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Abstract
Jc Beall has made several contributions to the theory of restricted quantification in
relevant logics. This paper examines these contributions and proposes an alternative
account of restricted universals. The alternative is not, however, a theory of relevant
restricted universals in any real sense. It is, however, a theory of restricted universals
phrased in the most plausible general quantificational theory for relevant logics—Kit
Fine’s stratified semantics. The motivation both for choosing this semantic framework
and for choosing the particular theory of restricted quantification we use is because
they are the best way of dealing with these topics from Beall’s theory-building theory
picture of logic, establishing a second point of contact with Beall’s work.

Keywords Relevance logic · Restricted quantification · Stratified semantics

Introduction

Here is the basic problemwewill be concernedwith in this paper: suppose∀x[Ax, Bx]
is some formula that interprets ‘all As are Bs’ in a relevant setting. Then one might
hope for the following behavior:

hope: for all constants c, Bc follows validly from ∀x[Ax, Bx] and Ac.

The goal of our paper is to provide a hopeful account of restricted universal quantifica-
tion that, from the point of view of Fine’s stratified semantics for unrestricted relevant
universals, is particularly natural. Note here that we have carefully avoided saying
that what we are providing is in fact an account of relevant restricted quantification.
This is not an accident—the account we give is, we think, natural to the point of being
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difficult to reject. It is also disastrously irrelevant. We will have a bit to say at the end
of the paper about this. But there is clearly a good deal more philosophical reflection
demanded here.

Before getting to the technical details, let us pause to set the scene. To begin,
we remind the reader why the ‘obvious’ candidates for interpreting restricted
quantification—viz. the formulas ∀x(Ax ⊃ Bx) and ∀x(Ax → Bx) where ‘⊃’
is the material conditional and ‘→’ is a relevant conditional—do not work in the sorts
of semantic theories that relevant logicians tend to work in.

We begin with the easier case: ∀x(Ax ⊃ Bx). This fails as an interpretation of ‘all
As are Bs’ in any paraconsistent (and thus in any relevant) setting. This is for a fairly
simple reason: supposing that both Ac and ¬Ac are true, Ac ⊃ Bc is true regardless
of whether Bc is true. Thus, the existence of a c for which Ac is true but Bc is not does
not ensure that ∀x(Ax ⊃ Bx) is false, from which we conclude that ∀x(Ax ⊃ Bx) is
not a good regimentation of ‘all As are Bs’ in paraconsistent settings.

The other case is a bit harder. The problem, roughly, is that ‘all As are Bs’ ought
not say anything about the B-hood of non-As. But ∀x(Ax → Bx) does. This is most
visible in the semantics for relevance logics, which we must for the moment assume
familiarity with—readers not meeting this supposition might want to return to this
discussion after finishing the remainder of the paper. Given the familiarity, though,
the rough problem is this: given a point p where ∀x(Ax → Bx) holds and (say) Ac
does not, it is still the case that if we apply p to any point q at which Ac does hold,
we arrive at a point where Bc holds. Regarding this seeming ‘overreach’, Ed Mares
says the following:

The material conditional is too weak, but relevant implication is too strong.
When one says, for example, “Everyone in this room owns a dog”, she does not
mean that it follows from being in this room that people own a dog. Rather, it
just happens that every person in this room owns a dog. It is this connection,
that lies somewhere between material and relevant implication that the restricted
quantificational conditional is supposed to capture Mares (2022).

So much for the obvious accounts. The extant literature contains in addition three
other non-obvious accountswewill now survey. The first is the proof-theoretic account
in Brady (2003). As our interest is in semantic accounts, we put this aside.

The two other extant accounts are both Beall-related accounts—justifying at last
our choice of topic. The first is the Beall, Brady, Hazen, Priest, and Restall (BBHPR)
account found in Beall et al. (2006). The second extant account we will examine is
Beall’s ‘simplified’ account from Beall (2011). Here, in brief, are the details in the
two accounts:

• The BBHPR account first defines a new connective ‘�→’ with (essentially) the
following semantic clause: A �→ B is true at a point p just if for all points q at
which A is true, B is true at all points that extend both p and the application of p
to q. Using this, they propose interpreting ‘all As are Bs’ as ‘∀x(Ax �→ Bx)’.

• The simplified account is (as you’d expect) much simpler: it interprets ‘all As are
Bs’ by the formula ‘∀x[(Ax → Bx) ∨ Bx]’ where → is a relevant conditional.
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Both accounts enjoy a range of virtues that are adumbrated in the relevant papers.
Unfortunately, both accounts are also hoplessly hopeless. In both cases, this is for
roughly the same reason as in the relevant conditional account—and with that hint, we
leave it to the reader to puzzle out the details. The point, in the end is this: as hopeless
accounts, they are no good for our purposes.

Philosophical and motivational matters in hand, we now turn to honest toil. The
plan of the paper is as follows. In the section that immediately follows this one, we lay
down the language of restricted quantification theory. Then we give an overview of
the basics of stratified semantics essentially along the lines of what is in Fine (1988)
followed by our account of stratified restricted universals. We end with a discussion of
its merits and problems. An Apendix containing a rather annoying construction that
plays a role at a few points follows.

1 Linguistic matters

For the most part, the construction of the language of restricted quantification theory
L is entirely routine. But there are some finer points that require great care. We start
with the vocabulary of L:

Logical
Punctuation: (, ), [, ].
Sentential Connectives: ¬, →, ∨, and ∧.
Quantifiers: ∀.
Variables: v1, v2, v3, ... ∈ V .
Non-logical
For each k ∈ Z

+, k-place predicate symbols: Pk
1 , Pk

2 , Pk
3 ... ∈ Predk .

Ordinary names (or constants): c1, c2, c3, ... ∈ N .
Additional names: ω1, ω2, ω3, ... ∈ �.

An expression is any non-empty finite sequence of these symbols. Let E be the set of
such sequences. We identify (N ∪ �) ∪ V = T erms as the set of terms of L. These
symbols will serve as the pronouns and nouns of L.

An atomic formula is any expression of the form

Pn1 . . . nk,

where eachni ∈ T erms and P ∈ Predk . Let Atomic be the set of all such expressions.
Our language L is then the set of expressions that can be generated from Atomic by

applying some finite number of times (possibly zero) the formula-building operations:

F¬( A) = ¬ A,

F�(A, B) = (A� B),

F∀1vi (A) = ∀vi A,

F∀2vi (A, B) = ∀vi [A, B],
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where� ∈ {→,∨,∧} and A, B ∈ E . Both F¬ and F� are total functions. The remain-
ing formula-building operations are not. Their domains are restricted to sequences of
expressions with some special properties: Let e = 〈e1 . . . e j 〉 ∈ E ; then

e satisfies (vi ) the vi -open condition iff for some ek , ek = vi , and
e satisfies (∀vi ) the vi -quantifier-free condition iff it is not the case that for some
ek , ek = ∀ and ek+1 = vi .

Thus, F∀1vi is defined on A just in case A satisfies both conditions. And F∀2vi is defined
on 〈A, B〉 just in case A and B satisfy (∀vi ) and either A or B (or both) satisfies (vi ).

Any A ∈ L is known as a well-formed formula of L, or formula for short.

Remark Comprehending the Conditions: Free variableswill be introduced next. With
this notion in hand, the stipulation regarding F∀1vi amounts to saying that it is defined

only on those expressions in which vi occurs free and there is no occurrence of ∀vi ;
the stipulation regarding F∀2vi amounts to saying that it is defined only on those pairs

of expressions in which vi occurs free in at least one of those expressions and there is
no occurrence of ∀vi in either expression.

Moreover, these two stipulations guarantee two desired features of L: First, no
two quantifiers that appear in the same formula will share the same variable. This
protects us from ambiguitywhenwe have overlapping quantification. Second, vacuous
quantification is not permitted in our language.

Given our definition of L, a typical induction principle for this set immediately
follows: for any S ⊆ L, if Atomic ⊆ S and S is closed under the formula-building
operations, then S = L.

With the syntactic groundwork in place, we move on to some important concepts
and functions. But first, a word on some metalingustic notation: �e1@e2� abbreviates
�e1 occurs in e2� and �e1��@ e2� abbreviates its negation, where e1, e2 ∈ E .

Let x ∈ V and A ∈ L. We define x @ f A - i.e, what it means for x to occur free in
A - recursively:

x @ f Pn1 . . . nk iff x @ Pn1 . . . nk ;
x @ f ¬B iff x @ f B;
x @ f (A� B) iff x @ f A or x @ f B;
x @ f ∀vi A iff x @ A and x = vi .
x @ f ∀vi [A, B] iff x @ f A or x @ f B and x = vi .

Hence, x @B A - x occurs bound in A - if x @ A and x��@ f A. As usual, we say that
A is a L-sentence when and only when for any y ∈ V , y��@ f A. The set LS is the
collection of all the sentences of L.

Remark The Salience of Sentences: LS will play an important role in our theory. Only
its members will receive a semantic interpretation. Later, LS will be carved up into
a collection of sentence-based languages. Each sentence-based language LSY will be
defined with respect to some finite Y ⊆ � such that LSY ⊆ LS . These sentence-based
languageswill be evaluated in different strata of a stratifiedmodel. Thus,wemay assign
LSX to a particular zero-order model MX , endowing its members with mathematical
meaning. The theorems we will prove concern these sets of sentences. But we will
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have to do this in a rather roundabout way, since our semantic clauses are formulated
using elements of distinct sentence-based languages in the pile. Hence, we must show
that L is identical to any subset of itself L′ meeting a special condition and generated
from different formula-building operations that make use of certain other subsets of L.
We will then carve out its set of sentences, L′S . All inductive proofs will be performed
directly on this collection. So, since LSY ⊆ LS ⊆ L′S , any property that holds of all

A ∈ L′S will hold of all A ∈ LSY .

Two functions are now introduced. With them, we rigorously codify the intuitive
notion of taking a formula of L and replacing every occurrence of some term a in it
with a term b. The purpose: to facilitate easy syntactic manipulation of formulas in
later proofs and to allow for clearer formulation of our semantic clauses. Thus, for
each a, b ∈ T erms, we define (a/b) : T erms −→ T erms as follows:

n(a/b) =
{
b if n = a;
n if n = a.

Two simple claims follow from this definition. We invite the reader to verify them on
their own.

Fact 1 n(a/a) = n.

Fact 2 Whenever n = b, it follows that n(a/b)(b/c) = n(a/c).

The function (a/b) : L −→ L - the extension of (a/b) - is defined like so:
[A] (a/b) = A if d ∈ {a, b} and d@B A or a��@ A; otherwise,

[Pn1 . . . nk](a/b) = Pn1(a/b) . . . nk(a/b);
[¬A](a/b) = ¬[A](a/b);

[(A� B)](a/b) = ([A](a/b)� [B](a/b));
[∀x A](a/b) = ∀x[A](a/b);

[∀x[A, B]](a/b) = ∀x[[A](a/b), [B](a/b)].

If a, b ∈ N ∪ �, we say that [A](a/b) is the a,b-variant of A ∈ L.
As would be expected, two claims follow from the definition of (a/b) as well. The

reader may verify these claims by a simple induction on A ∈ L.

Fact 3 [A](a/a) = A.

Fact 4 Whenever b��@ A, [[A](a/b)](b/c) = [A](a/c).

Recall that the purpose of introducing (a/b) and its extension (a/b) is to rigorously
codify in our language the intuitive notion of replacing all those instances of a in a
formula A with b. More importantly, when we compose (a/b) and (b/c), we want
to switch out all and only those instances of a in A with c. But what we have so far
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does not do the job. Let Pab ∈ Atomic and assume a = b. Notice the result of these
computations:

[[Pab](a/b)](b/c) = [Pa(a/b)b(a/b)](b/c);
= Pa(a/b)(b/c)b(a/b)(b/c);
= Pb(b/c)b(b/c);
= Pcc.

Thus, composing these two functions will not always result in replacing all and only
those occurrences of a with c in A. The problem: it is possible that b@ A, making it
subject to replacement. Luckily, this is easily fixed by a simple stipulation: Whenever
b@ A,

[[A](a/b)](b/c) = [[A](a/ck)](ck/c)

where ck ∈ N and k is the least number greater than any i , for all ci @ A. Since A is a
finite sequence and N is infinite, we know that ck exists. Consequently, this stipulation
and Fact 4, guarantee that

[[A](a/b)](b/c) = [A](a/c),

for any a, b, c ∈ T erms and any A ∈ L.
There are a few more syntactic items that deserve treatment before we get down to

business. Let Y ⊆ X ⊆ � and suppose X and Y are finite.
First, fix T ermsY = (N ∪ Y ) ∪ V and let AtomicY be the collection of all

Pn1 . . . nk ∈ Atomic such that ni ∈ T ermsY . The language LY is then the set
generated from AtomicY by applying the formula-building operations in the usual
manner. One can easily prove that LY ⊆ L and LY ⊆ LX , by induction on A ∈ LY .
When LY ⊆ L, we say that LY is a sublanguage of L. And when LY ⊆ LX , we say that
LX is an extension of LY . (Observe that it’s ‘an extension of LY ,’ not ‘the extension of
LY .’ This is due to the fact that LY is contained in an infinite number of sublanguages
of L, each of which can be generated by adding additional names to Y .)

Second, a LY -sentence is any A ∈ LY such that for all y ∈ V , y��@ f A. We take LSY
to be the collection of such formulas, and refer to it as a sentence-based sublanguage
of L, since it plainly follows that LSY ⊆ L.

Third, we form the collection �S of all these sentence-based sublanguages of L.
(The class �S is, then, constituted by levels of sentence-based sublanguages of L, as
described in the first remark.) Clearly, it is partially ordered by inclusion. Our stratified
model is partially ordered too with respect to ≤, defined like this:

MZ ≤ MW iff Z ⊆ W ,
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where MZ and MW are zero-order models. Naturally, these two partial orderings
coincide with each other structurally. Take the bijection I from �S to our stratified
model defined like so: I (LSZ ) = MZ . And observe that

LSZ ⊆ LSW iff Z ⊆ W .

Themapping I , therefore, serves as an interpretation function in this setting, assigning
“meaning" to every sentence-based sublanguage of L. (Consequently, each level of the
sentence based-language pile is uniquely associated with a level in our stratifiedmodel
by “laying" one partial ordering on top of the other.)

Finally (and as promised), for the purpose of providing clear and rigorous induction
proofs using the semantic clauses for the restricted and unrestricted universal quan-
tifiers, both of which require us to utilize elements of distinct sublanguages of L, we
define the set L′ and establish that L′ = L.

So, let L′ ⊆ L be the set generated from Atomic by applying the formula-building
operations (two of which we have seen before) defined on sequences of expressions
as you would expect:

F¬(A) = ¬A,

F�(A� B) = (A� B),

Fω
∀1x ([A](x/ω)) = ∀x[[A](x/ω)](ω/x),

Fω
∀2x ([A](x/ω), [B](x/ω)) = ∀x[[[A](x/ω)](ω/x), [[B](x/ω)](ω/x)],

where ω ∈ �, A, B ∈ L both satisfy (∀x), and ω��@ A, B; furthermore, Fω
∀1x is defined

on A just in case A satisfies (x), and Fω
∀2x is defined on 〈[A](x/ω), [B](x/ω)〉 just in

case either A or B (or both) satisfy (x). We also stipulate that L′ is closed under all
(a/b).

This definition yields a corresponding induction principle for L′: for any S ⊆ L′, if
Atomic ⊆ S and S is closed under the formula-building operations for L′, then S = L′.

Now, we demonstrate that L′ = L. In order to do this, an auxiliary claim is needed.

Fact 5 Fω

∀1X
([A](x/ω)) = F∀1x (A) and Fω

∀2x ([A](x/ω), [B](x/ω)) = F∀2x (A, B).

Proof To see that this reasoning works, recall that L is closed under all (a/b) and note
the conditions that restrict the domains of the old and the new quantifier formula-
building operations.

Fω
∀1x ([A](x/ω)) = ∀x[[A](x/ω)](ω/x)

= ∀x[A](x/x), by Fact 4;
= ∀x A, by Fact 3;
= F∀1x (A).
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Fω
∀2x ([A](x/ω), [B](x/ω)) = ∀x[[[A](x/ω)](ω/x), [[B](x/ω)](ω/x)];

= ∀x[[A](x/x), [B](x/x)], by Fact 4;
= ∀x[A, B], by Fact 3;
= F∀2x (A, B).

�

Fact 6 L′ = L

Proof We know that L′ ⊆ L. Hence, it is sufficient to demonstrate that L ⊆ L′, by
induction on A ∈ L. We prove only the quantifier cases. All other cases are utterly
trivial. For the remainder of the proof, let S = {A ∈ L : A ∈ L′}.

Unrestricted Quantifier Case:
Suppose that B satisfies both (x) and (∀x), and that ω��@ B. For the IH, assume

further that B ∈ S. We must show that F∀1x (B) ∈ S.
By the IH,

B ∈ L and B ∈ L′.

The set L is closed under F∀1x and B meets the conditions for its application. And L′ is
closed under (x/ω). So,

F∀1x (B) ∈ L and [B](x/ω) ∈ L′.

But L′ is closed under Fω
∀1x and [B](x/ω)meets the conditions for its application. Thus,

Fω
∀1x ([B](x/ω)) ∈ L′.

Fact 5 then implies that

F∀1x (B) ∈ L′.

Hence,

F∀1x (B) ∈ S

Unrestricted Quantifier Case:
Suppose that for any D ∈ {B,C},ω��@ D, D satisfies (∀x), and that at least one D ∈

{B,C} satisfies (x). For the IH, assume B,C ∈ S. We must show that F∀2x (B,C) ∈ S.
By the IH,

B,C ∈ L and B,C ∈ L′.
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Weknow that L is closed under F∀2x and B andC meet the conditions for its application.

Also, L′ is closed under (x/ω). Therefore,

F∀2x (B,C) ∈ L, and [B](x/ω), [C](x/ω) ∈ L′.

But L′ is closed under Fω
∀2x and [B](x/ω) and [C](x/ω) meet the conditions for its

application. Consequently,

Fω
∀2x ([B](x/ω), [C(x/ω)]) ∈ L′.

This and Fact 5 guarantee that

F∀2x (B,C) ∈ L′.

And so, we obtain:

F∀2x (B,C) ∈ S.

By the induction principle, L ⊆ L′. �
Fact 6, therefore, licences using the induction principle for L′ to prove theorems

about all sentence-based sublangages of L, which was the point of its construction in
the first place.

Remark Semantic Strangeness: There is a peculiar feature of the remaining induction
proofs that needs addressing. To illustrate, assume thatwewanted to prove by induction
that for all A ∈ L′, if X , s � A and s � t , then X , t � A. For the restricted quantifier
case, we must show that S, the set of all A ∈ L′ with this property, is closed under all
Fω

∀1x . So, we suppose [B](x/ω) ∈ S and show that Fω
∀1x ([B](x/ω)) ∈ S. But there is

an issue. The clause for the unrestricted quantifier case requires the existence of some
ωk /∈ X , but it is not guaranteed that ωk = ω. Hence, we cannot be sure that Fωk

∀1x is

applicable to [B](x/ω). It would seem then that we can only prove that S is closed
under Fωk

∀1x . Well, yes and no. Yes: as a consequence of the semantic clause for the

unrestricted quantifier, we can only directly prove that S is closed under Fωk
∀1x for the

particular ωk that is referenced in the clause. Thus, the semantic peculiarity forces us
to choose an IH after the fact, so to speak. No: Fact 5 implies that for any ωk, ω j ∈ �,
Fωk

∀1x ([B](x/ωk)) = F
ω j

∀1x ([B](x/ω j )). Therefore, if S is closed under at least one

formula-building operation for the unrestricted quantifier, then it is closed under all of
them vacuously. So toowith with the restricted quantifier formula-building operations.
We formulate our induction hypotheses for quantifier cases with full generality, but
we ask that the reader keep in mind that we are implicitly choosing the relevant IH in
our arguments.

Some Helpful Metalingusitic Conventions: We continue to suppose x ∈ V and
P, Q ∈ Predk , for some contextually specified k, and let A, B,C ∈ L′. We omit the
outermost occurrence of (, ), [ and ] when the background deems them unnecessary.
We also write �A(a/b)� instead of �[A](a/b)� in similar circumstances.
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2 Stratifiedmodels: the setup

Define a preframe to be a 6-tuple F = 〈TF , PF , �F , ◦F ,�F , �F 〉 where
• �F ∈ TF ⊇ PF ,
• ◦F : (TF × TF ) → TF
• �F⊆ TF × TF , and
• �F : PF −→ PF .

A frame is then a preframe for which all of the following hold:

• �F is a partial ordering of TF .
• �F ◦F t = t for all t .
• If s �F t , then u ◦F s �F u ◦F t and s ◦F u �F t ◦F u for all u ∈ TF .
• If t ◦F u �F p ∈ PF , then there are t �F q ∈ PF and u �F r ∈ PF so that
q ◦F u �F p and t ◦F r �F p.

• p�F�F = p
• p �F q ⇒ q�F �F p�F .

Given a frame F , an F-model is a function M mapping each t ∈ TF to a set of atomic
formulas that satisfies the following two conditions:

• If t �F u, then M(t) ⊆ M(u);
• If a ∈ M(p) for all t �F p ∈ PF , then a ∈ M(t).

Where M is an F-model, we define � as follows.

• For atomic a, M, t � a iff a ∈ M(t).
• M, t � ¬A iff M, p�

� A for all t � p ∈ PF .
• M, t � A ∧ B iff M, t � A and M, t � B.
• M, t � A ∨ B iff for all t � p ∈ PF either M, p � A or M, p � B.
• M, t � A → B iff for all u ∈ TF , if M, u � A, then M, t ◦ u � B.

We say that A is valid when for all frames F and all F-models M , M, �F � A. In Fine
(1974), Fine proved that the class of valid formulas is axiomatized as follows:

A1 A → A
A2 (A ∧ B) → A; (A ∧ B) → B
A3 ((A → B) ∧ (A → C)) → (A → (B ∧ C))

A4 A → (A ∨ B); B → (A ∨ B)

A5 ((A → C) ∧ (B → C)) → ((A ∨ B) → C)

A6 (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))

A7 ¬¬A → A

R1 A A→B
B

R2 A B
A∧B

R3 A→B C→D
(B→C)→(A→D)

R4 A→¬B
B→¬A

In addition to validity for formulas, we can define validity for set-fmla sequents.1 To
that end, let X ∪ {A} be a set of formulas. Then we write X � B when for all frames

1 This isn’t the only option. In Read (1988), an alternative bunch-fmla proof system was proposed; a
Read-inspired system aimed at capturing logics in this neighborhood was also explored in Logan (2022).
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F , all F-models M , and all t ∈ TF , if t � A for all A ∈ X , then t � B. One can then
prove that for finite sets X , X � B iff

∧
A∈X A → B is valid.

To reduce notational burden, we will in the remainder tend to omit the ‘M,’ in
expressions of the form ‘M, t � A’, and will also omit most of the subscripts. In
addition, we will write things like ‘t ∈ M , where M is an F-model, to mean t ∈ TF .
We rely on common sense and context and the charity of the reader for the interpretation
of such expressions.

Intuitively, each model models a collection of theories together with some of the
operations and relations they naturally inherit. We won’t have space to plumb the
details correspondence between the intuitive behavior of a space of theories and the
behavior of models so-defined. For that, we refer the reader to the source: Fine (1974)
and Fine (1988). That said, we should point out that for each model M , the identity
point � models the theory-building-theory at play in the theories in that model. Given
this, the set of valid formulas then picks out one particularly important theory-building-
theory: it’s the primitive ‘most basic’ such theory; the one on top of which all the others
are built.

This is a second place in the paper where we find ourselves playing a Beall-ian
refrain. At least one of the authors was directly inspired to think through relevance
logics as universal theory-building-theories explicitly because of Beall’s work; espe-
cially relevant are Beall (2017), Beall (2018), and Beall (2019). In those papers, Beall
presents an argument for FDEas ‘the one true logic’. The basic idea iswell summarized
in the following passage:

once she has identified her target phenomenon (about which she aims to give the
true and as-complete-as-possible theory), the task of the theorist is twofold:

• gather the truths about the target phenomenon
• construct the right closure relation to ‘complete’ the true theory—to give as
full or complete a true theory as the phenomenon allows.

This twofold task is as basic as it is familiar—and, of course, in no way novel.
This is just what we do as truth-seeking theorists, whether we are in mathematics
(even if we don’t quite know what ‘makes true’ the theories), physics, theol-
ogy, biology, philosophy, and more—for every phenomenon that contributes to
the overall makeup of reality. Once our target phenomenon has been identified
(enough to get on with business, so to speak) we then search and gather what-
ever truths we can; and after that we aim to give the right closure relation for
the theory, all with the aim of giving as full/complete an account of the target
phenomenon as possible (Beall 2018, pp. 3–4).

The idea in short is that theory-building is an activity with two components: a fact-
finding component and a closing-up component. Logic is concerned with the second
of these and more specifically with what’s universal among the closing-up operations.
What the account we offer here adds to Beall’s conception of logic is a general ‘promo-
tion’ of the theories we use to construct closure relations. Rather than relegating such
theories to a support role, we allow them to be genuine first-class citizens capable of
impacting the logic. More to the point, we recognize (in the application operation ‘◦’)
that any theory can be applied to any other just as closure relations are applied to facts.
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And aside from this (broadly algebraic) modification of Beall’s general approach, we
otherwise hewquite closely to his ideas, as revealed by the fact that, at the propositional
level, the first-degree fragment (that is, the fragment lacking embedded conditionals)
of the logic we arrive at (FDE) is exactly the logic that Beall argues for.

To begin to move from the propositional to the first-order level, first define a zero-
order frame to be a frame in the above sense together with a set N of names. Given a
zero-order frame F , an F-model is a function M mapping each t ∈ TF to a function
mapping each i-ary predicate Pi to a subsetMt (Pi ) of Ni ; this timewe requiremodels
to satisfy the following conditions:

• If t �F u, then Mt (Pi ) ⊆ Mu(Pi );
• If n ∈ Mp(Pi ) for all t �F p ∈ PF , then n ∈ Mt (Pi ).

For zero-order (which is to say, polyadic but unqauntified) formulas, we can then
define � just as before, with the exception that in the atomic case we use the following
clause:

• t � Pn1 . . . ni iff 〈n1, . . . , ni 〉 ∈ Mt (P).

Now let us think about universals. A natural expectation is that we should use the
following ‘Tarskian’ clause to interpret them:

• M, t � ∀x A just if M, t � A(x/n) for all n ∈ N .

But, as shown in Fine (1989), this validates too much. The problem, in simplest terms,
is this: the fact that a theory t contains A instantiated at each name n is not sufficient
license for the conclusion that t contains ∀x A. As an easy example: it is a fact aboutmy
own theory of the real numbers that (a) all the namable reals are namable, but also that
(b) not all the reals are namable. So my theory of the reals contains ‘namable(n)’ for
all names of reals n, but does not (and, indeed, shouldn’t!) contain ‘∀xnamable(x)’.
Thus, when it comes to theories, the Tarskian clause just won’t do the job.

What does guarantee that ∀x A be in t is the following: take some name ω not
in the language of t . Then ∀x A ∈ t iff A(x/ω) is in the theory generated by t in a
language enriched to include ω. To make sense of this in the semantics, we need more
machinery. In particular, we seem to need at least all the following:

• A set N of ordinary names.
• A set � = {ωi }∞i=1 of additional names—intuitively, these are names we can
extend our language with. And we want them to be new names, so we require
N ∩ � = ∅.

• A function M mapping each finite X ⊆ � to a zero-order model MX on the frame
FX := 〈N ∪ X , TX , PX , �X , ◦X ,�X , �X 〉.

• A family of functions ⇓, with one such function ↓Y
X : TY −→ TX for each finite

pair X ⊆ Y ⊆ �.
• A family of functions ⇑, with one such function ↑Y

X : TX −→ TY for each finite
pair X ⊆ Y ⊆ �.

• A family of functions �·�ab , with one such function [−]ab : TX → TX for each triple
〈X , a, b〉 with {a, b} ⊆ N ∪ X .

The first three items model, intuitively, the names in our language, the names we could
add to our language, and a function that maps each set of names to a space of theories
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in the language, LX , that uses names from N ∪ X . The remaining three items model
the following:

• For each Y ⊇ X , ↑Y
X models the function that assigns to each t ∈ TX , a theory

t↑Y
X that behaves like the theory generated from t in the language LY .

• each Y ⊇ X , ↓Y
X models the function that maps t ∈ TY to t ∩ LX .

• [−]ab models the function mapping t to the theory [t]ab that extends t so as to make
a and b indistinguishable. The idea, roughly, is that nothing in the notion of a
theory prevents any name from behaving like any other, and the purpose of the
functions [−]ab is to ensure that this is the case.

All told, this means that the models we’re going to build (stratified models) contain a
multitude of zero-order models. These internal models are linked up by the functions
↓ and ↑. Finally, to ensure that our names are just names, we require that the various
[−]nm functions be present.

The tricky part is specifying conditions that ensure everything behaves as it should.
And, quoting now directly from the source (see Fine (1988)), “The number of condi-
tions is, I am afraid, rather large.” That said, here’s what we need:

1. Both ↑ and ↓ are covariant: if t � u, then t↓Y
X � u↓Y

X and t↑Z
Y � u↑Z

Y .
2. Whenever they make sense, t↓Z

Y ↓Y
X = t↓Z

X and t↑Y
X↑Z

Y = t↑Z
X

3. For i-ary predicates P , Mt↓Y
X
(P) = Mt (P) ∩ (N ∪ X)i .

4. t↑Y
X↓Y

X = t
5. t↓Y

X↑Y
X � t

6. t↓X
X∩Y↑Y

X∩Y = t↑X∪Y
X ↓X∪Y

Y
7. If a ∈ PY , then a↓Y

X ∈ PX .
8. If a ∈ PX , b ∈ PY and a � b↓Y

X , then for some c ∈ PY , c↓Y
X = a and c � b.

9. If t↓Y
X � a ∈ PX , then for some c ∈ PY , c↓Y

X = a and t � c.
10. If a ∈ PY , then a�↓Y

X = (a↓Y
X )�.

11. (t ◦ u)↑Y
X = t↑Y

X ◦ u↑Y
X .

12. (t ◦ (u↑Y
X ))↓Y

X � t↓Y
X ◦ u.

13. �X↑Y
X = �Y .

14. t � [t]ab
15. If s � t , then [s]ab � [t]ab .
16. [t]ab = [[t]ab]ab
17. If p ∈ PX , then [p]ab ∈ PX .
18. [([p]ab)�]ab = ([p]ab)�
19. [t↑Y

X ]ab = [t]ab↑Y
X

In Fine (1988), Fine gives an intuitive discussion ofwhywe should expect spaces
of theories tomeet these conditions. For space reasons, wewon’t reproduce such
discussion here, except in the case of the very last condition, which we’re not
quite to yet—there are a total of three conditions left to give. But for two of
them we need a definition:
For t ∈ MX and a and b in N ∪ X , we say that t is symmetric in a and b
when a and b are indistinguishable in t . That is, when for all i-ary predicates
P , 〈n1, . . . , a, . . . , ni 〉 ∈ MX (t, P) iff 〈n1, . . . , b, . . . , ni 〉 ∈ MX (t, P). With
this notion in have, here are two more conditions:
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20. [t]ab is symmetric in a and b.
21. If t is symmetric in a and b, and t � p ∈ P , then there is a q ∈ P that is

symmetric in a and b with t � q � p.
The last condition is important, so worth spending a moment on:

22. If a ∈ Y − X and b ∈ N ∪ X then [t↑Y
X ]ab↓Y

X � t .

Note what is going on here. t is an X theory. t↑Y
X is the theory generated by t in the

Y vocabulary. a is one of the new names we get when we extend to LY from LX . b
is one of the old names. The theory [t↑Y

X ]ab takes the theory generated by t in the Y
vocabulary and extends it so that a and b are indistinguishable. [t↑Y

X ]ab↓Y
X then restricts

the result back to the X vocabulary. What (22) requires is that we don’t gain any new
information when doing this. Adding a new name for something we’ve already named
is something we can do and sometimes there are good reasons to do so. But simply
calling something by two different names is not the sort of thing that should get us
genuinely new information.

Semantics in hand, we can now state the new semantic clause for the universal:

• If ∀x A ∈ LX , then X , t � ∀x A iff X ∪ {ω}, t↑X∪{ω}
X � A(x/ω) for some ω /∈ X .

To verify a universal, then, what a theory needs to do is be extendable in certain ways.
In particular, it must be the case that every time we extend it with a new name, we
get a new instance. This matches precisely what we said above would guarantee that
a theory contain a universal.

We deal with a few final matters before moving on to new material. A ∈ LX is valid
in a model M just if MX , �X � A. A is valid when it is valid in all models. Finally,
where X ∪ {A} is a set of formulas, we define semantic entailment X � A to mean
that for all M and t ∈ M , if M, t � x for all x ∈ X , then M, t � A.

In Fine (1988), Fine proved that the set of formulas valid in all models is axioma-
tized using the above axioms and rules together with the following axioms and rules
governing the quantifiers:

A8 ∀x A → A(x/t) where t is free for x in A.
A9 ∀x(A → B) → (A → ∀x B) where x is not free in A.
A10 ∀x(A ∨ B) → (A ∨ ∀x B) where x is not free in A.

R5 A
∀x A

The resulting logic is called BQ.
We end the section by proving some lemmas.

Lemma 1 A → B is valid iff A � B.

Proof A → B is valid iff for all t , if t � A, then � ◦ t � B. But � ◦ t = t . So A → B
is valid iff for all t , if t � A, then t � B iff A � B. �
Lemma 2 If X , t � ∀x A, then for all c ∈ X, X , t � A(x/c).

Proof See Corollary 6 in Fine (1988). �
Lemma 3 � (∀x(A → B) ∧ A(x/ω)) → B(x/ω).

Proof Left to the reader, but see the construction in the Appendix for a hint to how
you might go about things. �
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3 Restricted universals

We finally come to the main event: semantics for restricted universals. The philosoph-
ical idea is to treat them in much the same way as we treat unrestricted universals.
That is, just as (a) we ‘check’ whether t contains the unrestricted universal ∀x A by
checking whether the theory generated by t in a language enriched by a fresh name
ω contains A(x/ω), so also (b) we ‘check’ whether t contains the restricted universal
∀x[A, B] by checking whether the theory generated in a language enriched by a fresh
name ω by t ∪ {A(x/ω)} contains B(x/ω).

What this suggests is that we should adopt, in addition to the functions ↑ and ↓
we’ve already got, a bunch of further functions A↑ where t A↑X∪{ω}

X is, intuitively,
the theory generated by t ∪ {A(x/ω)}. Such a solution might work, but we haven’t
bothered to check because there’s a better solution available. The thing to notice is
that the theory, t+, generated in LX∪{ω} by t ∪ {A(x/ω)} will contain B(x/ω) just if
every LX∪{ω}-theory containing both t and A(x/ω) contains B(x/ω). And this idea is
an idea we already have the machinery to capture; indeed, the following clause does
the job:

• If ∀x[A, B] ∈ LX , then X , t � ∀x[A, B] iff for some ω /∈ X , for all u ∈ TX∪{ω},
if u � t↑X∪{ω}

X and u � A(x/ω), then u � B(x/ω).

Semantic clause in hand, we immediately turn to the key lemma we need:

Lemma 4 If C ∈ LY , Y ⊆ X, and s � t are X-theories and u is a Y -theory, then

(a) if X , s � C, then X , t � C,
(b) X , p � C for all t � p ∈ PX iff t � C,
(c) X , t � C iff Y , t↓X

Y � C, and
(d) Y , u � C iff X , u↑X

Y � C.

Before we turn to the proof, a few words. First, usually these are separate lemmas.
E.g. in Fine (1988), these occur as Lemmas 2, 8, 4, and 5. But for somewhat subtle
and annoying reasons, we’ll have to lump them all together and prove them by a
simultaneous induction in all four parts at once. That’s metatheoretically unfortunate,
but isn’t, we think, of any serious import.

Our second point is more worrying. It begins from the observation that every treat-
ment of stratified semantics we’re aware of proves a lemma stating that every model
obeys what we will call the symmetry condition:

If t is symmetric in a and b and C ′ is an a, b-variant of C , then if X , t � C , then
X , t � C ′.

See, for example, Lemma 3 in Fine (1988) or Lemma 1.3 inMares (1992) or Lemma
14 in Logan (2019). And this isn’t an accident: a symmetric point is a point at which
a and b are treated as indistinguishable. So everything a symmetric point has to say
about a it says about b as well and vice-versa. Again, in every case we are aware
of, symmetry is imposed by directly requiring symmetric points be symmetric on
atomic formulas, which one proves via induction is sufficient to ensure the symmetry
condition holds for formulas of arbitrary complexity.
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But there’s a problem: the semantics as given doesn’t guarantee that symmetric
points treat variants of restricted universals the same. In fact, there are easy counterex-
amples. Consider for example the canonical model for our base logic BQ. Note first
this isn’t—for the simple reason that its points are theories in the wrong language—the
canonical model for whatever the logic of the extended language is. It’s nonetheless
a (quite useful) model of the extended language including our new binary restricted
universal since we’ve not modified at all what it takes to be a model, only added a new
semantic clause.

With respect to this model, consider e.g. the formula ∀x[Pxa, Pxa]. And evaluate
this at the L∅-theory 〈∅〉 generated by the empty set. Clearly 〈∅〉 is symmetric in any
two names. Thus in particular it’s symmetric in a and b.

Now choose an arbitrary Pω1a-containing extension of the L{ω1}-theory generated
by the emptyset. Here are two very obvious things about such extensions:

• Being Pω1a-containing, they are all Pω1a-containing;
• Some of them are not Pω1b-containing.

It follows that 〈∅〉 verifies ∀x[Pxa, Pxa] but doesn’t verify ∀x[Pxa, Pxb]. Thus
atomically-symmetric theories are not always everywhere-symmetric theories. So the
usual trick for enforcing the symmetry condition—impose it on the atoms at let it work
its way up—won’t do the job here. And the reason for this failure is clear enough to
see: a, b-symmetry isn’t horizontally hereditary. Nor should it be: a point might well
be incapable of discriminating a from b, but also be extendable, as above, in such a
way that such discrimination is possible.

It seems plausible to us that there might be some subtle, recursive way to enforce
exactly the sort of extendable symmetry we need. But if there is, it eluded us. More
plausible is that symmetry as stated is just the wrong sort of thing to require. Put more
bluntly, we (by which we mean just the authors, not the community) think we (by
which we mean the community, not just the authors) don’t quite grok symmetry and
that it is quite likely that it’s the wrong thing to demand.

But we don’t want to hold progress hostage to an analysis of symmetry, so we’ll
resort to something as unsubtle as possible to get around the roadblock at hand: we’ll
simply restrict our attention in the remainder to models that do satisfy the symmetry
condition. That there are such models is demonstrated by the constructions used in the
appendices. That this is a massively noncompositional and hideous way to solve the
problem is not lost on us, and we return to discuss the matter at the end of the paper.
For now we simply move on with a slightly embarrassed look.

Acts of contrition completed, we return to proving Lemma 4

Proof The proof, as mentioned, is by simultaneous induction on the complexity of C
in all four parts.

The base cases for parts (a), (b), and (c) are handled by the fact that each MX is a
zero-order model. For (d) we follow Fine in noting that since u = u↑X

Y ↓X
Y , (d) is really

just a special case of (c). We thus take demonstration of (c) in the remainder to suffice
for demonstration of (d). We also note that in all cases, the ‘if’ part of (b) follows
immediately from (a), and is thus omitted. Finally, since they’re straightforward and
the proof is long enough without them, we leave the ¬ cases, the ∧ cases, and the ∨
cases to the reader.
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Entailment Case:

• For (a): Assume that X , s � A → B and s � t . Then for all u ∈ TX , if X , u � A,
then X , s ◦ u � B. We must show that X , t � A → B. So, let u′ ∈ TX and
X , u′ � A. Thus, X , s ◦u′ � B. Since ◦ covaries with�, s ◦u′ � t ◦u′. Therefore,
t ◦ u′ � B, by the inductive hypothesis (IH). So, X , t � A → B.

• For (b): ‘only if’ direction. Suppose that for all p ∈ PX , if t � p, then X , p �
A → B. We need to establish that X , t � A → B. So, let u ∈ TX and X , u � A.
We must show t ◦ u � B.
By part (b) of the IH, it is sufficient to show that for all p ∈ PX , if t ◦ u � p,
then X , p � B. Thus, we let q ∈ PX and t ◦ u � q to demonstrate that X , q � B.
Immediately, we know that there is some q ∈ PX such that t � q and q ◦ u � q.
Therefore, by assumption, X , q � A → B. Hence, q ◦ u � B. By part (a) of the
IH, it follows that X , q � B, which completes the proof.

• For (c):
‘if’ direction. Assume that Y , t↓X

Y � A → B. Then for all u ∈ TY , if Y , u � A,
then Y , t↓X

Y ◦ u � B. We must show that X , t � A → B. So, we let u′ ∈ TX and
suppose X , u′ � A to prove that X , t ◦ u′ � B. By part (c) of the IH, Y , u′↓X

Y � A.
Thus, Y , t↓X

Y ◦ u′↓X
Y � B. So, X , (t↓X

Y ◦ u′↓X
Y )↑X

Y � B, by a special case of part
(c) of the IH. And X , t↓X

Y ↑X
Y ◦u′↓X

Y ↑X
Y � B, given (11). Therefore, u′↓X

Y ↑X
Y � u′

and t↓X
Y ↑X

Y � t , by (5). It follows that t↓X
Y ↑X

Y ◦ u′↓X
Y ↑X

Y � t↓X
Y ↑X

Y ◦ u′ � t ◦ u′,
since ◦ covaries with �. But � is transitive. Hence, t↓X

Y ↑X
Y ◦ u′↓X

Y ↑X
Y � t ◦ u′.

Consequently, X , t ◦u′ � B, by part (a) of the IH. This implies that X , t � A → B.
‘only if’ direction. Suppose that X , t � A → B. Then for all u ∈ TX , if X , u � A,
then X , t ◦ u � B. We must show Y , t↓X

Y � A → B. So, we assume u′ ∈ TY and
Y , u′ � A to prove Y , t↓X

Y ◦ u′ � B. By the special case of part (c) of the IH, we
know that X , u′↑X

Y � A. So, X , (t ◦(u′↑X
Y ) � B. Therefore, Y , (t ◦(u′↑X

Y )↓X
Y � B,

by part (c) of the IH. Hence, (t ◦ (u′↑X
Y )↓X

Y � t↓X
Y ◦ u′, by (12). Thus, by part (a)

of the IH, t↓X
Y ◦ u′ � B. Therefore, Y , t↓X

Y � A → B.

Unrestricted Universal Case:

• For (a): Suppose X , s � ∀x A and s � t . Then for someω /∈ X , X∪{ω}, s↑X∪{ω}
X �

A(x/ω). By the covariance of �, s↑x∪{ω}
X � t↑x∪{ω}

X . Thus, X ∪ {ω}, t↑X∪{ω}
X �

A(x/ω), by part (a) of the IH. Consequently, X , t � ∀x A, which is our goal.
• For (b): ‘only if’ direction. We prove the contrapositive. So, suppose X , t �

∀x A. Then, letting ω /∈ X , X ∪ {ω}, t↑X∪{ω}
X � A(x/ω). Thus by the IH,

for some t↑X∪{ω}
X � p ∈ PX∪{ω}, X ∪ {ω}, p � A(x/ω). But now observe

that since p↓X∪{ω}
X ↑X∪{ω}

X � p and X ∪ {ω}, p � A(x/ω), we get that

X∪{ω}, p↓X∪{ω}
X ↑X∪{ω}

X � A(x/ω). So X , p↓X∪{ω}
X � ∀x A. And since t↑X∪{ω}

X �
p ∈ PX∪{ω}, t � p↓X∪{ω}

X ∈ PX . So there is a t � q ∈ PX so that X , q � ∀x A.
• For (c):
‘if’ direction. Suppose Y , t↓X

Y � ∀x A. Then Y ∪ {ω}, t↓X
Y ↑Y∪{ω}

Y � A(x/ω) for
some ω /∈ Y . We claim that it follows from that that for any ω′ /∈ X , we also have

that Y ∪ {ω′}, t↓X
Y ↑Y∪{ω′}

Y � A(x/ω′).
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To see this, choose ω′ /∈ X and notice that since we have that

t↓X
Y ↑Y∪{ω}

Y ↑Y∪{ω,ω′}
Y∪{ω} ↓Y∪{ω,ω′}

Y∪{ω} = t↓X
Y ↑Y∪{ω}

Y ,

the IH gives that t↓X
Y ↑Y∪{ω}

Y ↑Y∪{ω,ω′}
Y∪{ω} � A(x/ω). Thus by the symme-

try condition,
[
t↓X

Y ↑Y∪{ω}
Y ↑Y∪{ω,ω′}

Y∪{ω}
]ω′

ω
� A(x/ω′). So (again by the IH),[

t↓X
Y ↑Y∪{ω}

Y ↑Y∪{ω,ω′}
Y∪{ω}

]ω′

ω
↓Y∪{ω,ω′}
Y∪{ω′} � A(x/ω′).

Now observe that

[
t↓X

Y ↑Y∪{ω}
Y ↑Y∪{ω,ω′}

Y∪{ω}
]ω′

ω
↓Y∪{ω,ω′}
Y∪{ω′} =

[
t↓X

Y ↑Y∪{ω,ω′}
Y

]ω′

ω
↓Y∪{ω,ω′}
Y∪{ω′}

=
[
t↓X

Y ↑Y∪{ω′}
Y ↑Y∪{ω,ω′}

Y∪{ω′}
]ω′

ω
↓Y∪{ω,ω′}
Y∪{ω′}

� t↓X
Y ↑Y∪{ω′}

Y

Thus, by (a) of the IH, Y ∪ {ω′}, t↓X
Y ↑Y∪{ω′}

Y � A(x/ω′).
But also t↓X

Y ↑Y∪{ω′}
Y = t↑X∪{ω′}

X ↓X∪{ω′}
Y∪{ω′} . So

Y ∪ {ω′}, t↑X∪{ω′}
X ↓X∪{ω′}

Y∪{ω′} � A(x/ω′).

So by the IH, X ∪ {ω′}, t↑X∪{ω′}
X � A(x/ω′). And since ω′ /∈ X , it follows from

this that X , t � ∀x A.
‘only if’ direction: Let X , t � ∀x A. Then X ∪ {ω}, t↑X∪{ω}

X � A(x/ω). So by

the IH, Y ∪ {ω}, t↑X∪{ω}
X ↓X∪{ω}

Y∪{ω} � A(x/ω). But t↑X∪{ω}
X ↓X∪{ω}

Y∪{ω} = t↓X
Y ↑Y∪{ω}

Y .

Thus Y ∪ {ω}, t↓X
Y ↑Y∪{ω}

Y � A(x/ω). Finally, note that since ω /∈ X , ω /∈ Y . Thus
Y , t↓X

Y � ∀x A.
Restricted Universal Case:

• For (a): Suppose that X , s � ∀x[A, B] and s � t . Then for some ω /∈ X and
any u ∈ TX∪{ω}, if s↑X∪{ω}

X � u and X ∪ {ω}, u � A(x/ω), then X ∪ {ω}, u �
B(x/ω). We must show that X , t � ∀x[A, B]. So, let u′ ∈ T X∪{ω}

X , and suppose

t↑X∪{ω}
X � u′ and X ∪ {ω}, u′ � A(x/ω). By the covariance of �, it follows

that s↑X∪{ω}
X � t↑X∪{ω}

X . Hence, s↑x∪{ω}
X � u′, since � is transitive. Therefore,

X ∪ {ω}, u′ � B(x/ω). This suffices to show that X , t � ∀x[A, B].
• For (b): ‘only if’ direction. Let X , p � ∀x[A, B] for all t � p ∈ PX . Let t↑X∪{ω}

X �
u and u � A(x/ω). We want to show that u � B(x/ω). We will do so by instead
showing that q � B(x/ω) for all u � q ∈ PX∪{ω}. By the IH this will suffice.
So choose u � q ∈ PX∪{ω}. Then by (a) of the IH, q � A(x/ω). But we also

have that t � q↓X∪{ω}
X ∈ PX . Thus by assumption, q↓X∪{ω}

X � ∀x[A, B]. But then
since q↓X∪{ω}

X ↑X∪{ω}
X � q and q � A(x/ω), q � B(x/ω).
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• Before moving to (c) we need a supplemental result:

t � ∀x[A, B] iff for all t↑Y∪{ω}
Y � p ∈ PY∪{ω}, if p � A(x/ω) then p � B(x/ω).

proof The ‘only if’ direction is immediate. For the ‘if’ direction, suppose that
for all t↑Y∪{ω}

Y � p ∈ PY∪{ω}, if p � A(x/ω) then p � B(x/ω). To see that

t � ∀x[A, B], let t↑Y∪{ω}
Y � u and u � A(x/ω). Now let u � p ∈ PY∪{ω}.

Then t↑Y∪{ω}
Y � p and p � A(x/ω). Thus p � B(x/ω). So by (b) of the IH,

u � B(x/ω) as required.

• For (c): ‘if’ direction. Let t↓Y
X � ∀x[A, B]. Choose t↑Y∪{ω}

Y � p ∈ PX∪{ω} and
suppose p � A(x/ω). Then p↓Y∪{ω}

X∪{ω} ∈ PX∪{ω} and by the IH, p↓Y∪{ω}
X∪{ω} � A(x/ω).

But note by (6) that t↓Y
X↑X∪{ω}

X = t↑Y∪{ω}
Y ↓Y∪{ω}

X∪{ω}. So since t↑Y∪{ω}
Y � p, we also

have that
t↓Y

X↑X∪{ω}
X = t↑Y∪{ω}

Y ↓Y∪{ω}
X∪{ω} � p↓Y∪{ω}

X∪{ω}.

But then since t↓Y
X � ∀x[A, B] and p↓Y∪{ω}

X∪{ω} � A(x/ω) we also have that

p↓Y∪{ω}
X∪{ω} � B(x/ω). Thus by the supplemental result, t � ∀x[A, B].

• For (c): ‘only if’ direction. suppose t � ∀x[A, B]. By the supplemental result, to
show t↓Y

X � ∀x[A, B] it suffices to show for all t↓Y
X↑X∪{ω}

X � p ∈ PX∪{ω} that if
p � A(x/ω), then p � B(x/ω).
So we let t↓Y

X↑X∪{ω}
X � p ∈ PX∪{ω} and p � A(x/ω). Note by (6) that

t↓Y
X↑X∪{ω}

X = t↑Y∪{ω}
Y ↓Y∪{ω}

X∪{ω}. Thus t↑Y∪{ω}
Y ↓Y∪{ω}

X∪{ω} � p. So by (9) there is

q ∈ PY∪{ω} so that q↓Y∪{ω}
X∪{ω} = p and t↑Y∪{ω}

Y � q. But then since p � A(x/ω),

q↓Y∪{ω}
X∪{ω} � A(x/ω). So by the IH, q � A(x/ω). Thus since t � ∀x[A, B],

q � B(x/ω). So again by the IH, q↓Y∪{ω}
X∪{ω} = p � B(x/ω).

�

We can now show that the account we’ve provided is, as promised, a hopeful
account of restricted quantification.

Lemma 5 (hopefulness) If t � ∀x[A, B] and t � A(x/c), then t � B(x/c).

Proof Let c ∈ N . Suppose X , t � ∀x[A, B] and X , t � A(x/c). We must show
that X , t � B(x/c). By assumption, there is some ω /∈ X such that for all u ∈
TX∪{ω}, if t↑X∪{ω}

X � u and X ∪ {ω}, u � A(x/ω), then X ∪ {ω}, u � B(x/ω),

and with Lemma 4, part (d): X ∪ {ω}, t↑X∪{ω}
X � A(x/c). Now, (14) guarantees that

t↑X∪{ω}
X � [t↑X∪{ω}

X ]ωc . Therefore, [t↑X∪{ω}
X ]ωc � A(x/c), by Lemma 4, part (a). But

the symmetry condition and (20) yield [t↑X∪{ω}
X ]ωc � A(x/c)(c/ω). Fact 4 then implies

[t↑X∪{ω}
X ]ωc � A(x/ω). So, [t↑X∪{ω}

X ]ωc � B(x/ω). And [t↑X∪{ω}
X ]ωc � B(x/ω)(ω/c),

by the symmetry condition and (20), again. This means that [t↑X∪{ω}
X ]ωc � B(x/c),

given Fact 4. Hence, with Lemma 4, part (c), we have X , [t↑X∪{ω}
X ]ωc ↓X∪{ω}

X � B(x/c).

But [t↑X∪{ω}
X ]ωc ↓X∪{ω}

X � t , by (22). Thus, X , t � B(x/c), given Lemma 4, part (a).�
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4 Evaluating the account

As the discussion at the top of §3 makes clear, the account we’ve provided here
is quite natural from the stratified perspective. And, modulo the pesky little mat-
ter of symmetry, the formal results proved immediately above demonstrate that the
account is semantically well-behaved. These are both nice features. But they aren’t
decisive—there’s also the question of how the account fares as an account of restricted
quantification, which we now turn to discussing.

Our answer has two parts, eachwith two subparts. For the first part, we first examine
towhat extent the accountwe’ve provided canmeet the desiderata found in theBBHPR
paper. The results are mixed: of the five purely universal conditions they give, we fully
satisfy three, partially satisfy one, and entirely fail on one of them. But (now to the
second subpart of the first part) we argue that the BBHPR desiderata that we either
don’t or don’t fully satisfywere erroneous in the first place. Sowe claim awin here—all
the desiderata we had any actual reason to worry about we satisfy.

For the second part we turn to thinking about relevance. After all, both the BBHPR
account and Beall’s simplified account were meant as accounts of relevant restricted
quantification. So there’s a natural question to ask about the extent to which what we
provide is relevant. Here the results are entirely negative: our account is, wholeheart-
edly and unrestrictedly, irrelevant. After explaining why this is the case, we spend a
bit of time thinking about just how bad a problem it actually is.

4.1 The BBHPR Desiderata

The BBHPR team examines in their paper a total of 16 different desiderata on a theory
of relevant restricted quantification. But given that we’ve only proposed an account of
relevant restricted universals, we’ll focus only on the solely-universal desiderata, of
which there are five:

A1 A(x/c),∀x[A, B] � B(x/c)
A2 ∀x B � ∀x[A, B]
A3 ∀x(A → B) � ∀x[A, B]
B1 ∀x[A, B] � ∀x[¬B,¬A]
B2 ∀x[A,∀x[A, B]] � ∀x[A, B]
Before going further, we need to remind the reader of the distinction between global
and local validity for rules. The distinction—due mostly to Humberstone (see Hum-
berstone (1996)) who, in turn appeals to work by Garson (see Garson (1990))—is
well-summarized in Da Ré et al. (2021) as follows:

Local validity means that any counterexample to the conclusion is a counterex-
ample to one of the premises as well. Global validity means that if there is a
counterexample to the conclusion, there must also be a counterexample to one
of the premises (where the two counterexamples need not be the same).

It’s less than totally obvious whether the authors of the BBHPR paper intended their
turnstiles to pick out local validity or global validity. Most of what they say seems to
follow only on the assumption that they pick out claims about global validity. That
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said—and, as we’ll see below—some of their claims seem to presuppose that they’re
picking out local validity. Rather than turning aside into exegesis, we’ll sidestep the
problem by simply considering both interpretations. Thus, we’ll bifurcate each of the
five desiderata given above into two distinct options: a global option for which we will
continue to use the single turnstile and a local option for which we will use ‘�’ since,
as the reader can easily verify, our definition of this relation from above precisely
matches the definition of local validity from the offset quote.

Finally, note that the local and global versions of the claims made above are con-
nected in fairly obvious ways that are worth stating aloud. In particular, we note that
if X � A, then X � A and thus, if X � A, then X � A.

With all that said, here’s what we have: in A1 and A2 both hold in local form and
thus also in global form. A3 holds in global but not local form. The nonentailment in
B1 holds in global form, and thus also in local form. Finally, the nonentailment in B2
fails in both local and global form. Before discussing the significance of the successes
and failures thus adumbrated, we’ll pause to prove these claims.

4.1.1 Proofs of results

Theorem 6 A(x/c),∀x[A, B] � B(x/c).

Proof This follows immediately from Lemma 5. �

Corollary 7 A(x/c),∀x[A, B] � B(x/c).

Theorem 8 ∀x B � ∀x[A, B]
Proof Suppose that X , t � ∀x B and let A ∈ LX . Thus, there is some ω /∈ X such that
X ∪ {ω}, t↑X∪{ω}

X � B(x/ω).
Since we must show that x, t � ∀x[A, B], let u ∈ TX∪{ω}, and let’s assume that

t↑X∪{ω}
X � u, and X ∪{ω}, u � A(x/ω). Therefore, X ∪{ω}, u � B(x/ω), by Lemma

4, part (a). So, X , t � ∀x[A, B]. �

Corollary 9 ∀x B � ∀x[A, B]
Theorem 10 ∀x(A → B) � ∀x[A, B]
Proof Let X , �X � ∀x(A → B). To see that �X � ∀x[A, B], let ω /∈ X , �X∪{ω} � t
and t � A(x/ω). By part (d) of Lemma 4, �X∪{ω} � ∀x(A → B). So by Lemma 2,
�X∪{ω} � A(x/ω) → B(x/ω). Thus �X∪{ω} · t = t � B(x/ω). So �X � ∀x[A, B]. �

Theorem 11 ∀x(A → B) � ∀x[A, B].
Proof See Appendix. �

Theorem 12 ∀x[A, B] � ∀x[¬B,¬A]
Proof Proof Sketch. Here we allow ourselves to merely sketch the proof since the full
result is somewhat tedious. First, one can verify by e.g. using the metavaluational
machinery in Slaney (1987) that in the propositional fragment, B, of the logic BQ,
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given distinct atoms P and Q, B∪{¬(P → P)} � ¬Q. Thus, in the canonical model
for B, there is an extension of the logic that contains ¬(P → P) that does not contain
Q. We can then construct from the canonical model for propositional B a model for
L+ that verifies the symmetry condition using the same tricks we use in Appendix.
Supposing now that A and B are appropriate L+-atoms that correspond to P and Q,
we see that this model is a counterexample to ∀x[¬(A → A),¬B], even though
∀x[B, A → A] is valid by Corollary 9.2 �

At a referee’s suggestion, we think it worth pointing out the following interesting
fact about this proof: it works even in logics that admit axiomatic contraposition.
That is, the fact that the restricted universal fails to contrapose seems to be a genuine
feature of the restricted universal rather than a feature that the restricted universal
merely inherits from the logic. All that is required, in fact, for the above argument to go
through is that the logic be (with apologies for the neologism) ‘pseudo-non-explosive’.
That is that there be formulas B and theorems of the logic A so that the union of the
logic and the negation of A fails to entail the negation of B. Given Corollary 9 and the
construction in the Appendix, any such will demonstrate the failure of contraposition
for the restricted universal.

Corollary 13 ∀x[A, B] � ∀x[¬B,¬A].
Theorem 14 ∀x[A,∀x[A, B]] � ∀x[A, B].
Proof Let X , t � ∀x[A,∀x[A, B]]. In order to see that t � ∀x[A, B], choose ω /∈ X
and let t↑X∪{ω}

X � u and u � A(x/ω). Then since t � ∀x[A,∀x[A, B]], u � ∀x[A, B].
So u � A(x/ω) and u � ∀x[A, B]. It follows by Lemma 5 that u � B(x/ω). Thus
t � ∀x[A, B]. �

Corollary 15 ∀x[A,∀x[A, B]] � ∀x[A, B].
Theorem 16 ∀x[A, B] � ∀x[A,∀x[A, B]]
Proof Let X , t � ∀x[A, B], ω /∈ X , t↑X∪{ω}

X � u and X ∪ {ω}, u � A(x/ω). Note

that since X , t � ∀x[A, B], (d) of Lemma 4 gives X ∪ {ω}, t↑X∪{ω}
X � ∀x[A, B]. So

by (a) of Lemma 4, X ∪ {ω}, u � ∀x[A, B]. Thus X , t � ∀x[A,∀x[A, B]]. �

The reader may have the sense that this proof was a bit too easy. If so, know that
(a) you are correct, and (b) we will address the issue below.

Corollary 17 If ∀x[A, B] is valid, then ∀x[A,∀x[A, B]] is valid.

4.1.2 Discussion

From the bifurcated BBHPR perspective we mentioned above, the account we have
provided thus has three ‘failures’ to address: the local failure of A3 and the double
failure of B2. We will deal with these in turn.

2 Thanks are due to Andrew Tedder for suggestions that significantly simplified this proof.
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On the first failure, we should immediately note that, given our interpretation of
BBHPR is correct, they will not classify the local failure of A3 as a failure at all. That
said, it still seems to us worth saying a few words about it.

The phenomenon in need of explanation is this: there are theories t for which
t � ∀x(A → B) and yet t � ∀x[A, B]. Taking a high-level perspective, the reason
this can happen is because (a) ∀x(A → B) is an essentially intentional formula—it
tells us how theories that contain it will behave when applied to other theories, and tells
us relatively little about how the contents of such theories are themselves organized,
while (b) ∀x[A, B] is an essentially extensional formula—it tells us a great deal about
how the contents of a theories that contain it are organized, and tells us relatively
little about how such theories will behave when applied to other theories. Both of
these claims have to be interpreted cautiously—claims of the form ∀x[A, B → C]
do, after all have intensional content that they inherit from the intensional content of
their consequent formulas and even ∀x(Px → Qx) has some extensional content, as
borne out by Lemma 2. But the general point holds: the two formulas are, for a given
theory, largely orthogonal to each other.

We now move on to the double failure of B2, about which readers might be a bit
more concerned. After all, in the BBHPR paper, the stated reason for requiring the
nonentailment in B2 concerned a rather troubling bit of Curry-esque reasoning. For
the sake of our discussion, it is useful to include the BBHPR discussion in its entirety:

The second inference that must fail concerns contraction. Define α � β as
∀ν[α, β] (again, add vacuous variables if desired). Then we cannot have α �
(α � β) � α � β else we would be able to reason as follows. Let γ be of the
form T 〈γ 〉 � ⊥, where⊥ is a constant—often written as F in the relevant-logic
literature—such that γ � α for all α.

T 〈γ 〉↔(T 〈γ 〉�⊥)
T 〈γ 〉�(T 〈γ 〉�⊥)

T 〈γ 〉 � ⊥
T 〈γ 〉
⊥

Hence, Contraction for � must fail:

• B2 ∀ν[α,∀ν[α, β]] � ∀ν[α, β]
Wefind the argument as given entirely unconvincing. To begin, suppose we read B2

in its global form. Then the derivation in question is only problematic if read in global
form.But now there is no clear reason to accept its initial premise. Indeed, the argument
as given seems to give us good reason not to accept the initial premise. That is, what
the derivation seems to demonstrate is that we ought not—on pain of triviality!—
adopt as theorems of the logic all instances of the T-schema. This is compatible, of
course, with all of the instances of the T-schema being part of the correct theory of
truth. It is just that there is a difference between being a part of the correct theory of
truth and being a theorem of the logic, with membership the latter category being,
however you slice the cake, not the sort of thing that follows from membership in the
former.
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On the other hand, if we readB2 in its local form, then the argument is only troubling
if it too is read in local form. But then we can simply reject that the second line follows
from the first. After all, as already discussed, A3 is not (and oughtn’t be) valid in local
form.

Altogether, we do not think that BBHPR have given us particularly good justifi-
cations for B2. Thus, our double failure to accommodate it is, we think, no failure at
all.

4.2 Relevance

Now we turn to the more troubling bit: relevance. To see the trouble, let us follow the
vocabulary that, in Fuhrmann (1990) is attributed to Humberstone, and call a formula
ubiquitous just when it is verified at every point in a model. Ubiquitous formulas are
problematic from the relevant point of view: given that A is ubiquitous, it follows
from the semantic clause for the conditional that for all B, B → A is also ubiquitous.
Thus, so also is C → (B → A), etc. And since each of these is ubiquitous, each is,
in particular, verified at the identity point of each model. So the logic captured by a
class of models in which A is ubiquitous will turn out to be disastrously irrelevant, as
it will contain as theorems all formulas of the form B → A, all formulas of the form
C → (B → A), etc. This is a well-known kind of problem for relevance logicians.
Extremely similar problems arise in other contexts; see Standefer (2022) and Standefer
(2023) for worked out details of a few such cases.

Ubiquitousness in hand, the problem is this: given that ∀x(A → B) is a theorem,
∀x[A, B] is ubiquitous. This is not hard to see: given that ∀x(A → B) is a theorem,
every theory is closed under all its instances. Thus, given any theory t , all of its
A(x/n)-extensions—where n can be any name at all—are, since closed under the
logic, B(x/n)-extensions. So t validates ∀x[A, B], and thus ∀x[A, B] is ubiquitous.

Before saying why we are happy to live with this problem, it is worth first noting
that the BBHPR account has it is own problems with relevance. To explain, first recall
that on the BBHPR account ‘all As are Bs’ is interpreted as ‘∀x(Ax �→ Bx)’ where
A �→ B is true at a point p just if for all points q at which A is true, B is true at all
points that extend both p and the application of p to q.

Now observe that if B is true at x and x � z, then B is true at z. Thus if B is true
at x , so is A �→ B for any A. It follows that B → (A �→ B) is valid for all A and B.
Call this Observation 1. Next observe that if A → B is true at p, q is a point where
A is true, and r extends both p and the application of p to q, then (solely by virtue of
the fact that r extends the application of p (where A → B is true) to q (where A is
true)) B will be true at r . It follows from this observation that (A → B) → (A �→ B)

is will be valid for all A and B.
Now recall that (a) relevance is often interpreted as at least requiring variable sharing

and (b) in the literature there are four different types of variable sharing that have been
identified:

• Ordinary variable sharing,
• Strong variable sharing, (see Anderson and Belnap (1975)
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• Ordinary depth relevance, (see Brady (1984) and
• Strong depth relevance (see Logan (2021)).

The first of the four results says that if A → B is a theorem of any sublogic of the
very strong relevant logic R, then there is a variable p that occurs in both A and B. In
both cases, the ‘strong’ version of the variable sharing feature in question strengthens
the given feature by requiring preservation of sign. The ‘depth’ versions, on the other
hand, require preservation not just of variables, but of variables occurring within the
scope of a given number of conditionals. For details, see the above papers; it suffices
for our purposes to note that p occurs positively in p and that in p → q, p occurs
negatively and q occurs positively.

Unsurprisingly, there is nothing said in the BBHPR paper about whether �→ should
increase depth and nothing’s said aboutwhether it changes the signs of its subformulas.
But while we would naturally expect ‘ �→’ to be a depth-changing connective, we do
not actually need to know whether it is in order to make our point. To begin, suppose
‘ �→’ doesn’t change depth. That is, suppose that ifC occurs in A (or in B) with a given
depth n, the corresponding occurrence of C in A �→ B is also a depth n occurrence
of C . Then (p → p) → (p �→ p) is a conditional formula where no variable occurs
at the same depth in both antecedent and consequent. Thus if ‘ �→’ doesn’t change
depths, then the logics of systems that contain it will lack either of the depth variable
sharing features.

On the other hand, if ‘ �→’ does change depth, then we can instead look at B →
(A �→ B) where we again see that logics of systems that contain it will lack either of
the depth variable sharing features. This is troubling on its own in light of the fact that
the BBHPR account is meant to give a version of relevant restricted quantification that
works in logics that typically do exhibit depth relevance, yet whichever way things go,
depth relevance and strong depth relevance are out. That said, we should acknowledge
that the BBHRP account does manage to capture more variable sharing than we do
with our (totally and completely irrelevant) account.

We promised above that we would offer a discussion of why we are okay with our
account’s irrelevance, andwewill turn to that at last.We have two points tomake. First:
we think there is good reason to wonder whether what we are witnessing is simply
a consequence of the fact that we have entered the sort of terrain where relevance
peters out. More to the point, it is well known that the semantics of relevance logics
can be extended with relevance-destroying connectives—see e.g. Meyer and Routley
(1973) for an enlightening discussion of the matter. The above considerations make
onewonderwhether perhaps capturing restricted quantification, like capturing boolean
negation, is something that relevance logicians can only do at the cost of the relevant
bits of their souls.

Putting that aside, the actual reasonwe are happy to accept our account’s irrelevance
is more simple and can be summed up as follows: relevance was always a (happy)
accident. The motivation we gave for our semantics has nothing to do with relevance.
It has to do with theory building and universal theory-buidling theories. As it turned
out, the universal theory-building theory was relevant and, while we restricted our
attention to the sorts of vocabulary where this remained the case, this was a nice thing
to have. But it we didn’t build the logic by aiming for it and the fact that we now have
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to leave it aside is, while a bit sad, nonetheless tolerable. And it is preferable, in any
case, to either not doing logic or to doing it in an unnatural way, which seem to be the
only alternatives.
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Appendix: Proof of the fourth Lemma from Section 4

The idea is to build a first-order model U from a model M for the propositional logic
B.3 To that end, choose a model M based on a frame F containing a point t at which
(p → q) ∧ p is verified but q isn’t. That there are such points follows from the fact
that ((p → q) ∧ p) → q isn’t valid which can be seen by relying on, e.g. Depth
Relevance—see Brady (1984) for details. We then construct the model U by letting
each UX be a copy of 〈(N ∪ X), F〉—that NX is just the tuple whose first element is
the appropriate set of names and whose remaining elements are a copy of the frame
on which M is based. We take all the functions ↓, ↑, and [−]ab to be identity functions.
Finally, we choose a bijection f between predicates of the first-order language and
atoms of the propositional language. Using this, we define UX

t (P) for j-ary P to be
(N ∪ X) j if f (P) ∈ M(t), and UX

t (Q) = ∅ otherwise—put otherwise, if f (P) is
true at t , then every instance of P is true in U , and if f (P) is false at t then so is
every instance of P . Thus every point in every model is symmetric in every variable.
With a bit of elbow grease, one can verify that this is in fact a (rather uninteresting
and hackneyed) stratified model. Of more interest is the following fact:

Lemma 18 U satisfies the symmetry condition.

Proof The symmetry condition holds of U just in case whenever a theory t of U is
symmetric in a, b ∈ (N ∪ X) and A ∈ LX , then t � A only if t � A′, where A′ is the
a, b-variant of A. Now, any t ∈ UX is symmetric in a, b ∈ (N ∪ X). Also, given the
definition of a, b-variant, we know that A′ = A(a/b). So, it is sufficient to show that
for any t ∈ UX , t � A only if t � A(a/b) by induction on the construction of A ∈ LX .
Let a, b ∈ (N ∪ X) and let t ∈ UX . In order to do this, we prove a stronger claim that
holds true of U : t � A if and only if t � A(a/b).

Base Case: Let Pn1 . . . n j ∈ AtomicX and n1 . . . n j /∈ V .

‘if’ direction. Suppose t � Pn1 . . . n j (a/b). So, t � Pn1(a/b) . . . n j (a/b).
And 〈n1(a/b) . . . n j (a/b)〉 ∈ UX

t (P) = ∅. Hence, UX
t (P) = (N ∪ X) j . Since

Pn1 . . . n j ∈ AtomicX and n1 . . . n j /∈ V , we know that 〈n1 . . . n j 〉 ∈ (N ∪ X) j ,
which is to say that 〈n1 . . . n j 〉 ∈ UX

t (P). Thus, we obtain what we wanted to show:
t � Pn1 . . . n j .

‘only if’ direction.Suppose that t � Pn1 . . . n j . Then 〈n1 . . . n j 〉 ∈ UX
t (P)which is

thus nonempty. AndUX
t (P) = (N∪X) j . Since ni ∈ (N∪X) j , ni (a/b) ∈ (N∪X) j : if

3 For more on the model theory of propositional B, the reader is referred to Read (1988) or Routley et al.
(1982).
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ni = a, then ni (a/b) = a(a/b) = b ∈ (N ∪ X); otherwise, ni (a/b) = ni ∈ (N ∪ X).
So, 〈n1 . . . n j 〉 ∈ (N ∪ X) j = UX

t (P). Therefore, t � Pn1(a/b) . . . n j (a/b) -i.e.,
t � Pn1 . . . n j (a/b), which is what we wanted to establish.

Induction Step: Let {B,C} ⊆ LX . For our IH, we assume that for all D ∈ {B,C},
all s ∈ TX , and all c, d ∈ (N ∪ X), (i) s � D if and only if s � D(c/d), and (ii)
for all ω /∈ X , all Y ⊆ � such that X ⊆ Y and ω ∈ Y , all x ∈ V , and all u ∈ TY ,
u � D(x/ω) if and only if u � D(x/ω)(c/d).

Conditional Case:

t � (B → C) iff if u � B, then t ◦ u � C;
iff if u � B(a/b), then t ◦ u � C(a/b), by (i);
iff t � (B(a/b) → C(a/b));
iff t � (B → C)(a/b).

In order to prove the final cases, we need an auxiliary claim, which is easily proved
by induction: for any D ∈ LX , c, d ∈ (N ∪ X), all x ∈ V , and all ω ∈ � − X , if
c = ω = d, then D(x/ω)(c/d) = D(c/d)(x/ω). We invite the reader to verify it on
their own. But for the remainder, note that a = ω = b, for all ω /∈ X .

Unrestricted Universal Case:

t � ∀x B iff for some ω /∈ X such that t↑X∪{ω}
X � B(x/ω);

iff for some ω /∈ X such that t↑X∪{ω}
X � B(x/ω)(a/b), by (ii);

iff for some ω /∈ X such that t↑X∪{ω}
X � B(a/b)(x/ω);

iff t � ∀x B(a/b).

Restricted Universal Case:
t � ∀x[B,C] iff

for some ω /∈ X , t↑X∪{ω}
X � u and u � B(x/ω) only if u � C(x/ω);

iff for some ω /∈ X , t↑X∪{ω}
X � u and u � B(x/ω)(a/b) only if u � C(x/ω)(a/b);

iff for some ω /∈ X , t↑X∪{ω}
X � u and � B(a/b)(x/ω) only if u � C(a/b)(x/ω);

iff t � ∀x[B(a/b),C(a/b)];
iff t � ∀x[B,C](a/b).

We leave the other cases to the reader. �

Thus, while the example is (we think objectively) hackneyed, it’s nonetheless help-
ful insofar as it shows that our restriction tomodels that satisfy the symmetry condition
doesn’t amount to a restriction to the empty set of models.

We can also extend f to f , which is a function from quantifier-free formulas to
propositional formulas defined in the expected way, by leaving connectives alone and
replacing all instances of Pn1 . . . n j , where n1 . . . n j /∈ V , with f (P); stipulated
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recursively:

f (Pn1 . . . n j ) = f (P);
f (¬A) = ¬ f (A);

f (A� B) = ( f (A)� f (B)).

Lemma 19 If A ∈ LX is a quantifier-free formula, then U , X , t � A iff M, t � f (A).

Proof By induction on the construction of A ∈ LX . As usual we restrict our attention
to only the interesting cases and leave the rest to the reader.

Base Case. Let Pn1 . . . n j ∈ AtomicX and n1 . . . n j /∈ V .
‘if’ direction.Suppose thatM, t � f (Pn1 . . . n j ). ThenM, t � f (P) - i.e., f (P) ∈

M(t). It follows thatUX
t (P) = (N ∪ X) j . Since 〈n1 . . . n j 〉 ∈ (N ∪ X) j , 〈n1 . . . n j 〉 ∈

UX
t (P). Therefore, U , X , t � Pn1 . . . n j , which is our desired result.
‘only if’ direction. Suppose that U , X , t � Pn1 . . . n j . This implies that

〈n1 . . . n j 〉 ∈ UX
t (P). So, UX

t (P) = ∅, which means that f (P) ∈ M(t). Hence,
M, t � f (P) and M, t � f (Pn1 . . . n j ), our goal.

Induction Step: Let {B,C} ⊆ LX . For our IH, we assume that for all D ∈ {B,C},
if D is quantifier-free, then for all s ∈ TX U , X , s � D iff M, s � f (D). Nota bene:
TM = TX and PM = PX , given the construction of UX .

Conditonal Case. Suppose (B → C) is quantifier-free. Thus, B and C are too.

U , X , t � (B → C) iff if U , X , u � B, then U , X , t ◦ u � C;
iff if M, u � f (B), then M, t ◦ u � f (C);
iffM, t � ( f (B) → f (C));
iffM, t � f (B → C).

�

Lemma 20 Suppose for simplicity that f −1(p) = P and f −1(q) = Q are unary.
Then for some t ∈ T{y} U , {y}, t � ∀x(Px → Qx) ∧ Py but U , {y}, t � Qy.

Proof We suppose the antecedent. Recall thatU{y} is constructed from a propositional
model M in such a way that we are guaranteed the existence of a theory t ∈ T{y} such
that M, t � (p → q) ∧ p but M, t � q. This fact is necessary for establishing that
t � ∀x(Px → Qx) ∧ Py but t � Qy.

First, we demonstrate that t � ∀x(Px → Qx)∧ Py. It is sufficient to show that (i)
t � ∀x(Px → Qx) and that (ii) t � Py.

For (i): We know that M, t � (p → q) ∧ p. So, M, t � (p → q). This implies
that for any u ∈ TM , if M, u � p, then M, t ◦ u � q. Now, pick any ω ∈ � − {y}.
Assume that u′ ∈ T{y,ω} and u′ � Pω in order to prove t↑{y,ω}

{y} ◦ u′ � Qω.

Hence, ω ∈ U {y,ω}
u′ (P) = ∅. So, U {y,ω}

u′ (P) = (N ∪ {y, ω}). That implies: y ∈
U {y,ω}
u′ (P) and u′ � Py. ByLemma4, part (c) then: u′↓{y,ω}

{y} � Py. But↓ is the identity

function. Thus, u′ � Py. By Lemma 19 then: M, u′ � f (Py). That is, M, u′ � f (P) -
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andM, u′ � p, by the antecedent hypothesis. But sinceM, t � (p → q),M, t◦u′ � q.
Therefore, M, t ◦u′ � f (Q) - and M, t ◦u′ � f (Qy). Again, by Lemma 19, it follows
that t ◦ u′ � Qy and Lemma 4, part (d) gives us: (t ◦ u′)↑{y,ω}

{y} � Qy. But ↑ is also the

identity function. So, t ◦ u′ � Qy. Consequently, y ∈ U {y,ω}
t◦u′ (Q) = ∅, which means:

U {y,ω}
t◦u′ (Q) = (N ∪{y, ω}). Hence,ω ∈ U {y,ω}

t◦u′ (Q). From this, we obtain: t ◦u′ � Qω.

Thus, t↑{y,ω}
{y} ◦ u′ � Qω, given that ↑ is the identity function.

It follows that:

U , {y, ω}, t↑{y,ω}
{y} � (Pω → Qω);

� (Px(x/ω) → Qx(x/ω));
� ([Px](x/ω)) → [Qx](x/ω));
� (Px → Qx)(x/ω).

Therefore, (i) U , {y}, t � ∀x(Px → Qx).
For (ii): Luckily, the reasoning involved here is much simpler.
Observe:

M, t � p, given our selection of t;
� f (P), by the antecedent hypothesis;
� f (Py);

U , {y}, t � Py, by Lemma 19.

We have obtained (i) and (ii). All that remains to prove is that U , {y}, t � Qy, which
is similarly easy to do.

Note that:

M, t � q, given our selection of t;
� f (Q), by the antecedent hypothesis;
� f (Qy);

U , {y}, t � Qy, by Lemma 19.

�

Note now that the proof of Theorem 11 is in hand. By the above Lemma, there is a
t ∈ T{y} forwhichU , {y}, t � ∀x(Px → Qx) andU , {y}, t � Py, butU , {y}, t � Qy.
It follows that t is itself a Py-containing extension of t . But it’s not a Qy-containing
extension of t . So not all Py-containing extensions of t are Qy-containing extensions
of t . ThusU ,∅, t↓{y}

∅ � ∀x[Px, Qx]. On the other hand, sinceU , {y}, t � ∀x(Px →
Qx), it follows by part (c) of Lemma 4 that U ,∅, t↓{y}

∅ � ∀x(Px → Qx). Thus not
all theories that verify ∀x(Px → Qx) verify ∀x(Px, Qx), as promised.
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