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1 INTRODUCTION
If one looks into the night sky one struggles to discern a pattern behind all the
points of light. The lights look randomly distributed. Looks, of course, deceive.
Examined in 3D, instead of in the 2D projection we see, and using probability
theory, one finds many empirical statistical patterns lurking behind the panopoly
of lights. Galaxies, for instance, tend to appear in clusters, and these clusters are
themselves scattered roughly as a Poison distribution in space. Within clusters,
both the number and spatial distribution of galaxies seem to vary according to
particular probabilistic laws. Is there a reason for these empirical distributions?
In particular, is there a thermodynamic reason that the stars are distributed the
way they are?

In asking this question, we engage in a serious idealization, pretending that
the stars, etc., can be treated like the particles in an ordinary macroscopic sys-
tem. We are positioned like causally inert Maxwellian demons, able to see the
“particles” in the system, wondering whether thermodynamics results. How do
we calculate the expected distribution? Fortunately, we know the mechanics,
at least approximately. In astrophysics various stellar systems are well mod-
eled by the classical N-body gravitational equation, e.g., globular star clusters
(N = 105 − 106), galaxies (N = 1012 − 1014), and of course, planetary systems.
Because solving the "million-body problem" is analytically intractable, physi-
cists naturally turn to gravitational statistical mechanics.1 So imagine a system
composed of trillions of massive Newtonian particles in empty space. Assum-
ing the particles have no charge, this system is a paradigmatic self-gravitating
system, one whose behavior is primarily determined by (classical) gravitational

∗This paper is dedicated to the memory of Urs Hoffmann, from whom I learned much
about these topics.

1For an entry to the relevant literature, see Campa et al 2008; 2009, Chavanis 2006, Dauxois
et al 2002, Heggie and Hut 2003, Padmanabhan 1990, and Saslaw 2000.
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interactions among its constituents. Suppose that there are enough particles to
make coarse-graining into macrostates sensible. Impose the appropriate proba-
bility distribution over these particles. Now, will the generalizations of classical
equilibrium thermodynamics tend to be true of this system? To find out, we first
need to know (a) whether statistical mechanical techniques can be applied to
such a system, and (b) if so, will the resulting patterns yield thermodynamical
behavior?

To motivate these these questions, notice that the answers are far from ob-
vious. Pedestrian thermodynamic systems – steam engines and the like – are
terrestrial systems, systems embedded in an effectively uniform gravitational
field. Here the long-range nature of the gravitational force is not apparent. The
system’s behavior is primarily determined by interactions via short-range poten-
tials. True, the Coulomb force is infinite in range too, but unlike that force the
gravitational force doesn’t saturate. In macroscopic systems wherein Coulomb
forces dominate, the positive and negative charges effectively cancel out at cer-
tain scales and various screening mechanisms exist; for instance, in plasmas
charges are screened at distances greater than the Debye length. At such scales
the net interaction energy effectively vanishes, and this allows us to treat such
systems as if they consist of many statistically independent subsystems – an
assumption at the heart of statistical mechanics. Due to this non-saturation
and related features, self-gravitating systems face many special difficulties when
considered as statistical mechanical or thermodynamic objects.

These difficulties are sometimes dubbed the "paradoxes" of gravitational
thermodynamics (Heggie and Hut 2003). To the extent that physicists have
dealt with these paradoxes, the community divides over the fate of gravita-
tional statistical mechanics. Some believe that these paradoxes make ordinary
equilibrium statistical mechanics inapplicable. In its place various recipes and
techniques from statistical mechanics remain, to be sure, but the core founda-
tions from Maxwell, Boltzmann and Gibbs are judged inadequate. By contrast,
others try to show that statistical mechanics does apply.

Here is the chemist Rowlinson expressing a common sentiment:

"[Thermodynamics] is essentially a human science; it started with
steam engines and went on to describe many physical and chemical
systems whose size is of the order of a metre. Its laws are not truly
a theory but a highly condensed and abstract summary of our ex-
perience of how such systems behave. We have, therefore, no right
to expect them to apply to other quite different systems, whether
extremely large or extremely small. They clearly are inapplicable to
the solar system or to galaxies. Here gravity is the dominant force;
there is no equilibrium, the energy is no longer proportional to the
amount of material, and so there are no extensive functions. Clau-
sius’s famous remark that the energy of the universe is constant but
its entropy is increasing to a maximum is derived from the behaviour
of a closed adiabatic system of constant volume. The universe is nei-
ther closed in any classical sense, nor of constant volume. Clearly
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classical thermodynamics is not a useful branch of science in cos-
mology; we have extrapolated too far from its human-sized origins."
(1993, 873)

Similarly, Hut 1997 writes that there are "fundamental problems that prevent
a full thermodynamic treatment of a self-gravitating system of point particles"
and that "the traditional road to equilibrium thermodynamics is blocked" (41).
Impressed by one of the paradoxes, Binney and Tremaine 1987 likewise deny
that a "fundamental physical principle" (266), by which they mean Maxwell-
Boltzmann statistical mechanics, is responsible for the configuration to which
stellar systems settle. The claim that self-gravitating systems have no equilib-
rium, in particular, is the norm rather than the exception.

Against this opinion, one reads that

". . . statistical mechanics of gravitating systems is a controver-
sial subject. However, our modern understanding of statistical me-
chanics and thermodynamics does handle gravitational interactions
rigorously with complete satisfaction" Kiessling 1999, 545

"on the contrary . . . [the] usual tools and ideas of statistical me-
chanics do apply to such systems, both at equilibrium and out of
equilibrium" (Bouchet and Barre 2006, 19)

"not all was well with these three arguments [three of the above
problems]" Saslaw 2000, 301

None of these authors feel that the problems mentioned spell the end for gravi-
tational thermodynamics.

No one denies that many statistical mechanical techniques can be applied to
stellar systems. But are these merely residual mathematical tools with the core
physical principles left behind? Answering this question relies on an antecedent
division of statistical mechanical “core” and “peripheral” principles, and this is
bound to be controversial. For myself, I believe that if one thinks of the core
principles as those provided by Boltzmann, and elucidated by others (e.g., Lavis
2008, Lebowitz 1993), then one will not see these gravitational paradoxes as a
threat to statistical mechanics. They are surprising, but what they show is the
delicate balance of factors that must obtain for textbook Gibbsian statistical
mechanics to hold. If one does not mistake this textbook theory for statistical
mechanics, then one may come away feeling that Boltzmann’s original insights
hold up even in the gravitational case. I’ll leave this argument for another time.
Fortunately, it’s of interest how to respond to these challenges—regardless of
how we categorize these principles.

In what follows I primarily wish to introduce the exciting foundational prob-
lems posed by the so-called "paradoxes" of gravitational statistical mechanics.
As we’ll see, discussion of these paradoxes will raise many questions rarely dis-
cussed in the philosophical foundations literature: the meaning of equilibrium,
our understanding of phase transitions, the (non)equivalence of Gibbsian en-
sembles, and the use of the thermodynamic limit. The paper’s primary goal is
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to advertise the problems for further study by those in the philosophical foun-
dations of physics—and hence it’s longer on questions than on answers. How-
ever, where possible I do hope to make some progress on carving out space for
gravitational thermodynamics; that is, although I’m certain that gravitational
self-interaction pushes the limits of a thermodynamic description, I am skeptical
that the paradoxes spell the end for gravitational thermodynamics. But I am
confident that these issues promise to teach us much about the foundations of
statistical mechanics and the emergence of thermodynamics.

2 THE SYSTEM
Our first system is one composed of N particles, each of equal mass m, evolving
in three-dimensional Euclidean space and interacting via a potential V. Such a
system’s Hamiltonian is

H =
N∑

i=1

p2
i

2m
+

c

2

N∑

i=1i!=j,,

V (qi − qj) (1)

where c is a coupling parameter and (qi,pi) are the canonical coordinates of the
i-th particle. Long-range forces are typically associated with two-body poten-
tials V (r) = 1/rs, where s is less than or equal to the spatial dimensionality of
the system. In the case of self-gravitation, s = 1, V (r) = 1/r, and c = −Gm2,
so (1) becomes

H =
N∑

i=1

p2
i

2m
− Gm2

2

N∑

i=1i !=j,,

1

|qi − qj |
(2)

(2) is of course Newton’s famous N -body problem in gravitation theory. Al-
though our emphasis is on gravity, gravity is not necessary for many of the
puzzles that follow. There are non-gravitational systems that display some of
the same peculiar behaviors, e.g., so-called geophysical fluid dynamical models
(s = 0), some non-neutral plasmas (s = 1), dipolar ferroelectrics and ferromag-
netics (s = 3), as well as some spin systems and toy models. (For information
on these, and references, see e.g., Dauxois et al 2002.) Interestingly, many of
the peculiar physical properties found in large stellar systems are also found in
very tiny systems like nanoclusters. This is no accident. If we consider a system
"small" if its spatial extension is smaller than the range of its dominant interac-
tion, then a self-gravitating system is small too. In any case, the astrophysical
applications of (1) make the gravitational case the most interesting.

3 DIVERGENCES
Self-gravitating systems have what might be called infrared and ultraviolent
divergences. Let’s begin by arguing that these problems aren’t terminal.
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The infrared divergence arises from the fact that the gravitational poten-
tial r−1 has infinite range. Since there is no shielding, strictly speaking the
microcanonical density of states diverges. The density of states g(E) is given
by

g (E) =
1

N !

ˆ
δ (E −H(q, p)) dqdp

where E is the fixed energy, H the Hamiltonian, and N the number of systems.
The above integral diverges if the range of spatial integrations is infinite. Since
the Gibbs entropy S(E) is essentially the logarithm of g(E), this problem implies
that the entropy diverges too, thereby preventing a sensible thermodynamics
from emerging.

The ultraviolet divergence, by contrast, arises over short distance interac-
tions. Here the problem is the local singularity of the Newtonian pair interac-
tion potential. Two classical point particles can move arbitrarily close to one
another. As they do so, they release infinite negative gravitational potential
energy. Partition functions, which need to sum over all these states, thereby
diverge. The entropy and other quantities are again threatened (see Rybicki
1971 and Kiessling 1989).

Consider the ultraviolet divergence. Strictly speaking, from the foundational
perspective, this is a big problem, but it also affects Coulomb systems equally
from a foundational perspective (that is, we can imagine systems composed
of like-charged constituents without screening mechanisms). From that per-
spective, there is nothing new here. If we consider the less abstract question,
however, and acknowledge that real-world Coulomb systems do have screening
mechanisms, then there is a difference between the two. However, if we let
a little bit of the real world into our question, that can also help. After all,
we know that ultimately classical mechanics gives way to quantum mechanics.
We don’t want thermodynamics to fail in gravitational contexts just because
classical theory ultimately fails. Or if we think of the practical application in
astrophysics rather than the classical N-body problem, then the stellar radius
provides a natural cutoff. Hence, it seems permissible to replace the gravita-
tional potential with a softening or small cut-off potential. For instance, one
can regularize the potential with the following replacement

1

|qi − qj |
→ 1√

(qi − qj)
2 + η2

where η is a softening parameter that bounds from below the interaction poten-
tial. This softening will prevent arbitrarily large momenta from developing.

The infrared divergence of g(E) occurs because the integral is taken over an
infinite range of position space. However, as has been pointed out by others,
there is nothing special here. The same divergence occurs for the non-gravitating
ideal gas in a spatially infinite universe. (That issue was independently a subject
of controversy among philosophers of science; see, e.g., Popper 1958.) Since we
don’t take this divergence to prohibit a proper thermodynamics obtaining, we
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shouldn’t in the gravitational case either. The solution in the non-gravitational
case is to put the gas "in a box" and the same can be done in the gravitational
case. Sometimes it’s said that this is unwarranted in the gravitational case;
after all, tidal effects and evaporation will always occur. However, I’m skeptical
this is much different than in the non-gravitational case. What we need to
do is focus on the time and space scales. If a system is relatively isolated–if,
say, its rate of evaporation is proportionally small—we can conceptually put a
box around it. We can do so when the interactions with the "box" are much
less dominant within the time scales of interest than the interactions among
constituents. Since no screening is perfect even in the non-gravitational case, I
don’t see this justification as different in kind here.

The divergence problems, therefore, can be solved with plausible idealiza-
tions and approximations. The only stumbling block lay in mistakenly thinking
such idealizations weren’t needed all along in non-gravitational systems.

4 NO EQUILIBRIUM?
Having tidied up our system, the next question to ask is whether the concept
of equilibrium makes sense.2 In thermodynamics, equilibrium is that state of a
macroscopically isolated system wherein the thermodynamic observables remain
constant. Crucially, when left to themselves, systems tend to head to equilib-
rium, and also, equilibrium is transitive, i.e., if system A is in equilibrium with
B, and B with C, then A is also in equilibrium with C. Statistical mechanically,
equilibrium is more complicated. According to a Boltzmannian view, it is usu-
ally defined as the macrostate with the largest volume in 6N-dimensional phase
space. In the Gibbsian picture, by contrast, equilibrium is instead a feature of
a probability distribution, and it is defined as a distribution that is stationary
in time, thus mimicking the thermodynamic definition.

Many physicists voice skepticism about there being an equilibrium state
for self-gravitating systems. The reasons for this judgement hang on a motley
assortment of facts, and its sometimes hard to tease out a precise argument.

To begin, suppose the N-body system is not put in a box. Then if the system
is isolated – and hence one uses the microcanonical ensemble – one can prove
that there is no entropy maximum. Since equilibrium is sometimes defined as the
state of maximum entropy, this result implies that there is no equilibrium. 3If
the system is instead connected to a heat bath – and hence one uses the canonical
ensemble – one can similarly prove that the Gibbs free energy has no maximum.
Since equilibrium in the canonical case is associated with the maximum of the
Gibbs free energy, one again has an argument that there is no equilibrium.
These arguments, of course, are just the above infrared divergence argument.
If we don’t put the system in a box, at least conceptually, then even short-
range “normal” systems may have no entropy maximum in the microcanonical

2See Callender 2010 for a non-equilibrium counterpart of this paper.
3With self-gravitating systems in mind, some have challenged this identification (Landsberg

1984).

6



ensemble and no free energy maximum in the canonical ensemble. We should
put systems in a box, for thermodynamics is really about systems that are
approximately stationary with respect to some thermodynamic observables for
certain spatiotemporal scales.

Matters become more interesting when we do put the system in a box. If
we consider the system isolated, then there are various arguments, stemming
from both fundamental theory and approximations – and verified in computer
simulations – that if we begin with a system in a stably bound "core-halo" state,
as it develops with time the central core will become increasingly concentrated
without end. The core loses energy to the surrounding "halo" of particles, but
because of its negative heat capacity, it will get hotter as it contracts. If the
surrounding halo can’t warm quickly enough, then we get runaway instability.
The system gets more and more inhomogeneous, both in configuration and
velocity space, without limit. Hence its entropy increases without limit. For any
state–since we’re dealing with point particles–there is always a higher entropy
state found by making the core denser and the halo more diffuse.

This claim is also bolstered, and indeed, initially inspired, by the notorious
gravothermal catastrophe. Try to find the density distribution f(x, v), defined
on 6-dimensional μ-space, that maximizes the Boltzmann entropy subject to
constraints on the total mass, energy, linear and angular momentum. It turns
out that this variational problem has no solution in the gravitational case for
some constraints. In fact, it has no solution even when we artificially confine
the system to an arbitrarily shaped "ball" of physical space and allow radial
asymmetries (Robert 1998). Hence the catastrophe. Discovered by Antonov
1962 and dramatically described by Lynden-Bell and Wood 1968, the catastro-
phe has been confirmed in many computer simulations. It shows that for some
values of the constraints there is no distribution that maximizes Boltzmann
entropy.

In the canonical case, there is a similar catastrophe, sometimes called the
isothermal catastrophe. This is a state wherein, in configuration space, all of
the particles sit at the same material point. It is represented by a Dirac peak
in the canonical ensemble. Equilibrium then corresponds to this energy non-
conserving state that maximizes the Gibbs free energy.

True equilibrium, then, is said to correspond to one or the other of these
unobtainable states: a Dirac peak where the boxed system is attached to a heat
bath, or an endlessly evaporating-halo, shrinking-core system when the system
is isolated. Workers in the field are then quick to point out that nonetheless,
if the energy is high, there are many meta-stable states (local entropy max-
ima) that function effectively like equilibrium in the sense of having stationary
thermodynamic observables for long time periods. Although in principle the
gravothermal catastrophe can occur in a finite amount of time, this amount of
time is calculated to be longer than the age of the universe. The meta-stable
states are then regarded as effectively the equilibrium states.

Should Dirac peaks and runaway core-halo systems count as equilibrium?
One reason against doing so no doubt stems from a combined intuitive repug-
nance coupled with skepticism about the coherency of the presumed equilibrium
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states. Equilibrium, it is thought, shouldn’t be represented by monstrosities
like those states. Kiessling 1989, however, counsels that our ordinary notion
of thermal equilibrium originates from the non-gravitational cases; therefore,
it shouldn’t bias us against unorthodox states appearing in more unfamiliar
systems (205). With the intuitive concerns put aside – as I think they should
be – the question becomes whether such "singular" states are well-defined and
possibly part of a functioning statistical mechanics. As it turns out–and this is
a major result in the field – the Dirac peak in the canonical case is well-defined
and acts like a equilibrium state.4One can object that, for the astrophysical
problem, the microcanonical ensemble is more appropriate (galaxies and clus-
ters aren’t attached to heat baths). Yet if we focus on the foundational question,
whether equilibrium exists for our modified N-body problem, then a powerful
argument can be made that there is.

That said, I want to suggest another tack. I don’t want to minimize the
differences between the self-gravitating case and the normal case. There are
real differences, for instance, in the maximization problem that inspires the
gravothermal catastrophe. However, I think they can be overblown. I think
there is ’no equilibrium’ for these systems only if one employs an overly strict
notion of equilibrium.

Equilibrium, in thermodynamics and statistical mechanics, is an idealization.
Though defined as a stationary state, if the system is mechanically Hamiltonian,
then there can’t really be any truly stationary states. Poincare’ recurrence
implies that states will eventually evolve out of equilibrium if ever they weren’t
in equilibrium. Equilibrium holds only respect to certain observables, spatial
scales and temporal scales (Callender 2001). As Ma 1985 stresses, in the span
of a few seconds, the measured volume and temperature of boiled water poured
into a tea cup will not change significantly, and hence we can regard the system
as being in equilibrium. Wait a while and eventually the water’s temperature
will decrease until it is roughly equal to room temperature; once again we have
equilibrium. But in a few days the volume will vary as evaporation sets in.
Then we must wait until the cup is empty for another equilibrium state. Wait
even longer and the molecules in the cup will evaporate, and on the scale of
many years the system will again fall out of equilibrium. Statistical mechanics’
identification of equilibrium with a stationary probability distribution pretends
that there is what Ma called “absolute equilibrium.” But absolute equilibrium
is a fiction and not at all connected to the states we normally call equilibrium

4Since the momentum and configurational equilibrium densities factorize in the canonical
ensemble, yielding a trivial Gaussian measure over the momentum sector (see Kiessling, 213),
Kiessling (and others) focus on the configurational sector. The question posed is whether the
canonical equilibrium measure can describe this collapsed state in 3N-dimensional configu-
ration space. Kiessling’s proof that it can for three-dimensional systems examines modified
gravitational potentials with smoothed out singularities. He shows that in the limit, as these
potentials approach the exact Newtonian potential, the canonical ensemble converges on a
superposition of Dirac distributions each describing a collapsed state. Which exact spot will
suffer the collapse is equal to a probability density that depends on the external potential
and a Boltzmann-like factor. Kiessling is then able to show that this work connects up with
thermodynamics in the mean field limit.
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states in thermodynamics. From this perspective, the meta-stable states are
equilibrium enough.

Besides, the Dirac peak and core-halo states are, like the first worry, the
result of the above divergence worries. In this case, the runaway behavior stems
from the absence of a short-distance cut-off. And as mentioned, in the practical
issue, there is abundant reason to introduce a cut-off, e.g., at stellar radii. In
the purely theoretical case, it’s of course interesting that these states result
when no short-distance cut-off is imposed. But if one does not impose a priori
demands on what an equilibrium state –or perhaps better–absolute equilibrium
state should look like, then when they are well-defined there is nothing to object
to.

Does the lack of an entropy maximum state hurt the Boltzmannian picture?
No. Two points are important to make here.

First, the demonstration of the catastrophe is within astrophysics and awash
in idealizations. These idealizations are perfectly natural ways of modeling some
astrophysical phenomena (see Ipsner 1974), but they do limit the applicability
of this result for our foundational question. The Boltzmann entropy maximized
in the gravothermal catastrophe is the one over the one-particle distribution
function f in 6-dimensional μ-space, i.e., S(f)=-kB

´ ´
flogfd3xd3v, not the

volume corresponding to the macrostate M in 6N -dimensional Γ-space, i.e., S =
−kBlog|ΓM |. The former is fine as an approximation of many stellar systems,
for they don’t have many close encounters or collisions. But at many stages of
the above process additional physical mechanisms will become important. If we
think of the logarithm of the 6N -dimensional volume as the "real" entropy, then
we’ve only shown that an approximation for some spatial and temporal scales
doesn’t have an equilibrium point. Of course, how one should define macrostates
if the usual prespription yields trouble is a problem, but not one unique to the
gravitational case.

Second, what ultimately matters to the Boltzmannian is that the transition
probabilities for going from one macrostate to the other are calculated via the
relative size of the corresponding volumes in 6N-dimensional phase space. This
can be done even if there is no unique maximum entropy macrostate. Recall
that the Boltzmannian picture works, in principle, for equilibrium and nonequi-
librium systems. As Lavis 2008 stresses, it’s best to regard equilibrium not as
an all-or-nothing state, but instead as a spectrum of states corresponding to
a spectrum of sizes of volumes in phase space. How “big” should the volume
corresponding to a macrostate be before we dub it ’equilibrium’ in this picture?
The answer is to some extent arbitrary. From this perspective, I don’t see why
meta-stable states can’t be regarded as equilibrium states for the same reasons
cups of coffee can be.

Finally, let me end this section by acknowledging that there may be threats
to equilibrium from other directions. It may be that some features we desire
of equilibrium cannot obtain for some self-gravitational systems. I’ll describe
such a possibility later. But as that threat hangs on many open questions and
the usual arguments against equilibrium are wanting, we’ll tentatively conclude
that equilibrium does make sense in self-gravitating systems.
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5 NON-EXTENSIVITY
The problem we want to consider arises from the fact that entropy and energy
seem to not even be approximately extensive or additive for self-gravitating
systems. Yet without extensivity or additivity holding, it’s not clear how much
of equilibrium thermodynamics or statistical mechanics survives.

Before seeing why, we must first clarify terms, as many inequivalent def-
initions of extensivity exist in the literature and this proliferation leads to a
number of (apparently) conflicting claims about the relationship between ex-
tensivity and additivity. Often used interchangeably, the two concepts can be
different (suitably defined) and this difference can be important for the systems
of interest.

Thermodynamics and statistical mechanics assume that, when a system is
large enough, it can be divided into composite subsystems; alternatively, that
one macroscopic system can be combined with another into a third macroscopic
system. Extensivity and additivity are features that apply to the interrelation-
ships among the subsystems of a compositive system. Additivity is normally
straightforward. Let x be the system and x1...xn be its subsystems. A function f
over these is additive just in case f(x) = f(x1)+f(x2)...+f(xn). But extensivity
is defined many inequivalent ways in thermodynamics (Dunning-Davies 1983).
Intuitively put, extensive quantities are those that depend upon the amount of
material or size of the system (such as the mass, internal energy, entropy, vol-
ume and various thermodynamic potentials), whereas intensive quantities are
those that do not (such as density, temperature, and pressure). Commonly it’s
claimed that extensive quantities are those that are halved when a system in
equilibrium is divided into two equal-sized subsystems. Alternatively, we might
say a function f of thermodynamic variables is extensive if it is homogeneous of
degree one. If we consider a function of the internal energy U , volume V , and
particle number N , homogeneity of degree one means that

f (aU, aV, aN) = af(U, V,N)) (3)

for all positive numbers a. Either claim neatly encodes the experimental facts.
Consider a box of gas in equilibrium with a partition in the middle and consider
the entropy, so that a = 2 and f = S. Then (3) describes the experimental fact
that if we halve the system we also halve the entropy. The same goes for the
energy. Thermodynamically, we can take energy or entropy to be the dependent
variable, U = U(S, V,N) or S = S(U, V,N); if one is not extensive then the
other is not. In neither sense of extensivity, however, does extensivity strictly
imply additivity (Dunning-Davies 1983). Additivity does imply extensivity, by
contrast.

Statistical mechanically, matters are subtler. One reads that additivity im-
plies extensivity but not the reverse in one place (Campa, Dauxois, Ruffo 2009)
but that they are logically independent in another (Touchette 2002). In fact
there is little confusion – just different definitions. A common definition of ex-
tensivity in statistical mechanics is that a thermodynamic function f is extensive
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iff its f -density, defined by f(xn)/n, attains a constant in the infinite n limit.
This definition neither implies nor is implied by additivity. If, by contrast,
all one means by extensivity is that thermodynamic variables are proportional
to system size, i.e., then additivity implies extensivity again, but extensivity
doesn’t imply additivity. There are systems whose energies scale with N yet do
not have additive energies, e.g., the Curie-Weiss model.

However we arrange the logical geography, it’s clear that the assumption that
energy is extensive is plausible partly because in terrestrial cases we are usually
dealing with short-range potentials. At a certain scale matter is electrically
neutral and gravity is so weak as to be insignificant. If the potential is short-
range and our subsystems aren’t too small, then the subsystems will interact
with one another only at or in the neighborhood of their boundaries. When
we add up the energies of the subsystems, we ignore these interaction energies.
The justification for this is that the interaction energies are proportional to the
surfaces of the subsystems, whereas the subsystem energies are proportional to
the volumes of the subsystems. So long as the subsystems are big enough, the
subsystem energies will vastly trump the interaction energies as the number of
subsystems increases because the former scale as (length)3 and the latter as
(length)2. Of course, we are also assuming that the subsystems sizes aren’t
chosen in too contrived a way. Bulk effects will not outpace surface effects
if one chooses, say, very thin subsystems with large surface areas and small
volumes. Normal systems that are macroscopic and screened after a certain
distance at the macroscopic level, however, warrant the claim that energy (etc.)
are extensive and additive.

However, if gas molecules are replaced by stars—that is, short-range po-
tentials replaced by long-range potentials—this reasoning doesn’t work. The
interaction energies may not be proportional to the subsystem surfaces. For
short-range potentials, the dominant contribution to the energy comes from
nearby particles; but for long-range potentials, the dominant contribution can
originate from far away particles. To drive home the point, consider a sphere
filled with a uniform distribution of particles. Now add a particle to the origin
and consider its internal energy U :

U ∝
R̂

0

4πr2drρr−3−ε ∝
R̂

0

drr−1−ε

One can verify that with ε > 0 ("short-range potentials"), the significant con-
tribution to the integral comes from near the particle’s origin, whereas with
ε < 0 ("long-range potentials"), the contribution comes from far from the origin
(Padmanabhan 1990). The interaction energies do not become negligible as the
system grows.
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As a result, think of what happens in the standard case of a chamber of gas
divided into two equal boxes, A and B (see Fig.1). If the particles are interacting
via long-range forces, the particles in box A will feel the particles in box B as
much or even more than the particles nearby. Let EA represent the energy of box
A and EB represent the energy of box B. Because E = EA + EB + f(EA, EB)
where f(EA, EB) is the non-negligible interaction energy, it is easy to devise
scenarios whereby EA = EB = −a, where a > 0, yet where the energy of
the combined system E vanishes. The energy might not be even approximately
additive, in the usual sense of additive. Same goes with the entropy.5 Depending
on the Hamiltonian, however, it may be that the energy nonetheless scales with
N and hence one sometimes sees the claim that systems are extensive but not
additive.

Of course, the problem is really one of degree. Real finite systems aren’t
perfectly extensive. Nonetheless, there is a genuine physical difference between
the gravitating and non-gravitating cases, for one has screening mechanisms the
other doesn’t. It’s important not to let the distinction collapse merely because
it’s ultimately one of degree. One way of collapsing the distinction appears in
"rigorous" treatments of statistical mechanics. Here one tries to regain the exact
formal properties of thermodynamics despite the fact that we know it holds only
approximately. Elsewhere I have dubbed this practice "taking thermodynamics
too seriously" (see Callender 2001) and pointed out that it can often lead us
astray. In this case it is simply a matter of semantics. In approaches to statistical
mechanics like Ruelle 1968’s, it’s commonly said that no finite system is ever
extensive. What is meant is that in approaches wherein one defines the entropy
and energy via the partition function, one is unable to reproduce the distinction
between extensive and intensive for any finite system. No matter how large
the system, if it’s finite, surface effects contribute to the partition function.
Entropy and energy are claimed to be truly extensive only in the thermodynamic
limit, where N,V go to infinity while the ratio N/V is held constant. In this
field a variable f is extensive if the thermodynamic limit of f is infinity while

5There are ways of re-defining the entropy or energy so that one but not both are non-
additive; see Johal 2006.
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the thermodynamic limit of f/V is constant. Strictly speaking, finite systems,
gravitational or not, are never extensive.

But no matter. It’s still a fact that self-gravitating systems, unlike Coulomb
systems, have no built-in tendency causing them to be even approximately ex-
tensive. This physical difference, although invisible in certain contexts, is no less
real for being a matter of degree. Indeed, the cost of the energy and entropy
being non-extensive in this sense is quite profound.

5.1 EXTENSIVITY IN THERMODYNAMICS
Let’s concentrate initially on the costs incurred by classical phenomenological
thermodynamics. The trouble with doing so is that there is no one canonical
way of developing the theory. Some authors take as axioms what others derive,
and vice versa. Still, it seems that non-extensivity wreaks havoc with tradi-
tional thermodynamics no matter the route by which it reverberates through
the subject. Rief 1965 and Landsberg 1961, for example, take extensivity as
axiomatic.

Focusing briefly on one example, note that the first three postulates of Callen
1960’s now classic textbook explicitly or implicitly assume the extensivity of the
system. Postulate III states that "the entropy of a closed system is additive
over the constituent subsystems" (25), so additivity is treated as an axiom.
Postulate II requires that entropy is a function of the extensive parameters of
the system in equilibrium. In that case, if energy is not extensive then, strictly
speaking, entropy is not a function of energy. Even Postulate I, the existence
of equilibrium states, tacitly requires extensivity of the entropy and/or energy,
for Callen declares an equilibrium state as being completely characterizable by
extensive parameters. Of course, there are extensive parameters in addition
to energy and entropy, but a formalism based around, say, volume and mole
number, would scarcely be recognizable as thermodynamics. With the first
three basic postulates impacted by the loss of extensivity, scores of important
implications are lost. For instance, one cannot derive:

• that subsystems mutually in equilibrium have equal temperatures
(Callen, 37)

• that when a system is in equilibrium, its large subsystems also will
be in equilibrium

• that the important Gibbs-Duhem equality holds

• that the Second Law holds (e.g., in Lieb and Yngvason 1998).

The reader is invited to go through a thermodynamics text and circle all the
derivations lost by removing the assumption of extensivity. I’ll assume, however,
that the above list suffices as an indication of the damage.
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5.2 EXTENSIVITY IN STATISTICAL MECHANICS
Moving to statistical mechanics, matters are in many ways more interesting.
However, in the end, here too the approximate extensivity of the energy is often
taken as axiomatic.

For example, Landau and Lifshitz 1969 take the statistical independence of
subsystems and the associated additivity as perhaps their most basic assump-
tion, for through a chain of reasoning they use it to ground the "most important
conclusion. . . [that the] values of the additive integrals of motion . . . completely
determine the statistical properties of a closed system" (11). With this, they
write, it is possible to replace the "staggeringly large data" of the mechanical
approach with a simple statistical distribution, i.e., the microcanonical ensem-
ble, the basis of equilibrium statistical mechanics (11). It is not an exaggeration
to say that additivity of energy, in their treatment, is what makes statistical
mechanics possible.

To take another example, consider Ruelle’s 1969 elegant and influential treat-
ment of statistical mechanics. In his hands, "normal" thermodynamic behavior
is possible only when two conditions hold, stability and temperedness. We won’t
spend time describing these conditions here, but suffice to say, in self-gravitating
systems stability is violated (Campa 2008; Katz 2003). Interestingly, if we make
our potential repulsive rather than attractive at large distances, then the tem-
peredness condition is violated (Campa 2008, 11). So one way or the other,
long-range forces spell trouble for thermodynamic behavior as Ruelle under-
stands it.

As in the thermodynamic case, one finds extensivity assumed throughout
many treatments of statistical mechanics. Not surprisingly, since statistical
mechanics grounds thermodynamics, it’s assumed in statistical mechanics in
many of the same places it is in thermodynamics. However, let’s note a few
additional features of interest:

• The justification of the canonical ensemble is considered parasitic
upon the justification of the microcanonical ensemble. Large re-
search programs are devoted to justifying the choice of a uniform
measure for a closed system. Once that is in hand, or even assumed,
then one gets the justification of the more widely used canonical
ensemble for free. That is, one justifies the canonical ensemble by
assuming the system of interest is a small subsystem of a much larger
system itself described by the microcanonical ensemble. With the
added assumption of additivity of energies, one can then derive the
canonical ensemble as an appropriate probability distribution for
the subsystem. Without this additivity, one expects strange non-
canonical behavior to emerge from non-extensive systems in contact
with heat reservoirs.

• Non-extensive systems have no conventional thermodynamic limit.
The thermodynamic limit is one where we normalize the extensive
variables by the volume V or particle number N , e.g., E/N , thereby
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making the ratios intensive; then we let N,V → ∞ while keeping
these intensive ratios finite. For a rigorous discussion of this prob-
lem see Padmanabdum 1990 and references therein. Intuitively, this
fact is not surprising. The existence of the thermodynamic limit
depends on making the contribution of surface effects go to zero as
N,V → ∞. But with a non-additive system, we saw that the surface
effects aren’t going to get smaller as N and V increase. If we have a
self-gravitating system in a box, as we increase the size of the box,
the total kinetic energy will scale with the mass, which in turn scales
with the size of the box: Ekin ∝ M ∝ R3. However, the potential
energy Epot will grow much faster: Epot ∝ M5/3. This makes the
specific gravitational potential energy of the system, the total po-
tential energy divided by N , increase indefinitely as N increases (see
Heggie and Hut 2003). Another way the lack of a thermodynamic
limit is unsurprising is that the connection between it and extensity
is sometimes especially direct. Beck and Schloegl 1993, like many
others, state that a system is said to possess a thermodynamic limit
only when its total entropy and energy are extensive quantities (in
the rigorous sense described earlier). And adding one more link to
the chain, Ruelle proves that the thermodynamic limit exists only
for interactions that are thermodynamically stable, whereas non-
extensive systems aren’t stable. Ironically, the thermodynamic limit
doesn’t apply to very large systems.

• There can be negative specific heats in self-gravitating systems (Lynden-
Bell 1999). The specific heat capacity C is a measure of the amount
of heat energy required to raise the temperature of a material one
degree Kelvin. In classical thermodynamics, C is always positive.
For such a system, adding energy makes the temperature increase
and removing energy makes the temperature decrease. Because it
is so closely tied to the stability of a thermodynamic system, some
texts treat positive C as a basic principle of thermodynamics (e.g.,
Thompson 1970). We’ll return to this topic in Section 7. Suffice to
say, negative specific heat is quite counter-intuitive; furthermore, it
is connected to the onset of phase transitions and ensemble inequiv-
alence, two fascinating topics.

6 EXTENSIVITY REGAINED?
The physics community’s reaction to non-extensivity divides into three broad
camps. One group seeks to extend/modify equilibrium statistical mechanics
to cover cases of non-extensive energy and entropy. Another uses the prob-
lems mentioned as a reason to ditch equilibrium statistical mechanics in favor
of non-equilibrium techniques. But probably the majority of physicists pursue
a conservative approach. Instead of modifying or abandoning equilibrium sta-
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tistical mechanics, they continue to use it but seek approximations, limiting
regimes, and so on, wherein extensivity is regained. In this section I’ll focus on
this last response. Since the other two groups pursue agendas outside the scope
of this paper, I’ll ignore them apart from a little discussion of the first group in
Section 7.

Divide our N -body system up into two cells, 1 and 2. Due to the gravitational
correlation energy Uint between cells, we’ve seen that the internal energy isn’t
extensive: U = U1 + U2 + Uint. Yet we can still ask whether there are systems
for whom Uint & U1 + U2. If so then extensivity is a good approximation and
ordinary equilibrium statistical mechanical techniques are used again. Let’s
investigate two ways of regaining extensivity.

First, here is a quick and loose argument one sometimes sees to show that
entropy can be extensive for self-gravitating systems. Define the entropy via the
standard

1

T
=

∂S

∂E

where E is the total energy and T the temperature. Then make two assump-
tions: (a) that the system is virialized, and (b) that the temperature is propor-
tional to the mean kinetic energy. The first assumption holds if the system is
stably bound. Then the virial theorem states that

< K >τ=
1

2
< V >τ (4)

where τ is the time over which the averages are taken, and K, V , the kinetic
and potential energy, respectively. The second assumption is that

T ∝ < K >

kB(3N − 6)

where kB is Boltzmann’s constant. As one can quickly inspect, assuming that <
K >τ≈< K >, it then follows that both E and T are (similarly) N -dependent.
Hence, the entropy, defined in terms of these notions, must also be N -dependent
and therefore extensive.

This argument is problematic at every step. The virial theorem is a theorem
of mechanics stating that if the average time derivative of a function G known as
the scalar virial is zero, then equation (4) holds. In astrophysics the antecedent
is often ignored if the system is stably bound for a long time. The reasoning
is that if G is bound between Gmin and Gmax for a long time, as happens in
orbits, then its average is zero. For the time scales of interest, this assumption
is usually perfectly innocuous. However, a priori there is no reason to think
these time scales are equal to the thermodynamic times scales. Being in "dy-
namical equilibrium" doesn’t imply that one is in thermal equilibrium (or vice
versa). That the system is stably bound for a time period τ doesn’t in the least
imply that we can assign it a thermodynamic temperature. Furthermore, even
if we do assume the system is in thermal equilibrium, it doesn’t follow that its
temperature is proportional to kinetic energy. There are many systems—and in
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fact some gravitating systems—where this is not so. The quick argument needs
more justification before it can be employed in general. Nonetheless, it does
at least show that if these assumptions can be consistently employed, then the
energy and entropy can be extensive even if the system is self-gravitational.

The more common method of regaining extensivity is by going to the mean
field limit. First, one rescales equation (2) by what is known as the "Kac"
prescription (Kac, Uhlenbeck and Hemmer 1963). That is, one chooses the
spatial and temporal parameters so that the coupling parameter c = −Gm2

becomes c = ±1/N . Hence (2) becomes

H =
N∑

i=1

p2
i

2m
+

1

2N

N∑

i,j=1,,

V (qi − qj)

Now, keeping all parameters fixed, and in particular the volume, take the N →
∞ limit. This differs from the usual thermodynamic limit, for in that limit the
volume V also goes to infinity. The resulting limit has a number of nice features,
for example, from it one can obtain the collisionless Boltzmann equation, which
is quite useful in astrophysics. For our purposes, however, what is important is
that the energy H is proportional to N at this limit, and hence, the energy is
extensive. In the literature it is commonly asserted that the N,V → ∞ limit is
appropriate for short range systems but the N → ∞ limit is what is appropriate
for long range systems. (In a similar development, de Vega and Sanchez 2002
argue that in the so-called "dilute limit", where N,V → ∞ while N/V 1/3 stays
fixed, the internal energy, free energy and entropy become extensive; however,
this claim has been disputed (Laliena 2003).) We’ll return to these limits in the
next section.

Finally, I should mention two further regimes in which extensivity can be
regained, but which I won’t describe in detail here. They can be found in Saslaw
2003, who focuses especially on infinite N systems and the canonical ensemble.
Although the first justification departs from our Newtonian N-body situation, it
is too good to ignore: Saslaw shows with a neat argument that the expansion of
the universe effectively cancels out the long-range part of the gravitational force.
Expansion limits the bulk effects of gravity to certain length scales. So there is
a gravitational kind of screening after all. And at these length scales the energy
is approximately additive. The second justification focuses on features of the
so-called correlation length used in astrophysics, e.g., its steepness, and shows
that in some cases it too will leave the interaction energy negligible for certain
spatial and temporal scales. In sum, there are some regimes where extensivity
is regained.

7 FOUNDATIONAL QUESTIONS
Gravitational thermodynamics stimulates many foundational questions in sta-
tistical mechanics. We have already broached some of them – e.g., what is
equilibrium, whether systems are strictly extensive, the status of divergences,

17



the problem of negative specific heat – and no doubt each can be discussed in
far greater detail. Although there is much one could discuss, let me finish by
concentrating on four philosophical questions little discussed in the literature.

7.1 Statistical Mechanics without Thermodynamic Limits–
and Which Limits?

The lack of a well-defined conventional thermodynamic limit is prima facie dis-
turbing. Many approaches in the foundations of statistical mechanics crucially
rely upon this limit. It is also said to provide the resolution of various "para-
doxes" in statistical mechanics (Styler 2004). I want to suggest one general
heretical claim, and then raise another.

First the heretical statement: the thermodynamic limit is neither neces-
sary nor sufficient for thermodynamic behavior. That it is not necessary for
thermodynamic behavior is exemplified by gravitational systems that display
thermodynamic behavior, but also all the many, many systems systems that do
not meet the exacting conditions for having a thermodynamic limit. That it
is not sufficient can be seen as follows. Suppose we do have a proof, for in-
stance, that in the thermodynamic limit a system is exactly additive: doubling
the E,V, and N, say, doubles the entropy. Does it automatically follow from
the existence of this limit that real finite N systems are extensive or even ap-
proximately extensive? If the limit is not smooth, not much may follow about
the properties of large N systems. All the usual “short-run” versus “long-run”
worries can be raised. The existence of thermodynamic property P obtaining in
the thermodynamic limit is no guarantee by itself that real systems exemplify
some approximation of P.

For this reason, I think of the lack of a conventional limit in the gravitational
case as more edifying than problematic. The emphasis on the thermodynamic
limit in the foundations of the subject often arises from a misplaced desire to
show that thermodynamics holds exactly of statistical mechanical systems. The
goal of statistical mechanics is to explain the thermodynamic patterns of observ-
ables, not the thermodynamic formalism (Callender 2001). The thermodynamic
limit is sometimes useful in this explanatory enterprise, but it should not replace
it.

Second the specific question: what should we make of the use of unconven-
tional limits? In the previous section we saw that extensivity can be regained by
using an unconventional thermodynamic limit. In fact, it’s not uncommon for
physicists to use modified thermodynamic limits to achieve their ends. What
should we make of this practice? Is one limit the "right" physical limit and
the other the "wrong" one, given the goals? What makes a limiting procedure
correct? Is a pragmatic justification, i.e., that the limit succeeds in getting the
desired results, enough? Or do we require a more physically based justification?
One naturally wants to be on guard against reverse engineering: assuming that
extensivity holds and then taking the limits needed to get there. This worry
arises in the present case. Lalienda 2003; 2005, for instance, charges deVega and
Sota 2005 with imposing "ad hoc" conditions to obtain a well-defined "dilute"
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thermodynamic limit. This criticism presupposes that some restrictions are le-
gitimate and others not. By contrast, while not exactly denying this, in a side
remark Barre and Bouchet 2006 approach the topic by demanding a limit that
gives physics largely independent of how large N is. That is, they want to find
the physics of effectively intensive variables. But in the context of the founda-
tional question of whether one can regain extensive versus intensive variables,
this motivation would seem to beg the question. It says: take whatever limit is
needed to recover the ’intensive versus extensive’ split. Obviously a criterion of
some kind is needed to determine what limits (with what restrictions) justify
what physical claims. What is it?

7.2 Ensemble Nonequivalence: Will the True Ensemble
Please Stand?

In mainstream Gibbsian statistical mechanics, the choice of probability distribu-
tion or ensemble is widely deemed a matter of convenience. One can choose the
microcanonical, canonical, or grand canonical ensemble. They are supposed to
be merely different windows onto the same physics, each corresponding merely
to the fixing of different thermodynamic parameters. The physics isn’t supposed
to hang essentially on our choices on how we model the system. This belief is
justified in textbooks by gesturing at facts like the following. Focusing on the
canonical and the microcanonical ensembles, when N goes to infinity, the ener-
gies of most configurations in the canonical ensemble are equal to the average
energy; hence in the limit one gets systems all of the same energy, i.e., the mi-
crocanonical ensemble. Reasoning like this leads to the common belief that the
three ensembles are equivalent in the conventional thermodynamic limit.

Of course, matters are not so simple. More than a century ago Gibbs 1902
pointed out inequivalence for systems undergoing phase transitions, something
treated as a loophole by some textbooks. And more careful treatments ac-
knowledge that the so-called "problem of equivalence" has been a foundational
problem for a long time.

With self-gravitating systems, it seems that this problem is all the more
pressing. Without a well-defined conventional thermodynamic limit, we cannot
prove equivalence of ensembles. In self-gravitating systems, the three ensem-
bles can describe very different physics. In fact, in toy self-gravitating systems,
one can demonstrate strikingly divergent physical behaviors for self-gravitating
systems between the microcanonical and canonical ensembles. The former, for
instance, allows negative specific heats whereas the latter cannot. The situation
has now changed: it’s not just that we don’t know (i.e., haven’t yet proved)
that the three ensembles are equivalent for some systems, excepting phase tran-
sitions; it’s that now we know that they’re not equivalent for some systems. On
its face, this situation seems dire. Galavotti 1999 writes that the problem of
equivalence "is a fundamental problem because it would be a serious setback for
the whole theory if there were different orthodic ensembles predicting different
thermodynamics for the same system" (69). And Huang 1987 writes, "From
a physical point of view, a microcanonical ensemble must be equivalent to a
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canonical ensemble, otherwise we would seriously doubt the utility of either"
(148).

What this nonequivalence means for the entire Gibbsian program has yet
to be considered from a foundational perspective, but it would seem to call
for serious study. A number of questions face us. Do we treat one ensemble
as distinguished? Much of the gravitational thermodynamics literature does
do this—Gross 2001 most vocally. They understand the real physics as be-
ing described by the microcanonical ensemble. And since one needs additivity
to derive the canonical from microcanonical ensembles, one cannot derive the
canonical from the microcanonical even if they aren’t equivalent in the ther-
modynamic limit. Thus Combes and Robert 2007 write that as a result of
non-extensivity "the canonical formalism of Gibbs is no longer justified". Oth-
ers, by contrast, stick with the canonical description as basic. It is, after all,
the easiest to use, and so there is real incentive to standing by it. Still others
consider moving to the use of new ensembles. Costeniuc et al 2006 define a
new ’generalized canonical ensemble’ by modifying the Lebesgue measure from
which the canonical ensemble is crafted. They then show that this ’generalized
canonical ensemble’ is equivalent to the microcanonical measure in the conven-
tional thermodynamic limit. They also consider the little-discussed Gaussian
ensemble, which is the ensemble said in the first instance to be appropriate to
a system in contact with a finite heat reservoir.

For myself, I don’t think inequivalence is so surprising. After all, a system
with an infinite heat bath attached to it and one without are quite different phys-
ical systems! What’s surprising is that for some systems this difference didn’t
matter to some thermodynamic observables. In any case, the phenomenon of
ensemble nonequivalence and its connection to features such as non-concavity of
the entropy, phase transitions, and negative specific heat have been the subject
of an awful lot of research lately (for an introduction, see Touchette, Ellis and
Turkington 2004) and it begs for philosophical appraisal.

7.3 Negative Specific Heats
The specific heat capacity C is a measure of the amount of heat energy required
to raise the temperature of a material one degree Kelvin. For constant volume,
it is defined as

CV =
∂U

∂T

where U is the internal energy and T the temperature. In classical thermo-
dynamics, C is always positive. For such a system, adding energy makes the
temperature increase and removing energy makes the temperature decrease.
But as mentioned earlier, in the gravitataional literature systems with negative
heat capacity are a commonplace. Eddington long ago mentioned that stars
and star clusters would cool down if energy is added. Then in the 60’s and 70’s
many astrophysical models appeared that displayed negative specific heat. As
Lynden-Bell 1999 describes matters, negative specific heat was a "paradoxical"
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result, but the paradox was dispelled by Thirring 1970, who showed that al-
though the specific heat is always positive in the canonical ensemble it can be
negative in the microcanonical ensemble.

If there really are negative specific heats, however, they raise many questions
worthy of further study. To name one, can systems of negative specific heat
really be in equilibrium? Suppose we say that it’s essential to equilibrium that
it be transitive. Then on its face it seems that systems that are otherwise in
equilibrium do not satisfy transitivity. This claim relies on two premises (see
Dunning-Davies 1983):

Premise 1: Two negative Cv systems cannot reach equilibrium if put in
thermal contact with one another.

Suppose system A loses energy to system B. Then because of the negative
Cv, the one losing energy gets hotter and the one gaining energy gets cooler.6

Premise 2: a negative Cv system can be in equilibrium with a positive Cv

system.
Suppose we place a negative Cv system A into thermal contact with a positive

Cv system B. Assume the negative Cv system begins with a slighter hotter
temperature than the positive Cv system, so that heat flows from A to B. But
that means that A will get hotter as it loses energy. But B, given its positive Cv,
will also get hotter as it increases energy. And in fact it will get hotter quicker
than A will, for A’s |Cv| is less than B’s |Cv| because A started off hotter. So
B’s temperature can catch up to A’s temperature. They can therefore reach an
equilibrium where they are both hotter than they were before!

With these two premises, transitivity of equilibrium is easily violated. Let
systems A and C have negative Cv and system B have positiveCv. Then A can
be in equilibrium with B, B in equilibrium with C, but never A in equilibrium
with C.

This argument is only one possible clash with ordinary thermodynamics.
Landau and Lipfshitz 1969 and Dunning-Davies 1996 also describe other prob-
lems with stability. So are negative specific heats genuinely holding in equilib-
rium systems? Are they instead the result of idealizations? Or do they place
peculiar constraints on how can combine thermodynamic macrostates? And as
Chavanis 2006 asks, what does the specific heat even mean in statistical me-
chanics – in the microcanonical ensemble U cannot vary and in the canonical
ensemble T does not vary?

7.4 Tsallis Statistics
In response to the problems described here, there is a research program orga-
nized around non-extensive statistics. In 1988 Tsallis developed a generaliza-
tion of the Boltzmann and Gibbs entropies, namely, the Tsallis entropy. The
Tsallis entropy reduces to the Boltzmann and Gibbs entropies when the sys-
tem is extensive, but is different otherwise. Since then a whole school devoted

6Notice that this is connected with an earlier peculiarity, non-extensivity. This fact implies
that we cannot take a system with negative Cv and subdivide it into two subsystems each
also with negative Cv . An isolated system with negative Cv must be non-extensive.
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to non-extensive statistics has arisen based around this new entropy formula.
The motivation behind the program is to show that the Tsallis entropy works
well in situations where the Boltzmann and Gibbs entropies allegedly break
down. Normal statistical mechanics is supposed to correspond only to the case
where a system is approximately extensive. Long-range force systems like self-
gravitating systems are supposed to be one prominent example where Tsallis
statistics are needed. The debate in the literature over the necessity of Tsallis
statistics is sometimes very heated. Proponents of Tsallis statistics write papers
displaying systems for which they claim traditional mechanical techniques come
up short; defenders of statistical mechanics respond with criticism of the new
techniques and try to show how the Boltzmann-Gibbs framework suffices to ac-
count for the physics. However, before one even engages in this back-and-forth,
one might inquire from a foundational perspective whether the Tsallis entropy
really makes sense. The paper by Nauenberg 2003 is quite critical of Tsallis
entropy, but there is room for more debate. Those interested in the foundations
of statistical mechanics may wish to weigh in on this matter.

8 CONCLUSION
As advertised, this discussion has raised more questions than it’s answered. We
are left with puzzles about the thermodynamic limit, ensemble non-equivalence,
negative specific heats, the status of Tsallis statistics, and more. That said,
some answers have been sketched, and we have learned something about how a
thermodynamic description of the world arises. If we there is a general lesson, I
believe it is that we sometimes have too narrow a vision of thermodynamics. In
his beautiful review, Thompson 1970 writes that “to show that thermodynamics
exists for a given system” we must a) “prove...the existence of the thermody-
namic limit” and b) “show that the resulting thermodynamics is stable”, i.e.,
prove that specifc heat is positive. By these criteria, self-gravitating systems
badly fail as thermodynamic systems. Yet thermodynamic techniques some-
times have proven successful when applied to self-gravitating systems. How do
we reconcile these two facts? To a large extent I think the conflict arises from
thinking that we need to reproduce exactly the generalities of thermodynamics
in statistical mechanics. Most real macroscopic systems don’t have stationary
equilibria, don’t have well-defined thermodynamic limits, aren’t perfectly ex-
tensive, and so on. Still, some of them nevertheless display thermodynamic
behavior. Focusing on self-gravitating systems helps us see this point.

So, does thermodynamics hold of self-gravitating systems? The answer is
unexpectedly unclear. It hangs on our evaluation of the means of regaining ex-
tensivity surveyed in section(6). For instance, we saw that extensivity could be
regained in the mean field limit. In this limit some but not all thermodynamic
relationships will hold. So even if we find this limit to be unproblematic, our an-
swer depends on a prior choice of what constitutes "thermodynamics." Putting
this semantical quibble aside, should we really say that self-gravitating systems
obey thermodynamics even if they only partially do in the mean field limit? We
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began with a very clear question and proceeded to muddy it up. Sometimes –
and I hope this is one of those times – this is a sign of progress.7
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