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Abstract. A data integration system provides the user with a unified
view, called global schema, of the data residing at different sources. Users
issue their queries against the global schema, and the system computes
answers to queries by suitably accessing the sources, through the map-
ping, i.e., the specification of the relationship between the global schema
and the sources. Since sources are in general autonomous subsystems,
the information provided by the data at the sources and the mapping is
likely not to be consistent with the knowledge expressed by the global
schema. Therefore, the question arises of how to interpret user queries
in such a situation, i.e., in the presence of data contradicting the global
schema and the mapping. In this paper, we provide an in-depth analy-
sis of the problem of dealing with inconsistencies in data integration
systems. In this respect, we highlight the central role played by the map-
ping, and propose a general “mapping-centered” semantics that allows
for computing significant answers to user queries even in the presence of
inconsistent information. Based on such a semantic analysis, we define
a general formal framework for data integration. Then, we argue that
our semantic approach formalizes a very reasonable way of handling in-
consistency in such systems, since practically all the existing proposals
in the literature can be reconstructed in our framework. This allows for
comparing and evaluating the different existing proposals.

1 Introduction

The task of a data integration system is to combine the data residing at different
sources, and providing the user with a unified view of these data, called global
schema [34, 44, 32, 38]. Users query the global schema, while the system carries
out the task of suitably accessing different sources and assembling the data
retrieved at each source into the final answer to the query.

The global schema is therefore the interface by which users issue their queries
to the system. The system answers the queries by accessing the appropriate
sources, thus freeing the user from the knowledge on where data are, and how



data are structured at the sources. Notably, sources are in general autonomous
systems that can be accessed through different modalities.

The interest in this kind of systems has been continuously growing in the
last years. Many organizations face the problem of integrating data residing
in several sources. Companies that build a Data Warehouse, a Data Mining,
or an Enterprise Resource Planning system must address this problem. Also,
integrating data in the World Wide Web is the subject of several investigations
and projects nowadays. Finally, applications requiring accessing or re-engineering
legacy systems must deal with the problem of integrating data stored in pre-
existing sources.

A central aspect of a data integration system is the specification of the re-
lationship between the global schema and the sources; such a specification is
given in the form of a so-called mapping. Two kinds of mapping are commonly
adopted in the literature: the global-as-view mapping, in which every element of
the global schema is associated with a view over the sources, and the local-as-
view mapping, which requires the sources to be defined as views over the global
schema [44, 40, 38].

Summarizing, the high-level structure of a data integration system that is
commonly adopted consists of a triple 〈G,S,M〉, where G is the global schema,
S is the set of sources and M is the mapping. All such components correspond
to logical theories. Therefore, the meaning of a data integration system is given
through the semantics of the logical theory corresponding to the system spec-
ification. Since all current approaches to data integration use (fragments of)
first-order logic to specify the global schema, the mapping, and the sources,
the semantics of a data integration system is in general defined in terms of the
classical, first-order semantics of a first-order theory.

However, such an approach to the semantics of data integration system is not
satisfactory. Indeed, as already mentioned, sources are in general autonomous
subsystems, hence the information provided by the data at the sources and the
mapping are likely not to be consistent with the knowledge expressed by the
global schema [26, 13]. In these cases, the first-order semantics of the system
simply states that there is no model for the system: such an “empty” meaning
is not appropriate, since one would like to

(i) be able to derive significant information from a data integration system even
in the presence of inconsistency, a capability that is not provided by such
semantics;

(ii) treat different forms of inconsistency in different ways, while the first-order
semantics gives the same, empty meaning to all kinds of inconsistency.

These issues are well-known limitations of classical logic that have been stud-
ied in the literature in paraconsistent logics, belief revision and nonmonotonic
reasoning [23, 19].

In order to overcome this semantic problem, we have to answer the following
crucial question: what is the meaning of a data integration system in the presence
of inconsistency? Since the main task of a data integration system is to provide
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answers to user queries, such a question can also be formulated as follows: what
are the answers to be returned to a user query in the presence of inconsistency?

This issue has been recently addressed in the field of inconsistent databases:
in this setting, the central problem is computing “consistent” answers to queries
posed to databases in which data do not satisfy the database schema, which
contains a set of integrity constraints [12, 4, 41, 29].

All approaches in this setting are based on the following principle: schema is
stronger than data. In other words, the database schema (i.e., the set of integrity
constraints) is considered as the actually reliable information (strong knowl-
edge), while data are considered as information to be revised (weak knowledge).
Therefore, the problem amounts to deciding how to “repair” (i.e., change) data
in order to reconcile them with the information expressed in the schema.

Notably, the above principle is an even more natural assumption in data
integration, where, due to the autonomous nature of the sources, data may not
be completely reliable and/or reconciled, while the global schema provides a
reliable specification of the semantics of data.

Even though the essence of the semantic problem that arises in inconsistent
databases is the same as the one illustrated for data integration, the different
structure of a data integration system with respect to a single database (in
particular, the presence of autonomous data sources and of the mapping) makes
the problem in the data integration setting significantly harder to deal with.
However, the first attempts to define a semantics for data integration systems
in the presence of inconsistency in general have tried to extend, in a more or
less “intuitive” way, semantic approaches that had been previously defined for
inconsistent databases.

In this paper we try to provide a rigorous study of the problem of dealing
with inconsistency in data integration systems. We address the problem in a
very general and comprehensive setting, that amplifies the structural differences
with the single database setting. Indeed, we want to be able to deal with very
expressive global schema specifications and mapping assertions: therefore, we
use first-order logic to represent such components of a data integration system.

More specifically:

– we consider the well-established logic-based formalization of data integra-
tion systems (see e.g. [38]), and restate it in terms of first-order logic. Such
a framework is very general, since it is able to capture the main logical ap-
proaches to data integration proposed so far. Among other things, such a
generality allows us to compare and evaluate the different existing proposals;

– we provide an in-depth analysis of the problem of dealing with inconsistencies
in data integration systems. In this respect, we highlight the central role
played by the mapping, and propose a general “mapping-centered” semantics
that allows for computing significant answers to user queries even in the
presence of inconsistent information. We argue that our semantic approach
formalizes a very reasonable way of handling inconsistency in such systems,
since all the existing proposals in the literature can be reconstructed in our
semantic framework.
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The paper is structured as follows. In Section 2, we provide the syntax and the
first-order semantics of the formal framework for data integration. In Section 3,
we study the problem of dealing with inconsistency in data integration systems,
and provide new formal semantics for the integration framework. In Section 4,
we analyze the state of the art in inconsistent databases and data integration,
and show that our framework is able to capture all the main approaches to
consistent query answering in database and data integration systems proposed
so far. Finally, we conclude the paper in Section 5.

2 Framework

In this section we define a general formal framework for data integration. In-
formally, a data integration system consists of a (virtual) global schema, which
specifies the global elements exposed to the user, a source schema, which de-
scribes the structure of the sources in the system, and a mapping, which speci-
fies the relationship between the sources and the global schema. User queries are
posed on the global schema, and the system provides the answers to such queries
by exploiting the information supplied by the mapping and accessing the sources
that contain relevant data. Thus, from the syntactic viewpoint, the specification
of an integration system depends on the following parameters:

– The form of the global schema, i.e., the formalism used for expressing
global elements and relationships between global elements, e.g., integrity
constraints expressed over a database schema. Several settings have been
considered in the literature, where, for instance, the global schema can be
relational [28], object-oriented [8], semi-structured [42], based on Description
Logics [36, 16], etc.

– The form of the source schema, i.e., the formalism used for expressing data at
the sources and relationships between such data. In principle, the formalisms
commonly adopted for the source schema are the same as those mentioned
for the global schema;

– The form of the mapping. Two basic approaches have been proposed in the
literature, called respectively global-as-view (GAV) and local-as-view (LAV)
[40, 44]. The GAV approach requires that the global schema is defined in
terms of the data sources: more precisely, every element of the global schema
is associated with a view, i.e., a query, over the sources, so that its meaning is
specified in terms of the data residing at the sources. Conversely, in the LAV
approach, the meaning of the sources is specified in terms of the elements of
the global schema: more exactly, the mapping between the sources and the
global schema is provided in terms of a set of views over the global schema,
one for each source element.

– The language of the mapping, i.e., the query language used to express views
in the mapping.

– The language of the user queries, i.e., the query language adopted by users
to issue queries on the global schema.
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Let us now turn our attention to the semantics. According to [38], the se-
mantics of a data integration system is given in terms of the extension of the
elements of the global schema (e.g., one set of tuples for each global relation if
the global schema is relational, one set of objects for each global class if it is
object-oriented, etc.). Such extension has to satisfy (i) the knowledge expressed
by the global schema, and (ii) the mapping specified between the global and the
source schema.

Roughly speaking, the notion of satisfying the mapping depends on how
the data retrieved from the sources are interpreted with respect to the data that
satisfy the global schema. Different interpretations lead to different notions. More
specifically, when the mapping is GAV, data that satisfy each global element
can be considered a superset or a subset of the data retrieved by the associated
view over the sources. In the case of LAV mapping, data stored in each source
element can be considered a subset or a superset of the data that satisfy the
corresponding view over the global schema. Both in GAV and in LAV, views in
the mapping are called sound in the former case and complete in the latter. A
view can be also considered sound and complete at the same time: in this case it
is called exact. When all views are sound (resp. complete, exact), the mapping
is called sound (resp. complete, exact).

In the following, we provide a precise characterization of the concepts in-
formally explained above. In particular, we define a logical formal framework
which captures all the syntactic and semantic aspects of data integration ap-
plications. In our framework, the languages used to specify the global and the
source schema, the mapping and user queries rely on first-order logic (FOL). Ac-
tually, the expressive power of FOL allows us to capture most of the approaches
to data integration proposed in the literature. Moreover, in the spirit of [38], we
consider mappings of a very general form, which allows for specifying GAV and
LAV mappings as special cases. For clearness of presentation, we first address
the syntax and then the semantics of our framework.

2.1 Syntax

A data integration system I is a triple 〈G,S,M〉, where:

– G is the global schema, expressed in some subset of FOL with equality on
the alphabet formed by a possibly infinite set Γ of constant symbols, and a
set AG of predicate (or relation) symbols with associated arity (we do not
consider functions in this paper). In other words, G is composed by a set of
predicates and a set of first-order sentences on such predicates.

– S is the source schema, composed by the schemas of the various sources.
We assume that the source schema is simply a set of predicate (or relation)
symbols with associated arity of an alphabet AS . In other words, we do
not allow for the specification of FOL sentences establishing integrity con-
straints over data sources. This implies that data stored at the sources are
always considered locally consistent. This is a common assumption in data
integration, because sources are in general autonomous and external to the
integration system, which is not in charge to analyze their consistency.
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– M is the mapping between G and S. It is constituted by a set of asser-
tions in which, intuitively, views, i.e., queries, expressed over G are put in
correspondence to queries expressed over S. We assume that queries in the
mapping are FOL queries, i.e., open formulas of the form

{x1, . . . , xn | φ(x1, . . . , xn)} (1)

where x1, . . . , xn is the sequence of free variables of φ, and n is the arity of
the query. More precisely, a mapping assertion assumes one of the following
forms

qS v qG ,
qG v qS

where qS and qG are two queries of the same arity, respectively over the
alphabet AS ∪ Γ and the alphabet AG ∪ Γ .
We point out that the above definition corresponds to a generalized form of
mapping that comprises LAV and GAV as special cases. Indeed, the GAV
approach corresponds to restricting the queries qG to single atom queries,
i.e., queries containing a single element of the global schema, whereas the
LAV approach corresponds to restricting the queries qS to queries containing
a single element of the source schema.

Finally, we consider user queries posed to a data integration system I, and
define their syntax. Each such query q is a formula that is intended to provide
the specification of which data to extract from the integration system. We as-
sume that user queries are first-order queries, i.e., formulas of form (1), over the
alphabet AG ∪ Γ .

Example 1 Consider a data integration system I0 = 〈G0,S0,M0〉, where
the global schema alphabet AG0 comprises the three binary relation symbols
DeptDirector , EmployeeDept and DeptLocation, which respectively indicate di-
rector of departments, department of employees, and location of departments.
Assume that the following FOL sentences are specified over the alphabet AG0 ,

∀x, y1, y2.EmployeeDept(x, y1) ∧ EmployeeDept(x, y2) ⊃ y1 = y2,

∀x, y.DeptDirector(x, y) ⊃ EmployeeDept(y, x),

which state respectively that an employee works in only one department, and
that a director of a department is also an employee of the same department.

Consider now the source schema S0, and assume that its alphabet AS0 com-
prises the three binary relation symbols IsBossOf , IsMemberOf and WorksIn,
which respectively specify bosses of employees, members of departments, and
cities in which employees work.

According to the above description of the sources, we define the mapping
M0 with the following three assertions:

{x, y | DeptDirector(x, y)} v {x, y | ∃z.IsBossOf (y, z) ∧ IsMemberOf (z, x)},
{x, y | ∃z.IsBossOf (y, z) ∧ IsMemberOf (z, x)} v {x, y | DeptDirector(x, y)},
{x, y, z | IsMemberOf (x, y) ∧WorksIn(x, z)} v

{x, y, z | EmployeeDept(x, y) ∧DeptLocation(y, z)}.
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Finally, consider the following query issued on the global schema

{x, y | EmployeeDept(x, y)},
which asks for the pairs employee-department.

2.2 Semantics

For the sake of simplicity of presentation, we assume that the domain of inter-
pretation is a fixed denumerable set of elements ∆ and that every such element is
denoted uniquely by a constant symbol, called its standard name [39]. We assume
that the set of standard names is the set of constants Γ previously introduced.
Therefore, without loss of generality we assume that ∆ = Γ . We point out that,
in our framework, we can also adopt the finite model assumption, i.e., we can
assume that ∆ is a finite set. Actually, the study of both finite and unrestricted
models is relevant in database theory.

Intuitively, to specify the semantics of a data integration system, we have to
start with a set of data at the sources, and we have to specify which are the data
that satisfy the global schema with respect to such data at the sources. Thus,
in order to assign the semantics to a data integration system I = 〈G,S,M〉,
we start by considering a source model for I, i.e., an interpretation D for the
source schema S. Moreover, we assume that each instance of the information
sources to be integrated has only one model. This is a classical assumption in
data integration, since the information sources to be integrated are typically
databases, i.e., they provide the integration system with a single fixed database
extension. Therefore, in the following, with a little abuse of notation, we use the
symbol D to denote both the source instance and the unique model of such an
instance.

Based on D, we now specify which is the information content of the global
schema G. We call any interpretation over ∆ of the symbols in AG a global
interpretation for I.

Definition 1. Let I = 〈G,S,M〉 be a data integration system, let D be a source
model for I, a global interpretation W for I is a model for I w.r.t. D iff

1. W is a model of G, i.e., W |= G;
2. W satisfies the mapping M w.r.t. D. More precisely, we say that W satisfies
M with respect to D if:

- for each assertion in M of the form qS v qG,

qDS ⊆ qWG ,

where qDS (resp., qWG ) denotes the result of evaluating qS (resp., qG) over
the interpretation D (resp., W), i.e., the set of tuples of elements of ∆
associated to the free variables of qS (resp., qG) by the interpretation D
(resp., W). In other words, an assertion of the form qS v qG is satisfied
if each tuple in qDS is also a tuple of qWG ;
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- for each assertion in M of the form qG v qS ,

qWG ⊆ qDS ,

i.e., each tuple in qWG is also a tuple of qDS .

The set of all models for I w.r.t. D is called the semantics of I w.r.t. D, denoted
by sem(I,D).

Notice that, from the above semantics of the mapping M, it follows that
in our framework it is possible to express the sound, the complete, and the
exact interpretation of the mapping assertions studied in data integration [38].
In particular, if we want to formulate a generic mapping assertion A defining a
relationship between the query qG over the global schema and the query qS over
the source schema:

– a sound interpretation of A corresponds in our framework to the assertion
qS v qG ;

– a complete interpretation of A corresponds to the assertion qG v qS ;
– an exact interpretation of A corresponds to the pair of assertions qS v qG ,

qG v qS .

Let us now turn our attention to queries. In order to define the semantics of
a query q over a data integration system I, we have to take into account all the
models of I with respect to D.

Definition 2. Let I = 〈G,S,M〉 be a data integration system, let D be a source
model for I, and let q be a user query over I, then the set of certain answers of
q with respect to I and D, denoted by ans(q, I,D), is defined as follows:

ans(q, I,D) = {〈c1, . . . , cn〉 | for each W ∈ sem(I,D), 〈c1, . . . , cn〉 ∈ qW }

Such a notion of answers, corresponding to skeptical entailment, is the most
used in data integration; however the notion of possible answers, corresponding
to credulous entailment, can also be defined [32, 38].

Example 1 (contd.) Assume now that the set of constants Γ contains, among
others, the elements John, Mary,D1,New York, and consider the following source
model D0 for I0,

D0 = { IsBossOf (John, Mary), IsMemberOf (Mary, D1),
WorksIn(John, New York),WorksIn(Mary, New York)}.

Then, in each global interpretation that satisfies M0 w.r.t. D0 the following
set W0 of facts holds,

W0 = { DeptDirector(D1, John),EmployeeDept(Mary, D1),
DeptLocation(D1, New York)}.
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The set W0 and the global sentence ∀x, y.DeptDirector(x, y) ⊃
EmployeeDept(y, x) entail the fact EmployeeDept(John, D1) (i.e., if John is the
director of department D1, then John is also an employee of D1). Furthermore,
this fact can be added to W0 without affecting the satisfaction of the mapping.
Therefore,

sem(I0,D0) = {W | W |= G0 and W ⊇W0 ∪ {EmployeeDept(John, D1)}}.

Then, for the query q = {x, y | EmployeeDept(x, y)}, we have that

ans(q, I0,D0) = {〈Mary,D1〉, 〈John,D1〉}.

3 General Semantics

According to the semantics sem(I,D), it may be the case that the data retrieved
from the sources cannot be reconciled in the global schema in such a way that
both the knowledge in the global schema and the mapping are satisfied [37]. In
such cases, sem(I,D) = ∅, therefore, by Definition 2, every tuple is in the answer
set of every query. This is not an acceptable way of handling inconsistency: as
motivated by the studies in consistent query answering in inconsistent databases
[12, 4, 29], it could be possible to derive significant answers to queries even in the
presence of inconsistency.

Example 1 (contd.) Consider now the following source model D′0 for I0,

D′0 = { IsBossOf (John, Mary), IsMemberOf (Mary,D1),
IsMemberOf (John,D2),WorksIn(John, New York),
WorksIn(Mary,New York)},

where D2 is a new symbol of Γ .
Proceeding as before, we have now that, in each global interpretation that

satisfies M0 w.r.t. D′0, the following set W ′
0 of facts holds,

W ′
0 = { DeptDirector(D1, John),EmployeeDept(Mary,D1),

DeptLocation(D1, New York),EmployeeDept(John, D2),
DeptLocation(D2, New York)}.

Furthermore, analogously to the previous case, W ′
0 and the global

sentence ∀x, y.DeptDirector(x, y) ⊃ EmployeeDept(y, x) entail the fact
EmployeeDept(John, D1). Such fact, together with EmployeeDept(John,D2),
which is contained in W ′

0, violate the sentence of G0 stating that an employee
works in only one department. On the other hand, the mappingM0 and the other
sentence in G0 force us to consider in the semantics of the system those global
interpretations of G0 in which both such facts hold. Therefore, sem(I0,D′0) = ∅,
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i.e., the system I0 is inconsistent with respect to D′0, and the certain answers to
each query of arity n are all the n-tuples of elements of Γ .

Roughly speaking, query answering under the classical sem is not signifi-
cant in the presence of inconsistency, since the system provides answers to user
queries which are returned only because of the “ex falso quodlibet” principle,
but which are not “positively” supported by data stored at the sources. In our
scenario, for example, all pairs of elements of Γ are in the answer set of the
query {x, y | EmployeeDept(x, y)}, e.g., the pair 〈Mary, John〉, which is not wit-
nessed by any source data. Nonetheless, there are facts at the global level, as for
example EmployeeDept(Mary, D1), that would be entailed by the system even in
the absence of the inconsistency described above. Therefore, it seems reasonable
to assume that the set of “significant” certain answers to our query is the set
{〈Mary, D1〉}, rather than the set of all pairs of elements of Γ .

To the aim of overcoming the problems illustrated above, we characterize the
semantics of a data integration system I = 〈G,S,M〉 w.r.t. to a source instance
D in terms of those interpretations over ∆ of the symbols in AG that:

1. satisfy the global schema G;
2. satisfy as much as possible the mapping assertions in M w.r.t. the source

instance D.

In other words, under this assumption, the knowledge expressed by G is consid-
ered more reliable than the knowledge represented by the information retrieved
at the data sources through the mapping assertions.

In order to determine the precise meaning of “satisfying as much as possible”
the mapping with respect to a source instance D, we define preference orders
over the models of G.

Let U∆ be the set of interpretations of AG over ∆, and let º be a reflexive and
transitive binary relation defined over U∆×U∆ that depends on the mapping M
and the source database D. The relation º induces a preference order over the
global interpretations of the system. More precisely, given two interpretations
W,W ′ of AG , we say that W ′ is º-preferred to W if W ′ º W and W 6º W ′.

Then, we are ready to generalize Definition 1 and give a new notion of model
for an integration system I w.r.t. a source model D, which corresponds to the
notion of maximal element in the preference order defined above.

Definition 3. Let I = 〈G,S,M〉 be a data integration system, let D be a source
model for I, let W be an interpretation over AG, and let º be a reflexive and
transitive binary relation defined over U∆ × U∆ that depends on M and D. We
say that W is an º-model for (I,D) if W is a model for G, and for each model
W ′ for G, W ′ is not º-preferred to W.

The previous definition allows for defining a new semantics for a data inte-
gration system I with respect to a source database D. In particular, we define

consSem(º, I,D) = {W | W is a º -model for (I,D)}.
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Now, we instantiate the above general semantics by defining three distinct
preference relations over the interpretations of AG . Informally, we consider as
intended models of the integration system those interpretations that satisfy G
and satisfy as much as possible a set of first-order sentences that constitutes the
“image of the mapping assertions” with respect to D. More precisely, we define
three different criteria for comparing two interpretations, based on the different
relevance we attribute to sound and complete mapping assertions, i.e., assertions
of the form qS v qG and qG v qS , respectively. This approach gives rise to three
different semantics:

1. consSemS , where sound mapping assertions are more relevant than complete
mapping assertions;

2. consSemC , where complete mapping assertions are more relevant than sound
mapping assertions;

3. consSem, where all mapping assertions have the same relevance.

To formalize the above ideas, we first define the notions of “image” of the
mapping M with respect to a model D of the sources as a set of first-order
sentences. In the following definition, q(t) indicates the FOL sentence obtained
from the open formula q by replacing its free variables with the constants in t,
i.e., if t = 〈t1, . . . , tn〉 and {x1, . . . , xn} are the free variables of q, xi = ti for
each 1 ≤ i ≤ n.

Definition 4. Given a data integration system I = 〈G,S,M〉 and a source
model D for I, we define S-Image(M,D), C-Image(M,D), and Image(M,D)
as follows:

S-Image(M,D) = {qg(t) | qs v qg ∈M and t ∈ qDs },
C-Image(M,D) = {¬qg(t) | qg v qs ∈M and t is a tuple of Γ and t 6∈ qDs },

Image(M,D) = S-Image(M,D) ∪ C-Image(M,D).

Intuitively, S-Image(M,D) represents the “image” of the sound mapping as-
sertions with respect to D, while C-Image(M,D) represents the image of the
complete mapping assertions with respect to D, and Image(M,D) is the image
of all mapping assertions with respect to D.

Example 1 (contd.) In our ongoing example, we have that

S-Image(M0,D′0) = { EmployeeDept(Mary,D1) ∧DeptLocation(D1, New York),
EmployeeDept(John, D2) ∧DeptLocation(D2,New York),
DeptDirector(D1, John)}, and

C-Image(M0,D′0) = { ¬DeptDirector(α, β) | α, β ∈ Γ and α 6= D1 or β 6= John}.

Then, given an interpretation W of the elements in AG , we define
SatIm(W,M,D) as the portion of the image of M with respect to D satisfied
by W. More precisely:
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Definition 5. Let I = 〈G,S,M〉 be a data integration system, let D be a source
model for I, and let W be a global interpretation of I. We define:

S-SatIm(W,M,D) = {ϕ | ϕ ∈ S-Image(M,D) and W |= ϕ},
C-SatIm(W,M,D) = {ϕ | ϕ ∈ C-Image(M,D) and W |= ϕ},

SatIm(W,M,D) = S-SatIm(W,M,D) ∪ C-SatIm(W,M,D).

Based on the above notions of image of the mapping with respect to a source
instance, we are now ready to define three partial orders, relying on set contain-
ment, over the global interpretations of a data integration system.

Definition 6. Let I = 〈G,S,M〉 be a data integration system, let D be a source
model for I, and let W,W ′ be two global interpretations for I. We define the
relations ºS

(M,D), ºC
(M,D), º(M,D) as follows:

1. W ′ ºS
(M,D) W if one of the following conditions holds:

(a) S-SatIm(W ′,M,D) ⊃ S-SatIm(W,M,D);
(b) S-SatIm(W ′,M,D) = S-SatIm(W,M,D) and C-SatIm(W ′,M,D) ⊃

C-SatIm(W,M,D).
2. W ′ ºC

(M,D) W if one of the following conditions holds:
(a) C-SatIm(W ′,M,D) ⊃ C-SatIm(W,M,D);
(b) C-SatIm(W ′,M,D) = C-SatIm(W,M,D) and S-SatIm(W ′,M,D) ⊃

S-SatIm(W,M,D).
3. W ′ º(M,D) W if SatIm(W ′,M,D) ⊃ SatIm(W,M,D).

The previous definition allows for specializing the consSem(º, I,D), and
defining the semantics for each of the above partial orders. In particular:

consSemS(I,D) = {W | W is a ºS
(M,D) -model for (I,D)},

consSemC(I,D) = {W | W is a ºC
(M,D) -model for (I,D)},

consSem(I,D) = {W | W is a º(M,D) -model for (I,D)}.
Example 2 Consider the data integration system I1 = 〈G1,S1,M1〉, such that
the global alphabet AG1 contains the binary relation symbol relative, which
indicates pairs of relatives, and that the following FOL sentence is specified over
AG1 ,

∀x, y.relative(x, y) ⊃ relative(y, x),

stating that if x is a relative of y also the converse holds. Assume now that S1

contains the binary relation symbol s and that the mapping M1 is as follows,

relative(x, y) v s(x, y)
s(x, y) v relative(x, y).

Then, let D1 = {s(Albert, Ann)} be a source model for I1. It is easy to see that

S-Image(M1,D1) = { relative(Albert, Ann)}
C-Image(M1,D1) = { ¬relative(α, β) | α, β ∈ Γ and α 6= Albert or β 6= Ann}.
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Therefore, we have that

consSemS(I1,D1) = {W | W |= G1 and
W ⊇ {relative(Albert,Ann), relative(Ann, Albert)}},

consSemC(I1,D1) = {∅}, and
consSem(I1,D1) = consSemS(I1,D1) ∪ consSemC(I1,D1).

Finally, we are able to define the notion of certain answers in the new se-
mantics.

Definition 7. Let I = 〈G,S,M〉 be a data integration system, let D be a source
model for I, and let q be a query over G. Then:

consAnsS(q, I,D) = {t | t ∈ qW for each W ∈ consSemS}
consAnsC(q, I,D) = {t | t ∈ qW for each W ∈ consSemC}
consAns(q, I,D) = {t | t ∈ qW for each W ∈ consSem}

Example 1 (contd.) Let us first enumerate the sentences of S-Image(M0,D′0)
as follows:

1. EmployeeDept(Mary,D1) ∧DeptLocation(D1, New York),
2. EmployeeDept(John, D2) ∧DeptLocation(D2,New York),
3. DeptDirector(D1, John).

Then, we have that consSem(I0,D′0) contains all global interpretations W0

of I0 that satisfy either sentences 1 and 2 or sentences 1 and 3. Indeed,
if W0 satisfied both sentences 2 and 3, the facts EmployeeDept(John,D2)
and DeptDirector(D1, John) would hold in W, and hence also the fact
EmployeeDept(John, D1) would hold, since in G0 a director of a department is
also an employee of the same department. Thus, W0 would violate the sentence
in G0 stating that each employee works in only one department. On the other
hand, W0 cannot satisfy only one sentence in S-Image(M0,D′0) or any sentence
in S-Image(M0,D′0), since in such a way it would not be maximal w.r.t. the
º(M,D)-preference ordering.

Notice that, for the query q = {x, y | EmployeeDept(x, y)} we have that
consAns(q, I0,D′0) = {〈Mary, D1〉}.

We point out that the semantics consSem (and also consSemS and consSemC)
defined above has an important property: for each integration system I and
source instance D, if sem(I,D) 6= ∅ then consSem(I,D) = sem(I,D) (the same
equality holds both for consSemS and consSemC). In this sense, such semantics
can be considered as “conservative extensions” of the classical semantics sem,
since they provide a different meaning to a data integration system only in the
presence of inconsistency (i.e., only when sem(I,D) = ∅).
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As a concluding remark, observe that to specialize the above semantics in
order to adopt a cardinality-based preference criterion for models, rather than a
set-containment-based one, it suffices to suitably modify Definition 6, comparing
the cardinality of the sets SatIm(W,M,D) and SatIm(W ′,M,D) instead of their
extension. As we shall see in the next section, such a quantitative approach has
been proposed in the literature (e.g., [41]).

4 Comparison with Current Proposals

The framework for data integration presented in the previous sections is very
general, in terms of (i) global schema (first-order theories), (ii) mapping asser-
tions (generalization of GAV and LAV, first-order queries), (iii) semantics. In
this section, we briefly survey the main studies both in the area of data inte-
gration and in the field of inconsistent databases, which studies the problem of
computing answers to databases in which data violate integrity constraints, and
we show that our framework is able to capture all the logic-based approaches to
data integration and to inconsistent databases proposed in the literature. Such
an analysis allows for a better understanding of the different semantic nature of
the existing proposals.

4.1 Relationship with belief revision and update

First of all, we point out that the problem of reasoning with inconsistent data-
bases is closely related to the studies in belief revision and update [45, 35, 3].
This area of Artificial Intelligence studies the problem of integrating new infor-
mation with previous knowledge. In general, the problem is studied in a logical
framework, in which the new information is a logical formula f and the previous
knowledge is a logical theory (also called knowledge base) T . Of course, f may
in general be inconsistent with T . The revised (or updated) knowledge base is
denoted as T ◦ f , and several semantics have been proposed for the operator ◦.
The semantics for belief revision can be divided into revision semantics, when
the new information f is interpreted as a modification of the knowledge about
the world, and update semantics, when f reflects a change in the world.

The problem of reasoning about a data integration system I = 〈G,S,M〉,
whose data at the sources D may be inconsistent with respect to the global
schema and the mapping, can be actually seen as a problem of belief revision. In
fact, with respect to the above illustrated knowledge base revision framework,
if we consider the source instance D and the mapping specification M as the
initial knowledge base T , and the global schema G as the new information f ,
then the problem of deciding whether a tuple t is in the answer set of a query q
with respect to the system I and the source instance D corresponds to the belief
revision problem (D ∪M) ◦ G |= q(t).

Based on such a correspondence, the studies in belief revision appear very
relevant for the field of data integration: indeed, our framework can be seen
in principle as the application of a semantics for belief revision/update in a
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particular class of logical theories (for a detailed definition of some of the most
important belief revision/update semantics see e.g. [25]).

However, due to the structure of a data integration system, the kind of theo-
ries that must be revised/updated have a very special form. Specifically, in a data
integration architecture, the mapping assertions, which are sentences of a very
particular form (implication of first-order queries), provide the only connection
that exists between data at the sources, which are part of the initial knowledge,
and the global schema, which represents the revised knowledge. Hence, mapping
assertions constitute the crucial part of the theory in the revision/update process
in data integration. Due to the form of such assertions, it is possible to define
a semantic treatment of revision/update which is specialized for this particular
kind of sentences. This is precisely what is generally done in the data integration
literature, and what we have proposed in our framework: preferred model of the
revised/updated theory must maximize satisfaction of the mapping assertions.

On the other hand, even in the context of database update/revision, which
is the closest to the data integration setting, the concept of mapping is missing,
which in general makes it hard to provide a detailed comparison of the semantic
approaches presented in this paper with the literature on database update [45,
35]. However, belief revision/update in a typical database setting is considered by
the literature on inconsistent databases, which we briefly survey in the following.

4.2 Consistent query answering in inconsistent databases

We now briefly survey the main existing approaches to inconsistent databases.
We start by pointing out that the single database setting, that is the one that is
studied in the field of inconsistent databases, can be seen as a very special case of
a data integration scenario. Indeed, a relational schema RS corresponds to the
global schema G of a data integration system I = 〈G,S,M〉 in which relation
predicates in G are in a one-to-one correspondence with relation predicates in S.
More precisely, if g1/h1, . . . , gn/hn are the global relations, where with gi/hi we
indicate that hi is the arity of gi, then the source relations are s1/h1, . . . , sn/hn,
and the mapping is given by the n one-to-one assertions

{X1, . . . , Xhi | gi(X1, . . . , Xhi)} v {X1, . . . , Xhi | si(X1, . . . , Xhi)}
for each i, 1 ≤ i ≤ n in the case of sound mapping, while the assertions have the
form

{X1, . . . , Xhi | si(X1, . . . , Xhi)} v {X1, . . . , Xhi | gi(X1, . . . , Xhi)}
in the case of complete mapping (both kinds of assertions are expressed in the
case of an exact mapping). With this notion in place, we can review the works in
inconsistent databases by comparing them with our data integration framework.

Arenas et al. define in [4] a semantics for handling databases in which data are
inconsistent with respect to a set of integrity constraints, and an algorithm for
computing certain answers (called consistent answers) to user queries under such
a semantics. The query answering method is proved to be sound and complete
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only for the class of universally quantified binary constraints, i.e., non-existential
FOL sentences of a particular form that involve two database relations. In [5],
the same authors propose a new method based on the use of logic rules with
exceptions that can handle arbitrary universally quantified constraints. The se-
mantics underlying the notion of consistent query answers both in [4] and in [5]
is defined on a set-containment ordering between databases. It turns out that
this approach corresponds in our framework to the case of an exact, one-to-one
mapping and to the consSem semantics.

Greco et al. propose in [29] a technique to deal with inconsistencies that is
based on the reformulation of integrity constraints into a disjunctive datalog
program with two different forms of negation: negation as failure and classical
negation. Such a program can be used both to repair databases, i.e., modify the
data in the databases in order to satisfy integrity constraints, and to compute
certain answers to queries. The technique is proved to be sound and complete for
universally quantified constraints. Also in this case, such an approach is captured
in our framework by adopting an exact, one-to-one mapping and by the notion
of consSem.

In [27], Fagin et. al propose a framework for updating theories and logical
databases (i.e., databases obtained by giving priorities to sentences in the data-
bases) that can be extended also to the case of updating views. The semantics
proposed in that paper is based on a particular set-containment based order-
ing between theories that “accomplish” an update to an original theory. More
precisely, a theory T1 accomplishes an insertion of a fact σ into T if σ ∈ T1,
and accomplishes a deletion of σ if σ is not a logical consequence of T1. Then,
a theory T1 accomplishes an update u to T with a smaller change than T2, and
thus is preferred to T2, if both T1 and T2 accomplish u, and either: (1) the set
of facts deleted from T to obtain T1 is contained in the set of facts deleted from
T to obtain T2 (notice that no condition on the added facts is imposed); or (2)
the two sets of deleted facts described above coincide, but the set of facts added
to T to obtain T1 is contained in the analogous set needed to obtain T2 from T .
It is easy to verify that this approach corresponds in our framework to an exact
one-to-one mapping and to the notion of consSemS .

Moreover, a different semantics for database repairing has been considered
by Chomicki et al. in [22, 21]. Specifically, in such works a semantics is defined
in which only elimination of tuples is allowed; therefore, the problem of dealing
with infinite models is not addressed. Then, a preference order over the database
repairs is defined, in such a way that only minimal repairs (in terms of set
containment) are considered. Hence, the semantics is a “maximal complete” one,
in the sense that only maximal consistent subsets of the database instance are
considered as repairs of such an instance. In [22] the authors establish complexity
results for query answering under such a semantics in the presence of denial
constraints [2], while in [21] also inclusion dependencies [2] are considered. This
approach corresponds in our framework to an exact one-to-one mapping and to
the notion of consSemC . Although in a different formal framework, the same
semantic approach is also considered by Baral et al. in [6].
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A cardinality-based approach is pursued by Lin et al. in [41], where the au-
thors describe an operator for merging databases under constraints which allows
for obtaining a maximal amount of information from each database by means of
a majority criterion used in case of conflict. Notice that, differently from all the
other studies mentioned above, this approach relies on a cardinality-based or-
dering between databases (rather than a set-containment-based ordering). How-
ever, our general framework is able to capture this approach: specifically, the
semantic principle adopted in [41] is exactly captured by Definition 3 under the
following relation º: given the mapping M and a source model D, W ′ º W
iff dist(W ′, Image(M,D)) < dist(W, Image(M,D)), i.e., the interpretations are
ordered according to their “distance” from the theory Image(M,D), where

dist(W, Image(M,D)) = min
Wi|=Image(M,D)

(|W −Wi|+ |Wi −W|)

i.e., the distance between an interpretation W and Image(M,D) is the minimum
distance betweenW and any model of Image(M,D), where the distance between
two interpretations is measured in terms of the cardinality of the symmetric
difference of the interpretations.

Finally, Cal̀ı et al. [14] present three different semantics for inconsistent data-
bases, called respectively loosely-sound, loosely-exact, loosely-complete seman-
tics. They all correspond to instances of the semantics consSem of our framework,
where the one-to-one mapping is defined respectively through sound, exact, and
complete mapping assertions.

4.3 Data integration

In the field of data integration, most of the logic-based approaches have adopted
a classical first-order semantics ([44, 31, 38] provide a complete picture of the
main works in this area). In particular, all the approaches that use LAV mapping
assertions adopt a sound semantics for the mapping (see e.g. [7, 17, 43, 1, 24, 30]),
while the studies concerning GAV mapping assertions have in general interpreted
the mapping as exact (e.g., [20, 9]). A notable exception for GAV is [13], where
a sound assumption on the mapping assertions is adopted.

Only recently the problem of dealing with inconsistent data has been taken
into account in logic-based data integration settings. In particular, data inconsis-
tency in a LAV scenario has been studied in [10] and [11]. The semantics proposed
in [10] and [11] turns out to be different from each of the semantics proposed in
our framework. Indeed, while our proposal focuses on the mapping and define
a suitable relaxation of it in the presence of inconsistency, [10, 11] characterize
the semantics in terms of the repairs of the different global databases that can
be obtained by populating the global schema according to the LAV mapping.
More specifically, [10, 11] assume that the mapping is sound, and consider the
set min(G) of the minimal (w.r.t. set inclusion) global databases that satisfy
the mapping with respect to the source instance. Then, the models of the sys-
tem, called repairs, are the global databases consistent with the constraints on
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sound mapping exact mapping complete mapping
(qs v qg) (qs v qg and qg v qs) (qg v qs)

Abiteboul et al. [1] Chawathe et al. [20]
sem Duschka et al. [24] Bergamaschi et al. [9]

Calvanese et al. [17]

Bry [12]
Arenas et al. [4, 5]

consSem Greco et al. [29]
Cal̀ı et al. [14] Cal̀ı et al. [14] Cal̀ı et al. [14]
(loosely-sound) (loosely-exact) (loosely-complete)
Cal̀ı et al. [15] Lin et al. [41] (card.)

consSemS Fagin et al. [27]

consSemC Chomicki et al. [21]
Baral et al. [6]

Table 1. Classification of the approaches considered in the paper.

the global schema that are minimal w.r.t. ≤DB for some DB ∈ min(G), where
B ≤DB B′ if 4(B,DB) ⊆ 4(B′,DB), where in turn 4(X, Y ) indicates the sym-
metric difference between X and Y . In this semantics, even if the mapping is
assumed to be sound, the repairs are computed on each database in min(G),
as if the retrieved data were exact. Therefore, the semantics is not “mapping-
centered” as in our framework. Moreover, the repair semantics can be different
from the first-order semantics even when the latter is not empty.

Finally, in [15] the framework based on the loosely-sound semantics, intro-
duced for inconsistent databases in [14], is extended to the data integration
setting. More precisely, relational global schemas and GAV mapping assertions
are considered. This corresponds in our framework to the consSem semantics
under sound mapping assertions.

We summarize the analysis described above in the table reported in Table 1,
which presents a classification of the literature considered in this section. The
table has four main rows, which represent the four semantics we have defined in
our framework, and three columns, one for each possible kind of mapping. In each
cell of the table we have reported the approaches that adopt the corresponding
combination of semantics and mapping. As it is immediate to see in the table,
almost all the mentioned studies in inconsistent databases can be considered
as data integration approaches adopting an exact mapping and a “symmetric”
semantics consSem, while the main approaches to data integration adopt a sound
mapping and the classical first-order semantics sem.
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5 Conclusions

In this paper, we have studied the problem of data integration in the general
setting in which data at the sources may result inconsistent with respect to the
knowledge modeled by the integration system. In particular, we have defined
a comprehensive formal framework which is able to capture the main logical
approaches to data integration proposed so far in the literature, and we have
compared different proposals on the basis of such a framework. Moreover, our
“mapping-centered” semantics has allowed us to highlight the crucial role played
by the mapping in data integration systems, and to amplify the structural dif-
ferences of the data integration scenario with respect to the setting of a single
database.

In the present work, whose focus was on the semantic aspects related to data
integration, we have not considered the crucial problem of query processing in
data integration systems under the different semantics proposed in our frame-
work. In this respect, we remark that the complexity of the task of computing
the answers to queries is not only influenced by the criterion chosen for dealing
with inconsistency, but also heavily depends on the expressiveness of the for-
malism used for modeling the system. More precisely, the complexity of query
processing depends on all the aspects listed at the beginning of Section 2, and
in particular: (i) the user query language; (ii) the language for expressing the
mapping; (iii) the formalism for expressing the global schema (e.g., the form of
the integrity constraints that can be expressed over the global schema). The first
studies concerning the decidability and complexity of query processing in such a
rich and complex setting have appeared only recently (e.g., [4, 29, 22, 14, 15, 18]).

The formal framework for data integration presented in this paper may be
extended in several directions. For instance, it should be worth addressing the
presence of more complex forms of data sources in the integration system. More-
over, it would be very interesting to generalize our approach to more involved
information integration scenarios, e.g., data-exchange [26] and peer-to-peer sys-
tems [33], in which the assumption of a global information schema is unrealistic.
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