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Chapter 9

Philosophy of 
Space–Time Physics

Craig Callender and Carl Hoefer

Philosophy of space–time physics, as opposed to the more general philosophy of

space and time, is the philosophical investigation of special and general relativity.

Relativity theory stimulated immediate and deep philosophical analysis, both

because of its novel implications for the nature of space, time and matter, and

because of more general questions philosophers have about the nature of its claims.

With nearly one hundred years of sustained research to draw on, this chapter cannot

hope to survey all the topics that have arisen, even all the major ones. Instead, we

concentrate on four topics, two with a historical and philosophical pedigree,

namely, relationalism and conventionalism, and two that arise in general relativity

and cosmology, namely, singularities and the so-called horizon problem. This selec-

tion should give the reader a representative taste of the field as it stands today.

Many fascinating topics, however, will not be covered. Notable examples are

the topics of time travel, presentism, supertasks, and the Lorentz interpretation of

relativity. For up-to-date references and discussions of these topics, the reader can

turn to, respectively, Arntzenius and Maudlin (2000), Savitt (2000), Earman and

Norton (1996), and Brown and Pooley (2001).

Relationism, Substantivalism and Space–time

Perhaps the most fundamental question one has about space–time is: what is it,

really? At one level, the answer is simple; at a deeper level, the answer is complex

and the continuing subject of philosophers and physicists’ struggle to obtain a

plausible and intelligible understanding of space–time. In large measure, this strug-

gle can be seen as a continuation of the classical dispute, sparked by the famous

Leibniz–Clarke correspondence, between relational and absolutist conceptions of

space – though the terms of the debate have turned and twisted dramatically in

the twentieth century.



History

The general theory of relativity’s (GTR) simple answer to our question is that

space–time is

(a) a four-dimensional differentiable manifold M

(b) endowed with a semi-Riemannian metric g of signature (1,3)

(c) in which all events and material things (represented by stress-energy T) are

located, and

(d) in which g and T satisfy Einstein’s field equations (EFE).

Had gravitational physics and scientific cosmology begun with Einstein’s theory

rather than Newton’s, this simple answer might seem perfectly natural. Attempt-

ing to obtain a deeper understanding of the theory, philosophers struggle to

understand GTR’s space–time in terms of ideas found in previous theories, ideas

whose roots lay in experience, metaphysics and Modern philosophy and physics.

The questions that arise from these grounds seem to make good sense, indepen-

dent of their roots: Is space–time a kind of thing which, though different from

material things and energy-forms, is in some sense just as substantial and real? Do

Einstein’s equations describe a sort of causal interaction between space–time and

matter; or is the relation one of reductive subsumption (and if so, which way)?

Can space–time exist without any matter at all? Is motion purely relational in GTR,

that is, always analyzable as a change in the relative configuration of bodies, or is

it absolute, that is, always defined relative to some absolute structure? Or is it

partly relative and partly absolute?

None of these questions receives a clear-cut answer from GTR, which is why

absolutely inclined and relationally inclined thinkers can each find grist for their

ontological mills in the theory. The complexity and ambiguity of the situation

leads some philosophers to argue that it is pointless to try to impose the categories

of seventeenth century metaphysics on a theory that has outgrown them

(Rynasiewicz, 1996, 2000). Below, we briefly survey some of the key features of

GTR that intrigue and frustrate philosophical interpretation, and return at the end

to the question of whether the old categories and questions still have value.

No prior geometry In all earlier theories of mechanics and/or gravitation that

contained definite doctrines about the nature of space and time (or space–time),

space and time were taken as “absolute” structures, fixed and unchanging. As

Earman (1989) shows, even the views of the traditional relationist thinkers

involved some significant prior geometric and/or temporal structures. The 

Euclidean structure of space, for example, was universally assumed, as well as some

absoluteness of temporal structure.1

Not so General Relativity. The background arena in GTR is just M, which can

have any of a huge variety of topologies, and whose only “absolute” features are

4-dimensionality and continuity. The rest of the spatio-temporal properties, geo-
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metric and inertial and temporal, are all encoded by g, which is not fixed or prior

but rather variable under the EFE.2 This looks extraordinarily promising from a

relationist viewpoint: absolute space has finally been banished!

Or has it? Although absolute space or space–time, in the sense of a pre-defined

and invariant background, is absent, it is not clear that this amounts to satisfac-

tion of a relationist’s desires. Motion has not become “purely relative” in any clear

sense; rather, motion is defined relative to the metric, and the metric is by no

means definable on the basis of relations between material things. In fact, the EFE

turns matters the other way around: given the metric g, the motions of material

things (encoded in T) are determined. If material processes affect the structure of

spacetime, perhaps this is so much the better for a substantival view of GTR’s

space–times.

The differing roles of M and g correspond to two different strands of argument

for substantivalism, which it will be useful to distinguish. The first strand notes

that it is indispensable to the mathematical apparatus of GTR that it start from

M and build the spatio-temporal structure g on it.3 Then, invoking the Quinean

doctrine that the real is that over which we ineliminably quantify in our best sci-

entific theories, M is claimed to represent a real, existing manifold of space–time

points in the world. The second strand looks at g itself, argues that it represents

a real structure in the world not reducible to or derivable from material bodies

and their relations, and concludes that we have a descendent of Newton’s absolute

space in GTR.

Manifold and Metric Above we have indicated that M is the only “fixed back-

ground” in GTR, and that only in the sense of dimensionality and continuity, not

global shape. But motions (particularly acceleration, but also velocity and position

in some models) are defined by g. Which one, then, represents space–time itself?

Or must we say it is a combination of both? These questions open a new can of

interpretive worms.

A manifold is a collection of space–time points, not space points. In other

words, the points do not have duration; each one is an ideal point-event, a rep-

resentative of a spatial location at a single instant of time. They do not exist over

time and hence serve as a structure against which motion may be defined, as

Newton’s space points did. If space–time substantivalism is understood as the claim

that these points are substantial entities themselves, then the so-called hole problem

arises (Earman and Norton, 1987). The general covariance of the EFE, interpreted

in an active sense, allows one to take a given model M1 = <M, g, T> and construct

a second via an automorphism on the manifold: M2 = <M, g*, T*> which also

satisfies the EFE. Intuitively, think of M2 as obtained from M1 by sliding both the

metric and matter fields around on the point-manifold (Figure 9.1).

If M2 and M1 agree or match for all events before a certain time t, but differ

for some events afterward, then we have a form of indeterminism. Relative to our

chosen substantial entities, space–time points considered as the elements of M,

what happens at what space–time locations is radically undetermined. This can be
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presented as an argument against the kind of substantivalism (manifold substan-

tivalism) we started from.

Note however two points. First, this indeterminism is unobservable: M1 and

M2 are qualitatively indistinguishable. Second, but relatedly, the hole problem

assumes that the identities of the manifold points are given or specified, in some

sense, independently of the material/observable processes occurring in spacetime

(represented by g and T). In fact, one way of thinking of a hole automorphism is

as a (continuous) permutation of the points underlying physical processes, or as a

re-labeling of the points. Not surprisingly, most responses to the hole argument

have departed from these points, arguing that substantivalism can be reinterpreted

in ways that do not lead to the apparent indeterminism.

Metric and matter Derivation of the metric of space–time from a (somehow!)

antecedently given specification of the relational distribution of matter is a 

characteristic Machian ambition. Mach’s Science of Mechanics (1989), at least as

Einstein read it, proposed that inertia should be considered an effect of relative

acceleration of a body with respect to other bodies – most notably, the “fixed

stars.” Transplanting this idea to the context of GTR seems to indicate having 

the inertial structure (which g determines) determined by the relational matter

distribution. GTR does not seem to fulfill this idea in general. In some models

(notably Friedman–Robertson–Walker (FRW) Big Bang models), this idea seems

intuitively fulfilled. But making the idea both precise and satisfiable in GTR has

proven difficult if not impossible, despite the efforts of outstanding physicists 

such as Einstein, Sciama, Wheeler, and Dicke. And as we noted above, superfi-

cially at least the determination relation seems to go the other way (from metric

to matter).
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changed.
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manifold points 
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<M, h*g, h*T>: identical to <M, g, T> everywhere
outside the Hole (hence, at all times before t=0).

Cauchy hypersurface t = 0

Figure 9.1 A hole diffeomorphism’s effect



Despite these difficulties, a Machian program for extending (or restricting)

GTR has appealed to many thinkers. In addition to anti-absolutist prejudices, there

are a couple of reasons for this. First, GTR does yield some non-Newtonian iner-

tial effects of the kind Mach speculated on: the so-called “frame-dragging” effects.

Second, it is difficult to take as a mere coincidence the fact that the FRW models,

which seem most Machian intuitively, are also those that seem to best describe our

cosmos.

And there are difficulties with taking the metric “field” as a substantial entity

that either subsumes ordinary matter or is in causal interaction with it. The former

idea, which can be thought of as “super-substantivalism”, would involve extend-

ing our notion of the metric in an attempt to derive fine-grained properties of

matter in terms of fine-grained perturbations (knots, singularities?) of the 

former. Attempts by Einstein and others along these lines have not led to notable

successes.

The less ambitious idea of the metric and (ordinary) matter as ontological peers

in mutual interaction faces challenges too. The EFE give a regularity, but in order

to view the regularity causally, we would ideally like to be able to quantify the

strength of the interaction, in terms of energy or momentum exchange. But the

metric field’s energy, if it exists at all, is poorly understood and very different from

ordinary energy (Hoefer, 2000). Attempts through the end of the twentieth

century to detect the most intuitively causal-looking interactions – absorption of

gravitational wave energy – were uniformly negative.

Current work

The relationism/substantivalism issue was dominated through the late 1980s and

1990s by responses to the Earman and Norton hole argument. The argument 

has pushed philosophers who have more sympathy with substantivalist views than

relationist views to make more precise their ontological claims (Maudlin, 1990;

Butterfield, 1989; Stachel, 1993). Depending on whether they view substan-

tivalism as primarily attractive due to the Quinean indispensability argument 

or rather the metric-based considerations, philosophers re-work their views in 

different ways.

The hole argument inspired those with relationist leanings to revive the idea,

advocated by Reichenbach earlier in the twentieth century but effectively killed 

by Earman (1970) and Friedman (1983), that GTR can be interpreted as fully

compatible with relationism. Teller (1991), Belot (1999) and Huggett (1999) are

examples of this approach. What makes this position possible is

(a) focusing on the point-manifold-indispensability argument for substantival-

ism primarily, and

(b) taking a liberal attitude toward the idea of relations between material 

things.
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If the manifold is taken as only representing the continuity, dimensionality and

topology of space–time (as some substantivalists would agree anyway), then what’s

really indispensable is the metric. Can it be interpreted relationally? The philoso-

phers who argue that it can are not claiming a Machian reduction of metrical struc-

ture to material relations. Instead, they claim that the metric itself can be

interpreted as giving the structure of actual and possible spatiotemporal relations

between material things. g is not a thing or substance. Where matter is present, it

is crucial to the definition of local standards of acceleration and non-acceleration;

the EFE record just this relationship. In many ways, the desires of traditional rela-

tionists (especially Leibniz, Huygens and Mach) are – arguably – met by GTR

when interpreted this way.

Current work has served to clarify the various types of substantivalist view that

may be brought forth, and the strengths and weaknesses of them. To a lesser

extent, relationist alternatives have also been clarified. Others feel unhappy about

both alternatives, and their reasons stem from a conviction that the ontological

categories of absolutism, substantivalism and relationism have no clear meanings

in GTR and have thus outlived what usefulness they ever had.

Rynasiewicz has published two provocative papers on this topic. His 1996 paper

argues that the categories of absolute and relational simply do not apply in GTR,

so it is a mug’s game trying to see which one “wins” in that theory. Tracing rela-

tional and absolutist ideas from Descartes through to Einstein and Lorentz, the

core of his case is that the metric field of GTR is a bit like a Cartesian subtle matter

and a bit like Newton’s absolute space, but in the end not enough like either

(though it is a lot like ether). In his 2000 paper, he does a similar historical/

conceptual analysis of the notions of absolute and relative motion, concluding that

the notions are impossible to define in GTR. While it is possible to mount counter-

arguments in defense of the traditional notions (Hoefer, 1998), it is impossible to

deny that GTR is an awkward theory to comprehend using traditional concepts

of space and time.

Robert Disalle (1994, pp. 278–9) argues along similar lines. He offers a posi-

tive way to understand space–time after we have freed ourselves from the out-

moded categories. In his 1995, he argues that a chief mistake of the tradition is

thinking of space–time structure as an entity that we postulate to causally explain

phenomena of motion. It can’t do the job of explaining motions because it is

simply an expression of the facts about those motions – when certain coordinat-

ing definitions are chosen to relate spatio-temporal concepts with physical 

measurements and processes. The point is nicely made by analogy. When 

pre-nineteenth century thinkers asserted the Euclidean nature of space, they were

claiming that observations of length, angle and distance will always conform to

the rules of Euclid’s geometry. But saying space is Euclidean is not giving a causal

explanation of rulers and compasses behaving as they do, and it is not the postu-

lation of a new, substantial “thing” in which rulers etc. are embedded. Nor is it,

however, a claim that all spatial facts are reducible to observables or measurement
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outcomes. One can, says Disalle, be a realist about space (or space–time)’s struc-

ture, without making the mistake of inappropriate reification.

Future work

The notions of relational and substantival spacetime may have reached a sort of

impasse when it comes to the interpretation of GTR’s overall structure, as pre-

sented in entry-level textbooks. This hardly means that we have an adequate under-

standing of space–time’s ontology, a comfortable resting place for philosophical

curiosity. A search of the abstracts of recent work in the foundations of GTR and

quantum gravity will show numerous occurrences of words like relational and

absolute, Leibniz and Mach. This is because philosophers and physicists alike still

want to deepen their understanding of the world’s ontology. There is still impor-

tant work that can be done on classical GTR. For example, what is the status of

energy conservation laws? Does matter–energy really get exchanged between ordi-

nary matter and empty space–time? How might relationalists understand parity

nonconservation? Are there Machian replacements for or restrictions of GTR that

are observationally equivalent over the standard range of current tests? (See

Barbour and Bertotti (1982) and Barbour (1999).)

Conventionalism about Space–time

Some of the most basic principles of science (and perhaps mathematics) seem to

be true as a matter of definitional choice. They are not quite purely analytic or

trivial; they can not be demonstrated true simply on the basis of prior stipulative

definitions and logical rules. Further, incompatible-looking alternative principles

are conceivable, even though we may not be able to see how a useful framework

could be built on them. Such principles are often held to be true by convention.

One example in mathematics is the famous parallel postulate of Euclidean

geometry. Physical examples are less common and typically fraught with contro-

versy. Perhaps Newton’s famous 2nd law, F = ma, is an example. This may be

thought a poor choice, for surely, as the center of his mechanics, the 2nd law is

far from true by definition. But in the Newtonian paradigm, the 2nd law served

as ultimate arbiter of the questions

(a) whether a force existed on a given object; and

(b) if so, what its magnitude was.

Any failure of the a of an object to conform to expectation was grounds for assum-

ing that an unknown or unexpected force was at work, not grounds for ques-

tioning the 2nd law.
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Of course, there is no guarantee that one can always maintain any putative con-

ventional truth, come what may. Rather, one can usually imagine (or experimen-

tally find, as in the example at hand) circumstances in which unbearable tensions

arise in our conceptual frameworks from the insistence on retention of the con-

ventional principle, and one is effectively forced to give it up. (Duhem (1954)

gives a classic discussion of these matters.) If this is right, then the original claim

of conventionality looks like something of an exaggeration. Are there in fact any

choices in the creation of adequate physical theory that are genuinely free, con-

ventional choices (as, e.g. choice of units is), without being completely trivial (as,

again, choice of units is)? Many philosophers have thought that space–time struc-

tures give us true examples of such conventionality.

History

Before the eighteenth century all philosophers of nature assumed the Euclidean

structure of space; it was thought that Euclid’s axioms were true a priori. The

work of Lobachevsky, Riemann and Gauss destroyed this belief; they demon-

strated, first, that consistent non-Euclidean constant-curvature geometries were

possible, and later that even variably curved space was possible. It was also appar-

ent that our experience of the world could not rule out these new geometries, at

least in the large. But what, exactly, does it mean to say that space is Euclidean or

Riemannian? A naïve-realist interpretation can, of course, be given: there exists a

thing, space, it has an intrinsic structure, and that structure conforms to Euclid’s

axioms. But some philosophers – especially empiricists such as Reichenbach –

worried about how space is related to observable properties. These philosophers

realized that our physical theories always contain assumptions or postulates that

coordinate physical phenomena with spatial and temporal structures. Light rays in

empty space travel in straight lines, for example; rigid bodies moved through

empty space over a closed path have the same true length afterward as before; and

so on. So-called axioms of coordination are needed to give meaning and testabil-

ity to claims about the geometry of space.

The need for axioms of coordination seems to make space for conventionalism.

For suppose that, under our old axioms of coordination, evidence starts to accu-

mulate that points toward a non-Euclidean space (triangles made by light rays

having angles summing to less than 180°, for example). We could change our view

of the geometry of space; but equally well, say conventionalists, we could change

the axioms of coordination. By eliminating the postulate that light rays in empty

space travel in straight lines (perhaps positing some “universal force” that affects

such rays), we could continue to hold that the structure of space itself is Euclid-

ean. According to the strongest sorts of conventionalism, this preservation of a

conventionally chosen geometry can always be done, come what may. Poincaré

(1952) defended the conventionality of Euclidean geometry; but he also made an
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empirical conjecture, now regarded as false: that it would always be simpler to con-

struct mechanics on assumption of Euclidean geometry.

Discussions of conventionalism took a dramatic turn because of the work of

Einstein. With its variably curved space–time, GTR posed new challenges and

opportunities for both sides on the conventionality of geometry. Cassirer, Schlick,

Reichenbach, and Grünbaum are some notable figures of twentieth century phi-

losophy who argued for the conventionality of space–time’s geometry in the

context of GTR. Recent scholars have tended to be skeptical that any non-trivial

conventionalist thesis is tenable in GTR; Friedman (1983) and Nerlich (1994) are

prominent examples here.

But it was in 1905, rather than 1915, that Einstein gave the greatest wind to 

conventionalist’s sails. In the astounding first few pages of the paper that introduced

the special theory of relativity (STR), Einstein overthrew the Newtonian view of

space–time structure, and in passing, noted that part of the structure with which he

intended to replace it had to be chosen by convention. That part was simultaneity.

Einstein investigated the operational significance of a claim that two events at dif-

ferent locations happen simultaneously, and discovered that it must be defined 

in terms of some clock synchronization procedure. The obvious choice for such a

procedure was to use light-signals: send a signal at event A from observer 1, have it

be received and reflected back by observer 2 (at rest relative to 1) at event B, and

then received by 1 again at event C. The event B is then simultaneous with an event

E, temporally mid-way between A and C (Figure 9.2).

Or is it? To suppose so is to assume that the velocity of light on the trip from

A to B is the same as its velocity from B to C (or, more generally, that light has
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the same velocity in a given frame in all directions). This seems like a very good

thing to assume. But can it be verified? Einstein thought not. All ways of directly

measuring the one-way velocity of light seemed to require first having synchro-

nized clocks at separated locations. But if this is right, we are going in circles: we

need to know light’s one-way velocity to properly synchronize distant clocks, but

to know that velocity, we need antecedently synchronized clocks.

To break the circle, Einstein thought we needed simply to adopt a conventional

choice: we decide that event E is simultaneous with B (i.e. that light’s velocity is

uniform and direction-independent). Other choices are clearly possible, at least for

the purposes of developing the dynamics and kinematics of STR. Following

Reichenbach, these are synchronizations with e π 
1–
2

(e being the proportion of the

round-trip time taken on the outbound leg only). Adopting one of these choices

is a recipe for calculational misery of a very pointless kind. But the Einstein of

1905, and many philosophers of an operationalist/verificationist bent since then,

thought that such a choice cannot be criticized as wrong. Ultimately, they say,

distant simultaneity is not only frame-relative, but partly conventional.

Taking up the challenge of establishing a one-way velocity for light, Ellis and

Bowman (1967) argued that slow clock transport offers a means of synchronizing

distant clocks that is independent of the velocity of light. In STR, when a clock

is accelerated from rest in a given frame up to some constant velocity, then 

decelerated to rest again at a distant location, there are time-dilation effects that

prevent us from regarding the clock as having remained in synch with clocks 

at its starting point. And calculation of the size of the effect depends on having

established a distant-simultaneity convention (i.e. a choice of e). So it looks as

though carrying a clock from observer 1 to observer 2 will not let us break the

circle. But Ellis and Bowman noted that the time dilation effect tends to zero 

as clock velocity goes to zero, and this is independent of e-synchronization. 

Therefore, an “infinitely slowly” transported clock allows us to establish distant

synchrony, and measure light’s one-way velocity. Conventionalists were not 

persuaded, and the outcome of the fierce debate provoked by Ellis and Bowman’s

paper was not clear.

In 1977, David Malament took up the conventionalist challenge from a dif-

ferent perspective. One way of interpreting the claim of conventionalists such as

Grünbaum is this: the observable causal structure of events in an STR-world does

not suffice to determine a unique frame-dependent simultaneity choice. By “causal

structure” we mean the network of causal connections between events; loosely

speaking, any two events are causally connectable if they could be connected by a

material process or light-signal. In STR, the “conformal structure” or light-cone

structure at all points is the idealization of this causal structure. It determines,

from a given event, what events could be causally connected to it (toward the past

or toward the future). Grünbaum and others believed that the causal structure of

space–time by no means singles out any preferred way of cutting up space–time

into “simultaneity slices”.
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Malament showed that, in an important sense, they were wrong. The

causal/conformal structure of Minkowski space–time does pick out a unique frame-

relative foliation of events into simultaneity slices. Or rather, more precisely, the

conformal structure suffices to determine a unique relation of orthogonality. If we

think of an e-choice as the choice of how to make simultaneity slices relative to

an observer in a given frame, then Malament showed that the conformal struc-

ture is sufficient to define a unique, orthogonal foliation that corresponds to Ein-

stein’s e =
1–
2

choice. For many philosophers, this result marked the end of the

debate over conventionality of simultaneity. (But see Janis, 1983 and Redhead,

1993 for conventionalist responses.)

Current work

A recent paper by Sarkar and Stachel (1999) tries to re-open the issue of conformal

structure and simultaneity relations. Stachel and Sarkar note that one of Malament’s

assumptions was that the causal connectability relation is taken as time-symmetric,

i.e. that it does not distinguish past-future from future-past directions of connec-

tion. They argue that it is possible to distinguish the backward from forward light

cones using only the causal-connectability relation Malament starts from. If this is

granted, and we do not impose the condition that any causally-definable relation

must be time-symmetric, then the uniqueness result Malament proved fails. Many

different cone-shaped foliations become definable. Stachel and Sarkar advocate the

backward-lightcone surface as an alternative simultaneity surface choice that could

be made. It remains true, however, that only the genuine orthogonality relation 

(e =
1–
2
) is transitive and location-independent. These are two of the core features of

classical simultaneity. To put forward Stachel and Sarkar’s alternative relation as a

genuine candidate for a distant-synchrony relation is therefore, at best, awkward

and out of line with core intuitions about simultaneity.

Still, many philosophers of physics feel dissatisfied with even this much of a con-

cession to conventionalism. They suspect that, even if it may have been in some

sense possible to do physics with e π 
1–
2

in 1905, more recent quantum field theory

has surely ruled that out. Zangari (1994) argued that the mathematics of spinor

fields in Minkowski space–time – used in describing spin-1–
2

particles, for example

– is only consistent in frames with standard synchrony. Gunn and Vetharaniam

(1995) claimed that Zangari was mistaken, and that using a different formalism,

the Dirac equation could be derived in a framework including e π 
1–
2

frames.

Karakostas (1997) has argued that both of the preceding authors’ arguments are

flawed, though Zangari’s main claim is correct. And most recently, Bain (2000)

argues that none of these authors has it exactly right. There is always a way to 

do physics using arbitrary coordinates (including those corresponding to non-

standard simultaneity choices); but whether that amounts to the conventionality

of simultaneity in an interesting sense remains a tricky question.
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In trying to see one’s way through the dense thicket of technical claims and

counter-claims in these papers, it helps to fall back on the notion of general covari-

ance. Kretschmann hypothesized in 1918 that any physical theory could be

expressed in a generally covariant form, i.e. in a form that is valid in arbitrary 

coordinates. Nonstandard-synchrony frames do correspond to coordinate systems

allowed under general covariance. Karakostas does not deny Kretschmann’s claim.

Instead, he notes that generally covariant treatments of spinor fields can be done,

but they have to introduce a geometric structure (a “frame” or “vierbein field”)

that effectively picks out the orthogonal (= standard simultaneity) direction for a

given observer in a given frame. This is a typical sort of move when theories with

absolute space–time structures are given in a generally covariant form. Geometric

objects or fields replace privileged coordinates or frames, but the “absoluteness”

is only shifted, not removed. In the case of spinor fields, it seems that something

that effectively encodes the Einstein-standard synchrony relation is mathematically

necessary. Can the conventionalist respond by claiming that this necessary struc-

ture is, withal, not a simultaneity structure? Bain claims that she can; for spinor

fields have nothing to do with rods and clocks, and the measurement of light’s

one-way velocity – i.e. with the original point conventionalists made.

Conventionalist claims – concerning both geometry and simultaneity – seem to

be constantly in danger of collapsing into triviality: the trivial claim that, if we are

mathematically clever and not afraid of pointless hard work, we can choose any

perverse sort of coordinate system we like, and then claim that the coordinates

reflect the geometric/simultaneity relations we have “chosen.” Perhaps we can do

this; but to suppose that this amounts to a genuine choice of spatio-temporal facts

is to be somewhat disingenuous about the content of such facts. To be sure, axioms

of coordination are needed to link pure geometric concepts to observable phe-

nomena. But the axioms we choose are themselves constrained in many ways by

the need to cohere with further practices and metaphysical assumptions. In prac-

tice, these constraints seem to fully determine, or even over-determine our

“choices” regarding geometry. What keeps the debate concerning conventional-

ity of simultaneity alive is the way in which our “conventional choices” play only

a completely trivial role qua axioms of coordination. Just as one can do physics

with any choice of e, one can also do physics without any choice of clock 

synchronization.

Future work

Relativity theory (STR and GTR) provides the natural home for at least limited

forms of conventionalism, though it remains a subject of dispute just how signif-

icant the conventionality is. The work of Karakostas, Bain and others points in the

direction future work on these topics will take: toward new physics. One would

also expect that advances in the general methodology of science will continue to

bear on these issues.
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Black Holes and Singularities

Our best theories tell us that stars eventually run out of nuclear fuel. When they

do so, they leave equilibrium and undergo gravitational collapse, ending as white

dwarves if the collapsing core’s mass M < 1.4 solar masses, as neutron stars if 5 >

M > 1.4, or as black holes if M > 5. Black holes are regions of space–time into

which matter can enter but from which matter can not escape. Their end states

are singularities, which for now we might associate with a “hole” in space–time

or a point where the space–time metric “blows up” and is ill-defined. There is

some astronomical evidence for the existence of black holes, and they are relevant

to a number of questions that interest philosophers, such as whether time travel

is possible and whether the past and future are finite (Weingard, 1979). However,

we here focus on singularities, as they are more general since they can exist without

black holes, and they also pose several different philosophical questions that are

the subject of active research.

History

Singularities are hardly novel to GTR. The classical Coulomb field when com-

bined with STR goes to infinity at points. Collapsing spherical dust clouds and

other highly symmetric solutions provide examples of singularities in Newtonian

gravitational theory. But singularities in GTR are especially puzzling, as we will

see.

The existence of singularities to EFE was known from the theory’s inception.

Hilbert, for instance, wrote about the notorious singularities in the Schwartzchild

solution as early as 1917. The line element of this solution has singularities at 

r = 0 and r = 2M. Einstein in 1918 worried about them only because he took

them as a threat to Machianism. Singularities in the solutions to the field equa-

tions didn’t cause general alarm for many more decades because they were not

very well understood (Earman, 1999; Earman and Eisenstaedt, 1999). They 

were viewed as unacceptable pathologies, but it was assumed that they 

were defects of only certain models. From 1918 until the mid-1950s, it was not

realized that the singularities in these space–times were “essential” in some sense.

There were two other options.

First, a singularity might be merely a “coordinate singularity” and not a feature

of the space–time. To illustrate the distinction, consider coordinizing a sphere. It

is a theorem that no single coordinate system can cover the sphere without sin-

gularity. This represents a problem for the coordinate system, not the sphere. The

sphere is a perfectly well-defined geometric object; moreover, there are ways of

covering the sphere without singularity using two different coordinate patches.

The Schwartzchild solution caused particular mischief in this regard during the

first half of the twentieth century; it famously emerged that only one (r = 0) of
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its two apparent singularities is genuine – the “Schwartzchild radius” (r = 2M) is

a mere artifact of the coordinates.

Second, like the singularities in classical gravitational theory, relativistic singu-

larities might be due to an artificial symmetry of the solution. The singular 

nature of a solution of Newton’s equations representing a perfectly spherical 

collapse of dust is real enough. It is no artifact of the coordinates chosen. But 

the feeling is, what chance is there that this is our world? Our world does not 

have its matter arranged like dust formed in a perfect sphere. Change the distribu-

tion somewhat and the singularity disappears. Why worry? Similarly, when it

became clear that (for example) the Schwarzchild and Friedman solutions con-

tained genuine singularities, the hope was that these arose from the artificial 

symmetries invoked; after all, the Schwartzchild solution represents the geometry

exterior to a spherically symmetric massive body and the Friedman solutions rep-

resents a homogeneous and isotropic matter distribution. The singular solutions

were hoped to be in some sense “measure zero” in the space of all the solutions

of EFE.

These hopes were dashed by singularity theorems in the 1950s by Raychaud-

huri and Komar, and especially by theorems in the 1960s and early 1970s by

Penrose, Geroch and Hawking. These theorems appear to demonstrate that sin-

gularities are generic in space–times like ours. They assume what seem to be plau-

sible conditions on the stress-energy of matter to force geodesics to cross; they

then employ global conditions on the geometry to show that these geodesics ter-

minate in a singularity.

These advances in the 1960s and 1970s were made possible in part by the new,

minimal definition of a singularity. Without going into the details, a space–time is

said to be singular according to these theorems just in case it contains a maximally

extended timelike geodesic that terminates after the lapse of finite proper time.

Briefly put, a space–time is singular iff it is timelike geodesically incomplete. (This

definition can be extended to cover null and spacelike curves, and can be extended

in other ways too – to so-called ‘b-incompleteness’ – but we will not go into this

here.) The idea behind this definition is that it must be a serious fault of the

space–time, one worthy of the name singularity, if the life of a freely falling immor-

tal observer nevertheless terminates in a finite time.

However fruitful this definition, it has proved to be controversial, as have the

significance of the singularity theorems. The current work in philosophy on these

topics, largely driven by Earman (1995), focuses on these two questions.

Current work

This section focuses on the analysis of singularities. We concentrate on this topic

not because we feel that it is any more important than other questions – indeed,

we feel the opposite, that (for instance) the question of the significance of singu-

larities for GTR is far more important – rather, we so concentrate because it is a
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necessary point of entry into the literature. One cannot successfully evaluate the

significance of singularities without first knowing what they are.

Naively, one has the idea that a singularity is a hole in space–time surrounded

by increasing tidal forces that destroy any approaching object. This picture cannot

be correct for general relativistic space–times. The reason is simple: the singulari-

ties here are singularities in the metric space itself, so there is literally no location

for a hole. General relativity requires a manifold with a smooth Lorentz metric,

so by definition there are no locations where the metric is singular. Fields on

space–time can be singular at points; but space–time itself has nowhere to be 

singular.

Following Geroch (1968), commentators have identified several quite distinct

meanings of singularity. To name a few, and sparing details, consider the follow-

ing conditions proposed for making a space–time singular:

(a) curvature blowup: a scalar curvature invariant, e.g. Ricci, tensor goes

unbounded along a curve in space–time

(b) geodesic incompleteness: see above

(c) missing points: points are “missing” from a larger manifold, arising from the

excision of singular points.

All three, we suppose, are involved in our intuitive idea of a space–time singu-

larity. And for a Riemannian space, (b) and (c) are co-extensive. The Hopf–Rinow

theorem states that, for connected surfaces, the conditions of being a complete

metric space and being geodesically complete are equivalent. A metric space is

complete if every Cauchy sequence of points in it converges to a point in that

space. Intuitively, incompleteness is associated with missing points. For instance,

the plane minus the origin, the surface �2 – {(0,0)}, is not complete because the

Cauchy sequence {(1/n, 0)} converges to a point excised from the plane. It is also

not geodesically complete since there are no geodesics joining points (-1,0) and

(1,0), so here we see a connection between geodesic incompleteness and missing

points.

However, a relativistic space–time is not a Riemannian space, but a pseudo-

Riemannian one, and the Hopf–Rinow theorem does not survive the change.

None of the three definitions are co-extensive: the literature shows that while (c)

implies (b), (b) does not imply (c); (a) implies (b), but (b) does not imply (a);

and (a) seems to imply (c), but (c) does not imply (a). The official definition, (b),

thus seems to act as a kind of symptom of the other two pathologies. Even here

there are counterexamples. A curve might be incomplete even if the curvature is

behaving normally, as happens in Curzon space–time; and as Misner shows, a curve

might be incomplete even in a compact, and hence, complete and “hole-less”,

space–time.

It is of interest to see how hard it is to even make sense of definition (c). As

mentioned above, a relativistic space–time has no room for singular points in the

metric. Definition (c) would then have us look for the traces of an excised point,
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i.e. look for what is not there. How do you find points which are not on the

space–time but which have been removed? Looking at the topology will not help

since, in general, a variety of non-singular metrics can be put on any given topol-

ogy (for instance, the Schwartzchild topology of R2
¥ S2 is compatible with plenty

of non-singular topologies). Although this way of understanding singularities is

still active, it may be that the whole idea of a singularity as some localizable object

is misleading.

Once we have an understanding of singularities in GTR, the next question 

to ask is about their significance. Do they “sow the seeds of GTR’s demise” as is

often alleged? Or are they harmless, perhaps even salutary, features of the theory?

Earman (1996) provides an argument for tolerating singularities; but many physi-

cists claim that they represent a genuine deficiency of the theory.

Future work

The topic of singularities is really a new one for philosophers of science. We can

scarcely mention all the areas open to future endeavor. The majority of our focus

below depends, perhaps naturally, on relatively recent ideas in physics.

Good arguments needed Earman (1996) pieces together and criticizes various

arguments for the widespread belief that singularities sow the seeds of GTR’s

demise. A survey of the literature shows that there is a dearth of good argument

supporting this belief. Can a good argument be articulated on behalf of this

opinion that does not rely on misleading analogies with other pitfalls in the history

of science?

Are there really singularities? The singularity theorems do not fall out as deduc-

tive consequences of the geometries of relativistic space–times. To say anything,

the stress-energy tensor must be specified, and, in fact, all the theorems use one

or another energy condition. The so-called weak energy condition, for instance,

states that the energy density as measured by any observer is non-negative. But,

is it reasonable to suppose these hold? The philosopher Mattingly (2000) sounds

a note of skepticism, pointing out that various classical scalar fields and quantum

fields violate all the conventional energy conditions. Even if Mattingly’s skepticism

is not vindicated, a better understanding of the relation between the energy con-

ditions and real physical fields is certainly worth having.

Quantum singularities Philosophers may also wish to cast critical eyes over some

of the methods suggested for escaping singularities with quantum mechanics. It

is sometimes said that one should define a quantum singularity as the vanishing

of the expectation values for operators associated with the classical quantities that

vanish at the classical singularity. Then it is pointed out that the radius of the uni-

verse, for example, can vanish in what is presumed to be an infinite density and
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curvature singularity, even though the expectation value does not vanish (Lemos,

1987). This is sometimes taken as showing that quantum mechanics smoothes

over the classical singularity. But, is this really so? Callender and Weingard (1995),

for example, argue that this quantum criterion for singular status fits poorly with

some interpretations of quantum mechanics.

Black hole thermodynamics Hawking’s (1975) “discovery” that a black hole will

radiate like a blackbody strengthened Beckenstein’s work supporting an analogy

between classical thermodynamics and black holes. The field known as black hole

thermodynamics was spawned, and there are now thought to be black hole coun-

terparts to most of the concepts and laws of classical thermodynamics. For

instance, the black hole’s surface gravity divided by 2p acts like the temperature

and its area divided by 4 acts like the entropy. Physicists enticed by this analogy

often claim that it is no analogy at all, that black hole thermodynamics is ther-

modynamics and that (for instance) the surface gravity really is the temperature.

The signifiance of these startling claims and the analogy are certainly worthy of

investigation by philosophers of science.

Information loss A related topic is the black hole “information loss paradox” that

arises from Hawking’s (1975) result. Take a system in a quantum pure state and

throw it into a black hole. Wait for the black hole to evaporate back to the mass

it had when you injected the quantum system. Now you have a system of a black

hole with mass M plus a thermal mixed state, whereas you started with a black

hole with mass M plus a pure state. Apparently, you have a process that converts

pure states into mixed states, which is a non-unitary transformation prohibited by

quantum mechanics (such a transformation allows the sum of the probabilities of

all possible measurement outcomes to not equal 1). See Belot et al. (1999) and

Bokulich (2000) for some philosophical commentary on this topic.

Cosmic censorship Perhaps the biggest open question relevant to singularities and

many other topics in gravitational physics is the status of Penrose’s cosmic cen-

sorship hypothesis; for a recent assessment, see Penrose (1999). This hypothesis

is often glossed as the claim that naked singularities cannot exist; that is, that 

singularities are shielded from view by an event horizon, as happens in spherically

symmetric gravitational collapse. Naked singularities are unpleasant because they

signal a breakdown in determinism and predictability. If a naked singularity occurs

to our future, then no amount of information on the space-like hypersurface we

inhabit now will suffice to allow a determination of what happens at all future

points. Singularities are, intuitively, holes out from which anything might pop. A

singularity that we can see means we might see anything in the future, since the

causal past will not sufficiently constrain the singularity.

Stated as the claim that naked singularities cannot exist, however, the hypoth-

esis is clearly false, since there are plenty of relativistic space–times that violate it.

Though formulated in a variety of non-equivalent ways (Earman, 1995, ch. 3), it
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is common to speak of weak and strong versions of the claim. Weak cosmic cen-

sorship holds that gravitational collapse from regular initial conditions never

creates a space–time singularity visible to distant observers, i.e. any singularity that

forms must be hidden within a black hole. Strong cosmic censorship holds that

any such singularity is never visible to any observer at all, even someone close to

it. By “regular initial data” we mean that the space–times are stable with respect

to small changes in the initial data. Elaborating this definition further obviously

requires some care.

The only consensus on the topic of cosmic censorship is that the hypothesis is

both important and not yet proven true or false. Regarding the latter, there are

plenty of counter-examples to both formulations of the hypothesis, though espe-

cially to strong cosmic censorship; see, for example, Singh (1998). Current and

future work will dwell on whether these examples really count. In the background

there is, you might say, the “moral” cosmic censorship hypothesis, which claims

that the only naked singularities that occur are Good ones, not Bad ones. The

exact formulations of Good and Bad depend, as one would expect, on the char-

acter of the particular investigator: prudish investigators hope GTR doesn’t offer

so much as a hint of nakedness, whereas the more permissive will lower their 

standards.

It is important to know whether some version of the hypothesis is true. If a

cosmic censor operates, then many topics dear to philosophers will be affected. A

cosmic censor will naturally affect what kinds of singularities we can expect, and

therefore influence the question of their significance for GTR (Earman, 1996); 

it would mean the time-travel permitting solutions of EFE such as Gödel’s will

not be allowed; that the possibility of spatial topology change (Callender and

Weingard, 2000) will not be possible, and so on. And a lack of a cosmic censor

will also bear on much of the physics of potential interest to philosophers, e.g.

black hole thermodynamics hangs crucially on the existence of a cosmic censor.

There are also philosophical topics about cosmic censorship that need further

exploration. To name two, what is meant by “not being allowed” in the statement

of cosmic censorship and how do white holes (the time reverses of black holes)

square with the hypothesis and the time symmetry of EFE?

Horizons and Uniformity

History

The observed isotropy (or near isotropy) and presumed homogeneity of our uni-

verse suggest that we inhabit a world whose large scale properties are given by the

well-known Friedman standard model. In this model, the world “began” in a hot

dense fireball known as the Big Bang, and matter has since expanded and cooled

ever since. The rate of expansion and cooling depend on the equation of state for
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the cosmological fluid, and the ultimate fate of the universe (closed or open)

depends on the curvature. Part of the corroboration of this model comes from

the observed uniformity of the cosmic microwave background radiation (CMBR).

Neglecting some recently detected small inhomogeneities (which are themselves

not defects but harmonic oscillations expected in some Big Bang models), these

observations show that the temperature of this radiation is uniform to at least one

part in 10,000 in every direction we look.

When coupled with the Friedman model, the uniformity of the CMBR pro-

duces a puzzle. To see this, we need to resolve an apparent contradiction between

one’s naïve view of the Big Bang singularity with the fact that in the Friedman

model not all bodies can communicate with each other, even merely a fraction of

a second after the Big Bang. Consider two nearby co-moving particles at the

present time. The scaling factor, a, is the distance between the particles, say one

light-second. Because the universe is expanding da/dt > 0. Now one would expect

that, since a Æ 0 as t Æ 0 for all the particles, any particle could have been in

causal contact with any other at the Big Bang. Since they are all “squashed

together,” a light pulse from one could always make it to any other particle in the

universe. This is not so.

First off, there is no point on the manifold where t = 0 and a = 0; this point is

not well-defined and it is not clear, anyway, that all the particles in the universe

occupying the same point really makes sense. So this “point” does not count. But

now it is a question of how fast the worldlines are accelerating away from each

other and whether light signals from each can reach all the others. Will light ema-

nating from a body “just after” the Big Bang singularity be able to reach an arbi-

trary body X by time t, where t is some significantly long time, possibly (in a closed

universe) the end of time? In general, the answer is No, for there are some (real-

istic) values of the expansion parameter that do not allow the light signal to catch

up to X by t. The space–time curvature is the key here. Imagine that you and a

friend are traveling in opposite directions on a flat plane. Assuming nothing travels

faster-than-light, can you evade a light pulse sent out in your direction from your

friend? No: though you may give it a good run for its money, eventually it will

catch you if the universe is open. Now imagine that you’re moving on a balloon

and the balloon is being quickly inflated. Then, depending on the speed of infla-

tion and your velocity, you may well be able to escape the light signal, possibly

for all time.

The curvature due to the expansion and deceleration causes the worldlines of

galaxies to curve. In two spatial dimensions, our past lightcone becomes pear-

shaped rather than triangular (Figure 9.3).

Note that due to this curvature we cannot “see” the entire Big Bang. A useful

picture of the causal situation emerges if we “straighten out” the curvature, much

as we do when we use a Mercator projection when we draw a flat picture of the

earth (Figure 9.4).

Here the top of the large triangle is the point we are at right now, and the two

shaded triangles are the past null cones of two points, separated by an angle A,
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that we can see in our past. If A is sufficiently great the shaded regions do not

intersect. But since the past null cone of a point represents all the points with

which it might have had causal contact, this means that no point in the shaded

regions could have had causal contact with each other (ignoring the possibility of
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faster-than-light travel). A particle horizon is defined as the maximum coordinate

distance that one can see from a given point in space–time. From the diagram,

one can see that the points at the top of the shaded regions have horizons that

preclude them from seeing each other’s pasts.

The puzzle about horizons arises from the fact that a Friedman model like that

pictured can be said to fairly represent our universe, where the shaded regions are

points in our past where matter decoupled from radiation. Since they share no

common causal past, this means that they have no mechanism in common that

will make the microwave radiation’s temperature the same. How, then, did they

arrive at the same temperature? It seems that, short of denying that the early uni-

verse can be approximately represented by a Friedman model, the only answer is

that the universe was “born” in a highly isotropic and homogenous state. This

necessary special initial state is the cause of the horizon problem.

Current work

In physics, the main response to this puzzle is to change the physics of 

expansion. Though there are other responses, the one known as inflation is 

almost universally maintained. In inflationary scenarios, the standard Friedman

expansion is jettisoned in an early epoch in favor of a period of exponential expan-

sion; the universe then undergoes a phase transition that slows it down back to

the more moderate Friedman expansion. The details of this period vary with dif-

ferent proposals (there are more than fifty). Inflation does not remove particle

horizons; instead, it increases the size of each point’s past null cone so that pairs

will overlap. The shaded past lightcones in the diagram would intersect while

remaining proper subsets of each other. The hope is that the common causal 

past between two points will be large enough so that it accounts for their uniform

temperature.

Work by Penrose (1989), Earman (1995) and Earman and Mosterin (1999)

have severely criticized inflation for failing to deliver on its original promises. The

theory, they say, does not rid cosmology of the need for special initial conditions

to explain the apparent uniformity of the cosmic background radiation, nor does

it enjoy much in the way of empirical success.

Future work

The horizon problem shares some general features with other well-known “prob-

lems” in physics. The problem of the direction of time (well, one of them) asks

for an explanation of the thermodynamic arrow of time and ends up requiring the

postulation of a very special initial condition of low entropy (Price, 1996). Philo-

sophically, it is non-trivial whether requiring “special” boundary conditions is a
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genuine defect of a theory. For the situation with entropy and the direction of

time, many do not see the special posit as a genuine failing of the theory to provide

a scientific explanation (Callender, 1997); in the cosmological case with horizons,

however, it is orthodoxy now that it is a genuine failing of the standard model

that it cannot explain the uniformity of the cosmic background radiation. But is

it? The failing is certainly not one of empirical disconfirmation, since given the

“special” initial conditions the model is empirically adequate – we even get a deter-

ministic explanation through time of why we see the features we do. Earman and

Mosterin do much to criticize inflation as a solution to this problem, but the larger

issue, common to this topic and others – whether there really is a problem here

at all – is left open.

A related issue is whether the notion of “specialness” can be sharpened. In the

cosmological case considered here, it is especially problematic to specify in exactly

what sense the boundary conditions are “special,” as Penrose (1989) emphasizes.

By contrast, in the thermodynamic case this is somewhat clearer since one is talking

about a statistical theory (statistical mechanics) equipped with a standard proba-

bility measure with respect to which the needed initial conditions do indeed

occupy small measure. To be sure, there are problems in this case too in justify-

ing this “natural” probability measure, but they appear to pale in comparison to

the problems of defining a probability for cosmic inflation.

Finally, the question of whether there was inflation will probably ultimately 

be decided by observation and experiment rather than philosophical argument.

Recent and future improvements in observational cosmology (e.g. CMB mea-

surements, measurements of type 1a supernovae at high redshifts) have opened

up the possibility of empirical support or disconfirmation of some inflation sce-

narios. The epistemology of this optimistic, burgeoning branch of physics is yet

another field ripe for philosophical analysis.

Conclusion

The specter hanging over all future work in this field is quantum gravity. It is

widely believed that general relativity is inconsistent with quantum field theory;

“quantum gravity” is the research program that seeks a third theory that unifies,

or at least makes consistent, these two theories. Though no such theory yet exists,

there are some well-developed approaches such as string theory and canonical

quantum gravity as well as some less developed theories such as topological

quantum field theory and twister theory; for a philosophical slant, see Callender

and Huggett (2001) and references therein. We believe it is fair to say that all of

these theories are quite radical in their implications for space and time. If any of

them, or remotely similar descendents, succeed, they may well have dramatic con-

sequences for virtually all of the issues discussed above.
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Notes

1 Whether this really spoils the relational ambitions of a hypothetical physics set in them

is a difficult question. If space’s structure is nothing more than what is implied by all

the distance/angle relations between physical things – as one form of relationism holds

– then the geometry of space must be an empirical matter, not something we can fix a

priori.

2 Actually, there is a further element of absoluteness in GTR, namely the demand that

the metric field have signature (1,3) and hence be “locally” like Minkowski space–time.

See Brown (1997) for an illuminating discussion of this posit.

3 In fact, Hartry Field’s (1980) uses the point-manifold, interpreted realistically, to 

eliminate platonic entities from the mathematics of physics. So, from his perspective,

the manifold is not just indispensable in GTR, but in all of physical science.
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