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Monkey neurophysiology research supports the affordance competition hypothesis
(ACH) proposing that cognitive information useful for action selection is integrated in
sensorimotor areas. In this view, action selection would emerge from the simultaneous
representation of competing action plans, in parallel biased by relevant task factors.
This biased competition would take place up to primary motor cortex (M1). Although
ACH is plausible in environments affording choices between actions, its relevance for
human decision making is less clear. To address this issue, we designed an functional
magnetic resonance imaging (fMRI) experiment modeled after monkey neurophysiology
studies in which human participants processed cues conveying predictive information
about upcoming button presses. Our results demonstrate that, as predicted by the
ACH, predictive information (i.e., the relevant task factor) biases activity of primary motor
regions. Specifically, first, activity before movement onset in contralateral M1 increases
as the competition is biased in favor of a specific button press relative to activity in
ipsilateral M1. Second, motor regions were more tightly coupled with fronto-parietal
regions when competition between potential actions was high, again suggesting that
motor regions are also part of the biased competition network. Our findings support the
idea that action planning dynamics as proposed in the ACH are valid both in human and
non-human primates.

Keywords: action planning, primary motor cortex, affordance competition hypothesis, fMRI

INTRODUCTION

A recent embodied view on decision-making (Cisek and Pastor-Bernier, 2014), based on
neurophysiological recordings in non-human primates (Shadlen et al., 2008), suggests that
decision-making arises from sensorimotor areas. This evolutionary perspective hinges on the idea
that neural systems have evolved within environments affording ever changing potential actions,
and was formalized in the affordance competition hypothesis (ACH; Cisek, 2007). This hypothesis
proposes that task-relevant information pertinent for selecting an actionmodulates the competition
between simultaneous action plans in the parietal reach region (PRR; Klaes et al., 2011), the dorsal
premotor cortex (PMd; Cisek and Kalaska, 2005), and up to the primary motor cortex (M1;
Coles et al., 1985; Bastian et al., 2003; Michelet et al., 2010). Relevant information can be action
probability (Calderon et al., 2015) or reward (Klein-Flügge and Bestmann, 2012), amongst others.
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Once activity in favor of a specific action plan reaches a threshold,
the decision is made and implemented (Gold and Shadlen, 2007;
Thura et al., 2012). Thus, potential responses would be active in
motor cortex before movement onset.

While the idea of task-relevant information biasing action
plans in sensorimotor regions has been validated in species
and contexts principally affording choices between concrete
actions, it remains to be verified in humans, who have a higher
capacity for making abstract choices. As a consequence of
this capacity, it was proposed that the human action selection
system has evolved to be segregated from sensorimotor
areas executing the decision output even in the case of
simple visually instructed action selection. For instance,
the seminal studies of Heekeren et al. (2004, 2008) suggest
that cognitive information is integrated in the dorsolateral
prefrontal cortex (DLPFC). Therefore, the possibility remains
that the level at which task-relevant information is integrated
to make a decision marks a phylogenetic breakpoint, and
is fundamentally different in monkeys (up to M1) than
in humans (in (pre)frontal areas; Rorie and Newsome,
2005).

Task-relevant information leaking up to the motor cortex
before movement onset has gained support in humans from
Transcranial Magnetic Stimulation (TMS) studies showing, for
instance, that cortico-spinal excitability (CSE) before movement
onset correlates with the amount and probability of reward
associated with the chosen action (e.g., Gupta and Aron, 2011;
Klein-Flügge and Bestmann, 2012). Yet, it remains unclear
whether one can selectively target specific cortical areas by TMS
(Bolognini and Ro, 2010); in other words, TMS resultsmay derive
from activation of neighboring premotor areas. It is therefore
important to find converging evidence using a more spatially
precise methodology on whether human M1 activity is biased
by task-relevant information prior to making a decision. Based
on neurophysiological and TMS studies discussed above, we thus
first predict to find signals reflecting task-relevant information in
M1 activity before movement onset.

Second, to investigate the hypothesis that M1 activity prior
to making a decision reflects action planning, we tested whether
M1 areas were coupled with other brain areas that have been
shown to be consistently recruited when humans plan actions
(Lindner et al., 2010). Specifically, from an ACH perspective, we
predict that M1 areas are more tightly coupled with the action
planning network when a decision actually involves the execution
of an action compared with when no action is executed.

We designed a functional Magnetic Resonance Imaging
(fMRI) study similar to previously published neurophysiological
monkey studies (Cisek and Kalaska, 2010). In a two-choice
reaction time task, participants were first shown predictive
cues (i.e., task-relevant information) before the actual go-signal
appeared. The cue could indicate either a specific action plan
(e.g., you will need to press left at the go-signal), a general action
plan (i.e., the go-signal will indicate a left or right press, but you
don’t know which one it will be) or could indicate that no action
would be needed (e.g., the go-signal will indicate not to press).

According to our first hypothesis, if task-relevant information
leaks up to M1 before movement onset, predictive cues should

modulate M1 activity when no response is yet given. When
cues are fully predictive (i.e., specific action plan), that is
when they specify whether participants will have to press either
the left or the right button press, contralateral M1 activity is
expected to be higher than ipsilateral M1 activity. When a
general action plan is specified, i.e., when both button presses
are equally likely to be executed, activity in both M1 cortices
is expected to be equal. Similarly, when no action plan is
specified, we expect similar activity levels in both M1 cortices.
Indeed, using the go-no-go task, Freeman and Aron have
shown that when no action plan is required (i.e., no-go trial),
cue-evoked CSE initially increases at similar levels compared
to when an action is required (i.e., go trial; Freeman and
Aron, 2016). Hence, sensorimotor cortex activity may display
similar levels of activations when planning to act and not to
act; similar results were obtained when humans planned what
to reach for or what to avoid reaching (Lindner et al., 2010).
According to our second hypothesis, we predicted stronger
connectivity of M1 to the action planning network (i.e., fronto-
parietal areas) when agents actually plan a general action (before
movement onset). Such a prediction follows because planning
a general action involves a competition between the afforded
action plans, contrary to planning no action. Thus, if the
competition reaches the M1, functional connectivity of M1 with
the fronto-parietal areas (also coding for competing action
plans) should be significantly stronger when planning a general
action compared with planning no action. Similarly, functional
connectivity should be stronger when planning a general action
compared with planning a specific action. Indeed, competition
between potential actions is higher in general than specific action
planning.

MATERIALS AND METHODS

Subjects
Sixteen right-handed participants (8 females; M = 24.6 years,
SD = ± 3.22) with normal vision participated in this study
approved by the local ethics committee (Comité d’Ethique
Hospitalo-Facultaire Erasme-ULB, Brussels, Belgium).
Participants received monetary compensation and provided
written informed consent. One participant was excluded from
the analyses after observing he moved his fingers during cue
presentation (see below).

Experimental Design
Figure 1A illustrates the experimental design. Each trial started
with the presentation of a predictive cue (1 s). The predictive
cue was followed by a jittered fixation cross latency period (LP;
10–12 s). Subsequently, a go signal appeared indicating either
to press the left or right button as fast as possible (until a
response was given), or to passively watch the fixation cross
(see below). Finally, a jittered inter trial interval (ITI) fixation
cross was presented (10–12 s). The four predictive cues and
three go signals were created by combining black and/or white
squares presented left and right to a fixation cross. First, if the
predictive cue was composed of left-black/right-white squares,
participants were instructed to make a left upcoming button
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FIGURE 1 | (A) Experimental design. Subjects were cued with predictive information associated with each upcoming button press. This cue could either be a left- or
right-cue (i.e., specific action planning), a double-cue (i.e., general action planning), or a no-go-cue (i.e., planning to not act). Subsequently, there was a jittered
latency period, followed by the go signal indicating subjects which button to press (Left-cue, Right-cue and Double-cue) or not (No-go-cue). (B) Behavioral results.
Main effect of trial type for reaction times (RTs; ∗∗∗p < 0.001). The X axis represents trial type, plain black fill are left button presses and upward diagonal black fill are
right button presses. The Y axis represents mean RTs. Error bars denote the standard error of the mean and n.s. = non-significant difference.

press at the go signal, composed of exactly the same pattern
of squares (see left-cue trial in Figure 1A). Second, if the
predictive cue was made of left-white/right-black squares, a
right upcoming button press was required at the go signal,
again made of the same pattern of squares (see right-cue trial
in Figure 1A). Third, if the predictive cue was composed
of two black squares, there were equal chances that subjects
would have to make an upcoming left or right button press
at the go signal (see double-cue trial in Figure 1A). In other
words, the predictive double-cue could either be followed by
a right-black or left-black go-signal; with a 0.5 probability of
occurrence for each of these go signal stimuli. Fourth, if the
predictive cue was made of two white squares, participants
knew they would not have to make an upcoming button

press at the go signal, which would also be composed of two
white squares (see no-go-cue trial in Figure 1A). For this
last trial type, participants had to passively fixate the cross
during 700 ms in order to keep visual stimulation similar
across trials. In sum, left/right-cue, double-cue and no-go-cue
trials correspond respectively to planning a specific action,
a general action and planning to not act. Participants were
instructed to fixate the central cross during the entire trial
and not to move unless for response presses (visually checked
online, see below). To prevent confusion between predictive
cues and go signals, the go signal fixation cross was presented
in blue. The experiment was divided in six blocks of 20 trials
(total of 120 trials), and the four trial types were randomly
interleaved.
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Long ITIs and LPs are important features in this slow
event-related fMRI design. We used a long ITI because
previous work demonstrated that the same cortical network
(with similar levels of activation) is recruited whether one
is planning an action or planning not to act (Kühn et al.,
2009; Kühn and Brass, 2010). Consequently, we contrasted each
condition to the ITI period. We used a long LP because our
main question was whether task-relevant information before
movement onset already biases M1 activity. We thus needed
a design ensuring signal separation between cue events and
motor responses. Although in theory (i.e., under the linear
combination assumption; Dale and Buckner, 1997) this could
be implemented through fast-event related design (but see
Monti, 2011), in practice we can improve signal separation by
lengthening the time between events. Because this aspect is
crucial, we implemented a design with 10–12 s between events,
combining both efficiency (i.e., compared to a 15–20 s LP) and
good signal separation (i.e., compared to a much faster event-
related design).

The experiment was implemented in Matlab 7.9
(MathWorks) using the Psychophysics Toolbox (Kleiner
et al., 2007). Stimuli were projected on a translucent screen, and
seen through a mirror mounted on the head coil. Responses
were collected with a MRI-compatible response box (Current
Designs).

Eye Movement Recording
To exclude eye-movement related artifacts, eye movements
were monitored using a MRI-compatible infrared eye tracking
system (ASL ET-6000, Bedford, MA, USA). Gaze X and Y
position coordinates and eye blinks were recorded during
cue presentation and averaged across conditions. Subsequently,
repeated-measures ANOVAs with trial type as single factor
containing four levels (i.e., each trial type) were run separately
on horizontal and vertical mean gaze positions as well as mean
number of eye blinks.

fMRI Data Acquisition Parameters
Data were acquired with a Philips Achieva 3-T (Philips
Medical Systems, Best, Netherlands) scanner using a T2∗sensitive
gradient echo (EPI) sequence (TR = 2130 ms, TE = 40 ms, flip
angle (FA) = 90◦, SENSE acceleration factor 2.5, matrix size:
64 × 64 × 32; voxel size: 3.06 × 3.06 × 3 mm3; 32 transvers
slices). Anatomical images were obtained using a T1-weighted
sagittal 3D TFE sequence (TR = 1960 ms, TE = 4.60 ms,
TI = 1040 ms, FA = 8◦, FOV: 250 × 250 mm2, matrix size:
320 × 320 × 160, interpolated voxel size: 0.78 × 0.78 × 1.0 mm).
The MR scanner was equipped with the Quasar imaging
gradients (maximum amplitude and slew rate: 30 mT/m and
200 mT/m/ms) and an eight-channel SENSE head coil.

fMRI Data Analysis
SPM 8 (Wellcome Trust Centre for Neuroimaging, London, UK)
was used for pre-processing and fMRI data analysis. The first five
volumes were discarded to avoid transient spin saturation effects.
Individual pre-processing included adjustment for movement-
related effects, spatial realignment of all functional images to

the mean image, co-registration of the structural image with
the mean realigned functional image, spatial normalization into
standard stereotactic MNI space and spatial smoothing using a
Gaussian kernel of 8 mm full width at half maximum (FWHM).

We first modeled each participant’s data with a general
linear model (GLM) using an event-related approach. Regressors
were convolved with the canonical hemodynamic response. The
cut-off period for high-pass filtering was 128 s. Regressors
of interest corresponded to the different predictive cues and
button press events (delta functions). Six movement parameters
derived from spatial realignment, and the latency period locked
at predictive cue offset (boxcar function) were included as
covariates of no interest in the design matrix. Effects of interest
were tested by linear contrasts, generating statistical parametric
maps [SPM(T)s]. Summary statistic images were entered in a
second-level analysis in which subjects were treated as random
effects (RFX). First, as a manipulation check, we mapped
cue-related activity for each condition, as well as consistent
cue-evoked activity (i.e., independent of the condition) across
all participants. Then, we computed left > right button press
and right> left button press contrasts. This allowed determining
two functional ROIs associated with each button press at the
group level. Next, we took the conjunction (overlap) between
our functional ROIs and the Human Motor Area Template
(HMAT) M1 area (Mayka et al., 2006); these conjunctions are
from now on termed motor ROIs. Crucially, this allowed us
to separate motor from premotor activity. To test our first
prediction, namely the influence of task-relevant information
on M1 before movement onset, we extracted beta weights
from the motor ROIs (i.e., average within each motor ROI)
during the left-cue and right-cue periods for each subject
and each condition using the SPM(T)s generated at first
level. Using STATISTICA 8.0, we then performed a 2 (motor
ROI; left and right motor area) × 2 (trial type; left-cue,
right-cue) repeated measures ANOVA on mean beta weights
from the predictive cue period. We performed second, more
exploratory analysis to investigate the relative increase/decrease
in activity between specific action planning (left/right-cue trials),
general action planning (double-cue trials), and planning to
not act (no-go-cue trials). For this purpose, we performed a
2 (motor ROI; left and right motor area) × 4 (trial type;
left-cue, right-cue, double-cue, no-go-cue) repeated measures
ANOVA on mean beta weights from the predictive cue
period.

To assess our second prediction that connectivity is
fundamentally different when planning a general action
and when planning to not act, we next carried out
PsychoPhysiological Interaction (PPI) analyses (Gitelman
et al., 2003). In PPI, the BOLD signal of one region (seed)
is introduced as a regressor in the (first-level) GLM analysis.
In addition, a condition regressor and a seed-by-condition
interaction regressor are also included. Areas that differentially
correlate with the seed in one condition compared with another
condition will be identified by a significant seed-by-condition
interaction regressor. Specifically, our PPI analyses may reveal
brain networks in which activity after cue presentation but
before movement onset is more tightly coupled with activity
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in the source M1 areas in the go compared with the no-go
trials. Seeds of interest (SOI) were determined based on
the response contrasts (i.e., left > right and right > left)
and motor ROIs described in the previous paragraph. In
particular, we compute two SOI (i.e., left and right) that
corresponded to a 6 mm radius sphere around the left and
right motor ROIs’ peak activation. For the first-level PPI-
GLM, for each subject and each SOI, we computed the first
eigenvariate of the extracted BOLD signal. Six independent
new PPI-GLMs (one for each contrast) were then generated
at the individual level, using the BOLD signal extracted at
each SOI, the condition contrast vectors, and the seed-by-
condition interaction regressors. The first two PPI-GLMs
corresponded to the double-cue > no-go-cue and no-go-
cue > double-cue contrasts, and were associated to our main
second prediction. In line with our hypothesis, these contrasts
should respectively reveal fronto-parietal connectivity and
not reveal any fronto-parietal connectivity. Four additional
exploratory PPI-GLMs corresponding to the left-cue > no-
go-cue, right-cue > no-go-cue, double-cue > left-cue, and
double-cue > right-cue contrasts, were used to investigate
potential differences in connectivity between conditions. Finally,
individual summary statistic images obtained at the first-level
analysis were entered into a second-level (RFX) analysis using
one-sample t-tests to test for group-level condition-specific
effects.

RESULTS

The results reported below include only correct trials. Average
accuracy was high (96.2 ± 2.65%).

Behavioral Results
A 2 (trial type; double-cue, left/right-cue)× 2 (response side; left,
right) repeated measures ANOVA on mean reaction time (RT)
revealed a main effect of trial type (F(1,14) = 189.8, p < 0.001).
Double-cue trials induced slower RTs compared to left/right-cue
trials (M = 420.2 ms, SD = ±67.8 andM = 339.8 ms, SD = ±62.7,
respectively; Figure 1B). No significant interaction between trial
type and response side was observed.

Mean pupil positions revealed no significant differences in
eye movements across conditions (horizontal, F(3,42) = 0.179,
p = 0.910; vertical, F(3,42) = 1.375, p = 0.263). Moreover, no
significant differences in number of eye blinks were observed
(F(3,42) = 0.796, p = 0.503).

fMRI Results
Table 1 summarizes the activation clusters (FWE-corrected) of
the relevant whole-brain contrasts described in this section.
Figure 2A depicts whole-brain predictive cue-related activation
for every trial type contrasted with implicit baseline (i.e., ITI).
Regardless of trial type, predictive cues consistently elicit similar
activity patterns. Furthermore, a linear combination of all
cue-related activity against implicit baseline (ITI) evidenced a
network of regions that showed significant cue-evoked activity
in each individual subject (see Lindner et al., 2010). Bilateral
Superior Parietal Lobes (SPL), Intraparietal Sulcus (IPS), dorsal

premotor cortex (PMd), Supplementary Motor Area (SMA), and
occipital areas were consistently activated across participants
(Figure 2B).

Analyses of response contrasts revealed two functional ROIs
for right and left button presses (p < 0.0001 uncorrected;
Figures 3A,B, respectively). The 2 (motor ROI location: left,
right) × 2 (trial type: left-cue, right-cue) repeated measures
ANOVA on cue-related activity revealed an interaction between
motor ROI location and trial type (F(1,14) = 27.8, p < 0.001). In
accordance with our first prediction, as predictive information
in favor of a specific button press increases, the evoked
response in the contralateral M1 is increased relative to the
ipsilateral M1 (Figures 3A,B). The second more exploratory
ANOVA with factors motor ROI location (left, right) and trial
type (left-cue, right-cue, double-cue) on cue-related activity
also revealed an interaction between motor ROI location and
trial type (F(3,42) = 15.4, p < 0.001). As predicted (Kühn
et al., 2009; Kühn and Brass, 2010; Lindner et al., 2010),
the planned contrasts between the double-cue (i.e., general
planning) and no-go-cue (i.e., no action planning) did not
reveal a significant difference (F(1,14) = 0.4, p = 0.537; see lower
graphs in Figures 3A,B). To further investigate the relative
increase/decrease in activity between each trial type, exploratory
planned comparisons were performed. First, left/right-cue
activity in ipsilateral motor ROIs was significantly lower than
double-cue activity from both motor ROIs (F(1,14) = 4.6,
p < 0.05). Second, we did not observe a significant difference
between left/right-cue activity in contralateral motor ROIs and
double-cue activity from both motor ROIs (F(1,14) = 1.17,
p = 0.297). Note however that for this contrast (although not
significantly) left/right-cue activity was higher than double-cue
activity.

Concerning our second question, the functional connectivity
patterns from each SOI (left and right; see fMRI data analysis
for SOI definition) revealed a tighter coupling with parietal
and frontal areas in the double-cue than in the no-go-cue
trials (Figure 4A). Importantly, the opposite contrast (no-go-
cue > double-cue) revealed no significantly connected areas
(even at lowered threshold puncorrected < 0.001). These first two
PPI contrasts confirm our prediction and suggest that although
predictive (i.e., before movement onset) double and no-go cues
elicit the same level of activations in both SOIs, the connected
neural networks are fundamentally different.

The left/right-cue > no-go-cue contrasts revealed no
significant coupling with parietal and frontal areas. To further
test whether left/right-cue trials were less coupled with
the fronto-parietal network than double-cue trials, we also
performed double-cue > left/right-cue contrasts (Figures 4B,C).
These exploratory PPI contrasts suggest that when there is less
competition between action options, as for left-cue and right-cue
trials, coupling of motor areas with the fronto-parietal network
significantly diminishes.

DISCUSSION

In this fMRI experiment we manipulated planning (specific,
general, and no action planning) before movement onset. In line
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TABLE 1 | Summary of the activation clusters in the whole brain contrasts.

Contrast Local maxima Cluster size Peak T Cluster-level
area MNI coordinates p(FEW-corr)

Left > Right button press (∗)
Right M1 40 −4 62 287 6.60 0.000
Right > Left button press (∗)
Left M1 −44 −32 58 334 7.22 0.000
All predictive cues > ITI (∗∗)
Superior parietal lobe L/R 46 −34 42 4660 19.65 0.000
Left cerebellum −8 −82 −26 3633 17.35 0.000
Supplementary motor area −8 8 56 801 16.52 0.000
Right inferior frontal gyrus 58 16 12 705 16.02 0.000
Left middle temporal gyrus −46 −70 12 478 15.99 0.000
Right cerebellum 48 −56 −36 2157 14.04 0.000
Dorsal premotor cortex 34 8 62 265 13.30 0.000
Left middle frontal gyrus −32 54 24 213 12.61 0.000
Right prefrontal cortex 28 42 20 248 11.56 0.000
PPI
Double-cue > No-go-cue (∗)
Left SOI
Right middle frontal gyrus 38 48 24 1804 9.34 0.000
Left parietal cortex −26 −74 12 274 9.06 0.000
Left middle frontal gyrus −40 38 22 1211 8.86 0.000
Inferior parietal cortex 44 −74 38 290 8.70 0.000
Superior parietal lobe 4 −66 56 386 7.40 0.000
Right cerebellum 36 −86 −14 668 7.12 0.000
Left cerebellum −46 −54 −32 352 6.97 0.000
Left hippocampus −40 −14 −14 219 6.60 0.000
Right SOI
Right orbitofrontal gyrus 32 52 −4 110 10.17 0.005
Left inferior temporal gyrus −62 −52 −12 94 9.40 0.010
Right middle frontal gyrus 48 42 20 179 7.78 0.001
Right middle temporal gyrus 64 −8 −18 93 7.29 0.010
Right caudate nucleus 18 18 12 69 6.85 0.027
Right temporal pole 44 22 −16 96 6.40 0.009
Double-cue > Left-cue (∗)
Left SOI
Right frontal gyrus
Right superior parietal lobe 50 4 16 1147 10.55 0.000
Left inferior frontal gyrus 34 −62 34 335 8.70 0.000
Right inferior parietal cortex −26 30 −6 261 8.48 0.000
Left middle frontal gyrus 42 −36 34 496 7.67 0.000
Left inferior parietal cortex −38 36 8 269 6.87 0.000
Right SOI −38 −32 38 230 6.60 0.000
Right orbitofrontal cortex 30 56 0 56 6.07 0.023

(∗) voxel-level threshold p = 0.0001 uncorrected, (∗∗) voxel-level threshold p(FEW-corr) = 0.05. Only clusters surviving an extent threshold k > 200 and a p(FEW-
corr) < 0.05 are reported (except for Right SOIs PPI where k > 20). For areas including multiple local maxima, the highest local maximum is reported.

with our first prediction, task-relevant information (i.e., biasing
cues, presented long before movement onset) driving action
selection is integrated up to M1. This confirms in humans
the Thura and Cisek (2014) findings in monkeys that biased
competition takes place up to M1. Moreover, our results revealed
that planning a general action and planning to not act, are
both active processes that elicit similar levels of activities in
M1 (e.g., Kühn et al., 2009; Kühn and Brass, 2010). In line
with our second prediction, although planning a general action
and planning to not act induce equal levels of activation in
M1, our PPI analyses showed tighter coupling with the fronto-
parietal network in double-cue compared with no-go-cue trials
(see Figure 4A). Crucially, this suggests that the M1 is not
merely involved in executing a planned action but is actually
part of the neural circuit subtending action planning. Indeed,

although both trial types activate the fronto-parietal network
(at predictive cue onset), cue-evoked activity extracted from
our SOIs is more tightly coupled with fronto-parietal areas
typically involved in action planning (Lindner et al., 2010;
Gallivan et al., 2011b, 2016) when the experimental condition
actually involves a response competition (i.e., the double-cue
trials).

Our results are in line with several monkey neurophysiology
studies showing the involvement of M1 areas in sensorimotor
integration. For instance, in the work of Merchant et al.
(2004a,b) monkeys had to perform a movement to intercept
a moving stimulus. Prior to performing the movement,
M1 neurons were activated by the moving stimuli. Their
findings suggest that M1 is not merely involved in action
execution, but also in action planning. Using a different
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FIGURE 2 | (A) Functional magnetic resonance imaging (fMRI) activity related to the presentation of the predictive cues (pFWE−corrected < 0.05). Color coding
corresponds to the different trial types (see legend). (B) Consistent cue-evoked activation (relative to implicit inter trial interval (ITI) baseline; pFWE−corrected < 0.05) in
superior parietal lobes (SPL), dorsal premotor cortex (PMd), supplementary motor area (SMA), middle frontal gyrus (MFG), inferior frontal gyrus (IFG), occipital areas,
cerebellum across all participants.

approach, Gold and Shadlen (2000, 2003) observed similar
findings in the oculomotor domain. These authors performed
microstimulations to the frontal eye fields (FEF; i.e., the
area responsible for eye movements) while monkeys carried
out a random dot motion (RDM) task. Microstimulations
evoked transient short eye movements; importantly, the
deviation magnitude of these evoked eye movements
depended on the evidence accumulated thus far. Hence,
these results suggest that FEF are involved in the formation
of the decision on top of planning and executing eye
movements.

The tighter coupling with fronto-parietal areas during
double-cue trials could occur because during these trials
(i.e., when competition is high), participants oscillate between the
two response options, producing correlated fluctuations between
interconnected fronto-parietal regions. Such an explanation
could also account for the decrease in coupling for left-cue
and right-cue trials (see Figures 4B,C). Indeed, in left/right-
cue trials, competition between action plans is rapidly biased
in favor of a specific action (i.e., the competition is low).
Furthermore, the PPI result showed a tighter coupling for
the left than for the right M1 side. Although open for
future research, this asymmetry in PPI results may be due
to the fact that beta values were overall smaller in the right
M1 (see Figure 3B; note that all participants were right-
handed). In addition, this asymmetry cannot be caused by sex
differences in neural activity patterns during visually guided
actions (Gorbet and Sergio, 2007). Indeed, there was a close to
equal split between the number of females and males in our
sample.

Our result showing similar activation in M1 for planning
a general action or planning not to act provides new

methodological insights regarding the use of an appropriate
motor control condition. Indeed, contrasting a general action
plan to a condition instructing subjects not to plan an action
(i.e., no-go-cues) may lead to misleading conclusions. Such a
contrast would hide the activation associated with general action
planning. One possible way around this issue is using a resting
period control condition, as implemented in the present study.
Another solution could be to make use of multi-voxel pattern
analyses (MVPA). Indeed, although global activity inmotor areas
is similar for general action planning and planning to not act,
several action planning studies using MVPA have shown that it
is possible to decode (at the M1 level) prior to motor execution
which type of movement (e.g., grasping, touching or reaching)
will be executed (Gallivan et al., 2011a, 2013a,b, 2016). Therefore,
instead of using classical contrast analyses, one can capitalize on
the multivariate nature of the signal in multi-voxel analyses to
investigate action planning. For instance,MVPA canmeasure the
evolution of the action plans involved in the biased competition
by revealing the temporal dynamics of decoding efficiency for
distinct predictive cues (for a similar method inmonkeys see Gail
and Andersen, 2006).

In order to avoid misinterpretation, two methodological
points related to our findings must be raised. First, participants
fixated a central cross during cue presentation, like in monkey
studies (Klaes et al., 2011). Indeed, overt attention modifies FEF
activation (Premereur et al., 2015) that may in turn influence
motor activity in the aforementioned neighboring ROIs recruited
for button pressing. By controlling that gaze position and eye
blinks during cue presentation were similar across conditions,
we ensured that cue-related biased motor activity was not caused
by overt spatial attention or eye-movement related artifacts
(see Lindner et al., 2010; Kok et al., 2012). Also, cues (left
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FIGURE 3 | (A) Left functional ROI (green) and its overlap (cyan) with left primary motor cortex (M1) anatomical inclusive mask (blue). (B) Right functional ROI (green)
and its overlap (cyan) with right M1 anatomical inclusive mask (blue). Depicted on both upper graphs are the mean parameter estimates of the left-cue and right-cue
events extracted from both motor ROIs for each trial type. The graphs show a clear interaction between M1 side (left, right) and trial type (∗∗∗p < 0.001). Activity
before movement onset in contralateral M1 increases as the competition is biased in favor of a specific button press relative to activity in ipsilateral M1. Depicted on
both lower graphs are the mean parameter estimates of the double-cue and no-go-cue events extracted from both motor ROIs for each trial type. No differences
were observed between double-cue and no-go-cue elicited activity. Error bars on all graphs denote the standard error of the mean.

and right squares) were presented close to the fixation point
allowing participants to process cues without eye movements.
Second, one may be concerned that activity from PMd leaked
to M1 due to spatial smoothing or group averaging artifacts.
However, a careful look at the ROIs in Figures 3A,B suggest
that this is unlikely. The functional ROIs do not overlap with
PMd, and if anything are actually posterior to the M1 anatomical
mask. Furthermore, we exclusively looked at activation in the
conjunction between the functional ROI and motor anatomical

ROI. Together, these facts render it highly unlikely that our
data is influenced by leakage of PMd activity. We can thus be
confident that our data reflect M1 activity.

M1 dynamics showing higher activity for predictable
upcoming button presses may account for faster RTs for
upcoming actions. Indeed, a possible interpretation of our
results is that biased competition operates as a push-and-pull
mechanism leading to normalized activity, as in competitive
networks (Wang, 2002; Cisek, 2006; Wong and Wang, 2006).
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FIGURE 4 | Functional connectivity (psychophysiological interactions, PPIs). (A) Brain areas in which activity is more tightly coupled with activity in the source motor
cortex area in the double-cue event than in the no-go-cue event. Both the left and the right Seeds of interest (SOI) showed coupling with the fronto-parietal network.
The left SOI was significantly coupled with the right and left MFG, SPL, and SMA. Similarly, the right SOI was coupled with the right and left MFG, left PMd, and SPL.
(B,C) Similar as 4A for the contrasts double-cue > left-cue and double-cue > right-cue, respectively. As revealed in the figures, double-cue trials have a stronger
coupling with the fronto-parietal network than left/right-cue trials. Note however that the coupling is decreased for the double-cue > right-cue trials. Functionally
connected areas are displayed at punc < 0.0001. Color bars represent t-statistic levels.

In such networks, neuronal populations firing in favor of a
specific button press compete through mutual inhibition, biased
by the predictive cue. When participants plan for (or avoid)
two equally probable upcoming button presses, the activity of
each response option normalizes to half of the activity evoked
by a single upcoming action plan. Similarly, when the task
at hand involves three potential actions, activity normalizes to
approximately a third of the original activity, and so on with an
increasing number of potential actions. In line with this view,
Praamstra et al. (2009) have shown that the amplitude of the
lateralized readiness potential during movement planning was
lowered as more potential actions were involved in the task at
hand. However, when cues bias the competition for a specific
action plan, then activity in favor of that action plan will increase
whilst activity for the competing plan(s) will decrease. Hence, the
response threshold will be attained faster for more predictable
actions, yielding faster RTs. Such a competitive mechanism
may take place through interhemispheric inhibitory connections
between primary motor cortices (Duque et al., 2007). In value-
based decision-making, this mechanism has been observed by
Pastor-Bernier and Cisek (2011) when monkeys have to choose
between two equally or unequally rewarded reaches (see also
Bastian et al., 2003). This implies that the state of M1 activity is
dynamical. This contrasts with the idea that the default state of
M1 activity in our task is to represent two potential actions. If this
was the case, we would not have observed different connectivity
profiles between double-cue and no-go-cue trials. Furthermore,
the difference in RT between double-cue and left/right-cue trials
indicates that participants sustain action plan(s) in a manner that
fits the abovementioned mechanism. Indeed, if participants had
not maintained action plans during the long delay period, we
would have expected RTs to be similar in both trial types.

Electroencephalography (EEG) studies suggest that
when predictive information signals participants which of
two competing button press is required, beta (15–30 Hz)
synchrony between the ipsilateral M1 (i.e., EEG signals) and
the non-selected hand response (i.e., electromyographic signals)
is up-regulated prior to movement execution (van Wijk et al.,
2009; see also Kilner et al., 2005). Hence, because previous
research showed that such an up-regulation is also present when
participants must withhold movement (Alegre et al., 2004; Zhang
et al., 2008), it was recently suggested that increased corticospinal
beta synchronization can bias the competition between potential
actions by inhibiting the non-selected hand response (van Wijk
et al., 2012).

Using a reaching task, we have recently shown that the state of
the biased competition keeps evolving until very late in the reach
movement (Calderon et al., 2015). In other words, the biased
competition signals in M1 do not stop evolving after movement
onset, but remain in constant evolution. Relatedly, Selen et al.
(2012) provided evidence for a continuously evolving decision
variable in the human motor system. In their study, participants
had to judge the motion direction of a random dot display by
moving a handle towards one of two target options. At different
time points (i.e., different amounts of accumulated evidence) the
arm of the participants was perturbed. The authors observed that
the magnitude of reflex gains (i.e., muscle contraction responses
when the muscle is stretched) correlated with the amount of
evidence in favor of a specific evolving decision. In particular,
as evidence in favor of a specific target option increased, so
did the magnitude of reflex gains in the arm corresponding
to that option. Thus, it was concluded that the motor system
is recruited before a decision is completed. In the same vein,
Donner et al. (2009) showed (using magnetoencephalography)
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that during a visual motion task in a random dot display,
power in gamma and beta frequency ranges in the M1 could
predict upcoming choices, i.e., report the presence or absence
of motion. Specifically, as evidence accumulation unfolded
throughout the trial, power in the beta/gamma frequency
band dynamically decreased/increased, and the predictability of
reporting the presence or absence of motion increased with
evidence accumulation. In line with these results, we show
that, compared to weaker information, stronger information in
favor of a specific action induces higher/lower activity in the
contralateral/ipsilateral M1. Altogether, these studies and the
present work suggest that action selection is a continuous process
that emerges from a biased competition up to M1.

Our data allow making tentative predictions for
understanding neuropathological disorders. Indeed, one
can predict that patients with lesions at the level of M1, or
M1 efferent pathways, would demonstrate disturbed action
planning abilities. Although our data do not strictly support that
M1 is implicated in decision-making, this idea is defended in the
ACH. Hence, under this view, lesions in M1 should also impair
decision-making abilities. Obviously, patients with damaged to
M1 regions do not demonstrate strong and obvious decision
making deficits. Rather, the ACH implies that such patients
may demonstrate subtler decision making inabilities, depending
on the extent and severity of the lesion. Interestingly, this is
exactly what was observed in recent work (Stewart et al., 2016)
where stroke patients with lesions in efferent pathways of right
M1 regions displayed a significantly lower proportion of correct
visually guided action selections in comparison to age-matched
control participants. However, the proportion of correct action
selections in stroke patients was still far largely above chance
level. Furthermore, Derosiere et al. (2015) instructed participants
to perform button press decisions that were not merely based on
perceptual processes, but also on value-based processes. Using
continuous theta burst stimulation (cTBS) to disrupt M1 activity,
they observed that participants’ valued-based decisions were
not optimal (i.e., compared with control participants), when
the left M1 was virtually lesioned (see also Zénon et al., 2015).
These studies suggest the causal involvement of primary motor
regions not only in action planning, but also perceptual and
value-based decision-making. In sum, although the ACH is not
clinically oriented, it may be used as a theoretical framework
for understanding a series of neuropathological disorders and
potentially implementing specific treatments by targeting the
neural subsystems responsible for a given process within the
decision making machinery.

It has been proposed that ‘‘embodied’’ decision making
has an ecological advantage mainly in environments affording
decisions between actions rather than abstract choices. In the
wild, monkeys are prone to make primarily decisions between
actions (e.g., what branch to jump to in order to escape a
predator) rather than between abstract choices, unlike humans
who may e.g., choose where to go on vacation. Thus, decision
making in monkeys may ultimately be reduced to plan afforded
actions and select the relevant one. Relatedly, as suggested by
Rorie and Newsome (2005), ‘‘perhaps humans have evolved
a more abstract decision-making module that is functionally

separate from the motor effector systems that prepare and
execute responses. For monkeys it may be the case that to
see and decide is, in effect, to plan a motor response. For
humans, on the other hand, the link between decision and
action may well be more flexible, permitting longer lead times
and more sophisticated processing between decision and action’’
(p. 43; see also Heekeren et al., 2004; Ho et al., 2009). In
line with the ACH, our study suggests instead that cognitive
information leaks up to M1. Hence, at the very least some
dynamics proposed in the ACH apply to humans too. However,
our study allows us to make such a statement for visually guided
action planning. Whether more complex human decision-
making involving reward probability (Yang and Shadlen, 2007;
Kira et al., 2015) or preference judgments (Padoa-Schioppa
and Assad, 2006), is based on the dynamics proposed in the
ACH, remains open for future research (but see Derosiere et al.,
2015).

Action planning and selection has mainly been tested within
the domains of neuro-economics (i.e., choosing between two
goods; e.g., Rangel and Clithero, 2012) and perceptual decision-
making (for review see Heekeren et al., 2008; Forstmann et al.,
2016). By means of contrasting events related to the presentation
of goods or specific visual displays, fMRI studies from these
domains have yielded clusters of activity in brain regions separate
from those involved in implementing the action linked to the
decision. In turn, it was suggested that decision-making stemmed
from computations in these regions without considering the
involvement of sensorimotor regions. Here, based on predictions
of the ACH, we instead directly investigated the neural correlates
of biased competition at the M1. We suggest that future studies
should consider M1 involvement in human action planning and
selection.
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