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Abstract. It is well known that the following features hold of AR + Tunder the strong Kleene scheme, 
regardless of the way the language is Godel numbered: 

1. There exist sentences that are neither paradoxical nor grounded. 
2. There are 21? fixed points. 
3. In the minimal fixed point the weakly definable sets (i.e., sets definable as {n I A(n) is true in the mini- 

mal fixed point}, where A(x) is a formula of AR + T) are precisely the HI1 sets. 
4. In the minimal fixed point the totally defined sets (sets weakly defined by formulae all of whose 

instances are true or false) are precisely the A sets. 
5. The closure ordinal for Kripke's construction of the minimal fixed point is cl 1 . 
In contrast, we show that under the weak Kleene scheme, depending on the way the Godel numbering is 

chosen: 
1. There may or may not exist nonparadoxical, ungrounded sentences. 
2. The number of fixed points may be any positive finite number, No, or 21O. 
3. In the minimal fixed point, the sets that are weakly definable may range from a subclass of the sets 1-1 

reducible to the truth set of AR to the IV sets, including intermediate cases. 
4. Similarly, the totally definable sets in the minimal fixed point range from precisely the arithmetical sets 

up to precisely the A1 sets. 
5. The closure ordinal for the construction of the minimal fixed point may be car w CK, or any successor 

limit ordinal in between. 
In addition we suggest how one may supplement AR + T with a function symbol interpreted by a 

certain primitive recursive function so that, irrespective of the choice of the Gddel numbering, the resulting 
language based on the weak Kleene scheme has the five features noted above for the strong Kleene 
language. 

Preliminaries. We presuppose familiarity with Kripke's theory of truth as pre- 
sented in [4].' (A detailed technical exposition can be found in [1]. See also [2].) 
We consider the language L = AR + { T(x)} of arithmetic, with (0, ', +, x) inter- 
preted in the usual way, plus the uninterpreted one-place predicate T(x). The 
predicate T(x) is given a partial interpretation by a pair of disjoint sets (S1, S2), 
S, and S2 being respectively the extension and antiextension of T(x). More com- 
plex formulae will be interpreted in accordance with the weak valuation rules of 
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Kleene (cf. [3, ?64]), henceforth referred to as the weak Kleene valuation scheme. 
For definiteness, we describe the valuation rules briefly as follows. Given a partial 
interpretation & = (S1, S2) of T(x) we let val(&, A) be one of {T, F, u} depending 
on whether the sentence A is valuated as true, false or "undefined" (i.e. as lacking 
truth-value) under the weak Kleene scheme. We thus have 

val(j, i A) = u if val(&, A) = u, 
val(&, (B & C)) = u if val(&, B) = u or val(Q, C) = u, 

val(&, (3x)B) = u if for some m, val(&, B(rn)) = u. 
The remaining logical operations are defined in the usual way, and in all other 
respects val agrees with the classical valuation scheme. 

Following Kripke's terminology let Y(S1, S2) be the language L with T(x) 
interpreted by (SI, S2). Let OWK(S1, S2) = (S3, S4), where S3 is the set of Gbdel 
numbers of true sentences of 9(S1, S2) under the weak Kleene scheme, and S4 is the 
set of Godel numbers of false sentences of Y(S1, S2) and integers that are not Godel 
numbers of any sentences. Let +(S1, S2) = SI and -(S1, S2) = S2. Let 'PWK(Sl, S2) = 

(SI, S2), '1W+(S1 S2) = PWK(O(WK(SS2)), and, for limit X, WW(S1, s2) = 
(S3,S4), where S3 = Uf<l +WK(SlS2) and S4 = UP<A ?PWK(SlS2). Letting 
AR+ (AR-) be the set of Godel numbers of truths (falsehoods) of AR, we de- 
fine Ya = Y(PAWK(AR', AR- u Nonsent)). (Kripke's construction has Y7a = 

9(OPWK(A, A)), but to do so here would make our later exposition more awkward. 
For X 2 w the extension and antiextension for the Z's of the two constructions 
are the same.) Let S1, be the extension of T(x) in Y., and S2,p the antiextension of 
T(x) in ,. In Kripke's theory the predicate T(x) can be interpreted under certain 
conditions as a truth-predicate for the language L. This happens when the partial 
interpretation (S1, S2) of T(x) is a fixed point of the operation on sets of integers 
associated with a given valuation scheme. (OWK is such an operation for the weak 
Kleene scheme.) A minimal fixed point exists as long as the operation is monotone, 
which holds for the usual valuation schemes. We say that the construction of the 
minimal fixed point closes off at o if 2, = Y,,+ 1 and, for / < , ap =# Yo+ 1. We say 
that an L sentence A is declared true (false) in Y,, if gn(A) e Sla (resp. S2,a), and A is 
valuated true (false) in , if va1((S1,, S2, ), A) = T (resp. F). We shall sometimes 
write "Ya l= A" (resp. ", H A") to indicate that A is valuated true (resp. false) in Y, 

Kripke calls a sentence A paradoxical (with respect to a given valuation scheme) 
iff gn(A) e (SI u S2) for no fixed point (S1, S2) of Y. (We assume that an effective 
Godel numbering gn of L is given in advance.) A sentence A is grounded (with respect 
to a given valuation scheme) iff gn(A) e (S1 u S2), where (S1, S2) is the minimal fixed 
point of Y. Also, a set S c N is weakly defined in a fixed point (SI, S2) by some L 
formula A(x1) with x1 as its sole free variable iff S = {m I gn(A(m)) e S1}. Then S is 
weakly definable in (S1, S2) if some L formula weakly defines it there. On the other 
hand, S is strongly definable in (SI, S2) if both S and - S are weakly definable in 
(S1, S2). Finally, an L formula A(x1) totally defines S in (S1, S2) iff A(x1) weakly 
defines S in (SI, S2) and, in addition, for all m, gn(A(m)) e SI U S2 - 

?1. We motivate our discussion by highlighting some differences between the 
strong Kleene and the weak Kleene valuation schemes. (See [4] for the definition of 
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the former.) It is well known that under the strong Kleene scheme the language Y 
has the following features irrespective of the choice of the Godel numbering: 

There exist sentences that are neither paradoxical nor grounded. 
There are 2'0 fixed points. 

These properties follow from the fact that the strong Kleene language contains 
denumerably many truth-tellers. Consider an infinite enumeration of distinct truth- 
tellers of the form 

(]x)(Q.(x) & T(x) & n = n), 

where in each case Q,(x) is an arithmetical formula true of just the Gddel number of 
the very formula (]x)(Qn(x) & T(x) & n = n). For any assignment of T, F, or u to 
these various truth-tellers there exists a fixed point in which the truth-tellers have the 
truth values given in the assignment. Under the strong Kleene scheme the truth- 
tellers will be neither grounded nor paradoxical. Since there are 2'0 possible 
assignments, there will be at least that many fixed points. Therefore, given that the 
language is countable, there are exactly 2'0 fixed points. 

Consider this argument in relation to the weak Kleene scheme. In any fixed point 
of any valuation scheme some instance of the formula T(x) will be undefined that 
follows from Tarski's theorem on the undefinability of truth in (sufficiently strong) 
classical languages. But under the weak Kleene scheme if an instance of T(x) lacks 
truth value (i.e. is assigned u), (3x)(Qn(x) & T(x) & n = n), the would-be truth-teller, 
also lacks truth-value. So the method of generating (nonparadoxical) truth-tellers 
we used for the strong Kleene languages fails here. 

This does not rule out the possibility of (nonparadoxical) truth-tellers. Direct 
self-reference provides one way of obtaining them, e.g. 

(1) T(1). 

Even without direct self-reference we may have (nonparadoxical) truth-tellers. 
Suppose Q(x) is an arithmetical formula true of just the Gddel number of 

(*) (3x)(Q(x + x) & T(x + x)). 
If, say, (*) has an even Gddel number and the only other sentences with even Gddel 
numbers are arithmetical, then (*) will be a (nonparadoxical) truth-teller. Note too 
that, although (*) will be nonparadoxical, the sentence 

(3x)(Q(x) & T(x)) 

will remain paradoxical. In fact, the difference between a sentence's being grounded, 
paradoxical or neither grounded nor paradoxical may simply be a matter of how we 
"describe" an object. If we extend the present example, letting 2 be the Gddel 
number of 0 = 0, then the following sentences: 

T(O"), (3x)(x + x = 0" & T(x + x)), (3x)(x = 0" & T(x)) 

will be, respectively, (a) grounded, (b) neither paradoxical nor grounded, and 
(c) paradoxical. 

Generally when we consider an extension of the language AR under some 
effective Godel numbering, we think of the language as having adequate resources 
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for self-reference. If G(x) uniquely holds of an object we can usually express "the G 
is F" by "(]x)(G(x) & F(x))" or "(Vx)(G(x) D F(x))". But the above considerations 
show that this does not necessarily hold in the weak Kleene language AR + T. This 
raises the problem whether the weak Kleene language AR + T has adequate 
"descriptive" resources to talk about its own syntax. We formulate the issue more 
precisely in terms of definability in the minimal fixed point and study the resulting 
phenomena in greater detail. 

In general, we shall see that the theory of the weak Kleene language AR + T 
is not invariant with respect to the choice of Gddel numbering. This is not the 
case with the theory of the strong Kleene language, where, speaking in terms of 
the convenient analogy mentioned in [5, p. 22], the use of a particular Gddel num- 
bering is much like the use of a particular coordinate system to obtain coordinate- 
free results in geometry. In fact, the exact expressive strength of the weak Kleene 
language AR + T depends on the way its syntax is numerically coded within the 
language. Among the consequences of this is that the weak Kleene language en- 
ables one to draw a sharp distinction between the functions and the relations (which 
include the graphs of the functions) expressible in it. (See the remarks in ?5.) On 
the other hand, if the two valuation schemes are compared in terms of relative 
strength, the picture is more complicated than one might initially suppose. It is 
not difficult to see that the strong Kleene language AR + T of the minimal fixed 
point "contains" the weak Kleene language of the minimal fixed point under a 
certain translation. We show (see the remarks in ?4) that under a suitable Gddel 
numbering the logical operations of the strong Kleene language can in a certain 
sense be defined in the weak Kleene language of the minimal fixed point. And if 
one considers a slightly richer vocabulary that includes a function symbol for a 
particular primitive recursive function, then, regardless of the choice of Gddel 
numbering, the weak Kleene and the strong Kleene languages of the minimal fixed 
points turn out to be of the same expressive power. The resulting weak Kleene 
language becomes in an appropriate sense invariant for different choices of Godel 
numberings. 

One might try to cope with this situation by formulating restrictions on what may 
count as a "natural" Gddel numbering of the vocabulary AR + T. We do not regard 
this approach as promising. A more natural way to address the problem would be to 
expand the vocabulary AR + T with a definite description operator or additional 
function symbols. Nor do we discuss which one of the two valuation schemes better 
accords with pre-theoretic intuitions from ordinary language or is in general "more 
useful". Our primary goal is to describe the noninvariance phenomenon peculiar to 
the weak Kleene scheme and attempt to gauge its extent by means of comparison 
with the well-known properties of the strong Kleene scheme. 

?2. By the values of term t, we mean the set of values taken by t when assign- 
ments of values are made to all variables occurring in the term. Every term of L 
has either (1) a single value, or (2) an infinite number of values all of which are 
even, or (3) an infinite number of odd values (with either no even values or infinitely 
many even values). Furthermore, it is decidable into which category a term falls; 
we can effectively enumerate the terms of category (3), and for an enumeration 
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t1, t2, t3,... of the terms of category (3) there is a recursive function val(i, j) which 
for each i enumerates the values of ti. 

Throughout the paper we shall assume that a Gddel numbering is a 1-1 effective 
map from formulae (or sentences) of L of the kind described in general terms in 
[3, p. 300]. In defining a special Godel numbering for L we will make use of an 
effective enumeration of C1, C2, C3 ... of a set C of sentences, which we choose 
so that each Ci turns out to be paradoxical. As noted earlier, (3x) T(x) is paradoxi- 
cal in any weak Kleene language. So let Ci = (3xi)T(xi). We let E be a decidable 
set of sentences disjoint from C, and effectively assign even Godel numbers to them. 
We call sentences of E special. Let D be the remaining set of formulae. This will be 
a decidable set, which we may enumerate as: D1, D2, D3,.... 

For any length, m, of a sequence of symbols of L, one can effectively compute 
the maximum number that is a value for a term that is of that length or less and 
does not have infinitely many values; call this number max(m). We assign Gddel 
numbers to the remaining formulae, first to C1, then D1, then C2, then D2, etc. 
using the following procedure: Assign to C, (Dv) the first member of the sequence 
val(n, 1), val(n, 2), val(n, 3), ... which is odd, has not yet been assigned as a Gddel 
number and is greater than max(length(CJ)) (resp. max(length(DJ))). 

Note that this Godel numbering is effective and has the following two properties: 
(*) Every term with infinitely many odd values has the Godel number of a para- 

doxical sentence (viz., CQ) among its values. 
(**) The Godel number of any nonspecial formula is greater than any value 

of any term that (a) is of the length of that formula or less and (b) does not have 
infinitely many values. 

The following lemma holds for any weak Kleene language based on L, regardless 
of the Godel numbering. We shall call a term t a T-term of A iff T(t) is a subformula 
of A. We let V, be the set of values taken by term t. 

LEMMA 1. For any sentence A of L, A is valuated at a given partial interpretation 
(S1, S2) of T iff, for every T-term t of A, ' S2. 

COROLLARY. If any T-term of a sentence A has a value that is the Godel number of 
a paradoxical sentence B, then A is paradoxical. 

LEMMA 2. Suppose L has a special Godel numbering. Then for any sentence A of 
L, if A contains a T-term with infinitely many odd values, then A is paradoxical. 

Say that Q ' N is fixed at stage o just in case, for any n e Q. n e Si,,, iff n e S*, for 
= 1, 2, where (S*, S*) is the minimal fixed point. We will speak of a set of sen- 

tences being fixed at a if the set of their Godel numbers is fixed at stage a. Say that 
a set Q of (Godel numbers) of sentences is minimally fixed in (S1, S2) if there is 
a smallest fixed point above (S1, S2) and, for all x e Q. x e S, (S2) iff x is in the 
extension (antiextension) of T in the minimal fixed point above (S1 , S2). 

LEMMA 3. Suppose L has a special Godel numbering. 
(a) Distinct fixed points differ in their valuations of the special sentences. 
(b) Suppose the special sentences are minimally fixed in (S1, S2). Then for any 

sentence A there is a finite n such that {GN(A)} is minimally fixed in 0nK(S1 S2), and 
so the minimal fixed point above (S1, S2) is OWK(Sl S2)- 

(c) If the special sentences under a given Godel numbering become fixed at some 
stage, then L has only one fixed point. 
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(d) Suppose the special sentences are fixed at stage X. Then for every odd m which is 
not the Godel number of a paradoxical sentence, there is a finite k such that m e Sl, +k 

or m e S2,x+k- 
PROOF. (a) Suppose otherwise. Let (S1, S2) and (Sr, S ) be distinct fixed points 

that do not differ in their valuations of the special sentences. Let A be the sen- 
tence with the least Godel number which is valuated differently in the two fixed 
points. A must be valuated true or false in at least one of the two fixed points, so 
by Lemma 1 all values of its T-terms are in the extension or antiextension of that 
fixed point. Since all these values that are odd are less than GN(A) (the Godel 
number of A), we have by hypothesis that, for any n which is a value of a T-term 
of A, neS, iff neS*, and neS2 iff neS*. But then f(S1,S2) and 2(S*,S*) 
do not differ in their valuation of A after all. 

(b) Suppose otherwise. Let A be the sentence with least Godel number such that 
GN(A) is in the minimal fixed point (Sr, S ) above (S1, S2) but is not in i'(S,, Sj. 
(By a straightforward monotonicity argument, iW'K(Sl S2) c (S1, S 2).) 

Consider any value, n, of a T-term of A. We have n e S* u S* by Lemma 1. If 
n is even, then n e S, U S2 since the special sentences are minimally fixed in (S1, S2). 
On the other hand, if n is odd, n < GN(A) and so there is a finite j for which 
n e +wK(S1S2) K(Sl,S2). Furthermore, there are only finitely many odd 
values of T-terms of A by Lemma 2. But then there is a finite j such that all values 
of the T-terms of A are in +OPwK(S, S2) u PWK(Sl, S2), and so, by Lemma 1, A is 
valuated true or false in YPWK(Sl, S2)). 

(c) and (d) follow from (a) and (b). Q.E.D. 
PROPOSITION 1. (a) If the set of special sentences is empty, then the construc- 

tion of the minimal fixed point closes off at w and 2,, is the only fixed point of the 
language. 

(b) For any finite n there is a Godel numbering of L for which there are exactly 
n + 1 fixed points. There are also Godel numberings having exactly No and 2'0 fixed 
points. 

PROOF. (a) That Y,, is the minimal fixed point follows from Lemma 3(c), (d). That 
the construction of the fixed point does not close off earlier follows from the fact 
that GN(Tn + '(0 = 0)) ? S1 n S but GN(Tn + '(0 = 0)) e S1 n + 1 (Here we let T?(A) = 
A and Tn +'(A) = T(7Tn(A)7), where 7A7 is the numeral for GN(A).) 

(b) Part (a) shows us that there is a Godel numbering with only one fixed point. 
Consider the following enumeration of sentences: T(O) v - T(0), T(O) v T(2) v 
- T(2), T(2) v T(4) v - T(4), T(4) v T(6) v - T(6), etc. To construct a Godel 
numbering in which there are exactly n + 1 fixed points (for n > 0), for each m < n 
let 2m be the Godel number of the (m + 1)st sentence in the above enumeration, 
and for m ? n let 2m not be the Godel number of any sentence. For any initial seg- 
ment of the sequence of these special sentences (possibly empty, possibly including 
all the special sentences) there is a fixed point in which all sentences in the initial 
segment are true and all the remaining special sentences lack truth-value. Further- 
more, every fixed point makes an initial segment of the sequence of special sen- 
tences all true and the rest undefined. Since there are exactly n + 1 initial segments 
of the sequence of special sentences, by Lemma 3(a) there are exactly n + 1 distinct 
fixed points. To cover the case where there are No fixed points we let all the 
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sentences in the above enumeration be special sentences. The same argument works, 
since a fixed point still makes an initial segment of the sequence of special sentences 
true and the rest undefined. To get an example where there are 2'0 fixed points, let 
each even number m Gddel number T(m). Now there will be a fixed point for any of 
the 2'0 ways of assigning truth values to the special sentences. Q.E.D. 

REMARK. The last-mentioned Gddel numbering can be used to show that any set 
S c N is totally defined in some fixed point by the formula T(2x1). Hence there is no 
bound on the complexity of sets definable in a fixed point. 

We will consider one useful way of Godel numbering the special sentences. Let 
[n, m] abbreviate 2 x ((n + m) x (n + m) + n). This expresses an effective 1-1 map 
from pairs of integers (n, m) to integers, and its inverse is also effective. (We include 
the factor 2 so that we may use even numbers to code special sentences.) To code 
ordered triples we use [[ij],k], which we abbreviate as [ijk]. This may be 
repeated to obtain codings of longer sequences. 

Let R1, R2, R3,... be a recursive enumeration of 2-place primitive recursive 
relations. We say that a special Godel numbering is J-determined if the follow- 
ing conditions are satisfied: J is recursive and, for j E J, [j, nl, n2] codes 
(x)T([j, n2, x]) & n1 = n1 if Rj(n2,n1) holds, and codes [j,n1,n2] = [j, n1, n2] 
otherwise; and furthermore, all special sentences are coded by Gddel numbers of 
the form [j, n1, n2] where j E J. (We add the conjunct n1 = nm to ensure that the 
coding is 1-1 effective. We shall, however, generally omit writing out this part of the 
sentence coded, and when we speak of an "instance" of a special sentence we shall 
mean an instance of the first conjunct.) 

Let R be any relation on the natural numbers. Say that mo is grounded in R iff 
there is no infinite sequence m1, M2, M3, ... (mi, mj not necessarily distinct for i #1 j) 
such that, for each i > 0, R(mi + 1,mi). Let 

GR = {m E FldRI mis grounded in R} and UR = FldR n -GR. 

(Thus, R is well-founded on GR in the usual sense.) We define, for each ordinal or, 

R(a) = {m E FldRI for all n, if R(n,m), then n e Up<a VI} 
Let Ord(R) = uoc(R(') = R(a+ 1)). If m E GR we let ImIR = joc(m E R ()). For j E J let 

Rj be the relation indexed by j, and abbreviate I n Rj as I nIj and GRj as Gj. 
LEMMA 4. Suppose the Godel numbering of special sentences is J-determined. 

Consider the construction of the minimal fixed point starting from SO= 
S(AR+, AR- u Nonsent). The following hold: 

(a) If - Rj(n2, n1), then [j, nl, n2] ES SlO. 

(b) If Rj(n2, n1), then the sentence with Godel number [j, n1, n2] first becomes 
valuated true in in2ljj if n2 E Gj (i.e., n2 is not on an infinite descending chain in Rj); 
otherwise the sentence is ungrounded. 

(c) If n1 E Gj, then (x)T([j, n1,X]) is first valuated true in 2", where o = 
l.u.b.{In2IjI Rj(n2, n1)}; and otherwise (x)T([j, n1, x]) is ungrounded. 

(d) The set of sentences with Godel numbers of the form [j, n1, n2], for a given j, 
first becomes fixed at Ord(Rj). 

(e) If a = l.u.b. JejOrd(Rj), the special sentences are fixed at stage a. 
(f) A special sentence is grounded iff it is true in the minimal fixed point. 
(g) There is a fixed point in which every special sentence is true. 
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PROOF. (a)-(f) are straightforwardly proved from the definitions. For (g), let 
S1 = {[j, n, n2l I J, nl,n2 E N}. Then, for each j E J and n2 E N, (S1, A)1= 
(x)T([j, n2, x]). Hence, for each j E J and nj, n2 e N, [j, nj, n2] e 'PWK(Sl, A). So 
S1 C +_JiwK(Sl, A) and (S1, A) can be extended to a fixed point M. (By Lemma 3(a), 
M is a maximal fixed point.) Hence every special sentence is true in M. Q.E.D. 

We can now establish the following. 
PROPOSITION 2. The closure ordinals for the inductive construction of the minimal 

fixed point include A, w CK, and any successor limit ordinal in between. 
PROOF. w was treated in Proposition 1. Any successor limit ordinal below -)CK 

is of the form a + A, where a is a successor ordinal <_)CK. There is an Rj such 
that Ord(Rj) = X. If we let the special sentences be {j}-determined, then they be- 
come fixed at a (by Lemma 4(d)), and thus the construction of the minimal fixed 
point closes off by a + w at the latest (by Lemma 3(b)). That the construction 
does not close off before a + w follows from the fact that the special sentences first 
become fixed at a, a successor ordinal, and thus, for some A, A first is thrown into 
the extension of T at 2x. But then all the sentences of the sequence T(7A7), 
T(rT(r_')7), ... will eventually be put in the extension of T, but not before stage 
a + O. 

Next we show that the construction of the minimal fixed point can close off at 
09 K. If we let the Godel numbering be N-determined (where N is the set of natural 
numbers) then the special sentences become fixed at l.u.b.neNOrd(Rn) = wCK. So the 
closure ordinal ?wCK. On the other hand, the minimal fixed point of the weak 
Kleene language is the smallest fixed point of an arithmetical monotone operation 
on (pairs of) sets of integers. By a theorem of Spector, the closure ordinal of such an 
operation is < 4CK. Thus the closure ordinal = w CK Q.E.D. 

Question. Can the inductive construction of the minimal fixed point close at 
(any? all?) limit limit ordinals i where w <)i <)C K? 

?3. We now proceed to study definability in weak Kleene languages with J- 
determined Gddel numberings. Call A* a simplification of the formula A if A* is the 
result of replacing a single formula of the form T(t) in A, where t has a single odd 
value, by (a) the sentence 0 = 0', if the value of t is not the Godel number of a 
sentence, or by (b) the sentence whose Godel number is the value of t. Let At 
be the result of replacing all free occurrences of x in A with t. Call formulae with 
free variables equivalent in a fixed point iff they are satisfied by the same infinite 
sequences and falsified by the same infinite sequences in that fixed point. The 
following lemma is easily established by induction on the complexity of formulae. 

LEMMA 5. (a) If A* is a simplification of a formula A, then A*' is a simplification 
of At. 

(b) If A* is a simplification of the sentence A, then in every fixed point A and A* 
have the same truth value (T, F or u). 

(c) If A* is a simplification of a formula A, then A*(xl,. ..xn) and A(xl,... , xn) are 
equivalent in any fixed point and thus define (weakly or totally) the same n-ary relation 
in any fixed point. 

Say that a formula A** is the reduction of the formula A if it can be obtained by 
applying the following procedure to A. 
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Step 1. Check whether the formula in question contains any T-term with 
infinitely many odd values. If it does, let A** = the conjunction of that formula 
with n = n (where n is GN(A)), and stop; otherwise apply Step 2 to the formula 
in question. 

Step 2. Check whether the formula in question has any T-term with a single odd 
value. If not, let A** = the conjunction of that formula with n = n, and stop. If it 
does, apply Step 1 to the formula obtained from the formula in question by replacing 
the leftmost subformula of the form T(t) such that t has a single odd value ? the 
value of any other single odd valued T-term in the formula with (a) 0 = 0' if that 
value is not the Gddel number of a sentence, or with (b) the sentence whose Gddel 
number is the value of t if the value of t is the Gddel number of a sentence. 

This reduction procedure determines a 1-1 effective mapping, and the resulting 
formulae either contain a T-term with infinitely many odd values, or they contain no 
T-terms with any odd value. We see that the mapping is completely defined (since the 
procedure eventually halts for any formula) as follows. The procedure must halt 
unless Step 2 is repeated indefinitely. Suppose this happens. Take the least m such 
that there is a formula B for which the process does not terminate and m is the 
maximum value of an odd valued T-term in B. (There must be such an m if there is a 
formula for which the process does not terminate, for if a formula has no maximum 
odd T-term value then either it has infinitely many odd T-term values, and thus at 
least one T-term with infinitely many odd values, making the process halt at Step 1, 
or it has no odd T-term values and so the process halts.) Call a T-term with a single 
value m an m-T-term. Suppose B has n m-T-terms. By the second condition on the 
Gbdel numbering, each time a subformula with an m-T-term is replaced by a 
sentence, that new sentence has no T-term with a single odd value that is > m. So 
after n applications of Step 2 we are left with a sentence with no single odd-valued T- 
terms with a value 2 m. Thus by hypothesis this process will terminate after finitely 
many steps. 

From Lemma 5 we have: 
LEMMA 6. Under a special Godel numbering in any fixed point of the weak Kleene 

scheme, the reduction of any formula A is equivalent to A. 
PROPOSITION 3. If the Gbdel numbering of AR + T is J-determined, then there 

is an effective procedure which (1) determines whether or not a given sentence is 
paradoxical, and (2) maps 1-1 the nonparadoxical sentences of AR + T into sentences 
of AR + T in which all values of T-terms are even. 

PROOF. We claim that, for any sentence A, A is paradoxical iff A** contains a 
T-term with (infinitely many) odd values. 

By Lemma 2, A* is paradoxical if it contains a T-term with infinitely many odd 
values, whence by Lemma 6 so is A. Conversely, suppose A is paradoxical. By 
Lemma 6, A** is paradoxical. Since by Lemma 4(g) there is a fixed point in which 
all special sentences are true, it follows by Lemma 1 that A** contains an odd- 
valued T-term. But then by the reduction procedure A** contains a T-term with 
infinitely many odd values. Q.E.D. 

We can now set a bound on the maximal complexity of sets weakly definable in a 
weak Kleene language based on a J-determined Godel numbering. 

LEMMA 7. Suppose the Godel numbering of AR + T is J-determined and that the 
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special sentences are fixed at stage a. If a set S is weakly definable in the minimal fixed 
point, then 

S <1 '0wK(S1,a rn Even, Nonsent rn Even). 

PROOF. Suppose the special sentences are fixed at a. Consider any formula A(x) 
of AR + T. For any n, the reduction procedure takes us from A(n) to a sentence Bn 
such that if A(n) is paradoxical, Bn contains a T-term with odd values; otherwise no 
T-term in Bn has any odd values. Let 0(n) = GN(Bn). 0 is 1-1 recursive. A(n) is true 
in the minimal fixed point iff Bn is true in the minimal fixed point, iff (by Lemma 3(b)) 
GN(Bn) E +0WK(0WK(S1,L, S2,a)), iff 

GN(Bn) E WK(,,WK(SL S2a) r-n Even, >WK(Sla, 
S2,a) 

n Even) 

(since the T-terms in Bn have only even values if B. is not paradoxical), iff 

GN(Bn) E liWK(S1,,L n Even, S2,a n Even) 

(since the special sentences are fixed at a), iff 

GN(Bn) Ec +lwK(S1,, n Even, Nonsent r-n Even) 

(since by Lemma 4(f) the special sentences are never false in the minimal fixed point). 
Thus for a given A(x) there is a recursive function 0 such that n E {m I A(m) is true 
in the minimal fixed point} iff 0(n) Ec +0WK(S1,,. ra Even, Nonsent n Even). Q.E.D. 

Using Lemma 7, we can establish the following (we omit the proof): 
PROPOSITION 4. Suppose that under a J-determined Godel numbering the special 

sentences are fixed at a. Then any set weakly definable in the minimal fixed point is 1-1 
reducible to the smallest fixed point of a monotone arithmetical operation whose 
closure ordinal is < a + w. 

REMARKS. (1) Consider the following special case. Suppose the set of special 
sentences is empty. (Thus a = 0.) Then for any A(x) we have n E {m I A(m) is 
true in the minimal fixed point} iff 0(n) Ec +'WK(A, Nonsent n Even). However, 
+'WK(A, Nonsent r) Even) is of the same complexity as AR+. 

(2) By a theorem of Kleene, any H1 set Q of integers can be defined in the form 
Q = {ml [m, 1] E GR} for some primitive recursive relation R depending on Q. 
In particular, if Q is also A1, we have that Ord(R) < W4K. For a fixed Q, let 
R = RX. Then, by Lemma 4(c), 

Q = {m I A t (y)T([j, [im, 1] y]} 

where Y* is the language of the minimal fixed point. Furthermore, if Ord(Rj) = a, 
then Q is weakly definable in the minimal fixed point above ?, (at a + w). Hence 
any A 1 set is weakly definable in some weak Kleene language Ha for a < WcK. Also, 
every H1 set is weakly definable in some weak Kleene language. In fact, in the 
minimal fixed point language based on the N-determined Gddel numbering all H11 
sets are weakly definable. 

Let us now turn to total definability in weak Kleene languages based on J- 
determined Gddel numberings. 

PROPOSITION 5. If the Godel numbering of AR + T is J-determined, then the sets 
totally definable in the minimal fixed point are precisely the arithmetical sets. 
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PROOF. Let A(x) be a totally defined formula in the minimal fixed point, and let 
A *(x) be the reduction of A(x). Since A(x) is totally defined, A *(x) contains only even 
valued T-terms (by the reduction procedure). By Lemma 5(c), A(x) and A *(x) totally 
define the same set, since definability is preserved under simplification and A *(x) is 
obtained from A(x) by successive applications of simplification. Call A'(x) the AR- 
reduction of A(x) if it is the result of replacing all subformulae of the form T(t) in 
A*(x) with 

0x)(0Y)(0z)(t = [x, y, z] & x e J) 

(where x1 E J is an AR formula defining the set J, which is recursive, and x, y, and z 
are the first variables in the list x1, X2, X3, .. . not in t or bound in x1 E J). We have in 
effect replaced occurrences of T(t) in A *(x) with formulae which "say" "t is a special 
sentence". By Lemma 4(f) all special sentences are either true in the minimal fixed 
point or are neither true nor false there. Since A *(x) is totally defined in the minimal 
fixed point, any T-term in A *(x) must have as its values only Godel numbers of 
grounded sentences (which are true in the minimal fixed point) or numbers which do 
not Gddel number any sentence and thus not of the form [x, y, z] for x E J. Hence 
T(t) and its replacement will be equivalent in the minimal fixed point, and A *(x) and 
A'(x) totally define the same set in the minimal fixed point. So A(x) and its AR- 
reduction totally define the same set in the minimal fixed point. A'(x) is a formula of 
AR; therefore A(x) defines an arithmetical set. Since all arithmetical sets are totally 
definable in the minimal fixed point, the totally definable sets in the minimal fixed 
point are precisely the arithmetical sets. Q.E.D. 

It is instructive to see where the above argument breaks down if we do not assume 
that A(x) is a totally defined formula. 

REMARKS. (1) In particular, in the N-determined Gddel numbering all HI sets 
are weakly definable and the totally definable sets are just the arithmetical sets. Here 
for any nonarithmetical 1 set Q, both Q and - Q are weakly definable, but Q is not 
totally defined by any formula. 

(2) Recall that in the J-determined Gddel numberings there is a maximal fixed 
point in which all special sentences are true. (Cf. the proof of Lemma 4(g).) Suppose 
the G6del numbering were slightly altered by appending to all the special sentences 
the clause " v 0 = 0". Then (S1, A) from the proof of Lemma 4(g) is an intrinsic point 
in Kripke's sense (see [1] for the definition), since under the modified Gbdel num- 
bering no sentence A with GN(A) of the form [j, n1, n2] can be false in any fixed 
point. Consequently the smallest fixed point M that extends (S1, A) is also intrinsic. 
Then it follows by Lemma 3(a) that M is actually the largest fixed point and hence 
also the largest intrinsic fixed point. (Compare this to the strong Kleene scheme, 
where there is no largest fixed point and the largest intrinsic fixed point is the largest 
fixed point contained in the intersection of all maximal fixed points. See [2].) 

(3) Since the special sentences in (2) are minimally fixed in (S1, A), we have M = 
OwK(Sl, A) by Lemma 3(b). We can now apply the AR-reduction procedure as in 
the proof of Proposition 5 to show that the truth set +M of M is 1-1 reducible to 
AR+ and, since clearly AR+ <1 +M, is recursively isomorphic to AR+. Given any 
sentence A, observe that since all special sentences are true in M, a subformula T(t) 
of A*, where t is not odd-valued, and its replacement in the AR-reduction are 
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equivalent in M. It follows that any set weakly definable in M is 1-1 reducible to 
AR'. (Contrast this with stronger valuation schemes where the class of sets de- 
finable in the largest intrinsic fixed point properly includes the sets definable in the 
minimal fixed point. For the strong Kleene scheme, the sets weakly definable in 
the largest intrinsic fixed point are Z1-in-a-HI' parameter, a proper subclass of J2 
Cf. [1].) Also, the argument for total definability from the proof of Proposition 5 
applies without any changes. So the totally definable sets in M are precisely the 
arithmetical sets. 

?4. We have seen that under J-determined Gbdel numberings the totally de- 
finable sets are arithmetical. A variant style Gbdel numbering will allow us to 
define Al sets totally. Call a special Gddel numbering (J, K)-determined iff the 
following conditions are satisfied: J and K are recursive sets and, for j E J and k E K, 
[j,m1,m2,k,nl,n2] codes: 

[j,n1,m2,l,Ln2] = 0' 

(a falsehood) if m Rj(m2, M1) or m Rk(n2, n1), and codes 

(x)(Rj(x,rM2) D (]y)T([jrn2, x, k, n2, y])) & mlnl = mlnl 

otherwise. In the second case we have added the conjunct mlnl = mlnl to ensure 
that the coding is 1-1 effective; we will not generally write out this conjunct, and 
when we speak of an "instance" of such a special sentence we will mean an instance 
of its left conjunct. 

LEMMA 8. Suppose that a Gidel numbering is (J, K)-determined, j E J, k E K, 
Rj(m2, m1) and Rk(n2, n1). Then the following hold under both the strong and weak 
Kleene schemes: 

(a) m2 eC Uj and n2 e Uk iff [ j,ml, m2, k, n1, n2] is ungrounded. 
(b) Suppose m2 e Gj and n2 e Gk. Then 

IMm2j < In2lk iff [j,ml,m2,k,n1,n2] is true in Y,, 

where a = Im2Ij, and {[ j, ml, m2, k, n1, n2]} is fixed at Im21I + 1; and 

Im2I > In2Ik iff [j,ml,m2,k,nl,n2] is false in Y,, 

where a = In2Ik, and {[j, mlm2, k, ni,n2]} is fixed at In2Ik + 1. 
(c) If m2 e Gj but n2 e Gk, then [j, ml, m2, k, nl, n21 is true in Z,, where a = Im2 I, 

and is fixed at Im2 1i+ 1. 
(d) If n2 e Gk but m2 e Uj, then [j,ml,m2,k,n1,n2] is false in Y,, where 

a = In2Ik, and is fixed at In2Ij + 1. 
(e) Furthermore, if (SSK5 SSK) is the minimal fixed point of the strong Kleene 

scheme and (SW K, SWK) is the minimal fixed point of the weak Kleene scheme, then 
SSK n Even = SWK n Even and SSK n Even = SWK n Even. 

PROOF. (a)-(d) are proved by transfinite induction; (e) is immediate from the 
fact that the special sentences are valuated in the same way under both valuation 
schemes. Q.E.D. 

We see that if the Godel numbering is (J, K)-determined, for k e K, Rk is well- 
founded on N, and l.u.b.keKOrd(Rk) = oc, then Even c Sl+1 u S2,,+1, all special 
sentences have a truth value in Ya, and ?2 ? . is the only fixed point of the language. 
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We say that a formula A(x) defines a pair of sets (S1, S2) in Ad if S,= 
{nI Ad, [ A(n)} and S2 = {nI Ad, A A(n)}. This extends naturally to formulae with 
n free variables for n ? 1. 

PROPOSITION 6. For any disjoint pair of HI sets (S1, S2) there is a (J, K)-determined 
Gbdel numbering and aformula A(x) which defines (S1, S2) in the minimalfixed point. 

PROOF (Due to Kripke). Let (S1, S2) be a disjoint pair of IV sets. Then there exist 
primitive recursive relations R. and Rk such that 

meS, if [m,1] E Gj, 
meS2 if [m,l]eGk, 

and we have that, for each m, [m, 1] E FldR3 n FldRk. Since S1 and S2 are disjoint, 
it follows that 

(1) if [m, 1] E Gj, then [m, 1] E Uk 

and 

(2) if [m, 1] E Gk, then [m, 1] E Uj. 

We consider the language with ({ j }, {k})-determined Gbdel numbering. We let A(x) 
be the formula 

(y) (Rj (y, [x, I] (3 z) T([ j, [x, I1], y, k, [x, 1],z])). 

Then, if ? is the language of the minimal fixed point, ? Y A(m) if (by (1) and 
Lemma 8) [m, 1] E Gj and [m, 1] E Uk if m E S1. Similarly, using (2) and Lemma 8, 
we have 

9=1 A(m) if m E S2 

Hence A(x) defines (S1, S2) in Y. Q.E.D. 
COROLLARY. (a) Any HI set is weakly definable in the minimal fixed point of some 

language with a ({j}, {k})-determined Gbdel numbering, for appropriate j and k. 
Furthermore, for any a 1 set S there is a language with a ({ j }, {k})-determined Gbdel 
numbering in which S is totally definable in the minimal fixed point. 

(b) The pairs of sets definable in the minimal fixed point on the (N, N)-determined 
Gbdel numbering are precisely the disjoint pairs of Hl sets. 

(c) In the (N, N)-determined Gbdel numbering the sets weakly definable in the 
minimal fixed point are precisely the IH sets, and the totally definable sets are all al 
sets. 

(d) Let TSK and FSK be the extension (resp. antiextension) of T(x) in the minimal 
fixed point of the strong Kleene scheme under any Gbdel numbering. Then the pair 
(TSK, FSK) is definable in the weak Kleene language with (N, N)-determined Gbdel 
numbering. 

PROOF. (a) follows from the proof of the proposition by taking, for a given IV 
set S, the pair (S, A). For a a 1 set S, we consider the pair (S, - S). 

(b) and (c). That the disjoint pairs of IV sets are definable in the minimal fixed 
point follows as in the proof of the proposition. And clearly only disjoint pairs of Il 
sets are definable in the minimal fixed point. 

http://www.jstor.org/page/info/about/policies/terms.jsp


THE WEAK KLEENE SCHEME IN KRIPKE S THEORY OF TRUTH 1465 

(d) follows from the fact, established by Kripke, that (TSK, FSK) is a disjoint pair of 
H{ sets. Q.E.D. 

REMARKS. (1) Part (d) of the corollary extends to the pair (TVF, FYF), where TYF 
and FVF are the extension and antiextension of T(x) in the minimal fixed point 
under the van Fraassen supervaluations scheme. (Cf. [1].) 

(2) Let IN,N) be the language of the minimal fixed point of the weak Kleene 
scheme based on the (NN)-determined G6del numbering. We show that it is 
possible to define in Y(NN) pseudoconnectives that correspond to the strong Kleene 
disjunction and existential quantification in the language of the minimal fixed point 
under any Gbdel numbering. (This concept is a modified version of a concept 
introduced by Kripke.) Let fv(y) be the maximum index i of a free variable xi in the 
formula with Gbdel number y. We assume that a standard coding scheme of finite 
sequences of integers is given in which every integer codes some sequence. Let 
Y(S1, S2) be the strong Kleene language of the minimal fixed point under an 
arbitrary G6del numbering. Say that a formula disjSK(x,y,z) defines a strong 
Kleene pseudodisjunction for Y(S1, S2) iff it defines a pair of relations (R1, R2) such 
that 

R1(m, n, k) if m = GN(A) and n = GN(B) for some formulae A and B and 
length(k) ? max(fv(m), fv(n)), and Y(S1, S2) [ A[k] or Y(S1, S2) k= B[k], 

where A [k] is the sentence obtained by replacing the free variables x; in A by the 
numerals for the jth member (k)j of the sequence coded by k, respectively, and 

R2(m, n, k) iff - Fmla(m) or - Fmla(n) or length(k) < max(fv(m), fv(n)), or 
Fmla(m) and Fmla(n) and length(k) ? max(fv(m), fv(n)), and Y(S1, S2) A 
A [k] and Y(S1, S2) =I B[k]. 

Similarly, we say that a formula EquantSK(x, y, z) defines a strong Kleene pseudo- 
existential quantification iff it defines a pair (R1, R2) where 

Rl(m, n, k) iff m = GN(A) for some formula A and, for some k' such that 
fv(m) < length(k') and k' =, k, Y(S1,S2) 1= A[k'], 

letting k' =, k hold if the sequences coded by k' and k differ at most at nth place, 
and 

R2(m, n, k) if - Fmla(m) or for all k' such that fv(m) < length(k') and 
k' = n k, Y(S1, S2) =1 A [k ] 

It is easily seen that since the extension and antiextension of T(x) in ?(S1, S2) are 
both IV sets, (R1, R2) are disjoint pairs of IV relations. Hence the strong Kleene 
pseudodisjunction and pseudoexistential quantification for Y(S1, S2) are both de- 
finable in the minimal fixed point of Y(N,N)* 

?5. We saw that what sets are definable in the minimal fixed point of AR + T 
under the weak Kleene scheme is highly dependent on the choice of the Godel 
numbering of the vocabulary. This variability vanishes if the language is sufficiently 
expanded to include new function symbols or a definite description operator. 
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We recall the primitive recursive function U(x) and predicate T1(x, y, z) of 
[3, ?58]. Let We be the effective enumeration of 1-place partial recursive functions 
defined by 

W.(x) U(py T,(e, x, y)). 

Suppose the vocabulary of L is extended with a single primitive function symbol f 
to be interpreted by the 4-place function 0 such that for any e, m, n, k, 

(e, m, nk) = SU(n) if n = (ly < n')T1(e,m,y), 
mk otherwise. 

(Cf. [3] for the definition of the py < z operation.) Call the resulting vocabulary L'. 
PROPOSITION 7. Let * and ' be any Gbdel numberings of L', and let Y* and He 

be the weak Kleene languages of the minimal fixed point defined relative to * and #, 

respectively. If a pair (S1, S2) is definable in ??*, then it is definable in Y f. 
PROOF. Let k = # (O = 0'). Using the recursion theorem, we define a recursive 

function #(x) = P(eo, x) with Kleene index eo satisfying the following conditions: 

0(*(tl = t2)) = #((tl = t2) & (tl = t2A 

t(* T(t)) = # (3 z)T(f(e0, t, z, k)), 
-(* -A) = neg#( ./I(* A)), 

i(*(A & B)) = conj (O(* A), 0(* B)), 
(* (3xi)A) = equant#(i, .f(*A)). 

Here, equant#(i,x) is the recursive function which yields #(3xi)A whenever x 
= # A, for any formula A of L'. The functions neg# and conj are appropriate 
recursive functions similarly associated with - and &. We assume that the variable 
z in 0f(* T(t)) does not occur in t. And whenever n is not of the form * A for any L' 
formula A, we let +(n) = #(n = n'). Thus f is 1-1. (The conjunction in the first 
clause of the definition of / is intended to ensure this.) We now claim that, for any L' 
sentence A, 

(1) *Ae-Sl*(resp. S*) iff 0(*A) eS*j, (resp.S2#a) 

for all oc. We argue by transfinite induction on oc. 
The case where oc = 0 is trivial. Assume, as the induction hypothesis, that (1) holds 

for /3; we show the same for /3 + 1. We proceed by induction on the complexity of 
sentences of L'. Suppose A is of the form T(t), where val(t) = * B for some L' sentence 
B. Then 

*T(t) E Sl*+1 if *B E S * 
iff #(* B) E S'# [by the main induction hypothesis] 
iff (eo, val(t), n, k) E S' for some n 

and O(eo,val(t), j,k) E S', u S', for each] 
[by definition of 0, since eo is a Kleene index of ,] 

iff Y (3z)T(f(eo,t,z,k))iff 0(*T(t)) E S# 
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An analogous argument shows that 

* T(t) E S2*,+1 if 0(* T(t)) e-S 
The case where val(t) is not a Gddel number (under *) of any sentence of L' is 
straightforward, as are the remaining cases of the induction on the complexity of 
sentences of L'. The case when oc is a limit ordinal follows immediately from the 
definition of limit stages. This completes the proof of (1). 

Let oc* and oc be the ordinals of Y * and H respectively. From (1) we have that 
0 ? oc. Suppose A(xl) defines a pair (S1, S2) in 2*. Then, for any m, 

*A(m) e SIc* = (*A(m)) e- S * /(*A(m)) e S 

- *A(m) e S*,# - *A(m) Se* 

since oc* is the ordinal of the minimal fixed point. Therefore, 

meS1 if *A(m)eS *,* iff f(*A(m)) - S#. 

An analogous argument shows that 

me6 S2 if *A(m) E S** iff f(*A(m)) E S# 
For fixed A(x1), let e1 be such that, for any m, P(e1,m) = /(*A(m)). Then 
(3y)T(f(e1,x1,y,k)) defines (S1,S2) in ? #. Q.E.D. 

COROLLARY 1. Let * and # be any Gbdel numberings of L', and let (S*, S*) and 
(Sf# S#) be the minimal fixed points of Y * and Hi, respectively. Then (S*, S*) and 
(S#, S#) are recursively isomorphic. 

This follows immediately from the proof of Proposition 7. 
COROLLARY 2. Let * and # be any Gbdel numberings of L'. For any set S, S is 

weakly (strongly, totally) definable in ? * if S is weakly (strongly, totally) definable in 
p#. 

REMARKS. (1) In stark contrast to classical languages as well as the partially 
interpreted language ? of the minimal fixed point based on stronger valuation 
schemes, the sets definable in the augmented language with the function symbol f 
for the primitive recursive function 0 may be different from those definable in the 
unaugmented weak Kleene language. This holds despite the well-known fact that 
within the language AR, whose vocabulary is contained in L', one can eliminate 
function symbols for any function X whose graph x(x1,.. ., x,) = y is an arithmetical 
relation. 

(2) Using the fact that the arithmetical part of L contains a term [x, y, z, w] that 
determines a 1-1 primitive recursive coding of N x N x N x N by N, it is easy to 
modify the proof of Proposition 7 to show that the preceding remark holds when L 
is instead extended with a single function symbol for a 1-place primitive recursive 
function O' defined so that 0'([x, y, z, w]) = +(x, y, z, w). 

(3) Therefore, the weak Kleene language Y of the minimal fixed point, obtained 
by expanding the vocabulary L with function symbols for any denumerable set Y of 
total 1-place functions such that b' E i, is "well-defined" in the sense that the 
interpretation of T(x) is recursively invariant (in the sense of [5]) under different 
choices of Gbdel numbering. 
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(4) Proposition 7 still holds if we let ?* be the language of the minimal fixed 
point based on the original vocabulary L = AR + T and Gddel numbering *. Hence 
the ordinal of the minimal fixed point of the weak Kleene language A ' is co CK, the 
weakly definable sets are the HI sets, and strongly definable = totally definable 

z11. 
(5) Furthermore, it can be shown that the addition of a definite description 

operator to L, or expanding L' with function symbols for total functions that are not 
primitive recursive, will not increase the strength of the resulting weak Kleene 
language (in terms of the sets definable in the minimal fixed point) so long as the 
enumeration of these functions is weakly definable in the minimal fixed point of the 
strong Kleene language. The reason for this is that the expanded language can still 
be embedded in the strong Kleene language by an effective truth-value preserving 
translation. In particular, this holds when the expanded vocabulary contains 
function symbols for all hyperarithmetical functions. 

(6) To see that the cardinality of the set of fixed points of L' is the same for 
different choices of G6del numberings-namely 2'0, as for the strong Kleene 
language-let * and ' be two Gddel numberings of L' and #(x) a recursive function 
with index eo chosen as in the proof of Proposition 7. It is easily verified that if T(t) 
is a "truth-teller" in L' under *-that is, * T(t) = den(t)-then its #-image is a 
"truth-teller", (]z)T(f(eo, t, z, k)), under ', which is true just as long as #(den(t)) 
[ = (]z)T(f(e0, t, z, k))] is true. We can then apply the argument of Proposition 1(b) 
to conclude that under any G6del numbering Y?' must have exactly 2'0 fixed points. 

(7) The primitive recursive orderings R referred to in Remark (2) following 
Proposition 4 are in fact elementary in the sense of Kalma'r (see [3, ?57] for the 
definition). Hence instead of the enumeration of primitive recursive relations 
considered in the definition of a J-determined G6del numbering we can consider a 
primitive recursive enumeration of elementary relations. The arguments of the 
paper will not be affected, and all Gddel numberings considered will be primitive 
recursive. 
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