.7}. In fact, even the blind algorithm finds solutions
that are very close to the optimal ones when (1 − 𝛼) = 0.7.

Figures 4(b), 5(b), and 6(b) show the time needed by
our algorithms to find its best solution, as parameter (1 − 𝛼)
increases. Unlike we expected, the time needed to find the
best solution does not increase as the parameter (1 − 𝛼)
gets larger. In fact, both algorithms, SD and blind, converge
faster when (1 − 𝛼 = 0.7), the larger value we tried
in our experiments. This can be explained because of the
problems features. We note that optimal solutions for all the
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Figure 7: Average GAP values obtained by the local search algorithms for each value of (1 − 𝛼) for DS1 instances.

problems in the benchmark of the OR Library need not too
many warehouses to be open. Thus, when a large portion
of the potential warehouses are available (as for the (1 −
𝛼) = 0.7 case) the algorithm is likely to find such optimal
solutions in early iterations. In fact, for the vast majority of
the experiments, optimal solution is found within the first 2
to 3 iterations.

We now move on the DS1𝑈 and the DS1𝐶 benchmarks.
As we noted before, these sets of instances are much larger
and harder to solve than the problems in the OR Library we
discussed above. Further, as the optimal solutions of these
instances do not require too many warehouses to be open,
the repairing procedure applied to the OR Library instances
for (1 − 𝛼) = 0.1 does not have a great impact on the
results. Thus, local-search-based matheuristics outperform
the results obtained by the blind algorithm for all values of
parameter 𝛼. Figures 7(a) and 7(b) show the GAP values
obtained by the all four algorithms for instances DS1𝑈 and
DS1𝐶, respectively.

Just as in theORLibrary instances, as the parameter (1−𝛼)
gets larger, the GAP approximates to 0 for the all three local-
search-based matheuristic proposed in this paper. While for
the DS1𝑈 instances both the TS and the ND algorithms reach
GAP values very close to 0 for (1 − 𝛼) = 0.5 and (1 − 𝛼) =
0.7, for the DS1𝐶 instances the best value obtained by the
TS and the ND algorithms is 0.71 and 0.61, respectively, for
(1 − 𝛼) = 0.7. Notably, the ND algorithm performs slightly
better than the TS for the DS1𝐶 instance when (1 − 𝛼) =
0.5, obtaining a best average value of 0.66 against the 1.42
obtained by the TS algorithm. In spite of that, we can note
that the differences between the GAP obtained by both the
ND and the TS algorithms when using (1 − 𝛼) = 0.5 and
(1−𝛼) = 0.7 are negligible, just as in theORLibrary instances.

Figures 8(a) and 8(b) shows the time needed by the all
four algorithms to find their best solution for instances DS1𝑈
and DS1𝐶, respectively. As expected, as the parameter (1 −
𝛼) gets larger, longer times are needed by the algorithms to
converge. This is important as one would like to use a value
for (1−𝛼) such thatminimumGAP values are reached within
few minutes.

Results in Figures 7 and 8 show, clearly, that there is a
compromise between the quality of the solution found by the
algorithms and the time they need to do so. Further, we know
that this compromise can be managed by adjusting the value
of parameter (1−𝛼). For the case of instancesDS1𝑈 andDS1𝐶,
such a value should be between 0.4 and 0.6. Moreover, for the
case of the instances of the OR Library, parameter (1 − 𝛼)
should be set around 0.3. It is interesting to note that while
the size of instances DS1𝑈 and DS1𝐶 is equivalent, instances
of the OR Library are much smaller.

We can also note that instances that include clusters
tend to take longer to converge. This is especially true as
parameter (1 − 𝛼) gets larger. Further, for these instances, as
the parameter (1−𝛼) gets larger, less iterations are performed
by algorithms although each of these iterations takes much
longer. As mentioned before, these should be taken into
account when using population-based algorithms within the
framework presented in this study as such kind of heuristic
algorithms needs to perform several iterations before to
converge to good quality solutions.

4. Conclusions and Future Work

In this paper we show the impact of parameter tuning
on a local-search-based matheuristic framework for solving
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mixed integer (non)linear programming problems. In partic-
ular, matheuristics that combine local search methods and
a MIP solver are tested. In this study, we focus on the size
of the subproblem generated by the local search method
that is passed on to the MIP solver. As expected, the size of
the subproblems that are solved in turn by the matheuristic
method has a big impact on the behaviour of thematheuristic
and, consequently, on its obtained results: as the size of
the subproblem increases (i.e., more integer/binary decision
variables are considered) the results obtained by the MIP
solver are closer to the optimal solution. The time required
by the algorithms tested in this paper to find its best solution
also increases as the subproblem gets larger. Further, as the
subproblem gets larger, fewer iterations can be performed
within the allowed time.This is important as other heuristics
such as evolutionary algorithms and swarm intelligence,
where many iterations are needed before converging to a
good quality solution, might be not able to deal with large
subproblems. We also note that the improvement in the GAP
values after certain value of parameter (1 − 𝛼) is negligible
and that this value depends to some extent on the size of the
problem: for medium size instances such as the ones in the
OR Library, parameter (1−𝛼) should be set to a value around
0.3 while for larger instances (DS1𝑈 and DS1𝐶) it should
be set to a value between 0.4 and 0.6. The specific values
will depend on both the accuracy level requested by users
and the time available to perform the algorithm. Therefore,
the challenge when designing matheuristic frameworks as
the one presented in this paper is to find a value for
parameter (1 − 𝛼) that allows the heuristic algorithm to
perform as many iterations as needed and that provides a
good compromise between solution quality and run times.
Although the values provided here are only valid for the

problem and the algorithms considered in this paper, we
think that the obtained results can be used as a guide by
other researchers using similar frameworks and/or dealing
with similar problems.

As a future work, strategies such as evolutionary algo-
rithms and swarm intelligence will be tested within the
matheuristic framework considering the results obtained in
this study. We expect that intelligent methods such as the
ones named before greatly improve the results obtained by
the local search methods considered in this study. Moreover,
the matheuristic framework used in this paper might also
be applied to other MILP and MINLP problems such as, for
instance, the beam angle optimisation problem in radiation
therapy for cancer treatment.
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