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Introduction

The claims to bring back Gestalt theory into the Neurosciences research field 
have been laid on both theoretical and experimental grounds. The constraints 
upon which things look as they do are commonly held as explanatory and 
predictive phenomenological conditions that supposedly contribute to a better 
understanding of brain mechanisms underlying the perceptual world structures. 
On the other side, some views of Gestalt theory have been claimed to fit with 
interpretations of structures of receptive fields, and of long-range neuronal 
connection pathways. 

Hence, as theoretical issues unravel, empirical implications arise. Breakthroughs 
and research programs may amount to evidence that Gestalt theory and 
contemporary visual Neurosciences cooperate for mutual benefit. But for that to 
obtain, the following questions are at stake. 

Which form is the phenomenological claim of Gestalt theory to be given, and 
how is it to be implemented in visual Neurosciences? How is one to build a 
common ground upon which to compare standard and Gestaltist models of 
neuronal computation? Once presumed that it could provide comparable 
neuronal models, is Gestalt theory expected to play any role in assessing how 
much the properties predicted by competing theories of one and the same brain 
area, say V1, are aligned with the perceptual structures of environment in which 
the brain evolved?

In order to answer these questions, this theoretical paper defines the characteristics 
of a standard model that qualifies as a received view in visual Neurosciences. 
Particular attention is paid to its intended interpretation of visual primitives 
definition, be it laid down on a somewhat intuitive or an abstract ground. As 
far as they regard the perceptual system capability of exploiting regularities 
and structures that can be retrieved in the environment, issues of functional 
architecture are discussed as well.

Then some critical objections to the received view are presented. The research 
paradigm of natural images statistics is briefly introduced, which is meant to 



GESTALT THEORY, Vol. 35, No.3

228

capture the ecologically valid conditions of perception against which the cortical 
units’ functions and architecture are to be modelled.

Finally, after reviewing the literature on the implications of Gestalt theory for 
Neurosciences, and of the research into natural scenes statistics that makes 
empirical reference to Gestalt experimental evidence, the conjecture is made that 
experimental phenomenology and Gestalt theory can profitably contribute to the 
research. Arguments are founded on the relevance ascribed to the orderings and 
structures that carve up phenomenologically the environment for an effectual 
cognitive and behavioural interaction to obtain.

A formal treatment of modelling phenomenological structures can prove efficient 
to compare and assess the theoretical and empirical implications for the perception 
research.
  
1. Varieties of Neuronal Models: Visual Primitives and Functional Architecture

Since the groundbreaking Hubel & Wiesel (1962), the study of response properties 
of neurons in cat visual cortex yielded models for the structure of receptive fields 
(RFs), but also for the function ascribed to visual neurons providing hypotheses 
for the wiring mechanism underlying brain functional architecture. The RFs 
are made up of different subunits that respond to luminance increments or 
decrements, which are spatially organised in different layouts that were deemed 
to account for the tuning of a neuron’s response selectivity to such well-specified 
stimuli features as position, orientation, length and width. The assumption is 
that neurons have a structure tuned to local contrast dimensions that reveal 
locally-oriented structures of objects, and that perceptual primitives are lines or 
bars. Hence, the neurons are taken as edge detectors. Simple cells respond to such 
stationary stimuli as luminance edges of specific orientation and polarity or as 
bright/dark lines only if located in appropriate subregions of RFs. Complex cells 
respond to moving lines and edges in any point of RFs with direction preference. 
Hypercomplex cells showed even more selectivity by responding less to more 
elongated stimuli than to shorter ones.

The assumption is that neurons at a low level with overlapping and aligned 
RFs converge to higher level neurons, whose selectivity to preferred stimuli are 
monotonically constructed in a tuning to more complex features. The spatial 
arrangement of convergent and divergent projections from low to higher 
levels defines the connections by which a functional architecture arises that is 
characterised as a bottom-up feedforward model, since information flows in 
one direction. Thus the emergence of more complex RFs, tuned to increasing 
dimensions of optimal stimuli and responding with a quite complex behaviour, 
is explained. 

Hubel & Wiesel (1977) argued that visual cortex is built up as a retinotopic map 
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organized by an array of neighbouring vertical columns specific for isorientation 
and ocular dominance. Moving transversally across two such contiguous columns, 
an orderly cycle of shift in value progression of both parameters is observed. A 
loop of neurons whose RFs span all these values was called hypercolumn. Taking a 
1mm3 column of cortical tissue perpendicularly through V1 layers delivers a cube 
made up by two hypercolumns of neurons with overlapping RF properties with 
shifted retinotopic position. Hubel and Wiesel contended that this “ice cube” 
model is the basic analysis unit of functional architecture. These cortical maps 
capitalized on an orthogonal layout with each other to optimize their interaction, 
thus providing «more than enough machinery» to process all possible values of a 
visual point in space.

De Valois & De Valois (1980) and De Valois, Albrecht & Thorell (1982) laid 
the ground for a quite different model. The lower level simple cells’ behaviour 
did not match in every respect the predictions of the Hubel & Wiesel model. 
These response profiles showed a primary peak sided by small lobes of excitatory 
and inhibitory activity. Further a variety of RFs size was found whose properties 
appeared to correlate with different scales of visual spatial information. Finally, 
when tested with sinusoidal stimuli, simple and complex cells showed different 
tuning to frequency and orientation.

Then a frequency channel model was developed drawing heavily on psychophysical 
evidence about contrast sensitivity function (CSF) – that is the relationship 
between the reciprocal of contrast detection at thresholds and different spatial 
frequencies – and adaptation with such stimuli as sinusoidal gratings (Campbell 
& Robson 1968; Blakemore & Campbell 1969). CSF was taken to represent the 
envelope of many narrowly-tuned frequency channels. It plots the properties of 
channels sensitive to different ranges of spatial frequency that reach threshold 
independently. Measurements were then taken of tuning curves with peak 
sensitivity and orientation bandwidth for each of the independent frequency 
channels. Since sinusoidal gratings are used as stimuli, a claim to the Fourier 
theorem was made to take sinusoidal gratings as the visual primitives whose 
appropriate combination of dimensions – frequency, amplitude, orientation and 
phase – specify the coarse and fine structure of visual objects and environments. 
RFs were identified with localized, oriented, bandpass filters of spatial frequencies 
whose power and phase spectra convey the information about the visual structure 
at different locations and to different scales. 

The evidence suggested another functional model (De Valois & De Valois 
1988). Cortical layers architecture arranges cells in order according to difference 
in frequency selectivity perpendicular to orientation preference. Thus each 
hypercolumn is given a two-dimensional coordinate system where separate 
neuronal channels decompose locally visual space into a set of primitives. Given 
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that cells’ selectivity appears to fall in a continuum of tuning degrees, neurons 
map locally the luminance structure of objects, that is at an extent of small 
sinusoidal patches. The activity of each hypercolumn preserves the general Fourier 
structure, decomposing it by a series of variables as to location, orientation, scale, 
and phase at particular retinal positions. Such elements of objects as edges are 
maintained to be recovered at a higher level by appropriate combination of filter 
with appropriate form and composition.  

2. The Linear-Non Linear Standard Model

Given a visual image I(x, y) as a 2D section of the visual environment, the amplitude 
A and the phase y of the frequency w in the (x,y)-plane takes different values 
located at any nxn point of the image patch. The sinusoidal properties Acos(wx 
+ wy + y) of the image are also conveniently described in terms of distribution 
of the coefficients Ccos(wx,y) for A and Ssin(wx,y) for y. The weighted sum of 
the coefficients conveys the information about the essential structure of visual 
images. Accordingly cortical neurons act as filters for the coefficients of sinusoidal 
components to extract the “strength” and location of only those frequencies 
matching the filter’s response functions at appropriate scale and location. If the 
sinusoids are orthogonal, that is the frequency wx and wy components in the x 
and y directions are computable as the vector w by the dot product with the 
coordinate (x,y) vector, then the cosine and sine functions provide the image basis 
whose projections give the coefficients for many different frequencies: 

      

Information about the different frequencies is deemed to be processed 
independently in spatial frequency channels made up by neurons according to 
RF’s response property selectivity and limited extension: e.g., for A a neuron 
convolutes a spatially delimited area with the product of a weighting and a 
window function:

where W(x,y) is a weight function that spans the area delimited by a window 
centred at I(xo,yo), and the output A(xo,yo) is dependent upon the amplitude 
response function of the neuron. That convolution obtains an amplitude and phase 
map of the frequency for every localized area selected by the window function. 
Drawing on Marceljia’s (1980) mathematical model of cortical RFs, Daugman 
(1980) hypothesized that RFs had similar properties to Gabor linear filters, that is 
filters whose components are in phase and are modulated by a Gaussian window. 
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Originally designed for one-dimensional analysis of acoustic signals, Gabor filters 
were extended to two dimensions to apply to the visual system (Daugman 1985) 
analysis in space and frequency domains. It is worth noting that, theoretically, the 
typical output of Gabor filters resembles the response profile with the additional 
lobe of activity found by De Valois & De Valois (1980). Jones & Palmer (1987) 
tested the optimality of Gabor function to fit the cat visual cortical neurons’ 
properties. Daugman (1988) proposed a neural network model for Gabor units’ 
analysis, segmentation and compression of images. Gabor linear filter function 
was assumed to provide a meaningful mathematical expression of the form of 
simple cell RFs. The form of a complex Gabor filter is the following:

where s(x,y) is the complex sinusoidal carrier that specifies the spatial frequency 
and phase in cartesian or polar coordinates; wr(x,y) is an elliptic gaussian envelope 
of a determinate magnitude that specifies the location of peak response function, 
and the coefficients scale along the (x,y)-axis, along with a parameter for rotation 
or translation.

The critical tuning properties of a 2D Gabor filter for the visual system for spatial 
frequency, orientation and phase angle are constrained in width and length by the 
gaussian modulation of variance in the (x,y)-directions, with the centre location 
at arbitrary spatial coordinates obtained by translation, and arbitrary orientation 
obtained by rotation anticlockwise. The output of a neuron that behaves as a 
Gabor filter is the  extraction of local structure from a delimited image patch with 
tuning degree that decreases at increasing distance from the centre of RF. 

Field & Tolhurst (1986) analysed data from a variety of simple cells RF whose 
response profiles as to bandwidth and symmetry were best fitted to the size and 
shape of Gabor functions.

Results were extended to wavelet analysis, that is Gabor functions whose gaussian 
envelope is a constant number of cycles of the sinusoids. Field (1993) meant 
to understand the information which power and phase spectra convey about 
the visual structure, how local phase spectrum is aligned along neighbouring 
frequency bands, and how power and phase invariance are preserved across 
scales. The filter function model was developed in its functional architecture 
implications. The image structure is mapped by cells arranged in cortical layers 
as a multiscale pyramid of local oriented filters at different spatial frequencies 
such that for each layer orientation tuning is represented along (x,y)-positions for 
each range of high, medium and low frequency tuning. At isorientation, cells are 
arranged in different positions and with wider bandwidth at increasing frequency. 
Each layer maps a spatial sampling grid for 2D filters, whose sampling distance 
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is proportional to RFs size, which is determined by the selected basis function 
that extracts the inherent structure of image components. If the basis functions 
are wavelets, then that arrangement of filters may decompose visual structures in 
power and phase spectra by a set of shifted, rotated and dilated copies of the same 
basis functions located at different layers. 

In fact, these models have been reconciled in abstract modelling within 
the theoretical framework provided by the linear system analysis in order to 
accommodate the enriched view of the functional architecture as well (Marmarelis 
& Marmarelis, 1978). 

Stimulus selectivity is no more analysed in terms of intuitive visual features, say 
edge, by which their function is to be characterized, say detector. Each neuron-
type function is conceptualized in a neutral way as a filter operation. The 
determinate range of values to which neurons specifically respond is represented 
as a complex domain of a multidimensional stimulus space. Features are the 
unique subsets that neurons filter out from multiple dimensions. Selectivity is 
expressed by mathematical equations that describe the specific tuning properties 
of neurons. The loss of intuitiveness of feature identification is compensated by a 
gain in abstract quantification that ensures a high level of confidence in modelling 
responsiveness to such diverse stimuli as contrast, spatial frequency, orientation, 
position, motion, colour and time (Albrecht, Geisler & Crane 2004)

Indeed, the simple cells in the Hubel & Wiesel model meet the response properties 
of the linear system, e.g. superposition and additivity. They show:

1. distinction of RF subregions;
2. spatial summation within a given subregion; 
3. mutual antagonism between subregions; 
4.	predictability of responses to new arbitrary stimuli by spatio-temporal 

summation for (1-3); 
5.	composition of response to more complex stimuli by a weighted sum of 

responses to simpler ones; (Hubel & Wiesel 1959; Movshon et al. 1978a,b; 
Albrecht et al. 2003; Carandini et al., 2005) 

A visual neuron is deemed to perform the following linear filter processing 

					   

that is a weighted sum of image properties, with the response output rj above 
the spontaneous firing rate (r0), where the weighting function Wj(x,y) describes 
the RF as it is mapped by reverse correlation with such different stimuli as a 
luminance spot flashed on different points of a visual field, edges, lines or bars, 
or sinusoidal gratings. Linear system identification models neurons as linear filter 
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operators in a way that is alleged to be independent from any assumption about 
primitives or theoretical principles, since it tests how a response is affected by a 
stimulus dimension component as is the case in regression analysis.

Hence the stimuli features selectivity and response optimality of neurons are 
characterized with the known properties of linear filter operators by mapping the 
neural responses in the stimulus space-time:

				  
(adapted from De Angelis & Anzai 2004).

But essential characteristics of neuronal response and non-linearities are missing, 
which have been observed since the first experimental works to model linearly 
and measure neuronal response profiles.

Complex cells do not meet linearity conditions. But some non-linearities were 
observed in simple cells too. 

Though quantitative tests measured the responses of simple cells to single 
optimal stimuli as linear summation outputs, the linear model does not predict 
correctly orientation and frequency tuning magnitude response to non optimal 
stimuli (De Angelis, Ozhawa & Freeman 1993). The linear model allows for 
firing rates smaller than r0  to give a negative contribution to the linear sum, 
that which predicts response output being negative due to the fact that r0 tends 
to be small. Were their response magnitudes highly maintained, neurons could 
simply respond less than a spontaneous rate and have negative values. But unlike 
the linear filter that is not the case. In Heeger (1992) a half-wave rectification 
mechanism is proposed by which two complementary cells with reverse polarities 
respond such that the weighting function W(x,y) results from positive (Wi) and 
negative (-Wi) weights. Respective outputs replace each other and one of the two 
at a time gives a nonzero response. 

Along with complex cells, simple ones show response saturation at high contrast 
(Albrecht & Hamilton 1982; Maffei & Fiorentini 1973), whereas a linear 
operator’s response should increase. Stimulated with a superimposed pair of 
gratings with orthogonal orientation and direction, simple cells reduce their 
response unlike linear operators whose output should not be affected for non-
preferred stimuli (Bonds 1989; Albrecht & Geisler 1991). Other cases of “non 
specific suppression” from stimuli whose presentation alone brings about no overt 
response have been tested (De Angelis et al. 1992). Therefore a normalization 
model has been put forward to account for suppression: each neuronal linear 
response is proportionally divided by the pooled activity of the responses of 
neighbouring neurons, against which it is rescaled (Carandini & Heeger 1994; 
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Heeger, Simoncelli & Movshon 1996). Since divisive suppression increases with 
stimulus contrast and involves pooled cells with different orientation tunings, that 
model explains response amplitude saturation and cross-orientation inhibition. 
The amplitude response rj of a neuron with a RFs weighting function Wj(x,y) 
that integrates over contrast C(

� 

x − x 0 , y − y 0 ) in an I(x,y) image patch is scaled 
accordingly to

where c is contrast, 

� 

σ ( f ) 2 is determined by normalization and grows with 
temporal frequency f, and n is the exponent of rectification. In the early visual 
system another important source of non-linearity is due to light adaptation. Since 
the dynamic range of neurons in LGN and V1 to the light intensity that is locally 
prevalent in the visual field is limited, their weighting function is affected by 
drastic luminance and contrast changes in natural viewing conditions (Heeger 
1992; Schwartz & Simoncelli 2001). Control mechanisms are required that 
modulate the gain and the integration time of neuronal response, that is the 
height and the width of W(x,y) that filters different delimited areas of an image 
patch at different times with root-mean squared luminance and contrast standard 
deviations (Shapley & Victor 1978; Zhangloul et al. 2005). Then, luminance and 
contrast variances are supposed to be divided by the norm of the image patch 

				     				  

which may occur as denominator for linear weight summation in a divisive 
normalization model. 

Complex cells are sensibly non-linear because of stimulus polarity and phase 
invariance that cause them to mix ON and OFF responses throughout the RF. 
That makes averaging triggered spikes by reverse correlation analysis ineffective for 
measuring their RFs and quantitatively estimating the spatio-temporal functions 
of their subfield components. Instead, a covariance matrix is computed from the 
spike triggered response set to get those eigenvalues that belong to significant 
eigenvectors of the stimulus set that induced cell responses. Eigenvectors are 
assumed to be the features of the stimulus space that drive the cell activity, whose 
properties match the response profile of the units of a complex cell against which 
RFs are mapped.
We find that spatial profiles of eigenvectors for each complex cell resemble Gabor 
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functions with similar spatial frequency tuning which differ only by a phase shift 
of approximately 90°, and that the contrast response function of a complex cell is 
captured by the so-called energy model

				  
			 

The energy model captures the idea of non-linearity due to second order 
interaction that adds to the first order convolution filtering of (4). In case of 
responses driven by the combination of two or more stimuli the spatio-temporal 
RF map embeds a non-linear map:

where WNL stands for the first non-linearity, that is the second order interaction 
map that weights two stimuli I1 and I2 (adapted from De Angelis & Anzai 2004). 
A more comprehensive model that embeds simple and complex cells’ non-
linearities is proposed to account for modulation of responses due to contextual 
effects and neural response history (Heeger, Simoncelli & Movshon 1996; 
Carandini, Heeger & Movshon 1997; Carandini et al. 2005).

3. The Standard Model Questioned: Theoretical and Anatomical-Functional 
Issues

Though the authors contributed greatly to the definition of the linear-non linear 
model, Olshausen & Field (2006) argue boldly that most of its descriptions of 
early vision are highly questionable. 

They contend that the role ascribed to non-linearities and interactions of responses 
is not sufficient since its elementary and reductionist approach, whose assumptions 
lead to biased choices of sampling techniques, stimulus set, and theories in such a 
way that the percentage of V1 function that is not understood is estimated to be 
85%. They cite laboratory findings that maintain that models exhibit a very low 
level of prediction, in particular if applied to ecological conditions, thus leaving 
much of the observed variance unexplained.

As far as the experimental stimulus set is concerned, sinusoidal gratings are not 
as fit to study vision in ecological conditions, where few things oscillate spatially 
or temporally, as it might appear on theoretical and mathematical grounds. 
Further, they are meaningful stimuli for linear space-time invariant systems, 
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and the Fourier coefficients provide only one of the possible basis functions to 
probe the visual system, that is also likely to be unfit for highly non-linear units. 
Light edges, bars, line terminations, Gabor functions and Walsh patterns are 
effective at best fitting the models. But they perform poorly at predicting actual 
neurons’ responses in natural viewing conditions (David, Vinje & Gallant 2004 
who compared predictions of linear weighted sum and a phase-separated Fourier 
models for non-linear complex cells). 

White noise, that is stimuli with a flat power spectrum at different frequencies, 
and M-sequences, binary nearly white stimuli (Reid, Victor & Shapley 1997), 
presented in sparse or dense noise conditions, can afford a wider range of stimuli 
such that some specific forms of non-linearity are mapped out. But the confidence 
in a complete mapping of non-linearity is hindered by the huge combinatorial 
explosion of dimensions in experimental design of conditions for mapping a 
highly non-linear stimulus space. 

Theoretical assumptions are not the least of biases. Theories about visual system 
functions seem to strike a sub-optimal balance in trading the questions about the 
problems vision is bound to solve off against the explanation of a particular subset 
of data. The authors mention the Fourier view of vision as a good case in point. 
Attestation comes from Wilson & Wilkinson (2004): the fact that both spatial 
frequency and orientation bandwidth decrease with increasing peak frequency 
indicates that spatial processing cannot be accurately described by either a Fourier 
or a wavelet transform. 

Furthermore, whether the categories of simple vs. complex or hypercomplex 
cells and the parameters to measure bi-modal distribution are attested by actual 
neuronal responses or derive from the way neurons were stimulated is disputed. 
Sound parameters for estimating distances, spacing and overlaps among units in 
the neural space are useful for evaluating theories. According to Olshausen and 
Field, the energy model does not work well for responses of cells with a partial 
overlap of activating zones. 

All those arguments are brought to bear in identifying the visual primitives 
from which theories or experimental probes of visual system are defined. The 
hypercomplex end-stopped cells seemed to imply models that decompose visual 
structure as a “drawing-like blocks world” made up of bars and line terminations. 
But inspection of a scene occurring in natural conditions does not reveal many 
instances of such units while structures appear to be more complex than that 
even at the scale of V1 RFs. When theories assume that cells’ filtering activity for 
detecting luminance discontinuity subserves coding for such features as contours, 
junctions and corners upon which to build edges of visual objects, models and 
functional questions risk being misled by dealing with such post hoc alleged 
primitives. Eventually, were images in natural conditions composed of such 
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features, a crowded multifarious collection of orientation signals would ensue 
that would be hard to make sense of for linear operators merely data-driven.

Finally, the variance of V1 neuronal responses in ecological conditions for which 
the standard linear-non linear model is able to account is a strikingly small 
proportion, estimated as 30%-40% by David, Vinje & Gallant (2004). 

Matters become more unsatisfactory if neuronal interdependence and contextual 
modulation of responses are at stake. Neuron responses appear to be modulated 
by stimuli at different degrees of eccentricity far from their RFs (Maffei & 
Fiorentini 1976). Gilbert & Wiesel (1990), Kapadia et al. (2000) found that 
flanking elements in outer surrounds modify a neuron’s response to optimal 
stimuli within its RF, even though the presentation of the former in isolation does 
not evoke any response. Cross or iso-oriented stimuli may enhance or suppress 
the response-inducing contextual effects that seem involved in surface perception, 
figure ground segregation and border ownership (Lamme 2004). All this hints at 
non-local integration among RFs, and the bottom-up feedforward constraint for 
the functional architecture is deemed to have been deeply reconsidered (but see 
Reid & Usrey 2004). Along with feedforward connections, long-range lateral 
horizontal projections between areas on the same layer and feedback reentrant 
projections from higher levels are presumed to rule modulation and integration 
across neuronal responses beyond the classical RFs (Gilbert 1992, 1993). 
Fitzpatrick (2000) reports a complex picture of the arrangement and functional 
connections of neural projections. On the one hand, the contextual modulation 
of a neuron’s response to an optimal stimulus within RF is found to depend on 
the contrast magnitude. Low contrast flanking co-linear stimuli facilitate neuron 
response to optimal stimuli, while high contrast ones inhibit it. This may be a 
demonstration that length summation areas of RFs are not fixed, but vary as a 
function of contrast. On the other, discontinuities in the topographic mapping 
of orientation selectivity were observed such that cells without overlapping RFs 
fall in close proximity mediating orthogonal oriented contextual effects. Local 
horizontal connections seem to provide common inputs for cells with different 
RF properties. Furthermore, iso-orientation inhibitory flanks beyond the classical 
RFs are reported to be asymmetrically distributed.

Therefore, the functional effects of short and long-range connections seem to 
be so intermingled that the very distinction between vertical and horizontal 
dimensions of connectivity appears an oversimplification. 

On the same evidence, Olshausen and Field argue that the reductionist approach 
of linear-non linear models to non-linear interactions cannot account for 
that complex anatomical arrangement and functional architecture, since their 
piecemeal approach leads to the attempt at accommodating them with additional 
presentation of surrounding stimuli. But that approach faces combinatorial 
explosion.
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The authors suggest that new theories are needed, guided by functional 
considerations, which can account for what the natural viewing conditions demand 
that the visual system undertake effectively: such tasks as contour integration, 
which requires selective connections within and between V1 layers beyond the 
scope of the standard model, and the detection and parsing of 3D structures. 
Then, they suggest that the specification that interaction of information at a local 
and at a global contextual level, of functional connections of subunits within the 
RFs and interaction beyond, may be acquired neuronal activity should be tested 
with the structure of natural images.

4. Models of Neuronal Functional Principles with Natural Image Statistics

In fact, the tenet that questions concerning the visual system’s functional principles 
and its criteria of optimality and efficiency must be addressed through the study 
of the structure and regularities of natural environment was put forward already 
by Attneave (1954) and Barlow (1961). Since the visual system must solve the 
problem of recovering essential properties of the environment, it is likely that 
its design and efficiency are highly constrained by the environment structures 
for developmental and evolutionary reasons. Hence, visual system design and 
strategy may be effectively studied when tested with so-called natural images, 
that is an ecologically valid selection of stimuli from natural viewing conditions. 

In the set of equiprobable randomly-generated images, natural images form a 
small subset characterized by high redundancy, while for small image patches 
(8x8 pixel) only a small fraction of white noise images is estimated to give back 
the regularity of natural images (Chandler & Field 2007). 

Regularities in natural images come in many forms at different statistical levels. 
At the level of one-pixel statistics, light intensity variables are densely distributed 
around small values. For a system with fixed response range, an efficient strategy 
is adapting that background luminance level and transforming the raw intensity 
values into a more uniform distribution, thus maximizing the information 
capacity. 

The log function

where f (x, y) is the log-contrast, I (x, y) the intensity value at a particular location, 
and I0 the intensity value such that 
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represents a way by which the system enhances contrast response detecting the 
log-contrast fluctuations against a mean level (Ruderman 1994). 

At the level of second order statistics, images with different contents selected from 
the real world do not show a flat amplitude distribution. Instead, the physical 
energy peaks at larger scales and decreases at smaller scales, that is amplitude 
spectra of natural images are stronger at lower than at higher spatial frequencies. 
Amplitude spectra computed at different frequencies and averaged for different 
orientations have a 1/f shape, since they have a peak at the lowest frequencies that 
falls off with increasing frequency. Accordingly, power spectra are approximated 
by 1/f 2, that is the squares of amplitudes in natural images fall off in a way 
inversely proportional to the squares of the frequency. This characteristic has 
been taken to express the scale invariance of structures in natural images. The 
invariance means a high correlation of pixel values that is stronger for lower spatial 
frequency components. The fall off exponent has been found to depend upon 
different categories of natural images. The amplitude spectrum is also linked to 
depth: at smaller distances it is more isotropic in orientation and contains high 
spatial frequencies; at greater distances it is stronger along the horizontal/vertical 
axes and contains lower spatial frequencies.

At the level of higher order statistics, phase spectrum is assumed to be of 
momentous importance for the perception of image structures of the natural 
world since its disruption via different degrees of randomization appears to 
impair perceptual recognition capabilities. Such regularities as relative cross-scale 
spatial phase alignment preserve the visual saliency of image structures (Hansen 
& Hess 2007).

Given that those forms of regularity are characteristic properties of the subset of 
natural images, it was argued that an effective way of studying the visual system 
was to analyze the data structure and to search for RFs properties and neuronal 
functional principles that match the structure. That way, the research would 
not be biased by a priori assumptions about what features should be like, which 
visual primitives were taken to be mapped, or hypotheses about the nature of 
vision. Many theories covering computational principles and implementation 
questions were proposed to match analysis of natural image statistics and provide 
an explanation of why V1 RFs have a particular shape. 

Bell & Sejnowski (1997), van Hateren & Ruderman (1998), van Hateren & 
van der Schaaf (1998) worked out an independent component analysis (ICA) 
model of how the natural stimuli statistics trigger neuronal responses and why the 
shapes of neurons tuning profiles are generated. Field (1993, 1994), Olshausen 
& Field (1996; 1997) proposed the alternative model of a sparse code (SC) with 
an overcomplete basis set. Both models stem from Barlow’s (1961) insights. 
Faced with the huge correlations in sensory data, a visual system must aim to 
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reduce redundancy in order to extract essential information in terms of statistical 
independent units, which would correspond to the object-causes of sensory 
phenomena. The maximization of information ensues from storing only priors 
instead of joint probabilities about the environment, and employing efficiently 
each neural unit in transmission without any duplication. 

For instance, Field (1987), Atick & Redlich (1992) reasoned that images’ second 
order statistics would lead the visual system at an earlier stage to decorrelate 
responses by whitening visual signals. A linear rise in sensitivity at increasing 
spatial frequency, inversely related to 1/f amplitude spectrum until it falls off 
when signal power becomes less or equal to noise, eliminates the correlations, 
and the shape of such a filter was found to resemble the retinal and LGN centre-
surround RFs. 

Hence the visual system is assumed to model the distribution of states of 
environment that cause vision and preserve only those coefficients of structures 
that match the actual distribution of real world data. A model of an image from 
the real world is commonly understood as a linear superposition of features:

Where fi are the basis functions, that is the spatial features that describe the image 
structure, ai are the coefficients that capture the extent to which the features 
are present in the image, v is a gaussian quantity regarding all the independent 
components differing from fi.

ICA and SC predict the RFs shapes by computing ai, that is defining a set of filters 
whose values represent how image structures are described by a determinate basis 
set. The values of coefficients and V1 RFs are compared directly or via a simulated 
reverse correlation analysis with instances of natural images. Thus predictions may 
be tested by evaluating the distribution of tuning properties. Filter coefficients 
and estimated RFs show resemblance in terms of being bandpass, oriented, 
localized and spatial frequency-specific (though see Ringach 2002).   

But evidence about V1 attests to an expansion of number of neurons and 
connections compared with earlier pathway stages. Hence an increase rather 
than a reduction of redundancy obtains. Barlow (2001) rephrased the goal of 
the visual system as modelling redundancy to obtain a meaningful representation 
in such a way that correlation among some units are to be allowed. Since the 
actual distribution of data drawn from natural images is non-gaussian, but rather 
satisfies a kurtosis distribution, theoretical and experimental attempts were made 
to prove that the underlying structure of natural images is coupled with a sparse 
code and an overcomplete basis set. 
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Sparseness is defined as the distribution of coefficients whose values are mainly 
concentrated around zero and have long tails. It applies to neuronal response 
selectivity, RFs spatial frequency bandwidth and aspect ratio (length/width). 
When it is an attribute of a distributed code, sparseness allows for punctuated 
activity of single units that convey more meaning about the structure features 
to which they are tuned (see Foldiak 1995 for an opposition of sparse models to 
“grandmother cell” models). Further, sparse activity of few neurons lowers the 
probability of false matching in pattern recognition. 

Overcompleteness defines a code which does not sample critically the input 
space, that is whose basis functions exceed input dimensionality. To adapt basis 
function in order to maximize the data likelihood, the visual system is to compute 
the set of coefficients which are maximally sparse with an overcomplete basis set. 

That way, it would bring about an optimal choice of basis functions to map the 
structure in natural images (through sparseness), and at the same time an efficient 
strategy in tiling the joint space of multidimensional stimuli parameters to match 
how many of them are instanced in the structure at a particular point.

Different strategies are being proposed for achieving sparseness with such a code. 
But overcompleteness forces all to face the problem of infinite possible values 
of ai to solve equation (12). In terms of a mean squared error, there are many 
ways to explain image structures with different families of fi. Accordingly, it is 
presumed that the maximization of image data likelihood by the visual system 
takes the shape of a bayesian inference. Assumed priors over how data images are 
generated and the distribution of its causes, the solution consists in determining 
the probability for each basis set of equation (12) given the chosen coefficients:

where P(I|a, q) rates the probability of an image structure given determinate 
coefficients ai, q stands for such parameters as fi and noise variance, P(a|q) 
rates the probability of ai for some determinate parameters and the distribution 
induced by a chosen prior function. All this would give the relative probability of 
different explanations for I(x,y) structure. 

Then the specification of which particular solutions for ai to choose is searched 
for by sparsification, a non-linear transform operation that favours emergence 
of highly localized and punctuately activated units that selects only fi which 
best match I(x,y) and inhibits all other competing bases. In a neural circuit, that 
means that by leaving fi unparameterized and having them adapt to natural 
images, a Hebbian learning rule over ai will select adapted fi that converge to 
optimal RFs (Olshausen 2004). Each coefficient value is achieved not only by 
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the feed-forward inner product between basis functions and images, but also by 
a weighted inner product between the activations of overlapping coefficients, and 
a cost function (- S ai) that self-inhibits the activity of each unit’s activity that is 
so driven to be sparse. 

Vinje & Gallant (2000; 2002) found that the increase in contextual information 
in natural images induces sparser activity among neuronal units than expected 
with a simple convolution model. When there is little context dependency in 
images, there is more ambiguity in choosing the best fit basis functions and the 
responses of units are approximated by a linear-non linear model. Instead, with 
highly contextual images the activity of neurons is driven by competition in 
finding the best functions at any point for a given quantity of structure at a time 
with a combination of suppression and selective enhancement.   

This implies more complex non-linearities than those that the standard model of 
pointwise non-linearities, added to an earlier linear weighting summation stage, 
is able to account for. The activity of simple cells involves interaction among units 
with overlapping RFs, and complex cells’ non-linear selectivity seems to require 
models of coefficient grouping that extract invariance from overlapping subunit 
pools into non-overlapping RFs. 

Hyvärinen, Hurri & Hoyer (2009) argued that neither a combination of features 
from a linear vector subspace nor an interpolation that takes basis vectors 
averaged from nearby templates are effective in learning RFs invariant to position 
and phase. Then they proposed a sparsified energy model with higher level 
units that squares the sums of underlying pooled outputs but with the proviso 
that dependencies of lower subspace units are preserved in the form of energy 
correlations in order to induce a topographical organization of the arrangements 
of units that resemble the visual cortex.

This points to the main question that natural image statistics poses to the vision 
research community: the forms of higher order statistical dependencies. That 
seems to be related to global properties of structure that are likely to be linked to 
the functional meaning of the so-called beyond classical RFs effects and to the 
horizontal connections. 

Schwartz & Simoncelli (2001) argued that horizontal connections are designed 
to remove the magnitude correlations via divisive normalization in such a way as 
to preserve contextual effects in V1 cells. But Olshausen (1997) and Olshausen & 
Field (2006) proposed incorporating dependencies in sparsified models that do 
not achieve complete independence of components without committing to the 
shortcomings of correlations in a code with non-orthogonal basis functions. The 
redundancy needed to capture more global properties of structures via long-range 
interactions is preserved in spite of that due to simple RFs overlaps.
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5. Gestalt Neuroscience and the Natural Image Statistics Paradigm

On theoretical and experimental grounds, many claims were made that 
phenomenological principles and lawlike grouping factors discovered by Gestalt 
Psychology could constitute an effective probe for brain mechanism search 
particularly when non-additive or linearly independent effects are involved.

Jung & Spillmann (1970) qualified as perceptive field the psychophysically 
specified perceptual counterpart of a RF. Spillmann & Ehrenstein (1996) defined 
the local RF structure as a functional “micro-Gestalt”. The perceptual field, tested 
with say Hermann grids, was found to resemble noteworthy structural properties 
of RFs (Ehrenstein 2001). Perceptual equivalence classes for neural mechanisms 
were identified through psychophysical methods by testing with conditions where 
interaction or contextual effects defined the very perceptual judgments such as 
in transposition or frame of reference perceptual judgment tasks (Sarris 2006).

The effects of non-local and long-range connections are reviewed by Spillmann 
& Werner (1996) and Spillmann & Ehrenstein (2004) who claimed that 
definition of Gestalt rules making things look as they do helps in specifying basic 
visual neurons functions. That is the case with grouping rules, figure ground 
segregation, contour integration, perceptual invariances, contextual effects in 
abutting gratings, boundary and surface belongingness and motion perception. 
Indeed, Spillmann (1997; 1999) emphasized that neuroscientific findings that 
followed Gestalt-like hypotheses marked an advancement in understanding 
perceptual brain mechanisms. 

Finally, Ehrenstein, Spillmann & Sarris (2003) contended that what Gestalt 
psychologists discovered serves as a phenomenal probe for the search of brain 
mechanisms and architectural functions. 

A case for how phenomenological Gestalt evidence may serve the assessment of 
research assumptions is made by Wilson (1999) who takes advantage of Kanizsa’s 
abutting gratings to show the shortcomings of Fourier basis functions to meet 
perceptual behaviour in such cases, and to argue the need of specifying non-
Fourier processing for visual neuron computations.

Furthermore, Gestalt psychology’s theoretical assumptions and experimental 
findings can be applied to some questions raised by the research in the natural 
scene images paradigm and to their implications for the visual Neurosciences 
along the lines laid bare by Olshausen & Field (2006).

Hyvärinen (2010) points out that the statistical regularities in natural images 
represent ecologically valid conditions to model the RFs of simple cells, the 
emergence of complex cells’ RFs and the occurrence of Gestalt effects. Since 
Barlow (1961) and Field (1994) the adaptation to the environment properties 
was made the key question of the research into the neuronal basis of the 
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perceptual system. Actually, Brunswik & Kamiya (1953) and Brunswik (1956) 
maintained that Gestalt grouping rules are tuned to statistical regularities of 
the environment. And most subsequent research was devoted to working out a 
probabilistic interpretation of Gestalt grouping rules according to geometrical 
and computational models, which could stand up against the empirical findings 
on the structure embedded in natural scenes, and at the same time equate human 
perceptual performances. 

Elder & Zucker (1996) developed a Bayesian model and a sparsely-connected 
graph for a contour perceptual grouping algorithm based on a strong global 
constraint for closed bounding contours in natural images. Its efficiency 
improvement in rendering perception stems from computing contour as a global 
feature, once a saliency measure is provided, in a way that is not reduced to the 
summation of local cues. This accounts for such unavoidable properties of natural 
scenes as occlusions, and for the distinction between an open extended chain of 
edges and bounding contours. On the ground of Gestalt principles of perceptual 
organization, Elder & Zucker (1993; 1998) tested a geometrical specification 
of perceptual closure, contrasted with topological closure, as a primitive feature 
of visual scenes in shape discrimination tasks in order to match the perceptual 
system’s effectual ability to integrate or separate fragments of objects when 
occlusions, shadows, edges or low contrast occur.

Elder & Krupnik (2001) require object knowledge in the study of how grouping 
allows objects to appear. They propose a general framework where conditions for 
regularity of objects, such as simplicity, closure and completeness, are embedded 
in priors for the estimation of boundaries by a computational model that 
combines local and global cues. Elder & Goldberg (2002) make use of the insight 
of Brunswik’s experimental design to have an observer trace contours in natural 
images in order to investigate the respective inferential power of ceteris paribus 
factors such as proximity, similarity and good continuation, in order to define 
quantitative probabilistic analysis of the use that the perceptual system makes of 
information about depth and segmentation of contour occlusion. 

Sigman et al. (2001) and Geisler et al. (2001) found that geometrical relations 
in pair-wise statistics of edge elements show local maxima in their probability 
distribution when they are approximately at a tangent to common circles and to 
parallel lines. They argue that these values of relative orientations of neighbouring 
segments match expectations for what natural image structures would look like 
were Gestalt grouping rules of good continuation proved to be sound in extracting 
smooth contours in occlusion cases. That is suggested to provide further evidence 
for anatomical-physiological findings on long-range facilitatory projections 
among pyramidal neurons with iso-orientation preference, and psychophysical 
measures of contour grouping based on alignment, orientation and axial offset. 
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In fact, it can be sensibly held that Gestalt theory does not abide by a central 
tenet of the research based on natural images paradigm. Actually Olshausen 
(2004) claims that the key question for Neurosciences, that is “how neurons 
respond to a stimulus”, cannot be answered before the more fundamental one is 
settled: what it is for something to be a stimulus in a natural scene. But the latter 
is an ill-posed problem that needs to be specified further with all the available 
contextual and high level knowledge to be ascribed to the perceptual system. 
Accordingly, the only explanatory strategy is modelling natural images to study 
how neurons respond assuming that priors are constructed upon their statistics 
that the visual system uses to infer world properties from incoming data, and 
under the hypothesis that these priors are embedded in the neuronal circuitries. 
But Gestalt theory principles would be strongly at odds with describing the visual 
system problem solving as the result of a mere adaptation to the structure of the 
visual environment by an inferential process that defines priors over the physical 
causes of perception and then adapts through a maximization of posterior 
distribution. Since their polemic with the theory of perception put forward by 
von Helmholtz (1867/1962), Gestalt psychologists claimed that the recourse 
to inferential models is often justified by a poor acquisition of data that does 
not recognize the phenomenological structures that build up the order of the 
perceptual environment. 

But contending that Gestalt grouping rules reflect statistical properties of the 
environment does not need to commit to a cognitively inferential theory of 
perception that reduces perception to detection of local features in the stimulus 
array of the visual scene devoid of any order or structure whatsoever. Instead, 
that would amount only to suggesting that Gestalt rules are tuned to regularities 
in the way environmental objects appear, whose statistical properties overlap the 
phenomenological conditions discovered by Gestalt psychologists. This point 
seems consistent with Koffka (1915) who shows how the question of what it 
is for something to be an environmental stimulus for the perceptual system is 
settled with a phenomenological specification that takes into account the local 
underdetermination of being a stimulus that requires reference to contextual 
information. 

On the other hand, it is true that natural images are employed to derive a state 
space for the receptor array. At each dimension, every point specifies the complete 
set of receptor values for any image. But that does not imply that their use is 
limited to such a construal. Geisler (2008) claims that more relevant statistics are 
obtained if measures are not completely confined within the domain of images. 
Rather measurements both within images and the corresponding environments 
allow to obtain “ground truth information”, that is the use observers make of 
image structures when they interact with the environment (Wilson, Geisler & 
Perry 2009 use “across-domain” statistics to extract edge elements’ geometry and 
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contrast polarity from natural images, and derive a model for an ideal observer 
performance in occlusion tasks). Hence, a principled approach to natural image 
scenes analysis takes Gestalt grouping rules as an effectual means of retrieving the 
order in which to integrate elements of natural environment in such a consistent 
way as to get ordered appearances of articulated objects through their high level 
properties (i.e. curvature, closure, concavity and convexity), instead of a mere 
aggregate of features. And that is the main tenet of theoretical and experimental 
Gestalt psychology, which allows for a construal of natural images in terms of the 
relevant subset of phenomenological conditions.

Mahamud, Thornber & Williams (1999) developed a saliency measure for 
closure as a perceptual Gestalt property that can be used to detect bounding 
contours of unknown objects in natural images. Grouping is delivered through 
segmentation without a-priori knowledge, rather imposing a subset of Gestalt 
principles for perceptual organization. Such a constraint for proximity and 
smooth continuation clues is meant to allow for the segmentation of strongly 
connected units, and not only edge chains or open contours, to obtain. 

Accordingly, a suggestion can be made that natural scene analysis highlights 
structures whose construal is two-fold: as regularities displayed by images at 
various dimensions and specified in the state space of a receptor array, and as 
correlates of phenomenological conditions of orderings that make things look 
as they do for the perceptual system of organisms that behave rationally and 
purposively in the environment.

Some theoretical implications would ensue. Olshausen (2004) emphasizes that a 
principled approach to discovering the way things are grouped together is needed 
in order to understand how the visual cortex uses image structures to capture 
what is “out there”. For a meaningful representation of sensory information to 
obtain, SC models suppose that the world can be described in terms of a small 
number of responses by a small fraction of active neurons in the population at 
any given moment, but in such a way that the cortex must also choose how to 
tile the entire joint space of relevant parameters to get a complete representation 
of the image. Assuming distributed sparseness and overcompleteness, SC models 
trade off the meaningfulness of the activation of a small number of units for 
each parameter against their combination, that which allows a convenient form 
of world description to obtain in that each output would recover the amount of 
structure occurring at determinate image locations in terms of features specifically 
tailored to structures occurring in natural scenes. This is much like the form 
of language that allows the generation of complete descriptions by sentences 
that combine words, which are more than phonemes, while any given sentence 
utterance realizes only a small fraction of the available words. 

Gestalt psychology made quite the same point when applied to the way objects 
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appear in the environment. Grouping laws keep a balance between having few 
enough rules and conveying efficiently the meaning of environmental object 
structures. For there are many more perceptual structures than grouping rules, 
and on the other hand any given perceptual unit is an instance of only a subset 
of the grouping rules that hold competitive and cooperative forms of interaction 
with one another.

Therefore as far as the models of visual cortical units and processing are 
concerned, Gestalt theory can provide a rationale for the hypothesized RFs and 
cortical architecture. The outputs of neuronal units should be both sufficient 
to recover the structures that make the environment perceptually accessible and 
enough to lose as little phenomenologically relevant information as possible. The 
cortical strategy could be adequate if it would consist of exploiting the ordering 
in the way natural objects appear that is contingent upon the perceptual access 
of an organism though it does not happen to be accidental (Witte 1958 gives 
an early mathematical treatment of the notion of perceptual orderings that fits 
experimental design). Accordingly, neuronal output correlations, which do not 
prove to be reducible, are deemed to subserve the recovery of orderings through 
grouping rules, and high level neuronal dependencies are accounted for as bearing 
the functional role of matching non-linearities due to the phenomenological 
structures occurring in natural scenes. Dependencies of neuronal responses 
implemented in long-range connections are hypothesized to subserve the tiling 
of the joint space of stimulus parameters that mirror the capability of grouping 
rules to interact in competitive or cooperative ways to allow for such features as 
boundaries, surfaces andself-enclosed objects to appear. 

Kovács & Julesz (1993) and Kovács (1996) provide evidence of how grouping 
rules and phenomenological conditions, such as those underlying figure-ground 
structure or the invariant perceptual axes of objects, occur at local and global 
levels and interact at different dimensions given their capability of combining 
with one another in meaningful connections. Furthermore, Kovács (1996) claims 
that conditions for boundary and surface properties and their connections that 
account for unitary perceptual objects to appear are consistent with sparse coding 
models of shape perception.

As Koffka (1935) and Köhler (1939) suggested, perceptual units are shaped by 
the search for an optimal balance between the internal constraints imposed by 
the form of perception systems and the adaptive approximation to the external 
relevant properties of the environment, as is the case with the surface and volume 
forces that bind up the shape of an oil droplet into the water.  

Accordingly, the optimization followed by the perceptual system faced with the 
statistics of natural scenes can be taken to rest on phenomenological rules that 
bind what it is to appear as a meaningful unit in the environment to satisfy 
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a relevant subset of the indefinite many structures of natural scenes. Hence, 
optimality criteria for perceptual processing in terms of data signal processing 
operations (Barlow 1961, Field 1994) can be evaluated by the phenomenological 
relevance of natural image data. 

The phenomenological specification of environmental objects’ properties could 
satisfy as well the request of minimizing the assumptions for the search for 
statistical regularities in natural scenes, as is claimed in the SC models, since it 
would be reduced to the relevant dimensions that match the way objects appear.

On these theoretical and empirical grounds, a conjecture can be made that the 
Gestalt theory approach can be used to develop phenomenological models of 
how the perceptual system is supposed to extract meaning from the dependencies 
required by the structure properties displayed in natural scenes. 

In the next paragraph, a proposal for a formal framework of phenomenological 
models is outlined that can be applied to natural scenes. The formal treatment is 
likely to make primitives and relations comparable to questions and findings in 
other fields of research, though at the expense of some loss of intuitiveness. 

Particular attention will be paid to the conditions of the emergence of features 
that account for unitary perceptual objects to appear, and to phenomenological 
relations underlying the capability of features to combine with one another at 
various orders and dimensions in the perceptual scene, whose correlate could 
be identified with the integration of parameters in an abstract multidimensional 
stimulus space.

Therefore it can be claimed that theoretical and experimental Gestaltist research, 
whose principles and findings are translated in a formal framework, can supplement 
the abstract definitions of stimuli as multidimensional spaces. Albrecht, Geisler 
& Crane (2004) argue correctly that the use of abstract multidimensional spaces 
is needed to avoid misleading definitions of what a stimulus should look like. But 
that would apply only to the apparent intuitiveness of introspective data.

Indeed, the Gestalt theory of perception as a self-organizing process that tends 
optimally to approximate the structures of the environment by constraints over 
the perceptual system that obtain extremal minima or maxima values does not rein 
in giving its principles and findings a probabilistic formulation. Furthermore, the 
formal translation of some Gestaltist findings for a phenomenological modelling 
does not commit to top-down, bayesian ideal observer or bottom-up probabilistic 
analyses. It can be used to qualify the assumptions that are embedded in the 
hypotheses whence the optimization decision rules and priors are derived. And 
a criterion can be further developed by which what counts as a feature may not 
be merely inferred from data through priors that happen to rest upon ad hoc 
association rules or by-hand criteria of computational form.
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6. Phenomenological Modelling 

The structure in natural scene images is deemed to be meaningfully correlated to 
environmentally relevant and salient properties for the behaviour and cognition 
of perceiving agents. But the structure can narrow to spatio-temporal forms of 
data ordering without any reference to the environment being implied. Perceptual 
reference is introduced when an agent is specified who picks up the information 
that the structure conveys under the conditions of rules or clues that are derived 
from the way the physical and geometrical properties of light and surfaces are 
realized in optical structures (see Koenderink & van Doorn 2003 who make 
noteworthy reference to the notion of “intentionality”).

In fact, rules and clues can be variously construed in many different theoretical 
frameworks. But Gestalt psychology, that is an empirical theory that realizes a 
form of phenomenology, takes them to be a sort of non-overt know-how of the 
effectual ways to parse the environment in meaningful units as wholes made up of 
parts that hold one another with many perceptual relations of mutual integration 
or segregation, requests of completion, dependence or mutual exclusion. 

Hence, it is assumed that manifold chunks of image structures mean qualitatively 
different amounts of information for perceiving agents, which gives rise to 
phenomenological structures. That is rules, clues and conditions that make distinct 
sections of the environment phenomenally accessed for perceiving agents at 
different scales but always within the level at which agents and the environment 
are comparable, since the various environmental perceptual properties derive 
their meanings from driving purposive behaviour (Koffka 1935; Metzger 1972; 
Gibson 1979).

Grouping rules and phenomenological conditions are assumed to allow the 
environment perceptually to appear in a determinate phenomenological variety. 

By phenomenological conditions are meant both limited conditions for a 
determinate phenomenon such as amodal completion to occur and more general 
phenomenological principles that apply to natural  objects such as those stated 
by Musatti (1926). According to Musatti, the cognitive distinction between a 
perceptual aggregate of elements and a whole unified natural object is explained 
by such principles as the closure of possible transformations of colour or shape 
data, the data consistency in their simultaneous or sequential presentation, the 
continuity of transformation and change in apparent properties of objects in 
the different circumstances where they happen to be perceived, and the data 
belongingness to a whole unit, along with independence and completeness 
clauses.

Gestalt theory usually describes phenomenological structures with features, 
relations and composition rules, all of which can be modelled in terms of part-
whole mereology that is integrated with such intuitive topological properties as 



GESTALT THEORY, Vol. 35, No.3

250

boundaries, connections that are needed to tell the aggregate made up of variously 
related parts from the “all of a piece” whole as a perceptual unit made up by the 
connection of only and all its parts (Varzi 1994a, 1994b and 1996 give an early 
formal treatment of such mereotopological issues). Part-whole properties of the 
standard Gestalt theoretical approach and experimental design can be described 
as ruled by models of extensional mereology axioms (Simons 1987) with a 
refinement that assumes as a primitive notion the definition of “proper part” 
along with the topological conditions for something to appear as a natural object 
(Smith 1996). In particular, the Gestalt conditions at which the qualification of 
a unit as a whole holds are theoretically analysed by Rausch (1937) and (1964), 
Rescher & Oppenheim (1959).  

In Cognitive Sciences, the meaning of such terms as “model” and “modelling” may 
indeed differ. But they appear to be used mostly with reference to a conceptual 
theory and a computational description of a cognitive function, an interpolation 
of sets of data of various sorts, a functional architecture underlying a cognitive 
function that is implemented in biological and artificial systems. In fact, Suppes 
(1969) suggests that in empirical sciences are found examples of modelling that 
comply with a concept of models that is the same as the mathematical concept of 
model-theory. Therefore, the assumption can be made that perception research 
can profit from such convergence in specified cases, and that phenomenological 
structures can be regarded as a qualified instance of these cases.

Spillmann (2009) reports some phenomenological structures that can model, 
that is conceptualize, as many neuroscientific data of specific visual cortical 
neuron responses. It is noteworthy that the structures derive from experimental 
evidence provided by either experimental phenomenology, that is a research that 
is bound to experimental design where all the variables are observable (Bozzi 
1989, 1999; Kanizsa 1979; Sinico 2003), or Gestalt psychology that admits 
instead a neurophysiological interpretation. 

Spillmann lists the following structures. Grouping rules, which allow for unifying 
parts of consistent objects even though there are intersections of disjointed parts 
of distinct objects, model V1, V2, V3 neurons tuned to co-axiality, collinearity 
and smooth continuous motion trajectories of visual elements. Conditions for 
amodal completion with occlusions that meaningfully correlate as early as with 
V1 neurons. 

The relation of border ownership, which qualifies a boundary as a margin, and of 
surface belongingness that provide models for V1 and V2 neurons that respond 
selectively more for the margin of a figure than for the ground, as well as for V2 
neurons whose responses correlate with relative depth information due to figure-
ground segregation. The conditions for abutting gratings, bi-dimensional or tri-
dimensional Kanizsa surfaces without luminance gradients, which are founded 
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on well-defined phenomenological properties of inducers, that model V1 and 
V2 neurons. Apparent transparency segmentations of coplanar monochromatic 
partially overlapping shapes, whose topological, figural and colour conditions 
provide models for V2 neurons that assign properly borders to the not occluded 
surfaces that emerge from transparency.

But phenomenological structures, be they grouping rules, clues or conditions, 
can provide models in the mathematical sense, with the proviso that the usual set-
theoretic foundations be replaced with the formal mereotopological definitions 
that fit more adequately such phenomenological primitives as parts and their 
relations (i.e. overlap), or to relations such as closure, connectedness, and of 
dependence and foundation that account for the capability of unilateral or 
mutual integration among various dimensions of perceptual properties and units. 

In that sense, given a data set S from natural images, a phenomenological structure 
I is a model of S if it recovers the information that makes S accessible to the 
observer for a specified mereotopological property or a condition systematically 
coupled with a well-defined appearance of a natural object or of one or many of 
its perceptual properties.

The model I consists of features (such as boundary or surface) which match 
what information about parts and properties of objects is recovered by S, and of 
mereotopological relations, which specify how parts and properties are connected 
into an integrated “all of a piece” whole. Features and relations make up the I 
structure. Of course, the class and numerosity of what is a feature or a relevant 
relation vary a lot as a function of the determinate structure involved. Natural 
scene data are the domain or the universe of Is. The domain is many-sorted if 
it implies features or relations with different orders and spanning different 
dimensions. Each S gives a partition of phenomenological structures into those 
which are I models of it and those that are not. All the phenomenological 
structures that are Is of S can be termed as Mod(S), that is the n-tuples structures 
that recover the perceptual information conveyed by S. That can be generalized 
as classes of natural scene data N. 

Without going into further formal details, one can only say that the collection 
of features and relations of Mod(N) gives the phenomenological primitives for 
natural scenes in N that represent the information that is embedded in their 
image structures. Hence a phenomenological structure is a model that applies 
to a domain endowed with a specifiable relation, whose primitives are fixed by 
some relevant parameters (i.e. the grouping rules). If it is empirically shown 
that some phenomenological structures, which are Mod(N), are also I models 
of other structures Mod(R), whose data domain and primitives are different as 
is the case with neuroscience findings, then Mod(R) primitives are definable in 
terms of well-defined and tested phenomenological structures by some linking 
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propositions with determinate parameters. (Obviously other forms or relations 
among Mod(N) and Mod(R) obtain that are interesting for research). 

In this framework, features of phenomenological structure match quantities 
of those subsets of relevant natural structures since they are regularities for the 
perceptual system. Regularities are invariant properties and conditions such that 
they preserve information as to the composition of units and their relations in 
image scenes through transformations due to perceptual system constraints and 
variations induced by the contingent perceptual circumstances, for instance 
translations, rotations and occlusions due to observer and object position and 
motion. A feature that matches a determinate quantity of visual structure is a 
n-placed variable whose values are realized in determinate series or sequences of 
patches in natural images. The value course is a magnitude, that is there is an 
ordering mereological and topological relation induced on a definite range of 
values. Each phenomenological magnitude can be linked to primitives of other 
models, as in the case of Neuroscience findings, or to abstract n-dimensional 
space stimulus maps.

Then, it can be argued that for determinate cases of phenomenological and Gestalt 
theory findings that are proved to be right, models are not deemed adequate to 
natural scenes by mere stipulation or a priori assumptions, since their primitives 
recover how features are distributed over and relations connect determinate 
natural image parts.  

Therefore, primitives in ecologically valid visual domains are definable by a 
decomposition induced by a relevant transformation coupled with an equivalence 
relation. Each n-placed feature variable is identified with the invariant of at least 
2n terms equivalence relation. Every feature belongs to a definite order which is 
at least n-1 smaller with reference to the visual structure of order n of which it 
is perceived as a part. That order determination is perceptually defined through 
the results of relevant transformations which hold dependencies constant, along 
parameters designated by grouping factors. The order is then derived by closure 
and connection properties of that which qualifies as a visual unit.

For instance, let the 2-placed variable B be the visual feature boundary-for, the 
n-sequence of data points in I(x,y) be the corresponding n-domain of locations 
(a0,…, an), and the B quantity distribution in (a0,…, an) be the course of values 
of B-(x,y) units in that domain. E(B) is an equivalence relation if for chains 
(b0,…,bn–1) ∧ (bn–1,…bn) ∧  (bn,…,bn+1) that are all sub-sequences in (a0,…, an), 
it assigns to all units in the sequences the same value satisfying B for a given 
transformation T that affects a relevant grouping parameter, that is for instance: 
closure, smooth continuity and convexity. 

The located course of values in the visual field holds B constant if the visual 
bounding process is such that 	    
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where ∂B is the boundary visual extraction over the domain of locations, and (-1)
i is a component S of a dimension at least r with ordering r>p(an) such that for 
B=Σ∂(an), (an)2S; while T is any transformation that maps values of an such that 

(a) any two of them in the subsequences b(b0,…,bn) are not equivalent to those 
occurring at other subsequences x(x0,…, xn) that do not lie within an, 

(b) for any discriminable visual area s° of the interior region S°=Si
(r)/ ∂Bn

(p)  there 
is no neighbourhood S°(Ns)i

(r) that with every X°(Nx)i
(r) of a region x for another 

X°= Xi
(r)/ ∂Bn

(p) gives a product that is ≠0. 

Notice that this boundary invariance condition is indeterminate as it is symmetrical 
or asymmetrical in nature. It states only that a boundary is a difference-part with 
respect to the interior of a region and allows for it to be shared by different closed 
regions. Hence for invariances related to the border or margin, that is the features 
that segregate mutually and unilaterally two units into a circumscribed closed 
figure and a separate ground (Rubin 1921), further qualifications are needed 
which require further topological notions to be explicitly introduced (Smith 
1996).

With further specifications, it is possible to model the phenomenological 
differences that decompose natural scene patches in relevant and perceptually 
salient units, disambiguating what may seem a cluttered array of edges, line 
terminations or contour segments. In the model, a specified feature F for the 
(an) domain is defined as the n-tuple of the induced n-fold cartesian product 
that satisfy the course of values which holds F constant. Since recognition of 
functional parts in a unitary and connected whole comes with decomposition 
through transformations, the assignment to a common bounding unit B of the 
visual meanings of a contact point among surfaces, a boundary or a margin, an 
occlusion or inclusion region helps the perceptual system to capture the natural 
image structure. On the grounds of phenomenological models, it is possible to 
study how dependencies and interactions of neuronal responses and long-range 
connections allow for the visual system to match structures in natural images.  

Even at this stage it can be seen that feature magnitudes are connected in various 
dimensions of different order in the stimulus space. A boundary is a 2-placed 
variable, since its occurrence requires an interior region to be delimited, of 1-order 
which belongs to a surface, that is a structure of 2-order. The same applies for the 
smallest visually discriminable segments, which are all 0th-order and belong to 
boundaries or borders (i.e. the visual parts nearest to the boundaries), and for 
surfaces that have to occur as lower order units belonging to higher order visual 
units as solids of which they are faces.



GESTALT THEORY, Vol. 35, No.3

254

Theories and experimental results in phenomenology and Gestalt psychology 
individuated two families of momentous relations, which allow the nature of 
that belongingness relation to be determined among units of different orders: 
dependence and foundation. 

In a wide sense, dependence is captured by the following functional relation 
(Grelling 1939/1988). A variable ƒ depends on a class of variables F, if when 
every F takes the same value at the arguments x1 and x2, then ƒ must take equal 
value at x1 and x2. Intuitively, this definition captures the idea of the variation of 
a quantity that brings to bear on the variation of another. It can be generalized  
as equidependence: if a variable g that belongs to a class F of relevant factors for 
a phenomenon takes the same values at arguments x and y , then ƒ(x) = ƒ(y). No 
matter why and how much factors change that are external to F, if functions 
belonging to F are made constant, then the values of ƒ are kept constant too. 
Converse relations of equivariability cover different sorts of variability: from 
variability of different degrees, to co-difference or simultaneous variability, and 
ceteris paribus variability (Simons 1998 mentions all those cases and expounds 
some constraints to impose on equidependence in order to avoid trivial cases).

If a variable keeps values constant without being affected by variations in a family 
or a restricted class of features, then it is functionally independent.

When it is applied to elements bounded in a structure, dependence accounts for 
them to be perceived as constituents of a configuration, that is a whole whose 
composition satisfies a determinate relation. Rescher & Oppenheim (1959) state 
that if R(p0,…,pn) is an ordered sequence satisfying R, then f is a dependence 
relation if it obtains that the value of p0 in some feature g is connected to the G 
values of pi<n such that for every R-structure the g-values of the first pi are functions 
of the G values for all pn. 

In the case that configuration consists of just p, dependence is thought of as 
a law-like connection holding among a g-value of its own and all other values 
of some qualified restricted feature class. For instance, such a relation can hold 
among the value of a series of units grouped as a single contour and the statistical 
distribution of some such parameters as collinearity, co-axiality and minimum 
trajectory deviation, whose variation constrains all the units to be counted in the 
contour feature class. 

If G is reduced to a single g, a dependence holds in that the value it takes for p0 
is law-like connected to values of (p1,…, pi,…, pn). That is the case when values 
for all points of a surface without luminance gradients for margin contours are all 
the same as the others belonging to the same surface relative to the inducers for 
amodal completion to obtain (Kanizsa 1974). The same applies to well-known 
cases such as the Müller-Lyer figure, where g-value is apparent length and pn are 
adjacent angular sectors with respect to their position.
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In a narrower sense, when supplemented by the foundation relation, dependence 
rules composition among parts of different orders within and across stimulus 
space. Foundation is a primitive relation assumed in phenomenological models, 
which is meant to express the inherent connection among structure elements 
based on their need for integration. If an instance ƒ of a feature class F of n-order 
at parts pi for a set of arguments x takes determinate j-values in the range allowed 
for by instances gi at pj and if pj are the smallest area where these j[ƒi(x)gi(xn)] 
values are connected with instances y[(ui(x)vi(xn)] of a feature class Y of equal 
or different order, then each instance of the first class, say a boundary, is founded 
in every instance of the second class, say a surface. In this sense, a boundary will 
be said to depend on a surface in a slightly new and meaningful way: boundary 
and surface must be integrated, since p-appearances as object components need 
features of different dimensions and order to be inherently connected. 

Those feature properties and relations that subserve structures in phenomenological 
models can be taken to cover empirical facts that are results of independent 
experimental research. 

Lamme (2004) summarizes different sorts of contextual modulation of V1 
responses. First order effect is masking and pop-out configuration, which alters 
perceptual salience of such a single unit as a line segment shown in isolation or 
embedded in texture with conditions of similar vs. different, and spatially uniform 
vs. random elements. Higher order effects are: unidimensional segregation of 
elements aligned in an integrated contour; figure-ground segregation through 
visual ascription of surface belongingness to boundary segments; two-dimensional 
segmentation of segments at juxtaposed orientations in boundary and surface.

These findings can be mapped onto models that have phenomenological 
manifolds with dependence relation among different stimuli dimensions, and 
foundation that accounts for connection across different visual magnitude orders. 
It is worth noting that perceptual saliency at a determinate stimulus order of 
relevant factors for neuronal responses may not be preserved at higher orders. In 
figure-ground segregation, line segments at the centre of the figure elicit the same 
figure-modulated neuronal response as that triggered by elements at borders, 
even though they are flanked by segments at orthogonal orientation. Anyway, 
this modulation does not occur with segments located immediately outside the 
border. Therefore, neuronal responses seem to override the grouping factors 
ostensibly at work at local or at a lower order dimension of stimuli, while they 
reflect the higher level structure. Furthermore, Lamme (1995) and Zipser et al. 
(1996) reported a striking invariance of some cells to cues linked to figure-ground 
segregation and that responses are not additive since they are the same when cues 
are presented alone or in combination.

It can be suggested that those different response behaviours for various 
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stimuli dimensions and forms of stimuli combinations are accounted for by 
different ordered structures integrated by a foundation relation provided by 
phenomenological models. 

Another useful treatment of principles underlying phenomenological structures 
is given by Lewin (1941) with his general framework for dependence relations 
that obtain through part-whole mereology and topological transformations.

To be sure, Lewin meant to model interdependence systems which may be 
considered as a special case of dependence structures when the value a feature 
takes at a part of a whole is constrained by the value distributions at all the 
other connected parts. Gestalt psychologists of the Berlin School contended it to 
be the main exemplification of phenomenal structures, which can be dubbed a 
determinational system when value distribution is a function of inner and outer 
boundary conditions that constrain systems to take extreme values as a stationary 
state (Köhler 1920; Koffka 1935; Grelling & Oppenheim 1937-8b/1988). But 
that framework may be taken to hold more generally. 

Lewin describes part-whole decomposition and the involved dependence relation 
in terms of topological transformations. On the other hand, topological properties 
of structures are given a hierarchical ordering by mereological properties. It can be 
suggested that an appropriate perceptual construal of those of Lewin’s principles 
of modelling allows one to build models to specify both stability and articulation 
of objects as they usually appear in ecologically valid viewing conditions.

Dependence is defined as that transformation change that does not preserve the 
equidependence as to a determinate feature class, say a boundary, of both units As 
and units Bs. In other words, As and Bs are dependent on one another if a change 
of state of As brings about a change of state of Bs. 

Accordingly, independence is captured as a converse relation provided that it 
exceeds a determinate quantity e, that is an arbitrarily small quantity of variation 
under which the change induced by a determinate transformation of As does not 
affect mereological and topological properties of Bs, great though it may be.

In particular, Lewin’s framework is meant to work out the conditions for models 
of interdependence. But it allows for variable degrees of connection that give rise 
to weak and strong dependence structures. 

The main interest in Lewin’s work lies in its capacity to model dependence relations 
within and among visual structures. Given the appropriate transformation whose 
application gives the distribution of values that assign some elements the function 
of parts, dependencies in visual structures may be mapped by curves that plot the 
relations between one part and all the others, or among ordered pairs or sequences 
of chosen parts. Accordingly, it can be used to quantify the nature, quantity and 
variability of determinate structure in a delimited region of a natural image patch. 
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Furthermore, Lewin’s analysis can capture scale-invariant decompositions. At 
various scales, variations induced by a group of transformations may preserve 
equidependence among feature classes. But it proves equal to the task of specifying 
conditions at which there may be potentially different decompositions for 
defined values of dependence at multiple ordered quantities of change at orders 
k>s>m>w. The relativization of part-decomposition to threshold values at change 
scales may well account for the meaning conveyed by structure in natural images. 
Dependence value ranges of feature classes induced by a group of transformations 
at s may be less than the independence quantity e. But that may not be the case 
at k. As a consequence, prevailing conditions in image structure at k are likely to 
lead the visual system to generalize or specify a decomposition whose properties 
are bound by the occurrence of new observable boundaries. The same applies 
for quantities above k. This property of the model can be exploited to study the 
visual system strategy for facing the problem of feature integration at different 
scales whose difficulties and ambiguities have been highlighted since Witkin 
(1983).In conclusion, phenomenological Gestalt models assume mereological 
and topological properties endowed with such relations as dependence and 
foundation in their various sorts as the real primitives of perceptual structures in 
ecologically valid conditions. 

Models apply to experimental conditions, since they are instances of 
phenomenological properties that may be well specified, and translated in 
mathematical and probabilistic well-known forms. 

On the one hand, mereology, dependence and foundation relations can be defined 
in matrix and vector representations, that which allows for neutral analyses of 
operations defined on them (Blecksmith & Null 1991). Given a universe U = 
(1,…, n) which admits elements of an image patch as members on which a relation 
R is defined, and a nxn boolean matrix A where [aij]2{0,1}, then let A be called 
the incidence matrix of R whose entry values are 0 or 1 whether R respectively 
holds or not for each element i,j. Conditions on A allow for defining properties 
which qualify R as one of the relevant mereological properties. Furthermore, if S 
is another relation on U and B its incidence matrix, with implications including 
being a proper part, being disjointed or having common parts, then dependence 
and foundation can be expressed over matrices A and B for every pair of entries 
aij and bij, and the relative matrix product AB = [cij] where

With the introduction of such incidence vectors as the following one for the 
relation of a dependent feature whose perception requires it be part of a smallest 
phenomenal unit that connects it with another stimulus dimension
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conditions about correspondence between n-vectors and matrix extension allow 
for computing products between diagonal vectors and incidence matrices for 
dependence and foundation properties.

On the other hand, all mereological relations and topological properties of 
phenomenological models can be subject to the empirical inquiry of the probability 
of their degree of connection and distribution. For instance, equidependence of 
ƒ(x1, x2) with a j-class of features with respect to a probability density function 
holds when the P(x2)dx for ƒ(x2) within dx in the environment of P(x1)dx is a 
determinate P(x)dx, provided that every gn(x1, x2)2 j has the same values for x1 
and x2 (Grelling 1939/1988). 

The same case is made by Rescher & Oppenheim (1959) for measures of similarity 
of structures obtained by decomposition for relevant dependence and foundation 
relations through appropriate transformations. A class of features provides a 
magnitude endowed with a natural, that is non-contingent or merely stipulatory, 
topology. As already seen, an instance of feature is an n-tuple of values regarding 
position, dimension and order. Feature instances make up the components of visual 
structures according to such primitive relations as dependence and foundation as 
they are invariant through transformations. Given a group of transformations, a 
subgroup Z is associated with a homeomorphism among sequences of locations, 
and an isomorphism between mereological and topological properties. Hence a 
feature appears as an invariant for a determinate structure under this subgroup, 
that is its occurrences are equidependent in conditions that differ only by 
Z-transformation. The relevant subgroup refers to the parameters relevant for 
the well-known grouping factors. For example, segregation of dots in a lattice of 
positions due to proximity, such as in Wertheimer (1923), is an invariant feature 
subtended by an equivalence class obtained through Z-subgroups of contraction 
and dilation. Then the degrees of similarity of structures among assignments of 
feature values to domains of position can be measured statistically in many ways 
given the form of ordering and the nature of values admitted for it. 

Conclusions

It was argued that phenomenological models set a common ground upon which 
Gestalt theory, visual Neurosciences and computational modelling of natural 
scenes can compare data and interpretations for an integrated explanatory strategy 
for perception research to obtain. Phenomenological features and conditions that 
emerge as invariant given some relevant transformations in the environment 
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recover the perceptual information that natural images are supposed to convey 
to the observer. 

Phenomenological models endowed with dependence and foundation relations, 
which are presumed to reflect law-like connections underlying phenomenological 
structures of the environment wherein the brain evolved, can be correlated to 
abstract multidimensional stimulus space in Neurosciences. Furthermore, 
they provide an ecological interpretation of the dependencies hypothesized for 
anatomical and functional connections. That meets the requirements to minimize 
a-priori assumptions, and to test neuronal units with ecologically valid settings 
that justified the introduction of the natural image scene analysis.

Summary
Attempts to introduce Gestalt theory into the realm of visual neuroscience are discussed 
on both theoretical and experimental grounds. To define the framework in which these 
proposals can be defended, this paper outlines the characteristics of a standard model, 
which qualifies as a received view in the visual neurosciences, and of the research into 
natural images statistics. The objections to the standard model and the main questions 
of the natural images research are presented. On these grounds, this paper defends the 
view that Gestalt psychology and experimental phenomenology provide a contribution 
to the research into perception by the construction of phenomenological models for an 
ecologically meaningful interpretation of the empirical evidence and the hypothetical 
constructs of the natural image research within the visual neuroscience.

A formal framework for the phenomenological models is proposed, wherein Gestalt 
theoretical principles and empirical evidence are represented in terms of topological 
properties and relationships, which account for the order and structures that make the 
environment accessible to observers at a relevant behavioural level. 

It is finally argued that these models allow us to evaluate the principles and the empirical 
evidence of various natures which are integrated from different fields into the research 
into perception, and in particular into visual neurosciences.
Keywords: Models, phenomenology, Gestalt psychology, natural images, visual 
Neurosciences.

Zusammenfassung
Bestrebungen, die Gestalttheorie in das Forschungsfeld der visuellen Neurowissenschaften 
einzugliedern, werden sowohl auf theoretischer als auch experimenteller Ebene diskutiert. 
Um den Rahmen zu definieren, in dem diese Bestrebungen unterstützt werden können, 
werden in diesem Beitrag Merkmale eines Standardmodells skizziert, das als überlieferte 
Sicht der visuellen Neurowissenschaften und der Forschung zur Statistik natürlicher 
Bilder bezeichnet werden kann. Einwände gegen dieses Standardmodell sowie die 
Hauptfragen der Forschung zur Statistik natürlicher Bilder werden dargelegt. Auf dieser 
Grundlage verteidigt der Beitrag die Ansicht, dass Gestaltpsychologie und experimentelle 
Psychologie durch die Entwicklung phänomenologischer Modelle, die eine ökologisch 
bedeutsame Deutung empirischer Aussagen und theoretischer Konstrukte in der 
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Forschung zu natürlichen Bildern innerhalb er visuellen Neurowissenschaft ermöglichen, 
einen Beitrag zur Wahrnehmungsforschung liefern.

Für phänomenologische Modelle wird ein formeller Rahmen aufgestellt, innerhalb 
dessen gestalttheoretische Gesetzmäßigkeiten und empirische Nachweise in den Begriffen 
derjenigen topologischen Eigenschaften und Beziehungen dargestellt werden, die zu den 
Ordnungen und Strukturen beitragen, die eine Umgebung für die Betrachter auf einer 
relevanten Verhaltensebene zugänglich machen.

Schließlich wird dargelegt, dass diese Modelle die Evaluierung von Gesetzmäßigkeiten und 
empirischen Aussagen verschiedenster Art innerhalb unterschiedlicher Forschungsfelder 
der Wahrnehmungsforschung, speziell aber der visuellen Neurowissenschaften, 
ermöglichen. 
Schlüsselwörter: Modelle, Phänomenologie, Gestaltpsychologie, natürliche Bilder, 
visuelle Neurowissenschaften.

The present paper was supported by the Miur-Università degli Studi di Palermo with the 
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