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1 Introduction

Is the quantum state part of the furniture of the world? This question has hung over
quantum theory since its inception. Much is made of the infamous wave-particle duality
of quantum theory. Yet what is much more disturbing is learning that there is a corre-
sponding duality in where these aspects live: the “waves” seem to exist in an “abstract”
high-dimensional configuration space, whereas the particles seem to exist in a “physical”
low-dimensional space. Expressed as a Schrödinger wavefunction, the quantum state
“lives” in 3N -dimensional configuration space, where N is the number of particles, and
not in familiar 3-dimensional space. This puzzling feature of the quantum state leads
many to doubt its physical reality. In a letter to Ehrenfest in 1926, Einstein writes

Schrödinger’s works are wonderful – but even so one nevertheless hardly
comes closer to a real understanding. The field in a many-dimensional coor-
dinate space does not smell like something real. (Howard 1990, 83)

A few months later the high-dimensional waves pass neither the nose nor the stomach
test:

the waves in n-dimensional coordinate space are indigestible...” (Howard 1990,
83)

Others find the wavefunction similarly disagreeable. Some react by insisting that the
quantum state is – in Wheeler’s memorable terminology – Bit and not It. That is, they
regard the quantum state not as an It such as a table or chair, but as a Bit, an aspect
of our knowledge. Others regard the waves as Its and make moves that suggest a more
palatable ontology.
Whether the high-dimensionality of the quantum state is a problem is debatable, but

I feel that Einstein’s digestibility problem arises most sharply in the context where one
holds that there is more than just wavefunction at bottom. If one subscribes to an Ev-
erettian picture, wherein there is only quantum state, then it is fairly clear that one must
regard the quantum state realistically, no matter the state of one’s stomach, for there
is simply nothing else. If by contrast one subscribes to instrumentalism and holds that
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science doesn’t demand ontic states, then their smell is irrelevant. But if one also posits
what Einstein calls “peas” – “hidden variables” or non-wavefunction “beables” (in Bell
2004’s memorable terminology) or primitive ontology – in addition to the wavefunction,
then awkward questions arise about how the low-dimensional peas and high-dimensional
wavefunctions interact. Examples of peas include the modal interpretation’s value states,
Bohmian mechanics’ particles or fields, and GRW’s mass fluid or flashes.
Here I will advocate a picture that might pass muster with Einstein, one in which there

are peas but not wavefunctions in the basic ontology. Unlike recent attempts to make
the wavefunction epistemic, the current view takes the wavefunction seriously. It holds
that the wavefunction has a “nomological” status (Goldstein and Zanghì 2013). After
developing this view, I’ll show how the It or Bit debate gets absorbed by a corresponding
It or Bit debate about laws of nature. Then I’ll motivate the nomological picture in
a new way by comparing quantum mechanics with classical mechanics when both are
expressed in essentially the same formalism. Classically we don’t confuse the peas with
the laws. So what differences, if any, demand interpreting the classical and quantum
wavefunctions differently? I’ll zoom in on a particular worry and then show how a
Humean understanding of laws potentially eliminates it, thus enabling the Humean to
regard classical and quantum wavefunctions on a kind of par. The resulting view is
metaphysically parsimonious and comes with several benefits: (e.g.) it obviates two
common criticisms of beable type interpretations, illuminates the PBR theorem, and
helps explain why the It versus Bit debate is so difficult and long-lasting. Whether this
metaphysical picture is ultimately desirable depends on one’s philosophical predilections.
To me, it provides an interpretation of the quantum state that I find digestible.

2 Lost in Space

Descartes held that the mind and the body inhabit different “spaces.” The mind lives in
an extensionless mental realm whereas the body lives in the extended realm of objects.
His contemporaries, Pierre Gassendi and Princess Elizabeth of Bohemia, famously asked
how these two objects communicated, that is, how causal influences surmounted the lack
of a common space. Wouldn’t ripples triggered by an event in one realm fail to reach
the shore of the other? How does a thought in the mental realm trigger changes in
the pineal gland (Descartes’ preferred location for the mind-body nexus)? Philosophers
know this problem as the “interaction problem” for Cartesian dualism. While it is one
of the more famous problems in the philosophical canon, it is far from decisive against
Cartesianism. Better objections are probably methodological in nature, arising from the
lack of the mental realm’s predictive power and its assault on parsimony. Still, different
spaces bring awkward questions. How does the interaction work? Where are we? Is
motion conserved in each space? And more.
A similar set of problems afflict a naive reading of “pea” theories. Because it is the

most developed “pea” theory, we’ll focus on the deBroglie-Bohm interpretation of quan-
tum mechanics; however, I expect that most of what I say will be true of others, too.
deBroglie-Bohm is an attempt to solve the notorious measurement problem. According
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Figure 2.1: High- vs Low-Dimensional Space

to this class of theories, the quantum wavefunction evolves unitarily according to a linear
wave equation which guides the motion of Einstein’s peas (e.g., particles, classical fields,
fermion number density). In the familiar non-relativistic case, the ontology appears to
be a wave evolving according to the Schrödinger equation and a particle configuration
evolving with a velocity given by the conserved current divided by the probability den-
sity. No less an authority than J.S. Bell tells us that “... no one can understand this
[Bohm] theory until he is willing to think of ψ as a real objective field rather than just a
“probability amplitude” (2004, 128). Hence the apparent ontological dualism: existence
of both ψ and particles.
The quantum state is a ray in a high-dimensional Hilbert space, H = L2(R3N ,d3Nq),

where N is the number of particles in the universe. Since the Bohmian privileges position,
it is more natural to work with the field the wavefunction defines (see below) on a
configuration space R3N than Hilbert space. The peas, by contrast, live in a low 3-
dimensional space, R3. Unless N = 1, the field on configuration space and the primitive
ontology then live in different spaces, e.g., R3N 6= R3.
Different spaces again invite awkward questions. The field in R3N “guides” an N -

particle system in R3. How does this puppet-master operate the puppet without any
strings?1 And where do we live, in R3 or R3N? Is motion conserved in the two spaces?
These problems are not threats to the logical coherence or empirical adequacy of the
theory, and some may even be said to be badly motivated (Callender and Weingard
1997); still, if not blemishes on the theory they raise the hope that something better
might be possible. Call this the problem of being lost in space.
The philosophical literature has directed attention to the “two-space” problem (see

Ney and Albert 2013). Some respond by trying to stuff the waves and particles into the
same space. Two directions are possible. Albert 1996 champions boosting the particle
configuration upstairs into R3N . Here the beable must be a single Bohmian “world”
particle. People, planets, particles and all the rest somehow emerge from this world

1[Strictly speaking, because the particle configuration doesn’t affect the wavefunction, we have only
one half of Descartes’ problem. The question here is more like the “causation” problem afflicting the
mind-body epiphenomenalist.
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Figure 2.2: Albert vs Norsen

particle. Alternatively, one can kick the field on configuration space downstairs into
R3, providing each particle with its own wave to surf. Doing so is highly non-trivial,
yet recently Norsen 2010 has gone some distance toward showing how this might be
accomplished. Each view has its merits and demerits. However these stack up, it’s fair
to say that either is sufficiently radical that having a third option seems worthwhile.
Here we can be guided by the mind-body debate. There one eliminates the interaction

problem not by retaining dualism and putting the different kinds of entity in the same
space, as Albert and Norsen do, but by eliminating one half of the ontology. Berkeley
famously eliminates the corporeal and retains only the mental entities in the mental
realm. Materialists and physicalists instead eliminate the mental entities and keep only
the material. Here we have two options as well. One is to retain only the wavefunction.
Doing so commits one to an Everettian interpretation and all of its attendant challenges.
The other is to simply posit the non-wavefunction beables, Einstein’s peas, and nothing
else.2 Can this second path be motivated?

3 The Nomological View

The best response to the above set of problems is to eliminate them altogether by denying
that the quantum state’s status is ontological and asserting that it is instead nomological

2Another much more radical notion is doing without the wavefunction at all; that is, writing the
theory directly in terms of an equation for the beables and nothing more. Suggestive models exist
that suggest this path both for GRW-type theories (e.g., Dowker and Henson 2004) and for Bohm-
like theories (e.g., Poirier 2010); however, since the latter model is committed to an actual infinite
ensemble of “world” trajectories, it seems more like an Everettian theory.

4



(Dürr, Goldstein and Zanghì 1997; Goldstein, S. and Zanghì 2013). The idea is that
the quantum state does not represent an entity in the world, a piece of ontology, but
rather is part of the representational structure of the laws of physics. The quantum
state is therefore akin to the Hamiltonian function. Like the quantum state, the classical
Hamiltonian generates the motion of the beables and also their statistics. It doesn’t
“live” in ordinary three-dimensional space, for it is defined on an even higher dimensional
space than our field on configuration space, namely, phase space, R3NxR3N . Yet no one
worries about where the Hamiltonian lives because it is viewed as part of the laws, not
the physical world itself. There is simply no expectation that laws be functions over
three-space, nor that they be decomposable into functions on three-space.
This conceptual reorientation results in a very satisfying picture. In non-relativistic

theory, the world consists simply of a bunch of Bohmian particles or GRW flashes or
other forms of Einstein’s peas – and that’s it. In the Bohmian case, the Schrödinger
and guidance equations are then the laws, existing wherever laws exist. We have two
spaces, unlike in Albert and Norsen, but no dualistic ontology and therefore no interaction
problem. This resolution eliminates various complaints against beable theories, as we’ll
see below, and it has a number of other attractive features, parsimony high among them.
The biggest intuitive obstacle to the nomological perspective is that the quantum

state doesn’t seem like the Hamiltonian in certain crucial respects. Indeed, the analogy
is hardly perfect. Brown and Wallace 2005 and Belot 2012 give voice to various problems.
The most important is probably the fact that the wavefunction seems contingent (and
hence non-lawlike) because it is variable. It varies by system and with time.
There are reasons to think that such disanalogies can’t be decisive. Neither the notion

of a law of nature nor our understanding of the quantum state are solid enough to ground
objections based on analogies and disanalogies. On the law of nature side, note that some
philosophers and physicists believe that “evolving” laws of nature make sense (e.g., Smolin
2013). For them an inference from a quantum state’s time-dependence to its not being a
law is not sound. Stepping back, one may also point out that our intuitions about what
is nomological are presumably formed by comparison with classical physics. Yet one can
reasonably ask why we should take lessons about ontology from a theory that we know
is wrong. Perhaps quantum theory is telling us about the nature of the nomological.
However the burden falls, note that for beable theories, one needs to approach these

disanalogies by first distinguishing universal and effective wavefunctions. The universal
wavefunction is the wavefunction of the entire universe. The wavefunctions associated
with systems in laboratories, people, planets and other subsystems, by contrast, are
effective wavefunctions. Let Qt be the actual configuration of particles in the universe
at a time. In a composite system Qt = (Xt, Yt), where X is the actual subsystem of
interest and Y is the actual environment. Then a natural definition for a subsystem’s
wavefunction is the conditional wavefunction ψt(x) = Ψt(x, Yt), where we calculate the
universal wavefunction Ψ in the actual configuration of the environment (Dürr, Goldstein,
and Zanghì 1992). The conditional wavefunction will not in general evolve according to
the Schrödinger equation, but when it does – which it will if the universal wavefunction
evolves into a wide separation of components in the configuration space of the entire
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system – then we call the conditional wavefunction an effective wavefunction. Effective
wavefunctions correspond to the wavefunctions discussed in quantum textbooks, labs,
and so on.3

When this distinction is appreciated, we see that the above disanalogies must be ap-
proached with caution. Just as offspring can differ from their parents, so too can effective
wavefunctions differ from the universal wavefunction. You may be tall and your parents
short. Similarly, the universal wavefunction may be simple and the effective one for some
subsystem complicated. One may be real and the other complex. One may not vary
by system (universal) whereas the other (effective) may vary with system. And perhaps
most surprisingly, the universal wavefunction may be time independent and an effec-
tive one time-dependent. Many Bohmians have explicitly shown how this might arise
in quantum gravity (e.g., Callender and Weingard 1994; Valentini 1992; Goldstein and
Teufel 2001), but the possibility exists even in ordinary non-relativistic theory (Esfeld,
Lazarovici, and Dürr, 2013). Given this distinction, it’s not clear that we should infer
from the effective wavefunction’s variability that the universal wavefunction is variable
in any way. The universal wavefunction is clearly not variable by subsystem, since it
applies to everything, and it’s an open question whether the universe as a whole could
have different universal wavefunctions. Moreover, the universal wavefunction might not
even be time-dependent. The true form of the universal wavefunction is simply a matter
of speculation, and therefore, so are the claimed analogies and disanalogies.

4 Are Laws Its or Bits?

Suppose we accept the view that the quantum state is an aspect of the laws of nature.
By itself that perspective doesn’t tell us whether the quantum state is It or Bit. Instead
it shifts the question from a (roughly) one-hundred-year-old problem to a (roughly) two-
hundred-fifty-year-old problem. Since the time of David Hume philosophers and scientists
have wondered whether the laws of nature are It or Bit. The nomological view relocates
the question of the metaphysics of the quantum state to the metaphysics of laws of
nature.
Although there are scores of theories of laws, a chief division among them is whether

laws govern reality or are merely particularly useful summaries of reality. Governing
views understand laws as invisible straightjackets on the world. These straightjackets
are part of basic ontology and hence best classified as Its. Humean views, by contrast,
understand laws as a particularly powerful summaries of the Its, but not themselves Its.
Hence for the Humean they are a special kind of Bit. The It or Bit debate in quantum
theory therefore gets subsumed under the It or Bit debate about laws of nature.
Understanding the It or Bit question in this manner helps explain why the debate is

so hard. In answering it, we are effectively trying to solve one of the deepest problems
in the metaphysics of science. We won’t solve it here. Nonetheless, knowing that the

3As Goldstein and Zanghì 2013 point out, effective wavefunctions therefore have quasi-nomological
status. They are a function over what is nomological, Ψt, and what is beable, Yt.
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problem is deeper than we previously thought is progress, and even better, the views
may suggest insights when we compare classical and quantum mechanics later.

Non-Humean Quantum States

The governing conception of laws comes in many forms. According to Armstrong-Dretske-
Tooley theory, the laws are necessitation relations amongst universals. These necessita-
tion relations are additions to the world of particles, fields, and whatnot. Same goes for
theories that understand the laws as a kind of primitive basic entity. These entities are
Its (see Carroll 2012 and references therein).
Notice that on the governing view, the ’lost in space’ questions reappear. Where do

laws live? How do they affect the ontology in spacetime? If real, why no backreaction
of the beables on the laws? The puppet-master’s ability to move the puppet still seems
mysterious. That might prompt the suspicious among us to accuse making the quantum
state nomological as simply renaming the problem, not solving it. The original worry
was about how the puppet-master moves the puppet, given that the two inhabit different
spaces. All that has been accomplished here is that we now call the puppetmaster a law.
Big deal.
Although in other contexts I might sympathize with this worry, here I do not. Philo-

sophically, the assimilation is a big deal. Suppose governing is the right way to re-
gard laws. Then the puppet-master question always arises. One accepts these awkward
questions as the price of providing what is thought to be the best metaphysical theory
of laws. The problem, if it is one, arises in classical laws, biological laws, economic
laws...everywhere. So from this perspective, a lot is achieved by understanding quantum
states as nomological. One realizes that what seemed to be specific problems with in-
terpreting the quantum state emerge as simply the manifestation of these philosophical
debates. Two problems become one. Better yet, the one remaining problem is pre-
cisely what you were committed to anyway, well before thinking about the reality of the
quantum state.
Hence, going nomological is an advance even if one is committed to a governing in-

terpretation of laws. Moreover, since advocates of this view can “place” their governors
wherever they like, they may buy some immunity from the awkward puppetmaster ques-
tions too. That is, there is no reason to think that the primitive governors or necessitation
relations “live” in a different space than the beables. To think otherwise is to mistake
the mathematical representation of these governors with their physical reality.

Humean Quantum States

Hume’s famous skepticism about necessity motivates a quite different picture. Although
Hume spoke of causation and not laws, many theories of laws are Humean in spirit.
According to these theories, the laws might be elaborate projections of the human mind
upon the world, elegant summaries of what happens that are useful for prediction, or
other thoughts along these lines. In such theories there may be real observer-independent
facts about what the laws are. Just as it’s an observer-independent fact whether a given
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strike in soccer is a goal–even though the category goal is anthropocentric in origin –so
too it might be an observer-independent fact whether a given generalization is part of the
most elegant summary of what happens. Yet there is no physical entity that corresponds
to these facts. Two worlds containing the same events necessarily have the same laws in
them, contrary to what governers believe.
Many theories of laws are Humean in spirit, but probably the most popular one in

recent decades is the so-called Mill-Ramsey-Lewis “Best System” theory (Loewer 1996).
This theory says that a true generalization is a law iff it is an axiom of all the best
systems, i.e., those axiomatic systematizations that best balance simplicity and compre-
hensiveness (informative power). Hall (ms) recently formulates the core idea in a way
I prefer: (roughly) a proposition is a law iff an ideal observer, someone who is rational
and has full information about what is being systematized and embraces our sciences’
standards (which include simplicity and comprehensiveness), declares the proposition a
law. Obviously many subtleties arise (see, e.g., Callender and Cohen 2009, and Hall,
ms). The details won’t matter here. In the present context the idea is simply that what
we’re systematizing are the the beables – Einstein’s peas – in a low-dimensional space.
The Schrödinger equation with its wave functions (or equivalently, Heisenberg’s matri-
ces, or Feynmann’s path integrals) then emerge as part of the most elegant summary
of how these beables move. The claim is that if an ideal observer could survey all the
Bohm particles scattered across spacetime and she cared about our scientists’ standards
for evaluating theories, then she would devise the laws of Bohmian mechanics. Or if she
systematizes GRW flashes, she would recommend the GRW dynamics. And so on for
other primitive ontologies.
This package of beables plus Hume nicely dissolves our “lost in space” problem. Abso-

lutely nowhere in the Humean account of laws is there any hint that the laws devised by
the ideal observer must constitute a function (or functional) that is itself decomposable
into functions (or functionals) on low dimensional spaces. The laws should be useful,
powerful, and true. The inability to express non-trivial wavefunctions on three-space
is therefore not a problem, nor even surprising. Furthermore, as part of the laws, the
wavefunction is not a beable in the world. It is the result of systematization, not what
is systematized. Finally, since “winning” the best system competition is what makes a
proposition lawlike, the liberal-minded Humean might be willing to extend the notion of
law to novel types of proposition, e.g., initial conditions, time-varying generalizations. If
such propositions earn their way into an elegant summary, only an old-fashioned han-
kering for laws of a classical stripe prevents us from dubbing these propositions laws
too.
Whether Einstein would have found such a position attractive is anyone’s guess. One

can speculate, based on his known appreciation of Hume and fondness for “peas,” that
he might well have found a position like this digestible.

A Humean Trick

An objection to this Humean view immediately suggests itself: the wavefunction doesn’t
appear to supervene upon the Bohm particle positions. Above I said that two Hume
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worlds containing the same stuff necessarily have the same laws. Yet we can easily
imagine two worlds with the same stuff –the same configuration of Bohm particles –yet
described by different wavefunctions. Since wavefunctions are aspects of laws on this
position, we seem to have trouble.
Consider a subsystem of the universe consisting of a single particle sitting at a par-

ticular location. This situation is compatible with an infinity of possible wavefunctions.
Since two are enough to cause trouble, let’s concentrate on two subsystem wavefunc-
tions that differ only in their relative phase, ψ = 1/

√
2|here > +1/

√
2|there > and

ψ′ = 1/
√
2|here > −1/

√
2|there >, where the actual beable configuration corresponds

to here. Supervenience states that there is no difference in the supervening properties
without a difference in the subvenient properties. Here we have a difference in wavefunc-
tions without a corresponding difference in beables.
The key to answering this problem – and the key to avoiding trouble later too – is to

see the world through the eyes of a Humean. To the Humean, the name of the game is
devising simple, usable generalizations that will help human agents navigate through the
world. Anything that aids this goal is permissible. In particular, one may wish to “add” a
magnitude to the system if it will better optimize its virtues. Hall (ms) recently provides
a nice example with mass in classical physics. Suppose the fundamental intrinsic property
of objects is simply position. Then given the same initial positions, one may not be able
to predict – even if one knew everything – what happens next. The physics might be
indeterministic. But suppose one “painted” mass onto the objects with position. Perhaps
masses are introduced in such a way that they covary with positions in certain systematic
ways. Then one can imagine introducing these magnitudes to obtain a greater balance
of simplicity and strength. Once mass is introduced, then we have momenta because the
position developments will yield a velocity (in a Newtonian formulation). This addition
might even allow for a deterministic theory. In this toy example we recover much more
strength (e.g., determinism) at the expense of complicating the system by adding mass.
One would be “realist” about the masses, but what makes it true that there are masses is
that the best systematization of the distribution of positions in the world that uses masses
is optimal. This general strategy is common to Humeans, as they have employed it to
understand chance (Lewis 1994), rotation (Callender 2001) and acceleration (Huggett
2006).
Return to our worry about supervenience. Miller 2013 uses the above insight here too.

You’re an ideal observer looking over the full mosaic of Bohmian particle locations at all
times and wondering what wavefunction to use. Is there reason to posit ψ rather than
ψ′? Differences in relative phase, of course, are measurable. For example, consider the
property measured by the operation associated with operator Â, who yields outcome +1
if the state is ψ and -1 if the state is ψ′. Then it should be clear, based on the above
reasoning, that if the particle is later measured by Â and the outcome is +1, then that
is reason to assign ψ to the system now, all else being equal. Obviously this reasoning
can be extended widely – to anywhere where the relative phase “matters” on the whole
mosaic. The supervenience, in other words, is global and not local; the wavefunction
depends on the full four-dimensional picture, i.e., the particles’ full trajectories, not their
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Figure 4.1: Humean “Trick”: Add Mass, Get Uniqueness

partial ones.
This is precisely the same as in the case of rotating homogeneous disks (Callender 2001).

Non-humeans have claimed that rotating homogeneous discs are a counter-example to
Humeanism. Consider two worlds otherwise empty apart from a single such disc in each.
One might be rotating, the other not. Being homogeneous, the Humean cannot appeal
to the usual features to tell the difference. Critics of Humeanism consequently say that
Humean superveience fails, for the difference between rotatinga nd non-rotating discs
doesn’t supervene upon the Humean mosaic of basic properties. The right response, I
think, is to insist that there is no difference between the two imagined worlds and hence
no failure of supervenience. There is only reason to posit a difference when the best
system for that world sees a difference. If a speck of dust pops up on one disc one
day and rotates, that may be reason to say the disc was rotating all along. The speck
doesn’t cause the rotation; instead it provides a reason to count the disc as rotating.
Similarly, in the quantum case, later experiments help us determine what counts as
having a particular effective wavefunction. One can’t look only at the particle subsystem
to justify what wavefunction is used. There is nothing mysterious here: these are the
very same kinds of reasons quantum physicists use when assigning wavefunctions in the
lab, only writ large.
The reader may worry: suppose that the whole world is simply a single Bohm particle.

That is an allowed solution of Bohmian mechanics. Now we are dealing with a universal
wavefunction instead. And there won’t be any measurements elsewhere to fix the relative
phase because there is nothing else in the world. Hence there is no reason to pick Ψ or Ψ’.
The Humean must bite the bullet on this kind of underdetermination of the universal
wavefunction. Arguably, this isn’t too great a burden to bear. After all, why in the
world would an ideal observer surveying such a world even propose Ψ or Ψ′ in the first
place? With no Â-outcomes (etc.) to cover, a much simpler alternative exists, namely
Ψ′′ = |here >. Perhaps this underdetermination is slightly counterintuitive, but I don’t
see it as problematic. When there is no reason in the mosaic to pick one wavefunction
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over another, theoretical virtues will do the rest.
In sum, the core idea in all of these cases is that what makes it true that there is some

X in the world (e.g., mass, ψ , rotation, acceleration) is the fact that including X in one’s
summary of the fundamental makes it the best such summary.

5 Classical Wavefunctions

My discussion so far has been entirely philosophical. One may rest content with it
as it stands, safe in the knowledge that one can dissolve the “lost in space” problem
by adopting the nomological interpretation of the wavefunction, and furthermore, that
one gets agreeable extra consequences if one adopts a Humean perspective on laws (see
below). Yet I believe that insight into the nature of the quantum state is gained by a
comparison with the “classical state” in classical physics. There – we presume – we know
what is going on, what is beable and what is not. The particles or classical fields are
beables, the rest the representational structure of the laws of nature. We don’t confuse
the two.
The quantum realm looks very different. Here we have a wavefunction evolving in

a high-dimensional Hilbert space, inducing a field on a high-dimensional configuration
space. These high-dimensional objects “look like” real physical entities, and this raises
the “lost in space” question. It may therefore come as a surprise to many philosophers
to point out that at this level the situation is not special to quantum mechanics – not in
the least. We can easily describe quantum and classical mechanics in the same types of
abstract spaces. Quantum mechanics can be described in a Hamilton-Jacobi framework
in configuration space, just like classical mechanics; and going the other way, classical
mechanics can be formulated in a Hilbert space. In both cases we have classical wavefunc-
tions evolving according to a “Schrödinger equation” in high-dimensional spaces, classical
Born’s rules, and generally, classical counterparts of most – but of course not all – of
what one regards as quantum. We have all the ingredients for a “lost in space” problem.
Yet since matters are comparatively clear in classical physics, the problem never arises.
Formulating quantum and classical mechanics in the same abstract frameworks presents

us with a wonderful opportunity, the perfect laboratory to investigate the status of the
quantum state. In different spaces the comparison is difficult. But in the same formalisms
we can look squarely at the differences and see if any mandate a corresponding change
in how we treat the wavefunction. Does the step from the classical to the quantum
mandate a corresponding change in the wavefunction’s status, i.e., from nomological to
ontological? If so, precisely what differences demand this switch? The best way to
investigate this question is to put classical mechanics and quantum mechanics in the
same formalism and then probe the differences.4

4Both theories can be “squashed” together into many abstract formulations, so one has many choices. I’ll
choose two that I find enlightening, but of course there are many others, e.g., phase space formulations
of both theories. I’ll count classical statistical mechanics as classical physics. This move is justified
in the present context, I believe, by the fact that “beable” interpretations of quantum mechanics
often regard quantum mechanics as a kind of statistical mechanics of beables (Dürr, Goldstein, and
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Figure 5.1: Hamilton-Jacobi theory

Hamilton-Jacobi

Hamilton-Jacobi theory is taught in texts of classical analytic mechanics. It is a difficult
and philosophically rich version of classical mechanics, one that survives in large part
due to the insight it provides into the quantum. The theory is centered on Hamilton’s
principle function, the action S(q, t). The action defines wave fronts that evolve with
time in the extended configuration space R3NxR. The evolution for a classical particle
moving in a potential V (q, t) is given by a first order partial differential equation

∂S(q, t)

∂t
+

1

2

∑(
∂S(q, t)

∂qi

)2

+ V (q,t) = 0 (5.1)

known as the Hamilton-Jacobi equation. The connection to trajectories is via the vector
field on R3N that S(q, t) induces:

v(q, t) = m−1∇S(q, t)

The integral curves Q(t) along v(q, t) are the possible trajectories of the N -particle
system, i.e., they solve

dQ

dt
= v(Q(t), t)

In essence what we have is a “wave” in the extended high-dimensional configuration space
generating the possible trajectories Q(t). Initial conditions single out one of them, and
we have no problem going from this description to x(t) = x0 + vt in ordinary space.
Introduce the probability density ρ(ϕ) of finding a particle at ϕ = (q, p) in classical

phase space Γ. Because we assume that the particles are conserved, we can derive

Zanghì. 1992).
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∂ρ

∂t
+∇ �

(
ρ
∇S
m

)
= 0 (5.2)

which is the well-known continuity equation.
That S defines a wave front suggests consideration of a wave defined as

ψ(c) = Re
i/}S (5.3)

where R = ρ1/2 and } is a constant with units of action. This wave ansatz is our classical
wavefunction.
Now, using this wavefunction, we can treat ψ(c) and ψ(c)∗ as new canonical variables

such that (S,−ρ)→
(
ψ(c), ψ(c)∗

)
. Writing the Lagrangian density in terms of these new

variables, we can express equations 5.1 and 5.2 together as the “classical Schrödinger
equation” derived by Schiller 1962 and Rosen 1964:

i~
∂ψ(c)

∂t
= − ~

2m
∇2ψ(c) + V ψ(c) +

~2

2m

∇2|ψ(c)|
|ψ(c)|

ψ(c) (5.4)

Here ψ(c) is a field, the phase is a solution to the classical Hamilton-Jacobi equation,
the normals to S are the classical paths, and R2(x, t) is the probability density. Note
additionally that 5.4 is complex. The “i” arises not for any deep reason, but merely as
a result of trying to express two equations, 5.1 and 5.2, as one (Schleich, Greenberger,
Kobe, and Scully 2013). From 5.1 and 5.2 we derive 5.4, and naturally, the reverse is
possible too: by substituting ReiS/~ into 5.4, separating into real and imaginary parts,
one arrives at 5.1 and 5.2. The classical Schrödinger equation is a kind of compactification
of information about an ensemble of conserved classical particles obeying the Hamilton-
Jacobi equation. It looks like the ordinary quantum Schrödinger equation except for the
odd potential multiplied in the final component of the rhs of 5.4.
Turn to Bohmian mechanics. Although there is a literature surrounding the so-called

“quantum Hamilton-Jacobi equation,” what I’m about to present is the version appro-
priate to this paper, namely, a version of Bohmian mechanics via Hamilton-Jacobi (see
Holland 1994). As is well-known, Bohm 1952 inserted ψ = ReiS/~ into the Schrödinger
equation

i~
∂ψ

∂t
= − ~

2m
∇2ψ + V ψ (5.5)

, separated into real and imaginary parts, and derived a “quantum” Hamilton-Jacobi
equation and continuity equation, respectively:

∂S(q, t)

∂t
+

1

2

∑(
∂S(q, t)

∂qi

)2

+ V (q) +Q = 0 (5.6)

∂ρ

∂t
+∇×

(
ρ
∇S
m

)
= 0 (5.7)
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where Q is the “quantum potential”

Q =
~2

2m

∇2|ψ|
|ψ|

Q is an odd potential, encoding all the peculiarly quantum effects. Otherwise, the phys-
ical interpretation is the same as in the classical case. S is a solution of the “Hamilton-
Jacobi” equation, 5.7, the solution generates a vector field on configuration space, and
the integral curves along this field give the possible trajectories of the N -particle system.
And just as in the classical case, we can derive a Hamilton-Jacobi equation (5.6) and a
continuity equation (5.7) from a Schrödinger equation, (5.5).5 Although there are plenty
of differences (see below), at this coarse level the main one between the classical and the
quantum representations is essentially that Q changes sign and equations! Classically it
resides in the classical Schrödinger equation (and is multiplied by ψc) and vanishes in the
Hamilton-Jacobi equation; quantum mechanically, it appears in the quantum Hamilton-
Jacobi equation and vanishes in the Schrödinger equation. That movement of Q has
monumental consequences for the trajectories of beables. Does it also demand that we
reify the quantum but not classical wavefunction? Hold this question for a moment.

Koopman-von Neumann Waves

One way of stating the “lost in space” problem is by pointing out that the quantum state
lives in Hilbert space whereas the beables presumably live in three-dimensional space. Yet
classical physics, when framed in Hilbert space, faces precisely the same problem. There
is no intrinsic tie between Hilbert space and the quantum. Since work by Koopman and
von Neumann in the 1930’s (Koopman 1931; von Neumann 1932) it’s been known that
classical physics can be formulated in Hilbert space. In what is known as Koopman’s
Lemma, Koopman proved that if a dynamical system has a measure µ on a constant
energy surface Ω of phase space Γ and the Hamiltonian flow preserves this measure, then
that flow generates a one parameter family of unitary operators Ut on the Hilbert space
L2(Ω, µ). More details are necessary; but the upshot is that since classical mechanics
does indeed have such a measure and flow, it can be given a Hilbert space treatment.
From there one can develop this Koopmanian approach to mimic quantum mechanics to
an astonishing degree.
The goal is to introduce a Hilbert space of complex square integrable functions ψ(ϕ)

such that

ρ(ϕ) = |ψ(ϕ)|2 (5.8)

can be interpreted as a probability density of finding a particle at the point ϕ = (q, p)
of Γ. We move toward this goal by recalling that in classical statistical mechanics the
probability density of particles ρ(ϕ) evolves via the Liouville equation

5Note that matters don’t work out as simply when we add spin and move away from the Schrödinger
equation; see Holland 1994.
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i
∂ρ(ϕ)

∂t
= L̂ρ

where

L̂ =

(
∂H(ϕ)

∂y

)(
−i ∂
∂x

)
−
(
∂H(ϕ)

∂x

)(
−i ∂
∂y

)
Here H(ϕ) is the Hamiltonian of the system and we assume a single degree of freedom
with canonical variables x, y. The Liouvillian operators do not constitute a Hilbert
space, so Koopman and von Neumann postulate that complex distributions, ψ(ϕ), which
do make up an L2 Hilbert space, obey the same equation, i.e.

i
∂ψ(ϕ)

∂t
= L̂ψ(ϕ) (5.9)

Comparing (5.9) with (5.5), one might regard (5.9) as a second classical “Schrödinger
equation.” Because L̂ contains only first order derivatives, the probability density ρ will
evolve with the same equation as ψ if 5.8 holds. Making this assumption, equation 5.9
implies the classical Liouville equation and shares its empirical content, yet it allows a
Hilbert space formulation.
With these ingredients, one can then build an operator formalism for classical mechan-

ics. Koopman and von Neumann define an inner product

〈ψ|φ〉 =

ˆ
dϕψ∗(ϕ)φ(ϕ)

With this they are able to show that L̂ is Hermitian〈
ψ|L̂φ

〉
=
〈

ˆLψ|φ
〉

and generates unitary evolution

ψ(t) = U(t)ψ(0)

where U(t) = eiL̂t if the Hamiltonian H is time-independent. That the norm of the
state is conserved through time then justifies interpreting 5.9 as the probability density
of finding a particle at point ϕ = (q, p) of Γ. Due to the construction, we know that this
will give the same results as the Liouvillian approach to classical statistical physics.
The approach has been developed in many ways. The formalism can be set in either

a complex or real Hilbert space (Groenewold 1946; Bracken 2003). The Born’s rule
analogy can be strengthened (Brumer and Gong 2006). One can rotate to different bases
if one likes and find solutions there. We can even describe a “Heisenberg” instead of
“Schrödinger” Koopmanian formulation (Jauslin and Sugny 2009).
Perhaps most importantly for us, like the Hamilton-Jacobi framework, this one also

can be understood as a “transcendent” formulation over quantum and classical mechanics
(Bondar et al 2012). Assume the usual axioms of quantum mechanics but drop the word
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Figure 5.2: Koopman-von Neumann Classical Physics

“quantum”: that the states of a system are represented by normalized vectors of a complex
Hilbert space and observables by self-adjoint operators on this space, that expectation
values

〈
Â(t)

〉
are given by

〈
ψ(t)|Â(t)|ψ(t)

〉
, that Born’s rule holds, and that the state

space of a composite system is given by the tensor product of the system’s state spaces.
Using these axioms, Bondar et al show that if we assume the position and momentum
observables commute, classical physics can be derived, and that if we assume that these
observables don’t commute, quantum dynamics are derived.
So we find ourselves with a classical formalism in which the states of systems can be

represented by the normalized vectors of a complex Hilbert space, where these vectors
rotate in Hilbert space, collapsing on states, giving us their probabilities via a classical
version of Born’s rule. As far as the abstract spaces go, the main difference is simply
that the classical Hilbert space is defined via the energy surface in phase space and not
configuration space.
Is the ontology of this theory mysterious? Not at all. We’re in friendly territory.

Maudlin 2012 asks us to inquire why we posit quantum wavefunctions in the first place.
Classically, we know the answer, and the beables are crucial. We arrive at the Liouville
equation based on the assumption that the beables – the classical particles – are gov-
erned by a set of “guidance” equations, namely, Hamilton’s equations. From Hamilton’s
equations we have a direct route to classical statistical mechanics and then to an oper-
ator formalism and classical wavefunctions. The foundation is clear: beables traversing
well defined trajectories. There is no temptation to confuse the nomological and the
beable. The answer to the counterpart of Maudlin’s question here is that the classical
wavefunction and counterpart of the Schrödinger equation arise as part of an elegant and
condensed representation of the laws governing ensembles of classical beables.
We can imagine being confused classically. Consider a fictional world wherein math-

ematics developed hundreds of years ahead of physics. Then it would have been in

16



principle possible for a character to exist – call him “von Newton” – that invented an
axiomatized operator-based Koopmanian classical physics before Newton came on the
scene. The theory would have been empirically adequate. Yet restricted to the classical
wavefunction and operator formalism, contemporaries might reasonably have wondered
whether the classical wavefunction was It or Bit. Only when Newton introduced his be-
ables – corpuscles with position – and a dynamics for these beables would it have become
clear that the wavefunction was only nomological and not itself a beable.

6 Difference: ψ as a Causal Agent

The above discussion shows that where the quantum state lives can’t be the problem. The
quantum and classical wavefunctions live in essentially the same high-dimensional spaces
and the beables live in essentially the same low-dimensional spaces. This observation
makes pressing the investigation of differences between the two cases. Do any of these
differences demand reification of the quantum state?
In either framework, one can discover many differences. Focusing on the Hamilton-

Jacobi framework, the differences include:

• Q attaches to the “quantum” Hamilton-Jacobi equation in the quantum case, but
to the “classical” Schrödinger equation in the classical case.

• The dynamical equations are linear in quantum mechanics, nonlinear in classical
physics

• ψ is single-valued in quantum mechanics and not single valued in classical mechan-
ics.

Although these differences are of tremendous importance physically, it’s hard to imagine
promoting any of them into a reason for interpreting the quantum state differently than
the classical state. For instance, the dynamics obviously differs over linearity: 5.5 is
linear, 5.4 is nonlinear. No doubt, this is a huge difference, as every reader knows well.
But why should that difference matter to our interpretation of the wavefunction? Physics
is filled with linear and nonlinear dynamical equations. We never use that alone as a
test for whether a function should be interpreted as representing basic ontology or not.6

Obviously I simplify. The interpretation of the wavefunction should arise from a holistic
judgement, one based on all the features of the theory. And we lack an uncontroversial
inference of the form: if term X in your theory has feature P, then you must reify X. Still,
it’s difficult to see why any of the above differences should singly or collectively matter
to whether we regard the quantum state as ontological or nomological.

6Here I stress ’alone’ because of course linearity is related to entanglement which is related to the
difference I’ll mention momentarily. My point is not to de-emphasize the above differences but
rather just to point out that more premises are needed to get from these to the reification of the
wavefunction. An argument is needed, and one is supplied below. Others based on different formal
differences may be possible, but I suspect that they will only reproduce the essence of the ’causal
agent’ argument below.
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Figure 6.1: Ensemble generated by varying x0

Figure 6.2: Ensemble generated by varying p0

Here is a difference that might matter, however. There is a precise sense in which the
wavefunction is forced upon us in the quantum case but not classical case. Holland 1994
glosses this by saying that the wavefunction is not a “causal agent” (Holland 1994) in
classical mechanics. By “causal agent” he doesn’t mean anything philosophically subtle,
but rather merely that something is a causal agent if it’s needed to generate the motion
of the beables. In classical Hamilton-Jacobi theory, the S-function generates a global
ensemble. The exact trajectory is therefore independent of the wavefunction. Not so in
Bohmian mechanics. Here the S-function is required to determine the exact trajectory.
Holland provides a pretty example of how the S-function is causally inert classically

(ibid, 37). Consider a free particle evolving according to 5.1 and described with Cartesian
coordinates. Solving for S, we find S1(x, y, z, p1, p2, p3, t) = −(1/2m)(p21+p22+p23)t+p1x+
p2y + p3z)., where p1, p2, p3 are the components of a momentum vector. Generated by
varying x0, S1 describes an ensemble of parallel straight lines, pictured here:
where the actual trajectory is colored in black. But we can also construct the func-

tion S2(x, t;x0, 0) = (m/2t)(x − x0)2. Generated by instead varying p0, S2 describes an
ensemble of parallel straight lines that emanate from x0 with a range of momentum p:
where again we color the actual trajectory in black. The trajectories generated by

S1 and S2 differ in general, but coincide when one picks the same initial location and
momentum (the black trajectory). As one sees, the S-function doesn’t uniquely deter-
mine the motion. This is a huge difference between classical and Bohmian mechanics.
Its importance cannot be underestimated when comparing the two theories physically.
Classically, in some circumstances, it may be convenient to specify a wavefunction, but
it is not needed. One can, for instance, obtain a well-posed initial value problem without
an S-function. In Bohmian mechanics it is needed. One can’t get a well-posed initial
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value problem without it.
Essentially the same point can be made in the Koopman-von Neumann formalism too.

Substitute ψ = ReiS/h into the Koopmanian “Schrödinger equation” 5.9 and separate
real and imaginary parts. The result here, in contrast to the quantum case, are two
structurally identical equations, one for the modulus and one for the phase, with no
“mixed” terms, i.e., the phase and modulus don’t couple. The physicist Gozzi, quoted by
Mauro 2001, states that in this formalism, the “essence” of quantum mechanics is that it
is “the theory of the interaction of a phase with a modulus.” As in the Hamilton-Jacobi
case, this coupling makes the phase necessary in quantum mechanics in a way it isn’t
classically. The general lesson is that while in either quantum or classical formalisms
we can construct wavefunctions evolving according to “Schrödinger” equations, only in
quantum mechanics is something like this forced upon us.
This observation seems relevant to the current investigation. The suggestion was that

the classical S -function is not part of the ontology but is instead part of the nomological
structure. That inference seems fine, and even bolstered, by what we’ve learned, namely,
that S doesn’t determine the beables’ motion. But the further suggestion that the S -
function in the quantum case should be treated like the S -function in the classical case
now seems deeply problematic. One S -function is there for convenience, the other by
necessity. While admitting that there are no hard and fast philosophical rules in play,
that sounds like a relevant difference, one demanding different interpretations of the
classical and Bohmian S -functions.

Escape

The fact that the wavefunction is a causal agent in the above sense is the reason why
most Bohmians have agreed with Bell that it must be treated ontologically. Putting clas-
sical mechanics and Bohmian mechanics in the same formalism allows us to appreciate
the stark differences between the two, differences that seem relevant to whether ontology
stands behind their respective wavefunctions or not. It is therefore perhaps fair to con-
clude that the natural or even default interpretation of the wavefunction for a Bohmian
is that it is ontological.
If one is a Humean about laws, however, one may not “see” this difference. As we

have seen, Humeans routinely posit magnitudes if they are justified by optimizing one’s
summary of what one is systematizing. Suppose one is systematizing Bohmian particles
with position. Without an S -function, we lack a well-posed initial value problem, and
therefore potential strength and power. We can’t tell where such a particle will go
without this S -function. Does that mean the S -function is a beable? No, no more so
than requiring mass to get a well-posed value problem classically demands that Humeans
treat mass as part of the fundamental furniture of the world. Or perhaps a better
analogy in the present case, a Humean might justify the postulation of forces as a way
of getting the best systematization of the beables without treating forces as themselves
beables. Knowing this, the Humean may not be moved by the above “causal agent”
argument. He or she will recognize many cases where they would disagree with someone
running that form of argument: rotating discs (Callender), mass (Hall), perhaps even

19



accelerations (Huggett). Indeed, as mentioned, Miller 2013 makes precisely this point
about the wavefunction in an attempt to understand how it supervenes upon Bohmian
particle positions. So Humeans already have independently motivated reasons for not
following the “causal agent” argument to its conclusion.
The Bohmian is therefore free to regard the S -function or equivalent as he or she would

a Newtonian force: nomological, not beable. The same goes for non-Bohmians who posit
beables (for whom I assume some version of the causal agent argument exists too). The
Humean convinced that she is systematizing Einstein’s peas in a low-dimensional space
doesn’t feel the force of the causal agent argument. With that, beable theorists can enjoy
all the attractions of the otherwise parsimonious nomological view of the wavefunction.
To be clear, I have not argued that only Humeans can escape the causal agent argu-

ment, nor have I argued that Humeans should escape it. On the first point, it may be
that advocates of a governing conception of laws can motivate ignoring the lesson of the
causal agent argument too. On the second point, how the Humean divines the divide
between what goes into systematization and what comes out is anyone’s guess. I am sim-
ply pointing out that for those who wish to systematize Einstein’s peas, there is a clear,
consistent, well-motivated position that does not include reification of high-dimensional
entities such as the wavefunction field on configuration space.

7 Lessons

Before concluding, let me point out three implications of this sparse quantum meta-
physics.
The first lesson is that some objections to beable-type theories vanish if the wavefunc-

tion is understood nomologically. Call these objections the Redundancy Argument and
the Action-Reaction Argument. Put forward by Everettians, the Redundancy Argument
originates in Everett’s doctoral thesis and has been repeated ever since.7 Here is Everett:

Our main criticism of this view [Bohm’s theory] is on the grounds of simplicity
- if one desires to hold the view that ψ is a real field then the associated particle
is superfluous since, as we have endeavored to illustrate, the pure wave theory
is itself satisfactory. (1973, 112)

Consider the infamous case of Schrödinger’s cat. Put simply, the objection is that Bohm’s
theory solves the measurement problem by adding one too many cats. This objection
may seem a bit rich coming from the Everettian, who already posits a multiplicity of cats,
yet there is a point here. Interpreted a la Everett, the final state of Schrödinger’s cat is an
uncollapsed wavefunction with a branch corresponding to a dead cat plus another branch
corresponding to a live cat. The Bohmian by contrast insists that there is only one cat,
a particle cat, either alive or dead. Suppose the particle cat is alive. Grant that Everett
solves the measurement problem and adopt the traditional Bohm picture wherein the
wavefunction is part of basic ontology. Then the Everettian can point out that we have

7See Brown and Wallace 2005, Deutsch 1996, Wallace 2008, Zeh 1999.
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one too many live cats: a ’wavefunction’ live cat and a ’particle’ live cat. More generally,
before adding the particles, the traditional Bohmian posits just as much ontology as
the Everettian. If Everett gets you an honest-to-goodness cat, why do you need the
particle cat? Bohmians, as Deutsch 1996 puts it, are Everettians in "chronic denial." The
argument concludes with the suggestion to take Occam’s razor to this bloated ontology
and excise the superfluous particles. The Action-Reaction Argument, by contrast, doesn’t
rely on Everett. Here the complaint is that Bohmian mechanics – and theories like it
– violate the “action-reaction” principle. The field in configuration space acts on the
particle configuration, but not vice versa (Squires 1994; Anandan and Brown 1995).
Although there have been attempts to address this issue in Bohmian mechanics, in its
standard form the charge is certainly correct. The objection carries force in proportion
to how much one believes a theory ought to obey this principle.
Neither objection moves me. To Action-Reaction, I think that it’s fair to respond

that the evidence for this principle is classical and that quantum theories shouldn’t be
hostage to classical intuitions (Callender and Weingard 1997). To Redundancy, it’s up
for grabs whether Everett solves the measurement problem, and anyway, the functional
specification of a wavefunction cat is distinct from that of a particle cat (see Lewis
2007a, 2007b, Valentini 2009, Callender, ms). Here, however, I simply wish to register
that on the nomological understanding of the wavefunction, neither objection gets off the
ground. Action-Reaction has no more merit than one objecting to classical Hamiltonian
mechanics because the particle positions don’t act back on the symplectic structure.
And Redundancy loses anything redundant: there is no wavefunction-cat. Far from
being an Everettian in self-denial, the Bohmian imagined here is instead a full-throated
anti-Everettian, for the two theories posit no shared basic ontology.
The second lesson is that it’s possible to regard classical mechanics and quantum me-

chanics as positing the same exact ontology but differing only in the laws. Interpret
quantum mechanics in a Bohmian fashion and choose position as the sole beable. One
can do exactly the same classically, adopting a “Bohmian” interpretation of Newtonian
mechanics and choosing position as the sole beable of Newtonian mechanics. Both the-
ories are then about a spare ontology of entities possessing only position intrinsically.
Arguably this “Bohmian” understanding of Newtonian mechnaics is the most natural
one. After all, classical mass and charge are theoretical terms. It’s natural for a Humean
to treat these as features of the nomological too (Hall, ms). We tend to picture Newto-
nian corpuscles with mass and charge stuck on them, like hats on a peg, but it’s perfectly
reasonable to understand them as features of the laws.
I stress that I say it’s possible, not necessary, to view the basic ontology as unchanged

in moving from the classical to the quantum (even understood a la Bohm). We can
easily generate mismatching ontologies allowing the Bohmian to pick fermion number
density, for instance, as her preferred observable, or the Newtonian to pick velocities.
One can also opt for a less minimalist interpretation of either theory, sticking spin or
other properties a la Holland on Bohmian particles and mass, charge or other properties
upon Newtonian corpuscles. A referee points out an interesting possible asymmetry here.
While one can regard mass and charge are intrinsic properties “stuck” onto the Newtonian
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corpuscles, such an interpretation of mass and charge may be unavailable to the Bohmian
(see Brown, Dewdney and Horton 1995 and Brown, Elby and Weingard 1996 for some
reasons why).
The third lesson is a small refinement of our understanding of what the recent theorem

of Pussey, Barrett and Rudolph (2012) precludes. Let’s begin with some terminology.
Suppose one considers theories that describe reality with some variables, λ. Values of
λ correspond to particular states of reality, or ontic states. When we prepare a system
in quantum mechanics, that corresponds to a distribution over these ontic states. The
literature surrounding the PBR theorem is interested in the following question: can
we prove that pure quantum states must correspond to non-overlapping distributions
over ontic states (Hardy 2012)? The reason for interest in this question is perhaps best
explained as follows. Consider the state of a system in classical statistical mechanics, the
state given by the probability density ρ. Clearly, many particular states in phase space
(infinitely many) are compatible with one and the same ρ. Given X ∈ Γ, we cannot
deduce a unique ρ (not even close!), so ρ is unlike, say, the energy, which can be so
deduced. This fact, the thinking goes, allows ρ to be interpreted epistemically, unlike the
energy. Now let λ be the quantum counterpart of X and ψ the counterpart of ρ. Can
one deduce from λ the pure quantum state? One can only do that if pure quantum states
correspond to non-overlapping distributions over ontic states. Hence the interest of the
question: the answer tells us whether the quantum state is like the classical ρ, and hence
epistemic, or like the classical energy, and hence ontological. Using terminology from
Harrigan and Spekkens (2010), call a model ψ-epistemic just in case there exist pairs
of pure quantum states for which the distributions over ontic states overlap and call a
model ψ-ontic models just in case the distributions over ontic states are non-overlapping
for any pair of pure quantum states. Then what the PBR theorem shows is that if we
assume a condition on separability, the wavefunction is ψ-ontic. Being ψ-ontic is typically
understood as implying that “the quantum state would be written into the underlying
reality of the world and we could assert that the quantum state is real” (Hardy 2012).
An instrumentalist or anti-realist doesn’t commit to variables λ. Since PBR requires

assumptions on λ, that brand of epistemicism about the wavefunction is not impugned.
Hence it’s commonly thought (Leifer 2011) that three positions remain:

1. Psi-epistemic (realist): Wavefunctions are epistemic, and there is some underlying
ontic state

2. Psi-epistemic (anti-realist): Wavefunctions are epistemic, but there is no deeper
underlying reality

3. Psi-ontologist (realist): Wavefunctions are ontic

and that PBR rules out interpretations in class 1.
Position 1 sounds a lot like the position defended here. Our Bohmian is committed

to beables, and hence λ, but has a Humean, and therefore Bit-like, interpretation of the
wavefunction. How is this possible?
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There is no mystery here, only a looseness of semantics. As defined above, Bohm’s
theory is a ψ-ontic theory. The reason for this is related to our discussion in Section
6: one needs the wavefunction to get the theory’s predictions. Hence the ontic states
in Bohm’s theory are given by λ = (ψ,Q), where Q is the point in configuration space
representing the particle configuration. The theory is trivially ψ-ontic, for sitting in λ is
none other than the quantum state itself.
The key point, however, is that not all ψ-ontologists believe that ψ is part of the

ontology. We can distinguish between the metaphysics of the two components of λ. That
ψ is part of the ontic state doesn’t mean that it needs to be interpreted like Q. This
point is even clear in classical mechanics. There we think of λ = (X(q, p)). But in a
Newtonian framework, momentum is defined via the forces. So the ontic state really
requires the forces too. The state of a system doesn’t supervene merely on the positions
(consider: a particle at an instant going to the right and a particle at an instant going to
the left looik the same positionally). The forces or their equivalents are needed. Yet of
course that doesn’t preclude a philosophical analysis wherein one adopts, say, a Machian
understanding of force and otherwise treats the positions as beables. Same here. Hence
there is really at least a fourth position available:
4. Psi-ontologist: wavefunctions are ontic, and there is some underlying ontic state,

but the wavefunctions are not beables
Position 2 is the “philosophical” variant of 1. It agrees with 1 that the wavefunction

is not part of the ontic state, but in disagrees with 1 in its “metaphysics,” i.e., it denies
that λ exist and thereby escapes the proof. In a roughly similar way, we might view 4
as the “philosophical” counterpart of 3. Position 4 agrees with 3 that the wavefunction
is part of the ontic state, but it disagrees with 3 in its “metaphysics,” i.e., it denies that
ψ exists ontologically. If we agree to tease out 4 from 3 as described, then we see that
Position 3 is what is appropriate when one’s beable is the wavefunction (Everett) and
Position 4 is what is appropriate when we choose a different beable.

8 Conclusion

We have motivated the nomological understanding of the wavefunction. On this picture
the It-or-Bit debate, and even the wave-or-particle debate, are absorbed by a larger
more philosophical debate over the nature of laws. Although slightly disconcerting, this
realization represents progress. With this understanding in hand, I’ve shown how a
major obstacle to the nomological view potentially is removed by adopting a Humean
perspective on this larger dispute. According to this attractively parsimonious picture,
it turns out to be possible to think that the fundamental ontology of the world posited
by non-relativistic quantum mechanics is precisely the same as that posited by classical
physics. The difference lies only in the dramatic alteration of the laws governing how
these beables move. Regardless of whether one explores this option, the main point is
that quantum mechanics requires only one type of beable. Put in the form of a rhyming
slogan, the moral is “one stuff, that’s enough.”
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