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Abstract — The purpose of this paper is to show that the Elementary Process Theory (EPT)
agrees with the knowledge of the physical world obtained from the successful predictions of Special
Relativity (SR). For that matter, a recently developed method is applied: a categorical model of
the EPT that incorporates SR is fully specified. Ultimate constituents of the universe of the EPT
are modeled as point-particles, γ-rays, or time-like strings, all represented by integrable hyperreal
functions on Minkowski space. This proves that the EPT agrees with SR.

1 Introduction

The Elementary Process Theory (EPT) is, in a sentence, a collection of seven mathematically abstract
formulas that can be interpreted as process-physical principles describing the individual processes at su-
persmall scale by which interactions have to take place for the gravitational interaction between matter
and antimatter to be repulsive [1]. One of its two main issues is that there is no proof that the EPT
is consistent with existing knowledge of the fundamental interactions—that is, there is no proof that
the interactions as we know them can take place in the individual processes as described by the EPT.
Recently a method has been developed for proving that the EPT agrees with a modern interaction theory
T : a categorical model C of the EPT has to be specified such that C reduces empirically to T [2].

The purpose of this paper is to demonstrate the method by fully specifying a categorical model CSR
of the EPT that reduces empirically to Special Relativity (SR), first published in [3]. This categorical
model CSR is thus a category in the sense of category theory as introduced in [4]; it consists of

(i) a collection of objects, each of which is a set-theoretic model of the EPT in the reference frame of
an inertial observer;

(ii) a collection of arrows, each of which corresponds to a Lorentz transformation that transforms one
set-theoretic model into another.

The specification of the category CSR is straightforward but some elaboration is in place on how the
components of the universe of the EPT have been modeled. It has to be taken that the EPT is a mathe-
matically abstract theory that states elementary principles in terms of ultimate components but without
reference to any coordinate system of an observer, while each model Mp in {Mi}i∈F1

is a mathematically
concrete interpretation of these principles in the reference frame of an inertial observer. Recall that
the universe described by the EPT consists of world and antiworld : a component of this universe is

designated by a 2× 1 matrix

[
φ

φ

]
, where the abstract set φ designates a constituent of the world and

the abstract set φ a constituent of the antiworld—observers who live in “our” forward time-direction
thus only observe a manifestation (i.e., a state) of the constituent φ of the world, while a (hypothetical)
observer in opposite time-direction would observe a manifestation of the constituent φ of the antiworld.
In this study, however, only inertial observers are considered who live in “our” forward time-direction:
all models Mp in {Mi}i∈F1 are thus models of the world, not of the antiworld.

The outline of this paper is as follows. The next section describes the purely pragmatic approach taken
towards specifying a categorical model of the EPT. The section thereafter introduces the main result of
this study: the categorical model CSR of the EPT. The final section elaborates on the corresponding
world view in terms of particles and events, and states the conclusions.
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2 Pragmatic approach: pointillism

The EPT describes without reference to any coordinate system how new ultimate building blocks are
formed from existing ones by discrete transitions that take place in individual processes. The idea of a
set-theoretic model of the EPT is then that the symbols of the EPT that refer to ultimate building blocks
are interpreted in a concrete set-theoretical domain D, such that an interpretation I(φ) of a symbol φ
mathematically models the state of that building block in the reference frame of an observer. In the
model, the discrete transitions of the EPT then become state transitions in the reference frame of an
observer: from there, quantitative predictions can be derived.

Recall from the introduction that the aim here is to prove that the EPT agrees with SR and nothing
more than that. This calls for a purely pragmatic approach: it is enough to specify the simplest categorical
model of the EPT that reproduces SR. First of all, the definition of a reference frame of an observer can
be taken from SR:

Definition 2.1 (IRF) The reference frame of an inertial observer is Minkowski space M = R4

with signature (−,+,+,+). Such an inertial reference frame will henceforth be referred to by the acronym
‘IRF’. For a point X = (x0, x1, x2, x3) ∈ M, the real number x0 is the time coordinate, the three real
numbers x1, x2, x3 are the spatial coordinates. Planck units are used: both Planck length and Planck
time are scaled to 1. �

Def. 2.1 thus implies that the present categorical model of the EPT only applies for inertial observers:
it is, thus, a presupposition that all observers are inertial observers. Furthermore, for the sake of
simplicity we will use rectangular coordinates so that we can use the components ηαβ of the metric
tensor η = diag(−1, 1, 1, 1).

Secondly, to show agreement with SR it suffices that the set-theoretic models of the EPT in the
category CSR are pointillistic. Originally referring to a technique in painting, the term ‘pointillism’ in
physics is defined as

the doctrine that a physical theory’s fundamental quantities are defined at points of space or
of spacetime, and represent intrinsic properties of such points or point-sized objects located
there; so that properties of spatial or spatiotemporal regions and their material contents are
determined by the point-by-point facts [5].

Thus speaking, a pointillistic model of the EPT is one in which the state of a phase quantum—an
ultimate constituent of the universe of the EPT—in the IRF of an observer at every moment of its
existence is modeled by a point-particle. Butterfield made a case against pointillism in [5], but it is
once more emphasized that we take a purely pragmatic approach in this study: the pointillistic model
of the EPT is an idealization that is purely intended to prove agreement with SR—the model needs to
be refined to have a wider area of application.

Applying hyperreal Dirac delta functions, introduced in [6], to represent the state of a system made
up of point-particles, we come to the following pointillistic state postulate:

Postulate 2.2 In the categorical model CSR of the EPT, the state of a phase quantum in the IRF of an
observer O is represented by a function f :M→ ∗

+R for which

f : (t, x, y, z) 7→ E · χ(t)δ3
(r1,r2,r3)(x, y, z) (1)

where E is the energy of the state and χ : M→ ∗
+R is a characteristic function having the value 0 at

times t when the state doesn’t exist, and the value 1 at times t when the state exists. That is, at every
time t that the state exists, the energy E of the state is then (i.e. at the time t) distributed over the one
point (t, r1(t), r2(t), r3(t), n) ∈M. �

Recall that the EPT is not a quantum theory, so in the present categorical model of the EPT the
above state postulate is to be viewed as an equivalent of e.g. the state postulate of standard quantum
mechanics, which states that a quantum state is represented by an element ψ of a Hilbert space H with
norm ‖ψ‖ = 1—this goes back to Schrödinger’s early works, e.g. [7]. Similarly, here we have that the
state of a phase quantum is represented by an element f of the function space ∗+RM for which∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f(t, x, y, z)dxdydz = E (2)

at any time t with χ(t) = 1. In the next section, set-theoretic models of the EPT are specified in
accordance with this pointillistic state postulate.
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3 Result: the categorical model CSR

3.1 Overview

In Sect. 3.2 a generic set-theoretic model MZ,ω,O of the EPT is specified in a number of interpretations
that apply the state postulate 2.2. In this generic model, the set of all integer-valued degrees of evolution
is modeled by Z, and the number of individual processes from any integer-valued degree of evolution n
to the next is ω: this is a generic constant which does not depend on n.1 Correspondingly, the set Sω is
the section of positive integers up to and including ω:

Sω := {1, 2, . . . , ω} (3)

For the constant k in the kth process from the nth to the (n + 1)th degree of evolution we thus have
k ∈ Sω. There is, thus, a class of concrete set-theoretic models for each value of ω. That said, the objects
of the category CSR can then be defined as follows:

Definition 3.1 An object of the category CSR is a concrete set-theoretic model MZ,ω,O of the EPT,
that is, a structure 〈|MZ,ω,O|,E, IZ,ω,O(R)〉 consisting of:

(i) the set of individuals |MZ,ω,O|, the universe of MZ,ω,O, which is the union of the following sets:

• the set Aω,O specified by Def. 3.4;

• the set 〈GZ,ω,O〉 specified by Ints. 3.7, 3.9, 3.11, 3.12, 3.13, Def. 3.19, and Rem. 3.26;

• the set ΘZ,ω,O = {Θn
k | n ∈ Z, k ∈ Sω} made up of the sets Θn

k specified by Int. 3.25;

• the set φZ,ω,O made up of the choice functions specified by Int. 3.25.

(ii) the unary existence relation E specified by Int. 3.24, which can be identified with a subset of
〈GZ,ω,O〉;

(iii) the ternary relation IZ,ω,O(R) specified by Ints. 3.14, 3.15, 3.16, 3.17, and Rems. 3.23 and 3.26,
which can be identified with a subset of 〈GZ,ω,O〉 × 〈GZ,ω,O〉 × 〈GZ,ω,O〉.

In this structure, the axioms of the EPT and the universality of the speed of light are valid. �

The collection of objects of CSR is (uncountably) infinite; which model applies to the physical world
depends, then, on the system to be modeled. E.g. for a system consisting of a single electron, for any
r ∈ R there are models in which the electron at t = 0 is co-moving with the observer at spatial distance
r, but there are also models in which the electron at t = 0 is moving relative to the observer; moreover,
there are models in which the 4-momentum of the electron remains constant in the time interval (0, 2),
and there are models in which the 4-momentum of the electron remains changes in the time interval (0, 2).

In Sect. 3.3 the arrows of the category CSR are specified in a number of definitions. If for an iner-
tial observer O a concrete set-theoretic model MZ,ω,O of the EPT applies to a given physical system,
then for a different inertial observer O′ a different model MZ,ω,O′ applies to the same physical system.
The point is, then, that these models are related by an arrow T in the collection of arrows of CSR. That
being said, we can define precisely what such an arrow is.

Definition 3.2 Let the objects of the category CSR be structures as in Def. 3.1. Then an arrow of
the category CSR is an isomorphism T of a structure MZ,ω,O = 〈|MZ,ω,O|,E, IZ,ω,O(R)〉 and a structure
MZ,ω,O′ = 〈|MZ,ω,O′ ,E, IZ,ω,O′(R)〉, which maps |MZ,ω,O| bijectively to |MZ,ω,O′ | such that

T (f1) + T (f2) = T (f1 + f2) for any f1, f2 ∈ 〈GZ,ω,O〉 (4)

ET (f)⇔ Ef for any f ∈ 〈GZ,ω,O〉 (5)

〈T (f1), T (f2), T (f3)〉 ∈ IZ,ω,O′(R)⇔ 〈f1, f2, f3〉 ∈ IZ,ω,O(R) for any f1, f2, f3 ∈ 〈GZ,ω,O〉 (6)

Every arrow of the category CSR corresponds with a Lorentz transformation. �

So, once we have a concrete set-theoretic model MZ,ω,O that applies to a given system for inertial
observer O, then the arrows of CSR transform this to models MZ,ω,O′ ,MZ,ω,O′′ , . . . that will apply to the
same physical system for other inertial observers O′,O′′, . . . That is, the arrows relate the predictions of
observer O to those of observers O′,O′′, . . . This way, the categorical model CSR of the EPT reproduces
relativity of length and time as in standard SR.

1Here ω is a finite integer, not to be confused with the hyperreal number with the same symbol; in the remainder of
this text it is assumed that it will be clear from the context to which number the symbol ω refers.
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3.2 The objects of the category CSR

Agreement 3.3 Greek indices α, β, etc. for the components of vectors and tensors can take all values
from 0 to 3, but Roman indices i, j, k, etc. can only take a value from 1 to 3. So xα can be any of the
components of the 4-tuple (x0, ..., x4), while xj refers only to x1, x2, or x3. Furthermore, (~x)α denotes
the αth component of the 4-vector ~x. �

To specify the generic set-theoretic model MZ,ω,O of the EPT, we must begin by defining the set of
monads. A ‘monad’ in the EPT is an abstraction of an indivisible massive particle: in this model, a
monadic state is an indivisible building block of the world as seen by observer O—its properties then
relate to the properties of the monad defined below.

Definition 3.4 (Monads) Let MZ,ω,O be a set-theoretic model of the EPT. The set of all monads in
MZ,ω,O is then the set

Aω,O = {〈k, σk, χk〉 | k ∈ Sω} (7)

For any k ∈ Sω, the three-tuple 〈k, σk, χk〉 ∈ S is the kth monad; the constant σk is the rest mass
spectrum of the kth monad; the constant χk ∈ {−1, 1} is the characteristic number of normality
of the kth monad. In this model, the rest mass spectrum is a constant function

σk : Z→ R, σk : n→ mk (8)

that adds the number mk > 0, the rest mass of the kth monad, to a degree of evolution n. �

The interpretations of constants and axioms of the EPT make use of the following notation and definition:

Notation 3.5 Let MZ,ω,O be a set-theoretic model of the EPT; let IZ,ω,O be the interpretation function
that maps any constant φ of the EPT to its interpretation IZ,ω,O(φ) in the language of MZ,ω,O. For a
constant φ of the EPT referring to a phase quantum, the expression

φ
O−→ f (9)

is then a notation for IZ,ω,O(φ) = f , and has to be read as: ‘the state of the phase quantum, designated
by φ, in the coordinate system of the observer O is represented by f ’. (This notation is loosely based on
a notation used in [8].) �

Definition 3.6 Let {t} ⊂ R be any singleton, and let (t, u) ⊂ R be any open real interval. Then the
characteristic functions χ{t} : R→ R and χ(t,u) : R→ R are given by

χ{t} : x 7→
{

1 iff x = t
0 iff x 6= t

(10)

χ(t,u) : x 7→
{

1 iff x ∈ (t, u)
0 iff x 6∈ (t, u)

(11)

The latter equation is to include the cases that (t, u) = (t,∞). �

Interpretation 3.7 For integers n ∈ Z and k ∈ Sω, the constant EPµnk of the EPT designates the
extended particlelike matter quantum at the nth degree of evolution associated to the kth monad. In the
model MZ,ω,O we then have

EPµnk
O−→ snk (12)

snk : (t, x, y, z) 7→ EEPn,k · χ{tn,k}(t)δ
3
(xn,k,yn,k,zn,k)(x, y, z) (13)

So, the state of the particlelike matter quantum, designated by the symbol EPµnk in the EPT, in the IRF
of the observer O is modeled as a point-particle with energy EEPn,k > 0 at the spatiotemporal position
Xn,k = (tn,k, xn,k, yn,k, zn,k), represented by the function snk :M→ ∗

+R. �

Note that the support of the function snk is a singleton: supp snk = {(tn,k, xn,k, yn,k, zn,k)} = {Xn,k}.2
That means that in the IRF of O, the point-particle only exists at the spatiotemporal position Xn,k.

2Recall that, for any nonempty set X and any a vector space V , the support of a function f : X → V is the set denoted
by ‘supp f ’ for which supp f = {x ∈ X | f(x) 6= 0}; see e.g. [9].
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Agreement 3.8 We will henceforth refer to the state represented by the function snk as the ‘particle
state of the kth monad at the nth degree of evolution in the IRF of the observer O’. �

Now that we have the monadic particle states, we are going to let these evolve according to the
principles of the EPT, which are formulated in terms of phase quanta: the idea for this model is that
the particlelike state of the kth monad at the nth degree of evolution is the initial state at the start of
the kth process from the nth to the (n + 1)th degree of evolution. So we first interpret the constants of
the EPT referring to phase quanta, and then we interpret the principles of the EPT.

Interpretation 3.9 For integers n ∈ Z and k ∈ Sω, the constant EPΦnk of the EPT designates the
extended particlelike phase quantum occurring in the kth process from the nth to the (n+ 1)th degree of
evolution. In the model MZ,ω,O we then have

EPΦnk
O−→ EP fnk (14)

EP fnk = snk (15)

�

Thus speaking, in MZ,ω,O the state of the phase quantum, designated by the symbol EPΦnk in the EPT,
in the IRF of the observer O is the particle state of the kth monad at the nth degree of evolution in the
IRF of the observer O. Thus speaking, in the IRF of the observer O, the kth process from the nth to the
(n + 1)th degree of evolution starts with a point-particle with energy EEPn,k at spatiotemporal position

Xn,k. Moreover, Int. 3.9 associates the kth process from the nth to the (n+ 1)th degree of evolution with
the kth monad: the properties of the monad defined in Def. 3.4 will thus occur in the said process.

Remark 3.10 To emphasize it: in a more elaborate model of the EPT the phase quantum EPΦnk will be
modeled as an aggregation of monadic particle states, and these do not have to be point-particles. Thus
speaking, Int. 3.9 forces us to treat, for example, a deuterium nucleus as a monadic state—although we
already know that it is composed of a neutron and a proton. The crux here is that we are only interested
in showing that the EPT agrees with SR: therefore, we keep the internal states of massive particles as
simple as possible—that is, all massive particles are modeled as elementary point-particles. �

Interpretation 3.11 For integers n ∈ Z and k ∈ Sω, the constant NWΦnk of the EPT designates the
non-local wavelike phase quantum occurring in the kth process from the nth to the (n + 1)th degree of
evolution. In the model MZ,ω,O we then have

NWΦnk
O−→ NW fnk (16)

NW fnk :

{
(t, x, y, z) 7→ ENWn,k · ω3 if (t, x, y, z) ∈ ∆Xn,k

(t, x, y, z) 7→ 0 if (t, x, y, z) 6∈ ∆Xn,k
(17)

for a line segment ∆Xn,k in the IRF of the observer O determined by the spatiotemporal position Xn,k

of Int. 3.7 and a displacement vector ∆~xn,k = (∆tn,k,∆xn,k,∆yn,k,∆zn,k) in spacetime with ∆tn,k > 0
such that

∆Xn,k = {Xn,k + λ ·∆~xn,k ∈M | λ ∈ (0, 1)} (18)

η(∆~xn,k,∆~xn,k) = −1 (19)

Thus speaking, the state of the phase quantum, designated by the symbol NWΦnk in the EPT, in the IRF of
the observer O is a time-like string with energy E = ENWn,k > 0 and spatiotemporal extension ∆Xn,k,

represented by the above function NW fnk ∈ ∗
+RM. At every point X = X(λ) of its spatiotemporal

extension (with the above parametrization), the time-like string is associated with a 4-momentum
~pNWn,k for which

~pNWn,k = mk · (
dx0

dλ
,
dx1

dλ
,
dx2

dλ
,
dx3

dλ
) = (ENWn,k , p

1
n,k, p

2
n,k, p

3
n,k) (20)

η(~pNWn,k , ~p
NW
n,k ) = −(ENWn,k )2 + (p1

n,k)2 + (p2
n,k)2 + (p3

n,k)2 = −(mk)2 (21)

where mk in Eq. (20) is the rest mass of the kth monad as given by Def. 3.4. �
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Note that the components pαn,k of ~pNWn,k in Eq. (20) are constants that do not depend on λ, so d2xα

dλ2 = 0.

We can view the time-like string NW fnk therefore as a wave traveling in a straight line, associated with

energy ENWn,k and constant spatial momenta pjn,k.
Furthermore, note that the function prescription (17)—in which the symbol ω refers, of course, to

the hyperreal number—can be rewritten in the form of Eq. (1) of Post. 2.2. We have

NW fnk : (t, x, y, z) 7→ ENWn,k χ(tn,k, tn,k+∆tn,k)(t)δ
3
〈x1(t),x2(t),x3(t)〉(x, y, z) (22)

with χ(tn,k, tn,k+∆tn,k) the characteristic function of the interval (tn,k, tn,k + ∆tn,k) as in Def. 3.6, and
with  x1(t)

x2(t)
x3(t)

 =

 xn,k
yn,k
zn,k

+
t− tn,k
∆tn,k

·

 ∆xn,k
∆yn,k
∆zn,k

 (23)

This gives precisely the same function values of NW fnk .

Interpretation 3.12 For integers n ∈ Z and k ∈ Sω, the constant NPΦn+1
k of the EPT designates the

non-extended particlelike phase quantum occurring in the kth process from the nth to the (n+ 1)th degree
of evolution. In the model MZ,ω,O we then have

NPΦn+1
k

O−→ NP fn+1
k (24)

supp NP fn+1
k = {(tn+1,k, xn+1,k, yn+1,k, zn+1,k, 0)} = {Xn+1,k} , tn+1,k = tn,k + ∆tn,k (25)

NP fn+1
k : (t, x, y, z, u) 7→ ENPn+1,kχ{tn+1,k}(t)δ

3
〈xn+1,k, yn+1,k, zn+1,k〉(x, y, z) (26)

Thus speaking, in MZ,ω,O the state of the phase quantum, designated by the symbol NPΦn+1
k in the EPT,

in the IRF of the observer O is modeled by a point-particle with energy E = ENPn+1,k > 0 represented by

the above function NP fn+1
k ∈ ∗

+RM. Note that the point-particle only exists at the one spatiotemporal
position Xn+1,k in the IRF of O, so χ{tn+1,k}(t) = 1 if t) = tn+1,k and χ{tn+1,k}(t) = 0 else. �

Interpretation 3.13 For integers n ∈ Z and k ∈ Sω, the constant LWΦn+1
k of the EPT designates the

local wavelike phase quantum occurring in the kth process from the nth to the (n+1)th degree of evolution.
In the model MZ,ω,O we then have

LWΦn+1
k

O−→ γn+1
k (27)

γn+1
k :

{
(t, x, y, z) 7→ ∆En+1,k · ω3 if (t, x, y, z) ∈ `γn+1,k

(t, x, y, z) 7→ 0 if (t, x, y, z) 6∈ `γn+1,k

(28)

for a line segment `γn+1,k ⊂M in the IRF of the observer O determined by the spatiotemporal position

Xn+1,k of Int. 3.12 and a null vector (1, v1, v2, v3) ∈M:

`γn+1,k :


x0

x1

x2

x3

 =


tn+1,k

xn+1,k

yn+1,k

zn+1,k

+ µ ·


1
v1

v2

v3

 , µ ∈ (0, tend) (29)

η((1, v1, v2, v3), (1, v1, v2, v3)) = −1 + (v1)2 + (v2)2 + (v3)2 = 0 (30)

Thus speaking, in MZ,ω,O the state of the phase quantum, designated by the symbol LWΦn+1
k in the

EPT, in the IRF of the observer O is modeled by a γ-ray with spatiotemporal extension `γn+1,k and with

energy E = ∆ENPn+1,k > 0, represented by the above function γn+1
k ∈ ∗

+RM. If the γ-ray gets absorbed
at a time t > tn+1,k, then tend in Eq. (29) has the finite value t − tn+1,k; if no absorption takes place,
then we have (0, tend) = (0,∞). At every point X(µ) of its path (with the above parametrization), the
γ-ray is associated with a 4-momentum ~pLWn+1,k for which

~pLWn+1,k = ∆En+1,k · (
dx0

dµ
,
dx1

dµ
,
dx2

dµ
,
dx3

dµ
) = (∆En+1,k,∆p

1
n+1,k,∆p

2
n+1,k,∆p

3
n+1,k) (31)

η(~pLWn+1,k, ~p
LW
n+1,k) = −(∆En+1,k)2 + (∆p1

n+1,k)2 + (∆p2
n+1,k)2 + (∆p3

n+1,k)2 = 0 (32)

�
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Given Eq. (33) we here also have d2xα

dµ2 = 0, so we associate the γ-ray with constant spatial momenta

∆pjn+1,k. The idea of the γ-ray implements a ray theory of light in this model, with the front of the ray
being a photon. We thus conveniently ignore that phenomena like interference and diffraction require
wave theory. But recall that the aim is to show that the EPT agrees with SR: in the framework of SR,
photons are point-particles too!

Furthermore, similar to the case of the time-like strings, the function prescription (28) can be rewritten
in the form of Eq. (1) of Post. 2.2. We get

γn+1
k : (t, x, y, z) 7→ ∆En+1,k · χ(tn+1,k, tn+1,k+tend)(t)δ

3
〈x1(t),x2(t),x3(t)〉(x, y, z) (33)

with χ(tn+1,k, tn+1,k+tend) the characteristic function of the interval (tn+1,k, tn+1,k + tend) as in Def. 3.6,
and with x1(t)

x2(t)
x3(t)

 =

 xn+1,k

yn+1,k

zn+1,k

+ (t− tn+1,k) ·

 v1

v2

v3

 (34)

where the vj ’s are the spatial components of the null vector from Eq. (29). This gives precisely the same
function values of γn+1

k .

Having modeled the objects in the universe of the EPT in terms of point-particles, time-like strings
and gamma-rays, we are now ready to model the elementary principles of the EPT.

Interpretation 3.14 For integers n ∈ Z and k ∈ Sω, in the model MZ,ω,O the expression

|= 0 : EP fnk → NW fnk (35)

models the Elementary Principle of Nonlocal Equilibrium, the first of seven axioms of the EPT; here the
symbol ‘0’ refers to the function 0 : M→ ∗

+R, 0 : X 7→ (0, . . . , 0). Since EP fnk = snk , cf. Int. 3.9, this
expression means that in the IRF of the observer O, the particle state of the kth monad at the nth degree
of evolution, located at the spatiotemporal position Xn,k, transforms spontaneously into the time-like
string NW fnk , which over time occupies the open line segment ∆Xn,k. �

Interpretation 3.15 For integers n ∈ Z and k ∈ Sω, in the model MZ,ω,O the expression

|= NW fnk : EP fnk → NP fn+1
k (36)

models the Elementary Principle of Nonlocal Mediation, the second of seven axioms of the EPT. Since
we have EP fnk = snk , cf. Int. 3.9, this expression means that in the IRF the observer O, the time-like
string NW fnk effects a transition from the particle state of the kth monad at the nth degree of evolution,
located at the spatiotemporal position Xn,k in the IRF of the observer O, to the point-particle NP fn+1

k

located at the spatiotemporal position Xn+1,k in the IRF of O. This has to be taken that at t = tn+1,k,
the time-like string “collapses” into, i.e. transforms into, the point-particle NP fn+1

k . �

Interpretation 3.16 For integers n ∈ Z and k ∈ Sω, in the model MZ,ω,O the expression

|= 0 : NP fn+1
k → γn+1

k (37)

models the Elementary Principle of Local Equilibrium, the third of seven axioms of the EPT; here ‘0’ has
the same meaning as in Int. 3.14. This expression means that in IRF of the observer O, the point-particle
NP fn+1

k spontaneously emits a γ-ray γn+1
k . �

Interpretation 3.17 For integers n ∈ Z and k ∈ Sω, in the model MZ,ω,O the expression

|= γn+1
k : NP fn+1

k → sn+1
k (38)

models the Elementary Principle of Local Mediation, the fourth of seven axioms of the EPT. This
expression means that in the IRF of the observer O, the emitted γ-ray γn+1

k causes the transition of
the point-particle NP fn+1

k to the particle state of the kth monad at the (n + 1)th degree of evolution.
Note that supp NP fn+1

k = supp EP fn+1
k = {Xn+1,k}, cf. Ints. 3.7 and 3.12, so the discrete transition

NP fn+1
k → EP fn+1

k involves no spatiotemporal displacement. The particle state of the kth monad at
the (n + 1)th degree of evolution is then the starting point of the kth process from the (n + 1)th to the
(n+ 2)th degree of evolution. �
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At the level of abstractness of the EPT, the phase quanta in terms of which the elementary principles
are stated are abstracted from their properties. In the present model, however, we have endowed the
phase quanta with properties, in particular (spatiotemporal) position, energy and spatial momentum.
To exclude inapplicability to the physical world the formulation of conservation laws is required; this has
the status of an additional postulate.

Postulate 3.18 (Conservation of 4-momentum) Upon the collapse of the time-like string NW fnk with
4-momentum ~pNWn,k to the point-particle NP fn+1

k the momenta are conserved, so we associate NP fn+1
k

with a 4-momentum

~pNPn+1,k := ~pNWn,k = (ENWn,k , p
1
n,k, p

2
n,k, p

3
n,k) (39)

The γ-ray γn+1
k with associated 4-momentum ~pLWn+1,k emitted by the point-particle NP fn+1

k then causes

the latter to transform to the point-particle EP fn+1
k , so we associate EP fn+1

k with a 4-momentum ~p EP
n+1,k

for which

~p EP
n+1,k := ~pNPn+1,k − ~pLWn+1,k (40)

η(~p EP
n+1,k, ~p

EP
n+1,k) = −mn+1 (41)

By a discrete state transition, the point-particle EP fn+1
k subsequently transforms into the time-like string

NW fn+1
k with 4-momentum ~pNWn+1,k. If a γ-ray γpm with associated 4-momentum ~pLWp,m is absorbed, that

is, if a γ-ray γpm has a path {X(t) | t ∈ (0, tend} ⊂ M such that

lim
t→tend

X(t) = Xn+1,k (42)

then 4-momentum is conserved according to

~pNWn+1,k = ~p EP
n+1,k + ~pLWp,m (43)

If no γ-ray is absorbed, then Eq. (43) holds with ~pLWp,m = 0. �

Definition 3.19 Let GZ,ω,O = {EP fnk , NW fnk , NP f
n+1
k , γn+1

k | n ∈ Z, k ∈ Sω}; then 〈GZ,ω,O〉 is the
commutative monoid generated by the set GZ,ω,O under function addition, for which

f + g : X 7→ f(X) + g(X) (44)

Note that snk ∈ 〈GZ,ω,O〉 since snk = EP fnk . �

Interpretation 3.20 For integers n ∈ Z and k ∈ Sω, the constant ψnk of the EPT designates the state
of the kth monad from the nth to the (n+ 1)th degree of evolution. In the model MZ,ω,O we then have

ψnk
O−→ tnk (45)

tnk :M→ ∗
+R (46)

such that the expression

|= tnk = EP fnk + NW fnk (47)

models the Elementary Principle of Binad Composition, the fifth of seven axioms of the EPT. Recall
that in the EPT the constant βnk ≡ EPΦnk + NWΦnk designates the binad occurring in the kth process
from the nth to the (n+ 1)th degree of evolution; the expression (47), thus, means that the state of the
binad βnk in the IRF of the observer O is modeled by the monadic state tnk which is made up of the
point-particle EP fnk and the time-like string NW fnk . �

In a more advanced model of the EPT the state of the binad βnk = EPΦnk + NWΦnk may be identified
with an aggregation of monadic states. The next two examples will formalize electrons and positrons in
the present framework, but it works the same way for neutrons, antineutrons, protons, antiprotons, and
all other massive particles and their antimatter counterparts.

8



Example 3.21 Suppose that the kth monad, introduced in Def. 3.4, is an electronic monad: then the
rest mass spectrum σk maps any degree of evolution n to the rest mass σk(n) = mk = me of an electron;
the characteristic number of normality χk has then the value +1. The particle state snk of the kth monad
at the nth degree of evolution in the IRF of the observer O, introduced in Int. 3.7, is then a particle
state of an electron: the lowest possible value of its energy EEPn,k is the rest mass of an electron me, which
is thus predetermined by the rest mass spectrum σk, and it is a normal particle state as indicated by
the value +1 of the characteristic number of normality χk. The time-like string NW fnk , created from the
particle state of the electron on account of the principle stated in Int. 3.14, can be viewed as a wave
state of an electron. Together, the particle state of the electron and the wave state of the electron form
the state tnk , which is the (temporally extended) state of the electron from the nth to the (n+1)th degree
of evolution—see Int. 3.20. �

Example 3.22 Suppose that the jth monad is a positronic monad, then the rest mass spectrum σj is
the same as that of an electronic monad: σj maps any degree of evolution n to the rest mass of an
electron, so σj(n) = mj = me = σk(n). However, the characteristic number of normality χj has now
the value −1. The particle state snj of the jth monad at the nth degree of evolution in the IRF of the

observer O is then a positron in a particle state: the lowest possible value of its energy EEPn,j is the rest
mass of an electron me, which is thus predetermined by the rest mass spectrum σj , and it is an abnormal
particle state as indicated by the value −1 of the characteristic number of normality χj . The state tnk is
then the (temporally extended) state of the positron from the nth to the (n + 1)th degree of evolution.
In this as well as in the previous example, the characteristic number of normality has the same value as
the lepton quantum number in quantum theory. �

Remark 3.23 Formulas (35), (36), (37), and (38) describe all individual processes in the IRF of the
observer O: there are no other processes (but see Rem. 3.26). In the EPT, the corresponding four

elementary principles all use expressions of the form

[
a
a

]
:

[
x
x

]
→
←

[
y
y

]
, which are notations for

〈
[
a
a

]
,

[
x
x

]
,

[
y
y

]
〉 ∈ R (48)

where R is a ternary relation on a finitely generated commutative monoid (〈g1, g2, g3, . . . , gΩ〉,+); an

individual

[
a
a

]
,

[
x
x

]
, or

[
y
y

]
in an expression (48) can, thus, be a sum of generators gj . In the

present model MZ,ω,O, however, by these formulas (35), (36), (37), and (38) this relation R is interpreted
as a ternary relation IZ,ω,O(R) on the set 〈GZ,ω,O〉. �

Having described the elementary processes in this model, we can now interpret the unary existence
relation ME of the EPT, which is straightforward.

Interpretation 3.24 For any generator f ∈ GZ,ω,O and for any finite sum f1 + . . .+ fn ∈ 〈GZ,ω,O〉 of
such generators, the expressions

|= Ef ⇔ f 6= 0 (49)

|= Ef1 + . . .+ fn ⇔ Ef1 + . . .+ fn−1 ∧ ((Efn ∧ f1 6= fn ∧ f2 6= fn ∧ . . . ∧ fn−1 6= fn) ∨ fn = 0) (50)

model the existence relation for the objects in the IRF of the observer O, where ‘Ef ’ denotes f ∈ E with
E = IZ,ω,O(ME). �

So, in the model MZ,ω,O we have E EP fnk for any n ∈ Z, k ∈ Sω, but we do not necessarily have Eγn+1
k

for any n ∈ Z, k ∈ Sω. The point is that there may be elementary processes in which no γ-ray is emitted:
in that case γn+1

k = 0, and thus ¬Eγn+1
k ; formula (37) is then trivially true.

It remains to be established that the present model is a deterministic model of the EPT, which
contains an elementary principle of choice. In the IRF of the observer O, a choice takes place at every
event that a time-like string NW fnk with spatiotemporal extension ∆Xn,k transforms into a point-particle
NP fn+1

k at spatiotemporal position Xn+1,k. The time-like string corresponds to a displacement vector
∆~xn,k = (∆tn,k,∆xn,k,∆yn,k,∆zn,k) inM, but although we have from Eq. (25) for the time coordinate
that tn+1,k = tn,k+∆tn,k it does not follow from the foregoing that Xn+1,k = Xn,k+∆~xn,k. It is, thus,
the principle of choice that guarantees continuity. That is to say: the point-particle NP fn+1

k is chosen
from a set of possibilities Θn+1

k .
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Interpretation 3.25 Let Θn+1
k be the set of all functions NPhn+1

k :M→ ∗
+R for which

NPhn+1
k : (t, x, y, z) 7→ ENWn.k · χ{tn+1,k} · δ

3
〈,x1,x2,x3〉(x, y, z) (51)

so that NPhn+1
k (tn+1,k, x

1, x2, x3) = NP fn+1
k (Xn+1,k): the support is a singleton {X} whose element

X = (tn+1,k, x
1, x2, x3) differs only with respect to the spatial coordinates xj from Xn+1,k. Let, for

Y = (y0, y1, y2, y3) with y0 = tn+1,k, the choice function φY : {Θn+1
k } → Θn+1

k be given by

φY (Θn+1
k ) = NPhn+1

k ⇔ supp NPhn+1
k = {Y } (52)

Let n ∈ Z, k ∈ Sω, and X(t) ∈ ∆Xn,k with x0 = t; then in the model MZ,ω,O the expression

|= NP fn+1
k = φY (Θn+1

k ) ∧ Y = lim
t→tn+1,k

X(t) = Xn+1,k (53)

models the Elementary Principle of Choice, the sixth of seven axioms of the EPT. This expression means
that in the IRF of the observer O, the point-particle NP fn+1

k is a choice from a set of possibilities Θn+1
k

strictly determined by the spatiotemporal extension ∆Xn,k of the time-like string NW fnk . See Fig. 1 for
an illustration in a spacetime diagram. �

Figure 1: Spacetime diagram illustrating the elementary principle of choice, Eq. (53). The two black
dots represent the positions Xn,k and Xn+1,k as indicated: these are the positions of the particle states
EP fnk and NP fn+1

k , respectively. The two diagonal line segments represent the line segments ∆Xn,k

and ∆Xn+1,k as indicated: these are the spatiotemporal extensions of the time-like strings NW fnk and
NW fn+1

k , respectively (cf. Int. 3.11). The spacetime diagram shows a discontinuity: without the
principle of choice there is no guarantee that Xn+1,k = Xn,k+∆~xn,k, so the transition from the time-like
string NW fnk to the point-particle NP fn+1

k at the position Xn+1,k could then involve a discontinuity
as shown in the diagram. But the principle of choice, as given by Int. 3.25, guarantees that we have
Xn+1,k = Xn,k + ∆~xn,k and thus that no such discontinuity occurs. So in the IRF of the observer
O, the particle state sn+1

k is located where the spatiotemporal extension of the time-like string NW fnk
ends. (In MZ,ω,O, the higher black dot thus continues the lower line segment).

Remark 3.26 We leave constants SΦn+2
k , which designate the spatial phase quanta that occur in the

universe of the EPT, uninterpreted; the same then goes for the Elementary Principle of Formation of
Space, the last of seven axioms of the EPT. The reason for this omission is that these interpretations are
not needed for showing that the EPT agrees with SR—after all, in SR spacetime is not a substance. For
those who find this omission unacceptable, we can interpret an individual constant SΦn+2

k as a function
Sfn+2

k :M→ ∗
+R for which Sfn+2

k (X) = γn+1
k (X − E1) where E1 = (1, 0, 0, 0) ∈ M. The Elementary

Principle of Formation of Space, which involves a continuous process, then becomes the expression

|= Eγn+1
k ⇒ E Sfn+2

k (54)

(with ‘E’ as in Int. 3.24, and with the assumption that the set GZ,ω,O now also contains the functions
Sfn+2

k ) meaning that in the IRF of the observer O, an existing γ-ray leaves a (vanishing) trace of
substantial space. To emphasize it: this is just to trivially complete the model. �
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3.3 The arrows of the category CSR

There are, then, three kinds of special arrows (‘ur-arrows’) in the collection of arrows of CSR:

• permutation arrows that correspond to a permutation of counting numbers;

• translation arrows that correspond to a translation in spacetime;

• Lorentz arrows that correspond to a Lorentz transformation.

Below these ur-arrows will be defined precisely; all other arrows are then compositions of these ur-arrows.
To define such an ur-arrow, it suffices to define how the individuals in the set Aω,O and the individuals
in the set GZ,ω,O of generators of 〈GZ,ω,O〉 transform: that determines everything else. To see that, let
T be an arrow T : MZ,ω,O → MZ,ω,O′ ; if T (NW fnk ) and T (NP fn+1

k ) are known for all n ∈ Z, k ∈ Sω,
then ΘZ,ω,O′ and φZ,ω,O′ are determined by Int. 3.25.

Definition 3.27 Let MZ,ω,O be a concrete set-theoretic model of the EPT, and let Σω be the set of all
permutations on the section of positive integers Sω. Then for every π ∈ Σω there is a permutation
arrow TZ,ω,O,π and a concrete set-theoretic model MZ,ω,O′ of the EPT given by

TZ,ω,O,π : MZ,ω,O →MZ,ω,O′ (55)

TZ,ω,O,π : 〈k, σk, χk〉 7→ 〈π(k), σπ(k), χπ(k)〉 ∧ σπ(k) = σk ∧ χπ(k) = χk (56)

TZ,ω,O,π : αfnk 7→ αf ′ nπ(k) ∧
αfnk = αf ′ nπ(k) (57)

(here α denotes EP,NP,NW,LW,S). �

Loosely speaking, for every inertial observer O there is an equivalent inertial observer O′ such that the
kth process from the nth to the (n+ 1)th degree of evolution in the IRF of O is the π(k)th process from
the nth to the (n+ 1)th degree of evolution in the IRF of O′. The point is that the numerical value that
an observer gives to the label k is trivial: it is only important that the same value is maintained for its
successor and its predecessor, and for the events (i.e. the state transitions) in that process.

Definition 3.28 Let MZ,ω,O be a concrete set-theoretic model of the EPT. Then for every function τ
for which τ : Sω ×Z→ Z, τ : (k, n) 7→ n+ j(k), there is a permutation arrow TZ,ω,O,τ and a concrete
set-theoretic model MZ,ω,O′ of the EPT given by

TZ,ω,O,τ : MZ,ω,O →MZ,ω,O′ (58)

TZ,ω,O,τ : 〈k, σk, χk〉 7→ 〈k, σk, χk〉 (59)

TZ,ω,O,τ : αfnk 7→ αf
′ τ(n,k)
k ∧ αfnk = αf

′ n+j(k)
k (60)

(here α denotes EP,NP,NW,LW,S). �

Loosely speaking, for every inertial observer O there is an equivalent inertial observer O′ such that the
kth process from the nth to the (n+ 1)th degree of evolution in the IRF of O is the kth process from the
(n+ j(k))th to the (n+ j(k) + 1)th degree of evolution in the IRF of O′. The point is that the numerical
value that an observer gives to the degree of evolution n is trivial in this categorical model : only the
displacement in degrees of evolution matters (vide infra).

Definition 3.29 Let MZ,ω,O be a concrete set-theoretic model of the EPT. Then for every ∆X ∈ M
with (∆X)4 = 0 there is a translation arrow TZ,ω,O,∆X and a concrete set-theoretic model MZ,ω,O′′

of the EPT given by

TZ,ω,O,κ : MZ,ω,O →MZ,ω,O′′ (61)

TZ,ω,O,κ : 〈k, σk, χk〉 7→ 〈k, σk, χk〉 (62)

TZ,ω,O,κ : αfnk ∧ 7→ αf ′′ nk ∧ αf ′′ nk (X) = αfnk (X + ∆X) (63)

(here α denotes EP,NP,NW,LW,S). �

Loosely speaking, for every inertial observer O there is an equivalent inertial observer O′′ who does not
move relative to O, such that the constituents of the IRF of O′′ are the constituents of the IRF of O
shifted by ∆X. The set of monads Aω,O is thus invariant under translation.
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Definition 3.30 Let MZ,ω,O be a concrete set-theoretic model of the EPT. Then for every Lorentz
transformation Λ there is a Lorentz arrow TZ,ω,O,Λ and a concrete set-theoretic model MZ,ω,O′′′ of the
EPT given by

TZ,ω,O,Λ : MZ,ω,O →MZ,ω,O′′′ (64)

TZ,ω,O,Λ : 〈k, σk, χk〉 7→ 〈k, σk, χk〉 (65)

TZ,ω,O,Λ : αfnk 7→ αf ′′′ nk ∧ supp αf ′′′ nk = Λ[supp αfnk ] (66)

TZ,ω,O,Λ : ~p(X) 7→ Λ(~p(X)) (67)

where α denotes EP,NP,NW,LW,S, and ~p(X) is any 4-momentum of any object at the point X in the
IRF of the observer O. �

Loosely speaking, for every inertial observer O there is an equivalent inertial observer O′′′ who moves
relative to O with constant speed, such that the origins of the IRFs of O and O′′′ coincide, and such
that the support of the individuals in GZ,ω,O and GZ,ω,O′′′ , as well as the 4-momenta at any point in the
support, are related by a Lorentz transformation Λ. In other words, an object that has 4-momentum ~p
at position X in the IRF of O has 4-momentum Λ(~p) at position Λ(X) in the IRF of O′′′.

The collection of arrows of the categorical model is then generated by the ur-arrows defined above under
arrow composition; for any arrows T : dom T → cod T and T ′ : dom T ′ → cod T ′ with cod T ′ = dom T
there is thus an arrow T ◦ T ′ : dom T ′ → cod T . See Fig. 2 for a diagrammatic illustration.

4 Discussion and conclusions

4.1 Worldview

In this section we want to establish a firm contact with the world view of standard SR by formalizing
notions of ‘events’, ‘massive particles’, and ‘massless particles’ in the language of CSR.

Definition 4.1 (Events) In the IRF of an inertial observer O, an event E is the manifestation of a
discrete transition g1 → g2 at a spatiotemporal position X in the IRF of O; we formalize an event E as
a three-tuple 〈α1, α2, α3〉 for which

E = 〈X, IZ,ω,O(g1), IZ,ω,O(g2)〉 (68)

An event E in the IRF of an inertial observer O and an event E ′ in the IRF of an equivalent inertial
observer O′ are equivalent, notation: E ∼ E ′, if and only if E and E ′ are manifestations of the same
discrete transition in the IRFs of O adn O′, respectively. �

Notation 4.2 An expression ‘E O−→ X’, meaning: ‘for the observer O the event E takes place at
spatiotemporal position X’, is a notation for ‘MZ,ω,O |= (E)1 = X’, that is, the first component of the
three-tuple E is X. (This notation is based on a notation used in [8].) �

Thus speaking, for any n ∈ Z and for any k ∈ Sω, the following events take place in the kth process from
the nth to the (n+ 1)th degree of evolution in the IRF of an observer O:

• the initial event EIn,k: this is the discrete transition EP fnk → NW fnk at the spatiotemporal

position Xn,k, so that EIn,k
O−→ Xn,k;

• the collapse event ECn,k: this is the discrete transition NW fnk → NP fn+1
k at the spatiotemporal

position Xn+1,k, so that ECn,k
O−→ Xn+1,k;

• the emission event EEn,k: this is the discrete transition NP fn+1
k → γn+1

k at the spatiotemporal

position Xn+1,k, so that EEn,k
O−→ Xn+1,k;

• the final event EFn,k: this is the discrete transitions NP fn+1
k → EP fn+1

k at the spatiotemporal

position Xn+1,k, so that EFn,k
O−→ Xn+1,k.

The point here is that in particular the absorption and emission of a γ-ray is an event: if γ-rays are
absorbed, it is at these events EIn,k; if γ-rays are emitted, it is at these events EEn,k.
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Figure 2: Diagram illustrating various ur-arrows, identity arrows and composite arrows in the categorical
model. The four dots represent the models MZ,ω,O, MZ,ω,O′ , MZ,ω,O′′ , MZ,ω,O′′′ in the collection of
objects as indicated. The vertical arrows between MZ,ω,O and MZ,ω,O′ represent two permutation arrows
TZ,ω,O,π : MZ,ω,O → MZ,ω,O′ and TZ,ω,O′,π−1 : MZ,ω,O′ → MZ,ω,O as defined by Def. 3.27. The
circular arrow at the top middle is the identity arrow TZ,ω,O′,I : MZ,ω,O′ → MZ,ω,O′ corresponding
with the identity permutation I : Sω → Sω , I : k 7→ k. Permutation arrows as defined by Def. 3.28
are not shown. The diagonal arrows between MZ,ω,O and MZ,ω,O′′ represent two translation arrows
TZ,ω,O,∆X : MZ,ω,O → MZ,ω,O′′ and TZ,ω,O′′,−∆X : MZ,ω,O′′ → MZ,ω,O as defined by Def. 3.29. The
circular arrow at the lower right is the identity arrow TZ,ω,O′′,0 : MZ,ω,O′′ →MZ,ω,O′′ corresponding with
the zero displacement in M. The diagonal arrows between MZ,ω,O and MZ,ω,O′′′ represent two Lorentz
arrows TZ,ω,O,Λ : MZ,ω,O → MZ,ω,O′′′ and TZ,ω,O′′′,Λ−1 : MZ,ω,O′′′ → MZ,ω,O as defined by Def. 3.30.
The circular arrow at the lower left is the identity arrow TZ,ω,O′′′,I : MZ,ω,O′′′ →MZ,ω,O′′′ corresponding
with the identity transformation I :M→M , I : X 7→ X. The bent arrow at the bottom represents the
composite arrow TZ,ω,O,Λ ◦ TZ,ω,O′′,−∆X : MZ,ω,O′′ →MZ,ω,O′′′ ; for the sake of clarity other (composite)
arrows are omitted in the diagram. The diagram commutes.

Definition 4.3 (Massive particles) Let MZ,ω,O be a set-theoretic model of the EPT that is an object of
CSR. Then for any k ∈ Sω, the function tk, for which

tk :M→∗+ R , tk =

∞∑
n=−∞

tnk (69)

represents the kth massive particle—i.e. an ultimate constituent of matter having rest mass—in the
IRF of O, moving on a world line `k for which

`k = supp tk =
⋃
{{Xn,k},∆Xn,k | n ∈ Z} (for some k ∈ Sω) (70)

(Recall that tnk = EP fnk + NW fnk .) At any X ∈ `k where `k is differentiable, the 4-velocity ~u(X) is
given by

~u(X) =
1

mk
· ~p(X) = (u0, u1, u2, u3) (71)

where ~p(X) is the 4-momentum at X and mk the rest mass as given by Def. 3.4. �

13



Definition 4.4 (Massless particles) Let MZ,ω,O be a set-theoretic model of the EPT that is an object
of CSR. Then any function γn+1

k ∈ GZ,ω,O for which Eγn+1
k represents a massless particle—i.e. an

ultimate constituent of matter having no rest mass—in the IRF of the inertial observer O, moving on a
world line `γk,n+1 for which

`γk,n+1 = supp γn+1
k (72)

The notion of a 4-velocity, as given by Eq. (71), does not apply to massless particles. �

We are now finally in a position to reap the fruits of all the definitions and interpretations by establishing
contact between the language of this model of the EPT and existing physical language. For that matter,
a description will be given of the kth process from the nth to the (n+ 1)th degree of evolution:

(i) the initial state of the process is the particle state EP fnk of the kth massive particle, having position
Xn,k and 4-momentum ~p EP

n,k —its rest mass mk is predetermined by the rest mass spectrum σk;

(ii) the initial event of the process is the event EIn,k—by the state transition EP fnk → NW fnk the kth

massive particle gets in the wave state NW fnk with 4-momentum ~p NW
n,k ;

(iii) the law of conservation of 4-momentum applies: the 4-momentum of the wave state is identical
to the 4-momentum of the initial particle state plus 4-momentum of a possibly observed γ-ray;

(iv) the collapse event of the process is the next event ECn,k—by the state transition NW fnk → NP fn+1
k

an intermediate particle state NP fn+1
k with momentum ~p NP

n+1,k is produced at the position Xn+1,k

from the wave state of the kth massive particle;

(v) the law of conservation of 4-momentum applies: the 4-momentum of the intermediate particle
state is identical to the 4-momentum of the preceding wave state;

(vi) upon the collapse event, we thus have E NP fn+1
k ;

(vii) the emission event of the process is the next event EEn,k—by the state transition NP fn+1
k → γn+1

k

the γ-ray γn+1
k is emitted from the spatiotemporal position Xn+1,k;

(viii) the final event of the process is the event EFn,k—upon the emission of the the γ-ray γn+1
k , by the

state transition NP fn+1
k → EP fn+1

k the intermediate particle state turns into the next particle
state EP fn+1

k of the kth massive particle, having position Xn+1,k and 4-momentum ~p EP
n+1,k

(ix) the law of conservation of 4-momentum applies: the 4-momentum of the new particle state
of the kth massive particle is identical to the 4-momentum of the intermediate particle state minus
the 4-momentum of the emitted γ-ray;

(x) the spatiotemporal separation, i.e. the invariant interval, between the spatiotemporal positions
Xn,k and Xn+1,k of initial and final event is always unity: ∆s = 1.

This holds for any n ∈ Z, k ∈ Sω and in the IRF of any observer O: for any observer, all individual
processes are essentially the same. By these processes, massive particles alternate between a particle
state and a wave state. It doesn’t matter whether the massive particle concerns an ultimate constituent
of matter or an ultimate constituent of antimatter: the course of events is the same, regardless of the
value of the particle’s characteristic number of normality. That is a feature that will remain the same
also in a more elaborate model of the EPT that includes interactions, but of course then the displacement
that takes place will become a function of the particle’s properties.

That said, below some lemma’s are stated without proof, as well as some remarks: these contribute
to an understanding of the categorical model CSR in terms of particles and events.

Lemma 4.5 For any inertial observer O, any massive particle moves on a continuous, piecewise differ-
entiable world line (i.e., path) in the IRF of O, so that we have

η(~u(X), ~u(X)) = 1 (73)

for the 4-velocity ~u(X) at any spatiotemporal position X on the particle’s world line ` in the IRF of
O (provided ` is differentiable at X).(See [10] for a definition of a continuous piecewise differentiable
function.) �
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Lemma 4.6 For any inertial observer O, any massive particle moves piecewise unaccelerated; that is,
at any point X of any massive particle’s world line ` we have for the 4-acceleration

~a(X) =
d

dτ
~u(X) = (0, 0, 0, 0, 0) (74)

provided ` is differentiable at X; here τ is the proper time. �

Remark 4.7 One should realize, however, that the fact that the motion of massive particles is piecewise
unaccelerated as defined in Lemma 4.6 does not imply that there is no accelerated motion. It is merely
the case that if we want to speak about a ‘4-acceleration’ in the present context, then this has to be
understood in terms of a change in the 4-velocity of a particle on subsequent pieces of its world line. A
formal definition is omitted here, since it is not important for the aim of this paper. �

Lemma 4.8 (Universality of light speed) For any inertial observer O, any massless particle moves with
the speed of light c = 1 through space. That is, at any point X on its world line ` we have(

dx1

dt

)2

+

(
dx2

dt

)2

+

(
dx3

dt

)2

= 1 (75)

�

Remark 4.9 (Degrees of evolution vs. invariant interval) The numerical ’degrees of evolution’, which
occur in the EPT, are a numbering of states in the direction of evolution: every individual process by
which a massive particle alternates once between a particle state and a wave state then corresponds to
a ‘jump’ in degrees of evolution of precisely one. In this categorical model CSR of the EPT, every such
jump thus effects a displacement in spacetime with unit Minkowski measure: the difference in degrees of
evolution between consecutive particle states of any massive particle is identical to the spatiotemporal
separation between their (spatiotemporal) positions in the IRF of any inertial observer O. Likewise,
photons do not evolve: they remain at the same degree of evolution, and correspondingly the Minkowski
measure of any displacement of any photon is zero. �

Remark 4.10 (Reality of Planck time) The unit spatiotemporal displacement between initial and final
events of the elementary processes, to which massive particles are subjected, means that there a minimum
time quantum: for any inertial observerO, this is the time difference between initial and final events of the
elementary processes by which a co-moving massive particle evolves. In this model, this minimum time
quantum has been identified with the Planck time: it is, thus, implicitly postulated that the individual
processes take place at Planck scale. This identification of the minimum ‘process-physical time unit’
(pptu) with Planck time is somewhat arbitrary: this has the status of a conjecture—it may very well
be that the pptu is orders of magnitude larger than Planck time. But nevertheless, a minimum time
quantum is real in this model—its identification with Planck time gives reality to the Planck scale, and
leads to verifiable predictions. �

4.2 Kinematics of some physical processes

The objective of this section is to describe three kinds of processes—inertial motion of massive particles,
Bremsstrahlung, and laser cooling—in the language of CSR. The statements are purely descriptive: there
is no ‘why’ to the inertial motion or to the Bremsstrahlung.

4.2.1 Inertial motion of massive particles

Definition 4.11 (Inertial motion in CSR) For integers n ∈ Z and k ∈ Sω, in the model MZ,ω,O the kth

process from the nth to the (n+ 1)th degree of evolution is a process of inertial motion if and only if

(i) no γ-ray is absorbed at the initial event EIn,k, that is, at the discrete transition EP fnk → NW fnk at

the position Xn,k: we thus have ~pNWn,k = ~p EP
n,k as in Eq. (43) with ~pLWp,m = 0;

(ii) no γ-ray is emitted at the emission event EEn,k upon the discrete transition NW fnk → NP fn+1
k at

the position Xn+1,k: we thus have ¬Eγn+1
k and, from Eqs. (39) and (41), ~p NP

n+1,k = ~p EP
n+1,k.

�
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Translated into terms of particles and events, this means for an inertial observer O that if a parti-

cle exhibits inertial motion between the events E1
O−→ (t1, x1, y1, z1, n1) and E2

O−→ (t2, x2, y2, z2, n2),
t2 > t1 on its world line `, then the 4-momentum of the particle is a constant, and there is no event

E3
O−→ (t3, x3, y3, z3, n3) on ` with t2 > t3 > t1 where a massless particle is emitted or absorbed. See

Fig. 3 for an illustration with a spacetime diagram.

Figure 3: Spacetime diagram of a sequence of processes of inertial motion. Horizontally the spatial
coordinates x of the IRF of an inertial observer O, vertically the time coordinates t. The five dots
represent subsequent point-particle snk = EP fnk , the line segments connected by the dots represent
subsequent time-like strings NW fnk . Together this represents the kth massive particle on its world line
`k; the constant slope of `k reflects the constant 4-momentum.

4.2.2 Bremsstrahlung

Definition 4.12 (Bremsstrahlung in CSR) For integers n ∈ Z and k ∈ Sω, in the model MZ,ω,O the kth

process from the nth to the (n+ 1)th degree of evolution is a process with Bremsstrahlung if and only
if

(i) no γ-ray is absorbed at the initial event EIn,k, that is, at the discrete transition EP fnk → NW fnk at

the position Xn,k: we thus have ~pNWn,k = ~p EP
n,k as in Eq. (43) with ~p LW

p,m = 0;

(ii) a γ-ray is emitted at the emission event EEn,k, that is, at the discrete transition NP fn+1
k → γn+1

k at

the position Xn+1,k: we thus have Eγn+1
k and, from Eqs. (39) and (41), ~p EP

n+1,k := ~p NP
n+1,k − ~p LW

n+1,k.

�

So as a simple example, consider that the point-particle EP fnk has 4-momentum (E, px, 0, 0), such that
px > 0 and −E2 + (px)2 = −m2. At its transition to the time-like string NW fnk , this 4-momentum is
conserved, so at any point on the line segment occupied by the time-like string NW fnk , the 4-momentum
is also (E, px, 0, 0). Upon the transition of the time-like string NW fnk to the intermediate point-particle
NP fn+1

k , the latter emits a γ-ray with 4-momentum (∆E,∆px, 0, 0) with px > ∆px > 0 and ∆E = ∆px.
Upon emission, the point-particle NP fn+1

k then transforms into the new point-particle EP fn+1
k : its

4-momentum is then (E′, px −∆px, 0, 0) for which −(E′)2 + (px −∆px)2 = −m2 so E′ < E.
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Translated into terms of particles and events, this means for an inertial observer O that if a particle

emits Bremsstrahlung between the events E1
O−→ (t1, x1, y1, z1, n1) and E2

O−→ (t2, x2, y2, z2, n2) on its
world line `, t2 > t1, then the energy and spatial momentum of the particle decrease stepwise through
the emission of massless particles (photons). See Fig. 4 for an illustration with a spacetime diagram.

Figure 4: Spacetime diagram of subsequent processes with Bremsstrahlung. Horizontally the spatial
coordinates x of the IRF of an inertial observer O, vertically the time coordinates t. The two dots
represent subsequent point-particles snk = EP fnk and sn+1

k = EP fn+1
k , the line segments connected

by the dots represent subsequent time-like strings NW fn−1
k , NW fnk , and NW fn+1

k . The wavy blue lines
represent emitted γ-rays γnk and γn+1

k . Together this represents the kth massive particle on its world line
`k, plus two emitted photons; the increasing slope of `k reflects the stepwise deceleration.

4.2.3 Laser cooling

Definition 4.13 (Laser cooling in CSR) For integers n ∈ Z and k ∈ Sω, in the model MZ,ω,O the kth

process from the nth to the (n+ 1)th degree of evolution is a process with laser cooling if and only if

(i) a γ-ray γpm from a laser source is absorbed at the initial event EIn,k, that is, at the discrete transition
EP fnk → NW fnk at the position Xn,k: for some p ∈ Z and m ∈ Sω we thus have ~pNWn,k = ~p EP

n,k +~p LW
p,m

as in Eq. (43), but in particular with ENWn,k < EEPn,k (decreasing energy);

(ii) no γ-ray is emitted at the emission event EEn,k upon the discrete transition NW fnk → NP fn+1
k at

the position Xn+1,k: we thus have ¬Eγn+1
k and, from Eqs. (39) and (41), ~p NP

n+1,k = ~p EP
n+1,k.

�

So as a simple example, consider that the point-particle EP fnk has 4-momentum (EEPn,k , px, 0, 0), such

that px > 0 and −(EEPn,k )2 + (px)2 = −m2. At its transition to the time-like string NW fnk , a γ-ray is
absorbed with 4-momentum (∆E,−∆px, 0, 0) with −∆px < 0 and ∆E = ∆px. Then at any point on
the line segment occupied by the time-like string NW fnk , the 4-momentum is (ENWn,k , px −∆px, 0, 0,m)

for which −(ENWn,k )2 + (px −∆px)2 = −m2 so that ENWn,k < EEPn,k .
Translated into terms of particles and events, this means for an inertial observer O that if a particle is

laser cooled between the events E1
O−→ (t1, x1, y1, z1, n1) and E2

O−→ (t2, x2, y2, z2, n2) on its world line `,
t2 > t1, then the energy and spatial momentum of the particle decrease stepwise through the absorption
of massless particles (photons) emitted by a laser tube. See Fig. 5 for an illustration with a spacetime
diagram.
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Figure 5: Spacetime diagram of subsequent processes with laser cooling. Horizontally the spatial coor-
dinates x of the IRF of an inertial observer O, vertically the time coordinates t. The two dots represent
subsequent point-particles snk = EP fnk and sn+1

k = EP fn+1
k , the line segments connected by the dots

represent subsequent time-like strings NW fn−1
k , NW fnk , and NW fn+1

k . The wavy blue lines represent
γ-rays γ1 and γ2 from a laser source that are absorbed at the points Xn,k and Xn+1,k, respectively.
Together this represents the kth massive particle on its world line `k, plus two absorbed photons; the
increasing slope of `k reflects the stepwise deceleration by laser cooling.

4.3 Conclusions

In this paper a categorical model of the EPT incorporating SR has been specified: the main conclusion of
this tedious exercise is that this proves that the EPT agrees with SR. This result renders the EPT consis-
tent with the outcome of real-world experiments and observations that can be described as predictions of
SR—examples are the null result of the Michelson-Morley experiment [11], and the observed prolonged
lifetime of fast muons [12]. In addition, it has been shown that laser cooling and Bremsstrahlung can be
described in the language of the categorical model CSR.

A main outcome is that an individual process effects a unit jump in space-time: for any individual
process and for any observer, the spatiotemporal separation ∆s between the spatiotemporal positions
of the initial particle state and final particle state of the process is always unit—that is, always satisfies
∆s =

√
∆t2 −∆x2 −∆y2 −∆z2 = 1. This directly relates the process-physical principles of the EPT

to observable motion of massive (anti)particles.
The present study doesn’t purport to yield an advancement in relativity theory. In addition, a

limitation of this study is that it has been focused purely at demonstrating the agreement of the EPT
with SR, and with SR alone. Further research is therefore required to establish whether or not the EPT
agrees with the knowledge of the physical world obtained from the experimentally confirmed predictions
of modern, relativistic interaction theories.
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