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Abstract As privacy concerns among consumers rise, service providers in-
creasingly want to provide services that support privacy enhancing technolo-
gies. At the same time, online service providers must be able to protect
themselves against misbehaving users. For instance, users that do not pay
their bill must be held accountable for their behavior. This tension between
privacy and accountability is fundamental, however a tradeoff is not always
required. In this article we propose the concept of a time capsule, that is,
a verifiable encryption with timed and revocable decryptability. The time
capsule together with its related protocols offer support of privacy while
retaining strong accountability. In our scheme an honest user may enjoy full
anonymity, but dishonest users who do not pay their bill have their identity
revealed. In contrast to existing revocable anonymity systems, our proposed
scheme requires less trust in an external authority, while simultaneously
making accountability easier (and less costly) to achieve.
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Introduction

As consumers become increasingly aware of privacy issues, and as identity
theft gains visibility as a leading threat, consumers will demand privacy support
from their service providers. As this demand and legislative pressure grows
(e.g., privacy act), a wide range of providers are potentially effected. For
example provision of television and video content, online gaming, news and
other articles may need to be executed while taking great care with users’
personal data. Privacy experts recommend for such cases a principle of least
information, in which services only gather data for which there is a critical
business need. (This is a privacy focused reformulation of the principle of
least privilege Saltzer and Schroeder 1975). By not holding data which they
don’t need, service providers are further protected against the dangerous
possibility of a data leak which would expose them to bad PR and potential
legal action. Furthermore, there are already laws in some jurisdictions that
prevent providers from gathering certain personal data entirely.

At the same time, however, commercial service providers require account-
ability. On the most basic level, a commercial service needs to be paid, and
must have the ability to identify and take action against users who do not pay.
For example, by permitting anonymous use of a service provided that identities
may be revealed when necessary. A common approach to this scenario is that
used by identity escrow systems (Kilian and Petrank 1997).

In identity escrow a trusted third party such as a court of law is entrusted
with de-anonymization keys. Users enroll with their service provider anony-
mously, but give the provider a form of their identity which is encrypted to
the court. In a dispute, the service provider can ask the court to decrypt this
sealed identity to hold the user accountable for improper actions such as non-
payment.

There are several problems with traditional identity escrow which we
examine further in the body of this article. Most of these problems have to
do with the large amount of trust placed in a single trusted party, and the
commensurate cost of interacting with that trusted part. Succinctly: There
is a significant cost in time, money, and liability to dispute a user action in
court. In our scheme we use a novel cryptographic protocol based on a new
construction called a time capsule to address these concerns. Our protocol
can enforce conditions such as a time by which a payment must be made,
and can enforce that the service provider learn a user’s identity if payment
is not made by this time. In contrast to identity escrow, however, trust is split
between multiple parties with well defined business rolls. The reduced trust in
the individual trusted parties means that the trusted parties do not need to be
governmental authorities. In fact, we will see that some of the trusted parties
may be entities like banks, and our protocol requires only the sort of trust that
we would already place in a bank. A further contribution of our protocol is that
most parties in the system remain oblivious to user identities and hence could
not discriminate different users. Thus this promoting privacy further than is
possible with identity escrow.
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Our contributions in this article are:

1. Examine and formalize the problem of accountable privacy enabled
service provision.

2. Propose the time capsule and its related transactions as an improved
method of accountability for such services.

3. Show that the time capsule permits identification of a user if and only if
they fail to fulfill a contract by the end of the grace period.

4. Contribute an analysis of possible trust models for such a system and a
realization of the time capsule with a relaxed trust model compared to the
traditional identity escrow.

In the remainder of this article we examine the background and problem
of accountable privacy enabled service provision. We consider at a high
level our proposed construction, the time capsule, and its related protocols.
We make a concrete problem statement, and formalize the requirements of
accountable privacy enabled services. We provide cryptographic background
and a technical overview of our construction and its protocols. Finally we
consider related work and conclude.

Privacy supporting services and identity escrow

Privacy supporting services

To examine the problem of privacy supporting service provision we will use
online television broadcasting as an illustrative example. Let us start with
a broadcaster that does not need accountability: a public television station.
Figure 1 shows a citizen of Elbonia enrolling with the Elbonian Public Broad-
casting (EPB) online service. As is common in several countries, licensing
restrictions in Elbonia are such that video content that has been shown over
traditional television distribution on EPB may also be streamed online to any
Elbonian citizen, but should not be available online to non-citizens. Elbonian
rules also state than only citizens over 16 years of age should have full access,
since some content may be rated for mature viewers. The technical challenge
here is for the service provider to enroll a user while ensuring these two
constraints and learning no additional personal information about the viewer.
Once this challenge has been solved, the user is awarded a service token

Fig. 1 A user enrolls with a
service provider, proving
some things about herself
and receiving a token for
subsequent access to online
content

Age > 16
Citizen = Elbonian

Anonymous Service Token SPU
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that permits subsequent access to the service in an anonymous manner. This
completes enrollment.

It is important to note that the challenges of secure content delivery are
orthogonal to the challenge of secure and privacy preserving account manage-
ment we consider in this article. In other words, how the user uses the token to
obtain content, and how that content is protected against the user’s sharing it
with others is a well studied problem separate from the problem of initial user
enrollment.

Anonymous credential systems exist that provide methods to achieve a wide
range of accountability and privacy goals (Camenisch and Lysyanskaya 2001,
2004; Camenisch and Herreweghen 2002; Camenisch et al. 2006). In particular
anonymous credentials systems already have the capability to selectively dis-
close statements about a user, e.g., proving the user’s age without revealing the
user’s actual date of birth. A critical feature of such a system is user-centricity;
that is the user chooses exactly what personal data will be revealed before
participating in a credential transaction. This empowers the user with choices
about which of their personal data to disclose to whom.

In our example, the Elbonian passport is issued together with an anonymous
credential in which the government certifies the user’s date of birth and
citizenship. Due to the nature of anonymous credentials, the user can now use
her passport to complete the enrollment shown in Fig. 1. The resulting token
issued to the user may be another anonymous credential, in which case the
user’s subsequent content access is fully anonymous due to the unlinkability
property of anonymous credentials. Thus Elbonian Public Broadcasting is a
privacy preserving service provider that nevertheless can enforce restrictions
based on user personal data.

Accountability with identity escrow

Whereas a public broadcaster may only need to enforce restrictions at enroll-
ment, typical private broadcasters may need to enforce contract provisions
such as payment. Figure 2 shows a user enrolling with a private broadcaster in

Age > 16
Citizen = Elbonian

Anonymous Service Token

Enrollment Dispute
U SP TTP

Fig. 2 A user enrolls in a service in a privacy preserving manner, but provides a sealed verifiable
encryption of her true identity. This sealed identity can be opened by the authorities in case of a
dispute
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Elbonia that has the same enrollment requirements as the previous example,
yet will have additional accountability requirements.

Anonymous credentials, such as the one on the Elbonian passport, can
operate together with the complementary primitive of verifiable encryption
(Camenisch and Shoup 2003). Together these technologies can provide ac-
countability without infringing on privacy requirements through a protocol
known as identity escrow. In identity escrow a user U can encrypt her true
identity to the authorities, provide this encrypted data to a service provider
SP, and convince SP with a zero-knowledge proof of knowledge that this
encrypted data contains a valid user identity that can be opened by the
authorities.

In our example, as a condition of enrollment the user provides an encrypted
copy of her complete passport data. This passport data is encrypted such that
it may only be opened by order of the court, which holds the decryption key.
For instance if the user fails to pay her bill by a specified time, the service
provider can open up a case with the court, provide the court with the sealed
passport, and ask for the passport to be unlocked. Even though accountable
and privacy-preserving identity management methods for services are already
possible with a monolithic and fully trusted third party, we propose to rethink
the corresponding primitives to better meet the actual needs of services.

Of particular concern is the role of the “authorities”. In general, in crypto-
graphic protocols we call the party taking on the role of the authorities the
trusted third party (TTP). It is reasonable in many protocols to trust some
particular party to perform some action (such as providing its public key
honestly), or to refrain from some action (such as publicizing its secret key).
A problem with traditional identity escrow is that the TTP requires too much
trust, which is why it is usually cast as a law enforcement entity. This presents
three challenges:

1. With a fully trusted TTP there is no graceful degradation of privacy
and security should the TTP become compromised. In particular, identity
escrow permits the TTP to learn the identity of all users, and in some
implementations to maintain a database of all transactions users engage
in within the system (The TTP learns too much).

2. A malicious service provider holding a verifiable encryption may attempt
to betray the user by opening a decryption case at the TTP without good
cause. (The TTP alone resolves disputes).

3. Honest service providers find the traditional system encumbering because
of the need to involve such highly trusted authorities for even minor
dispute cases. For example, to bring a case to law enforcement in the real
world is likely to have a non-trivial cost, both in the time required, and
in support from legal council. Since the high trust in a monolithic TTP
is external to the protocol, disputes must likewise be brought outside the
system for resolution.

To address these challenges we aim at breaking up the functionality of the TTP
into several sub-functionalities and then distribute these to several designated
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trusted parties. Furthermore, to address the last challenge we aim to support
resolution of disputes within the system; without or at least with less reliance
on outside processes.

Time capsule

To improve on accountability beyond what is possible with traditional identity
escrow we propose the time capsule and its related protocols. The time capsule
construction when used together with a privacy preserving identity system
permits semantically rich service access policies while keeping a chosen portion
of a user’s identity secret. This secret data (such as full name or passport
number), can be revealed only under circumstances (such as an overdue
unpaid bill) and will only be revealed to the relevant service provider.

Our scheme requires less trust in a single third party, which simultane-
ously provides stronger privacy for the user, and a lower cost to the service
provider for obtaining accountability when the user misbehaves. Additionally
our scheme provides end-to-end unlinkability of users such that transactions
cannot be linked with one another except for when a service provider learns
the identity of a misbehaving user. Even in this case only the service provider
learns the identity in contrast with traditional identity escrow. Further, because
of this unlinkability property it is impossible for any entity in the system to
provide preferential treatment to a chosen user, or to target a chosen user for
an attack.

We will show that these properties provide a system that addresses all
three of the above mentioned challenges in existing privacy supporting service
provision. Greater detail follows in the body of this paper, but at a high level:

1. Our revocation authority RA is a weaker TTP that cannot link user’s
transactions within the system. If the RA becomes compromised it is still
restricted in what information it can reveal.

• RA cannot learn any information about the user before the user’s bill is
past due.

• RA processes only blinded information.
When an anonymity revocation is requested by a service provider, RA
only knows that it is checking the key for a legitimate transaction, with-
out knowing which transaction or which user. Therefore, RA cannot
block requests selectively or collude against any specific user.

• Even when the bill is past due, and the user has not paid it, RA cannot
link this fact to any particular contract or user.

2. Our system contains a mechanism for verifiable, yet privacy supporting,
proof of fulfillment of the contracted terms of the service. The RA can
easily detect an unfounded request for opening an encrypted identity, and
will not service such requests.
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3. Our system permits automatic identity revocation in the event that a con-
tract is not fulfilled by the user. Because the contract satisfaction condition
can be machine verified, external authorities such as law enforcement do
not need to be involved.

We achieve these goals by introducing a special kind of verifiable encryption
called a time capsule, represented by Θ . The time capsule has the following
properties:

• Θ is issued by the user to the service provider at time α and set not to open
till time event ω.

• The service provider is convinced in zero-knowledge that the time capsule
contains the expected piece of data (say, the user’s certified identity)

• Beginning with time ω, the service provider can decrypt the time capsule
(say, if after a payment grace period of a month).

• If the user fulfills a revocation condition before time event ω, the service
provider cannot decrypt the time capsule (say, if the user has fulfilled her
payment obligation).

For ease of discourse we treat “time” as real clock time, but it should be noted
that without loss of generality any other ordered sequence of events suffice for
“time”, which may be determined by the system implementation.

The time capsule improves on the general verifiable encryption primitive
by becoming sensitive to external events. For time events, the verifiable
encryption becomes capable of implementing statements of linear temporal
logic.

Problem statement

Concrete scenario

We pursue our discussion of accountable and privacy-preserving identity
management for services with a concrete example to illustrate the needs of
different entities, and how those needs may be met. First, let us name the
principles that interact in our example system (illustrated in Fig. 3):

Identity Provider (IDP, not shown) issues identity credentials to a user. The
IDP could be a passport authority or similar. This entity is well described by
existing literature such as Camenisch and Lysyanskaya (2001, 2004) and will
not be discussed further here.

Service Provider (SP) provides privacy supporting services to users.

User (U) holds identity credentials issued by the IDP and attempts to use a
contracted service of SP.
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Fig. 3 Relationship diagram of the principles in our accountable privacy enhancing service
provision scenario. (Not shown: The Identity Provider that certifies an anonymous credential (e.g.,
passport), the Bulletin Board.)

Time server (TS) issues a stream of time symbols ti at regular intervals.

Satisfaction Authority (SA) the authority that determines when the satisfac-
tion condition of a contract is fulfilled and issues a satisfaction token. For
example, in the case when the satisfaction condition is payment of a bill, SA
could be a bank, and the satisfaction token would be a receipt with which to
prove payment.

Revocation Authority (RA) the authority that manages the keypairs used to
encrypt and decrypt time capsules. U may communicates with this authority in
order to encrypt a time capsule, and SP must communicate with RA in order
to attempt opening of the time capsule.

Bulletin Board (BB, not shown) A public forum in which items posted are
available for anyone to download. The BB in our system is used to post
satisfaction tokens by which the user proves payment.

In our example scenario a user U obtains a service from a service provider
SP. The user proves that they have an identity attested to by identity provider
IDP in zero-knowledge, which proof alone does not identify the user. This
proof is sealed in the form of a time capsule, allowing the identity to be
revealed at a later time under exacting circumstances. The crux of our scenario
is that if U behaves properly (pays her bill on time) then U enjoys anonymous
service. Furthermore all of U’s transactions in which U has behaved honestly
are unlinkable: they cannot be shown to be connected to one another, nor
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can they be shown to be associated with the same identity. If, however, U
misbehaves, SP has recourse to de-anonymize the service contract through
communication with a revocation authorityRA. This revocation authority does
not know the identities of users in the system, but has the ability to take the
record of an anonymous service contract and combine it with information from
a predetermined time server TS and satisfaction authority SA to determine a
key which will then allow SP to unlock the identity sealed into the service
agreement.

In our scenario, a user U has a relationship with an identity provider IDP
from which it has obtained identity credentials.Uwants to anonymously access
a service provided by SP. The SP permits anonymous or pseudonymous
contracts for service, yet, wants to ensure that he can hold the user accountable
in cases of dispute. SP requires a dead pledge in the form of a time capsule Θ

through which he can obtain U’s true identity if U fails to pay for the service.
Thus, the dead pledge Θ can be opened making U’s identity accessible to SP
after a well-defined grace-period.U on the other hand has the requirement that
all her transactions shall be unlinkable provided that contracted obligations are
fulfilled before the end of this grace period. OnceU has fulfilled her obligations
the service provider shall no longer be able to learn her true identity.

Requirements

Verifiability At the conclusion of an enrollment transaction, the service
provider receives a time capsule Θ . The service provider must be able to
securely determine the following before service is granted:

1. Θ contains an identity certified by IDP.
2. Θ can be opened by SP if payment has not been made by time tω.

End to End Unlinkability If the revocation condition occurs before tω then
no principal will be able to link the user’s transactions together nor link any
transaction to a specific user. This is a stronger notion of privacy than currently
offered in existing systems.

Accountability If the user does not fulfill the revocation condition before time
ω, the SP must be able to open Θ and retrieve U’s identity

Privacy

• Before the predetermined release time ω no principal can decrypt Θ .
• If the user fulfills the revocation condition before time ω, neither the SP

nor any other principal will be able to open the sealed identity.
• If the user does not fulfill the revocation condition before time ω, only SP

can open Θ .
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Trust model

TS is trusted to:

• Release time symbols ti sequentially and on time
• Not reveal any ti for an i that has not yet occurred.

RA is trusted to:

• Not reveal it’s own secret key skRA

• Not reveal any secret time capsule key skΘ if it detects that the time
capsule’s contracted revocation condition has occurred.

• To reveal skΘ if the revocation condition has occurred.
• Note that we do not need to trust that the RA will not reveal skΘ be-

fore the contract has expired, this is cryptographically enforced.

IDP is trusted not to reveal its secret key, and to correctly sign identities
which it endorses.

SA is trusted to honestly report when payment has occurred.
BB is trusted to report all items posted on the bulletin board (although this

can also be checked by the user)

System definition

We define a time capsule system to be a system that supports the following
transactions while obeying the requirements of outlined above. Some of the
transactions are illustrated in Fig. 3.

We use the following notation to define the transaction’s interface. An non-
interactive interface specification consists of a procedure Transaction, inputs
and outputs.

(outputs) ← Transaction(inputs)

This means that a certain Transaction is called with an input tuple inputs. A
successful execution of the Transaction will result in an output tuple of the
form outputs. The textual specification may specify further outputs for failure
cases.

An interactive interface specification defines protocols with multiple princi-
pals involved. By convention, we use verbatim font for principal names, such
as user U or service provider SP. An interactive interface specification names
the inputs and outputs of all principals involved together with the principal’s
name:

(U(outputs),SP()) ← Transaction(U(),SP(inputs))
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This Transaction is between a user U and a service provider SP, where U
does not provide any inputs and receives the output tuple outputs. The service
provider SP provides inputs and does not receive any output.

Setup: (U(idU,RA)RA()) ← Setup(U,RA)

RA issues a unique pseudonym idU,RA to user U, which
can be used for multiple service contracts within the
system. This value is used only in blinded form, thus
multiple transactions with this same pseudonym are
unlinkable.

Enrollment: (U(idsat),SP(Θ)) ← Enroll(U(idU,RA, idU,I DP),SP)

During enrollment the user makes a contract with the
service provider, receives a token that permits use of
the service, and leaves the user with a mechanism to
prove fulfillment of the contract (payment). It leaves
the service provider with a time capsule Θ that can be
opened later to identify the user if the contract is not
fulfilled.

Satisfaction of Revo- (U(tok(idsat
′), idsat

′), SA(idsat
′)) ← Satisfy(U(idsat

′),
cation Condition: SA(skSA))

The user invokes this protocol to fulfill her contract
(pay her service bill). The satisfaction authority (the
bank) provides a secure receipt that the user later
publishes to prove payment of the bill. The receipt is
blinded such that it can prove payment for the transac-
tion without revealing the identity of the user.

Publish: () ← Publish(U(tok(idsat
′), idsat

′),BB)

By publishing the receipt of payment the user prevents
the service provider from being able to reveal her
identity.

Check: (RA(tok(idsat
′)),BB()) ← Check(RA(idsat

′),BB(idsat
′))

The revocation authority RA checks for revocation of
Θ by searching the BB for the secure receipt, and
verifying that it is a correct payment for the correct bill.
If a receipt is found and verified then the check suc-
ceeds, indicating that revocation has occurred and the
contract is complete. In other words, if check succeeds
then Θ should never be opened.

Open: (SP(skΘ), RA(), TS()) ← Open(SP(Θ), RA(skRA),

TS(Ti))

In the open transaction the service provider attempts
to gain knowledge of the user’s real identity. The SP
requests this knowledge by providing the revocation
authority with a designated portion of the time
capsule. If the user has not payed their bill, and the
bill is overdue, the revocation authority will be able
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to extract the secret key that unlocks the rest of the
time capsule. If the user has honestly paid her bill,
however, this transaction will not succeed, and the
service provider learns nothing.

On network disruption

In this article, due to space constraints, we do not fully consider the interesting
effects of network disruption on our system. It is important to note that
in implementing any system such as ours the system designer has many
choices to make with respect to handling of network disruption, and that such
choices have profound impact on the behavior of the system. For example,
the implementers may set up the system such that if an adversary performs a
denial of service attack upon SA, that RA should not reveal any time capsule
keys for time capsules bound to SA. This protects against some attacks, for
example an attack aiming to identify a user by claiming non-payment and
obscuring the fact of payment through making the SA inaccessible. At the
same time, it opens the system to other attacks: e.g. preventing legitimate
identification of non-paying users. In these simple cases, the design choice of
“fail-open” or “fail-closed” have obvious implications. In more complicated
cases, sophisticated targeted service disruption could aid in traffic analysis in
ways similar to analysis of anonymous communications networks (Back et al.
2001; Serjantov et al. 2002).

Impossibility result

We believe that given the trust model outline above, an external trusted entity
is required for accountability of anonymous access. We consider three argu-
ments for necessary conditions for a timed and revocable verifiable encryption.
We analyze the requirement of a trusted clock, a revocation authority, and the
nature of their information flow.

First, let us analyze the need for a trusted clock. As we do not trust the
service provider, it may manipulate its local clock. Thus, the system requires at
least a trusted clock publishing user-independent immutable time events.1 This
result accounts for the involvement of the time server TS and the value TS(ti)
in the Open() transaction. It is a necessary condition for any system with the
given privacy requirements outlined in the Requirements section. For a time
capsule system that only permits decryption after time event ω has passed, this
is sufficient.

Second, we turn to the requirement of a partially trusted revocation au-
thority. A trusted clock solely publishing user-independent time events is not

1This may be either realized by an explicit time server TS as defined in the system interface above
or by a distributed system of trusted clock components at each principal.
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sufficient for a system that accepts a revocation condition. Let us assume
there exist two systems with identical state apart from the fact that a user’s
verifiable encryption is revoked in one system and valid in the other. Thus, the
information obtained by the service provider in the Open() transaction must
convey at least one bit of information indicating whether a user’s verifiable
encryption is revoked or not. If the service provider SP interacts solely with
the user-independent time server TS, the system cannot fulfill this necessary
condition. By this information flow argument, we realize the need to assume
an additional principal RA that

• holds a revocation state, and
• creates a decryption event that is impacted by user-specific information

flow.

Third, we can also determine the nature of the information flow to the
service provider SP by a generic argument. Because we do not trust the service
providerSP, we assume it may ignore arbitrary pieces of information or rewind
its internal state. The piece of information provided by the principal RA in the
Open() is therefore necessary for the decryption of the verifiable encryption.
That is, it must contain a secret piece of information without which the
verifiable encryption cannot be decrypted up to the security of the underlying
encryption method. The service provider SP could otherwise neglect this
piece of information and decrypt the verifiable encryption anyway.

It therefore is a necessary condition that a trusted entity governs the
revocation process and holds imperative decryption information confidential.

Cryptographic building blocks

We build our system on top of several cryptographic primitives. We present
them in an overview and derive how their properties can be composed to fulfill
our problem statement.

In general, we follow the approach to define all our building blocks bottom-
up. We start with the mathematical assumptions that guarantee the security
of the higher building blocks. The first such foundation is the Strong RSA
assumption.

Secondly, we introduce two basic primitives that elevate these assumptions
to simple security goals:

Integer Commitments allow a user to bind herself to a chosen integer value
without disclosing the value, comparable to a sealed envelope.

Zero-Knowledge Proofs of Knowledge allow a verifier to convince a prover
without doubt that the verifier knows a secret x without leaking any informa-
tion about x.
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The third layer contains three higher cryptographic primitives, which build
on top of the basic primitives and realize complex service interfaces:

The Camenisch-Lysyanskaya (CL) Signature Scheme is an advanced form
of electronic signatures that enables a signer (a) to certify attribute values
and messages as part of the signature itself and (b) to render the signature
unlinkable over multiple transaction. CL-signatures are particularly adequate
to certify a user’s identity information (including the identity attributes in the
signature itself).

Identity-Based Encryption allows a sender to encrypt messages to the identity
of the recipient, be it the recipients e-mail address or a unique user identifier.
For instance, a reader of this paper could encrypt a message to the author’s of
this paper by using the respective e-mail address as encryption key.

Verifiable Encryption allows a sender to encrypt messages to a third party
and convince a verifier of attributes of the encrypted message. For instance,
a user may encrypt the data of her credit card towards the clearing house or
bank. The verifiable encryption allows a vendor to validate that the encryption
indeed contains the true credit card data of the user even if the vendor cannot
access the decryption key.

We use the notation from Section System Definition as language to specify
the interface of the cryptographic building as well. Recall that we distinguish
between non-interactive and interactive interfaces. Non-interactive interfaces
are specified without principal names. Such transactions can be called by a
single principal:

(outputs) ← Transaction(inputs) .

Interactive interfaces specify transactions between multiple principals and
name the corresponding principals with their inputs and outputs. Let us
recall the example of a user U and a service provider SP executing a simple
interactive transaction:

(U(outputs),SP()) ← Transaction(U(),SP(inputs)) .

Assumptions

Cryptography founds its security claims upon mathematical problems that are
widely assumed to be particularly hard to compute. “Hard to compute” means
that an adversary playing to win against the problem only has a negligible
success probability and will fail in the vast majority of cases. Cryptographic
primitives build upon those assumptions by proving reductions: if an ad-
versary can break the cryptographic primitive with a non-negligible success
probability, then the adversary can also defeat the underlying mathematical
assumption.
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Strong RSA Assumption (Rivest et al. 1978; Fujisaki and Okamoto 1997)
Given an RSA modulus n and a random element g ∈ Z

∗
n, it is hard to compute

h ∈ Z
∗
n and integer e > 1 such that he ≡ g mod n. The modulus n is of a special

form pq, where p = 2p′ + 1 and q = 2q′ + 1 are safe primes.

Integer commitments

Integer commitments bind the user to a value and make it impossible to alter
the value later-on. One can imagine the user to put the committed integer in
a locked box and give it to the verifier. It prevents the value’s disclosure and
alteration. The user retains the possibility of opening the commitment, that is,
revealing the value later.

Recall the Pedersen commitment scheme (Pedersen 1992), in which the
public parameters are a group G of prime order q, and generators (g0, . . . , gm).
In order to commit to the values (v1, . . . , vm) ∈ Z

m
q , pick a random r ∈ Zq

and set

C = Com(v1, . . . , vm; r) = gr
0

m∏

i=1

gvi
i .

Damgård and Fujisaki (2001) show that if the group G is an RSA group and
the committer is not privy of the factorization of the modulus, then in fact the
Pedersen commitment scheme can be used to commit to integers of arbitrary
size.

We specify an abstract interface for integer commitments:

(C) ← Com(v1, . . . , vm; r)

for values vi and a random number r produces an integer commitment C on
the values vi

Known discrete-logarithm-based, zero-knowledge proofs

Zero-knowledge proofs of knowledge allow a prover to convince a verifier
that the prover knows a secret x without leaking information about x. For
instance, a user can prove that she knows an—otherwise secret—credit card
number. Zero-knowledge proofs of knowledge are a versatile primitive of
recent cryptographic research that can easily be extended to prove equality
and intervals of values or to prove elaborate logical formulas involving AND
and OR statements.

In the common parameters model, we use several previously known re-
sults for proving statements about discrete logarithms, such as (1) proof
of knowledge of a discrete logarithm modulo a prime (Schnorr 1991) or a
composite (Fujisaki and Okamoto 1997; Damgård and Fujisaki 2001), (2) proof
of knowledge of equality of representation modulo two (possibly different)
prime (Chaum and Pedersen 1993) or composite (Camenisch and Michels
1999b) moduli, (3) proof that a commitment opens to the product of two other
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committed values (Camenisch and Michels 1999a; Camenisch 1998; Brands
1997), (4) proof that a committed value lies in a given integer interval (Chan
et al. 1998; Camenisch and Michels 1999a, b; Boudot 2000), and also (5) proof
of the disjunction or conjunction of any two of the previous (Cramer et al.
1994). These protocols modulo a composite are secure under the strong RSA
assumption and modulo a prime under the discrete logarithm assumption.

Normally, we use the notation introduced by Camenisch and Stadler (1997)
to express Zero-Knowledge Proofs of Knowledge. For this publication, we
present a simplified notation tailored for a seamless composition with the
service interfaces of our cryptographic building blocks. The interface expresses
a proof of knowledge as follows:

PK({x0, x1, . . . , xn−1} : fn(x0, x1, . . . , xn−1)) .

This notation means a “proof of knowledge that the executing principals knows
a set of secrets {x0, x1, . . . , xn−1} such that the relation fn(·) over these secrets
(and further public inputs) is fulfilled. We propose this notation well aware
that not all relations can efficiently realized by Zero-Knowledge Proofs of
Knowledge. However, there exist efficient realizations for all relevant relations
fn(·) of our cryptographic building blocks. The Zero-Knowledge Proofs of
Knowledge can therefore act as versatile connective between different prim-
itives. Particularly, efficient realizations exist for equality of attributes and
messages, inequality relations, interval range membership, as well as content
of integer commitments, CL-signatures, Identity-based Encryption identities,

and properties of verifiably encrypted messages. We introduce the relation “ !=”
as simplified test whether values are equal or whether a transaction resulted in
a specified output.

Camenisch-Lysyanskaya (CL) signatures

Camenisch-Lysyanskaya is an electronic signature system that allows to (a)
include attribute values and messages in the signature itself and (b) to render
the signature untraceable over multiple transactions. Camenisch-Lysyanskaya
signatures compose exceptionally with Zero-knowledge proofs of knowledge
and integer commitments.

Let us for a moment consider the differences to an traditional electronic
signature. In a traditional electronic signature, the signer signs a message
(say an X.509 certificate) treating the message as an unstructured string. A
standard signature only wraps and binds the message. A CL-signature includes
important attribute values or message parts in the signature itself and renders
them usable for further cryptographic operations. For instance, the signature
could contain the user’s name, date of birth, credit card number. Where a
traditional signature or a corresponding certificate must be revealed in full to
be verified, the CL-signature allows a selective disclosure of attribute values.
Also, the traditional signature on a certificate is a unique bitstring and can be
traced over multiple transactions: whenever the user applies her certificate, she
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leaves a trace. In contrast to this, the CL-signatures guarantee that the user
remains unlinkable even if all other participants collude to attack the user’s
privacy. Thus, the CL signatures provide strong authentication with attributes
and strong privacy guarantees.

Let us recall the Camenisch-Lysyanskaya signature scheme. We intro-
duce their high-level principles in this section and refer to Camenisch and
Lysyanskaya (2003) for a rigorous definition. For this article’s contribution we
do not depend on a deep understanding of the internals of CL-Signatures, but
leverage them as high-level building block.

It consists of two secure two protocols:

(1) An efficient protocol between a user and a signer with keys (pkIDP, skIDP).
The common input consists of pkIDP and C, a Damgård and Fujisaki
commitment as introduced above. The user’s secret input is the set
of values (v1, . . . , v�, r) such that C = Com(v1, . . . , v�; r) (mod n). As a
result of the protocol, the user obtains a signature σpkIDP(v1, . . . , v�) on his
committed values, while the signer does not learn anything about them.

(2) An efficient proof of knowledge of a signature protocol between a user
and a verifier. The common inputs are pkIDP and a commitment C. The
user’s private inputs are the values (v1, . . . , v�, r), and σpkIDP(v1, . . . , v�)

such that C = Com(v1, . . . , v�; r). These signatures are secure under the
strong RSA assumption.

Note how we specify signatures of the Camenisch-Lysyanskaya system:

σpkIDP(v1, . . . , v�)

means a CL-signature σ verifiable under public key pkIDP on the values
(v1, . . . , v�).

Camenisch-Lysyanskaya use the integer commitment primitive Com() in-
troduced above and be accessed by zero-knowledge proofs of knowledge in the
Camenisch-Stadler notation. We provide an additional interface to the scheme:

• (parCL) ← CLSetup(1k)

outputs parameters parCL.

• (pkIDP, skIDP) ← CLKeyGen(parCL)

outputs a public key/private key keypair (pkIDP, skIDP).

• (U(σpkIDP(v1, . . . , v�)), IDP()) ← CLSign(U(pkIDP, C, (v1, . . . , v�, r)),
IDP(pkIDP, skIDP, C))

outputs a CL signature σpkIDP(v1, . . . , v�) on the user’s values (v1, . . . , v�)

to the user U and nothing to the IDP, iff C = Com(v1, . . . , v�, r).

• (U(), V(valid)) ← CLVerify(U(pkIDP, C, (v1, . . . , v�, r), σpkIDP(v1, . . . , v�)),

V(pkIDP, C))

outputs valid to the verifier V and nothing to the user U iff C =
Com(v1, . . . , v�, r). Otherwise, it outputs ⊥ to both principals.
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Zero-Knowledge Proofs of Knowledge easily interact with Camenisch-
Lysyanskaya signatures, particularly, refer to all certified attributes as secrets
for further proofs. A typical proof is structured as follows:

PK({σpkIDP(v1, . . . , v�), v1, . . . , v�} : fn(v1, . . . , v�))

This means the user U can provide a proof of knowledge involving all certified
values vi of the CL-signature σpkIDP(v1, . . . , v�).

Committed blind anonymous IBE

An Identity-based Encryption (IBE) scheme is an encryption scheme that
allows the public key of a recipient to be an identity string id. Examples could
be the recipient’s e-mail address, yet, also the identifier of a service transaction.
We employ a special variant of identity-based encryption that (a) keeps the
identity string id private through-out transactions and (b) provides the identity
as committed value compatible with integer commitments. In general, IBE
schemes rely on a trusted third party, the Key Generation Center (KGC), to
derive the user’s secret key for an identity skid. The function to generate this
secret key from the identity string is called IBEExtract().

We use an IBE scheme with two additional properties: anonymity and blind
extraction. Anonymous IBE as introduced by Abdalla et al. (2005) ensures
that it is infeasible to derive the identity string id to which the message was
encrypted from the cyphertext. Green and Hohenberger (2007) introduced
blind extract IBE, which provides the capability to generate the secret key to
an identity skid in a blinded fashion. Where normal IBE schemes transfer the
identity string in plain text to the Key Generation Center, Blind Extract IBE
keeps the identity id confidential from it.

Camenisch et al. (2008) propose an IBE primitive that combines both prop-
erties. Their Committed Blind Anonymous IBE allows for a blind extraction of
the secret key skid by giving the Key Generation Center a commitment on the
identity string. The user of the system may either disclose partial information
about the identity string or prove statements with efficient Zero-Knowledge
Proofs of Knowledge about the commitment. This may, for instance, convey
statements about linear relations (Brands 1997) or range proofs (Boudot
2000). Clearly, such proofs can be easily combined with proofs over attributes
certified by a Camenisch-Lysyanskaya signature as introduced above. For
instance, the a user can generate a proof of knowledge showing that the
identity id committed in C for the IBEBlindExtract() is actually equally to an
identity attribute in a CL-Signature:

PK({σpkIDP(id), id, C} : C != Com(id, open) ∧ CLVerify(U(pkIDP, id, σpkIDP(id)),

V(pkIDP))
!= V(valid))
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We refer to the system interface of Camenisch et al. (2008):

• (parIBE, msk) ← IBESetup(1k)

outputs parameters parIBE and master secret msk.

• (A(skid),KGC()) ← IBEBlindExtract(A(parIBE, id, open),KGC(msk, C))

generates the secret decryption key skid for a user A’s identity id in
an interactive key issuing protocol between A and the KGC. If C =
Com(id, open), then the user’s output is a decryption key skid and the
output of the KGC is empty. Otherwise both parties output ⊥.

• (ct) ← IBEEnc(parIBE, id, m)

outputs cyphertext ct encrypting m under id.

• (m′) ← IBEDec(parIBE, skid, ct)

outputs message m′ encrypted in ct iff the decryption key skid matches
the id of ct.

We assume existence of two additional functions for the IBE scheme that are
not originally defined in Camenisch et al. (2008):

• (valid) ← IBEVerify(parIBE, id)

outputs valid iff the identity id is suitable to blindly extract the corre-
sponding decryption key skid. This function is used to verify in zero-
knowledge that the identity id is indeed correctly generated.

• (id) ← IBEKeyGen(parIBE, (v1, . . . , v�)

constructs a valid identity/public key string from multiple values vi. The
values may be provided as integer commitment or raw value, say an
partial identity string. This function is dependent on the actual imple-
mentation of the IBE scheme and the internal format of the identity
strings.

Verifiable encryption

Verifiable encryption schemes allow for proving properties about encrypted
data. It allows a sender to convince a verifier of the content of an encryption,
even if the verifier is not privy of the corresponding decryption key. For
instance, a sender could encrypt her true identity towards a trusted custodian
and convince a vendor that the encryption indeed contains the true identity of
the sender.

In their current form, they were introduced by Camenisch and Shoup (2003),
who provided the first efficient construction without resorting to cut-and-
choose proofs. Their contribution focuses on discrete-log problems. It can be
combined with Pedersen’s as well as Damgård and Fujisaki’s commitment
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schemes (Pedersen 1992; Damgård and Fujisaki 2001) and the Camenisch-
Lysyanskaya signature scheme introduced.

Suppose a principal T owns a public key/secret key pair (pkT, skT). Suppose
further that A encrypts a message m under the public key pkT, derives a
cyphertext ct and sends it to B. A can prove a statement about the encrypted
m in an efficient Zero-Knowledge Proof of Knowledge to B, while B cannot
decrypt the cyphertext ct on its own. B may however gain confidence by A’s
proof that the cyphertext ct contains a valuable piece of information that
principal T is able to retrieve. For instance, A may encrypt its own true
identity idA under the public key pkT. It may prove in zero-knowledge that
the cyphertext contains the very same identity string as certified in a credential
A possesses. Then a receiving service B can be confident that it can have T
decrypt the true identity of A if a dispute occurs.

We use the following interface for Camenisch and Shoup’s construction:

• (parVE) ← VESetup(1k)

outputs parameters parVE and a public key/secret key pair (pkT, skT).

• (ct) ← VEEnc(pkT, m)

Encrypts the message m to the public key pkT and outputs a cyphertext
ct.

• (m′) ← VEDec(skT, ct)

Decrypts the cyphertext ct with secret key skT.

• (valid) ← VEVerify(pkT, ct, m)

Allows a zero-knowledge validation of the message m with respect
cyphertext ct encrypted towards public key pkT.

The proof statements about properties of encrypted messages are orthogonal
to the verifiable encryption primitive. We can use the same efficient Zero-
Knowledge Proof of Knowledge mechanisms as for proofs over commitments,
Camenisch-Lysyanskaya signatures, or Committed Blind Anonymous IBE
identity strings. Let us consider the example above, in which a user A encrypts
the identity id certified in a Camenisch-Lysyanskaya signature σpkIDP(id) to a
trusted party T and proves this fact to a verifier B.

ct ← VEEnc(pkT, id); PK({σpkIDP(id), id, ct} :
CLVerify(U(pkIDP, id, σpkIDP(id)),V(pkIDP))

!= V(valid) ∧ VEVerify(pkT, ct, id)
!=(valid))

Solution overview

We present an example cryptographic implementation of our system using
building blocks from anonymous credentials systems such as (Camenisch and
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Lysyanskaya 2001, 2004) and the relatively new committed blind anonymous
identity based encryption (Green and Hohenberger 2007). We describe here
at a high level how these building blocks can implement a system with the
requirements and definitions listed in prior sections. More details about the
properties of the building blocks are explained in the Cryptographic Primitives
section.

System Setup:

RA acting as an IBE KGC and a participant in a verifiable cryptosys-
tem performs IBESetup(1k) and VESetup(1k). RA publishes the resultant
public information (parIBE, parVE, pkSA). Hereafter we will implicitly
assume that these public parameters are available to all principals.

Setup: (U(idU,RA),RA()) ← Setup(U,RA)

U is issued a unique pseudonym idU,RA by RA. This pseudonym will form
a part of the time capsule’s key. By using committed blind anonymous
IBE the pseudonym will be later used only in blinded form, preventing
linkability between transactions.

Enrollment: (U(stok, pkΘ),SP(pkΘ, Θ)) ← Enroll(U(idU,RA, idU,I DP),SP)

1. U and SP jointly compute a random transaction identifier idsat which is
then known to both parties, and a blinded form of the same identifier
known to neitherU or SP, but rather encrypted to SA andRA respectively:
VEEnc(pkSA, idsat

′), VEEnc(pkRA, idsat
′)

• The Joint computation of idsat which is then known to both parties
can be realized using standard techniques. Joint computation of the
blinded idsat

′ that is known to neither computing party, but is verifiably
encrypted to other parties can be realized using standard homomorphic
encryption techniques with the addition of blind anonymous verifiable
encryption of the jointly computed value.

2. SP mints a satisfaction token stok ← tok(cond, idsat
′) which will later be

used by U to prove to SA that the satisfaction conditions have been
met. More details on the construction of this token appear below in the
overview of the Satisfaction transaction.

3. U computes the public portion of a keypair (pkΘ, skΘ) which is generated
s.t. the keypair depends on (idU,RA, tω, idsat).

• The creation of a keypair that depends on values (idU,RA, tω, idsat)

is accomplished using a pub lic key generation function
IBEKeyGen(idU,RA, tω, idsat) = (pkΘ, CΘ) such that those values serve
as the identity in the generation of a committed blind anonymous IBE,
and CΘ serves as extraction information dependant on these values.
CΘ contains commitments on idU,RA and idsat that are sufficient
for the IBE key extraction, as well as a function of tω that will
permit extraction only after tω is released by TS. Do to the nature of
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committed blind anonymous IBE the resultant pkΘ can be released,
and an encryption against this key can be verified, without revealing
the identity or corresponding skΘ . Additionally, the later extraction of
skΘ is a blind anonymous extraction that will not reveal these values.
Note that the exact nature of function F will depend on the algebraic
structure of the underlying IBE scheme.

4. U computes the time capsule as follows:

Θ = (ct1 = VEEnc(pkΘ, idU,I DP), ct2 = VEEnc(pkRA, idsat
′ · CΘ))

U sends Θ to SP
5. SP verifies in zero-knowledge that Θ can be decrypted by skΘ and that RA

can derive skΘ .

• PK({ idU, RA, tω, idsat, idsat
′} : VEVerify(pkΘ, ct1, idU, I DP)

!= (valid)∧
VEVerify( pkRA, ct2, idsat

′) != (valid) ∧ IBEVerify( parIBE, pkΘ)
!=

(valid) ∧ idsat
′ != blind(idsat) ∧ CLVerify(U(pkIDP, C, (idU, I DP, r),

σpkIDP(idU,I DP)),SP(pkIDP, C)))
!=SP(valid))

• The verifiable encryption primitive of Green and Hohenberger (2007)
permits the properties that we require of the time capsule Θ . In
particular it is suitable for the encryption key pkΘ such that proof of
the properties of the contents of the encryption and the decryptability
under the secret values (idU,RA, tω, idsat) is possible with further zero-
knowledge proofs.

• The integer commitment C on the user’s true identity idU,I DP may
server SP as basis to generate an authentication token for U.

6. RA verifies in zero-knowledge that Θ contains the user’s identity with
respect to the system: idU,I DP.

7. SP sends to U a token stok permitting access to the service.

Satisfaction of Revocation Condition: (U(rtok),SA()) ← Satisfy(U(idsat
′),

SA(skSA))

In this protocol U sends SA the satisfaction token given to U during
enrollment, as well as the copy of idsat

′ which was encrypted towards SA’s
secret key during enrollment. SA decrypts idsat

′, verifies the satisfaction
condition in the satisfaction token, and verifies that the satisfaction token
is bound to idsat

′ by a commitment. If all of this verifies, U receives from
SA a revocation token rtok which can be used to prove satisfaction has
occurred. Such a token could be implemented for example as a signed
statement from SA that satisfaction has occurred with respect to idsat

′. The
proof of the properties of the satisfaction token can be accomplished with
standard anonymous credential techniques:

• The satisfaction token minted by SP during enrollment with respect to
idsat

′ can be accomplished by encoding the satisfaction conditions cond
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(such as an amount of money to be paid, and the destination of that
money) as attributes in an anonymous credential that has idsat

′ encoded
as a committed attribute.

• SA verifies that U has performed the correct actions sufficient for satis-
faction (eg. payed the correct amount of money to the correct entity) by
verifying these conditions against the cond attributes of the satisfaction
token tok(cond, idsat

′). When SA decrypts its copy of idsat
′ it additionally

verifies that the now satisfied conditions belong to the correct transaction
by checking that the idsat

′ attribute of the satisfaction token matches the
decrypted value.

• SA can then sign a statement that the transaction idsat
′ has been fulfilled

using any secure signature scheme.
• ctSA = VEEnc(pkSA, idsat

′);
PK({idsat, idsat

′, cond} :
CLVerify(U(pkSP, C, (idsat

′, cond, r), σpkSP(idsat
′, cond)), SP(pkSP, C))

!=
SP(valid) ∧ idsat

′ !=blind(idsat))

Revocation: (U(),BB(rtok)) ← Revoke(U,BB)

The user publishes to the bulletin board BB rtok = tok(idsat
′) and idsat

′.

• The user can revoke the ability of SP to open the time capsule by
broadcasting proof of payment on BB. Since only idsat

′ and a signature
on idsat

′ are broadcast, and since idsat
′ cannot be linked with the user, this

satisfies the privacy requirements of the system.

Check: (RA(idsat
′),BB()) ← Check(RA(idsat

′),BB(idsat
′))

The RA checks for revocation by searching the BB for idsat
′, and verifying

tok(idsat
′). If they are found and verified then the check succeeds, indicating

that revocation has occurred and the contract is complete.

• During the Check operation idsat
′ is revealed to RA by decryption

under skRA. This suffices for RA to determine whether the contract has
been satisfied, but RA cannot link the Enroll event for this transaction
with this check, which provides the end to end unlinkability required
for honest users.

Open: (SP(skΘ),RA(),TS()) ← Open(SP(Θ),RA(skRA),TS(Ti))

1. SP sends VEEnc(pkRA, idsat
′)) to RA and requests skΘ .

2. RA decrypts VEEnc(pkRA, idsat
′ · CΘ) to retrieve idsat

′ (which is
not linkable by RA with any other data).

3. RA performs Check (idsat
′). If Check succeeds, RA detects revo-

cation and halts without returning skΘ .
4. If i >= ω, RA executes IBEBlindExtract(SP(parIBE, pkΘ, open),

RA(msk, CΘ)) and returns skΘ .

• Since tω is now revealed, this information combined with CΘ

suffices for the blind committed extraction.
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5. SP decrypts and reveals idU,I DP

• Only if the revocation is not detected by RA and key extrac-
tion is possible (it is after time ω) will skΘ be revealed to SP.
If the key is revealed to SP then the capsule can be opened
and the user’s true identity revealed. This satisfies the pri-
vacy properties and the accountability properties of the
system.

Other related works

Chaum pioneered privacy-preserving protocols that minimize the amount of
personal data disclosed. His work put forth the principles of anonymous
credentials (Chaum 1981, 1985; Chaum and Evertse 1987), group signatures
(Chaum and van Heyst 1991), and electronic cash Chaum (1983). Subse-
quently, a number of authors provided more efficient implementations of
these primitives, e.g., group signatures (Ateniese et al. 2000; Boneh et al.
2004; Kiayias and Yung 2006), e-cash (Brands 1993; Camenisch et al. 2005;
Frankel et al. 1998), anonymous credentials (Brands 1995a, b, 2000; Camenisch
and Lysyanskaya 2001, 2004), traceable signatures (Kiayias et al. 2004),
anonymous auctions (Naor et al. 1999), and electronic voting based on blind-
signatures (Fujioka et al. 1992).

All these primitives have in common that some party issues a user some
form of certificate that often contains information about the user encoded
as attributes. Typically, these attributes are encoded as a discrete logarithm
or, more generally, as an element (exponent) of a representation of a group
element.

There are also some works (Cramer et al. 1994; Brands 1997; Camenisch and
Michels 1998; Boudot 2000; Fujisaki and Okamoto 1997) that these authors
employ to prove AND, OR and NOT statement about attributes, e.g., “a user
has attribute a OR b,” basically by showing that some committed value equals
a given value OR some other given value.

Conclusion

In this article we presented a novel scheme to better fill the needs of service
providers. We did this by introducing the concept of the time capsule: a
cryptographic device that contains the user’s real identity, and can only be
opened if the user does not fulfill the terms of a predetermined service contract
such as a contract to pay a bill on time.

By leveraging the recently developed anonymous blind committed identity
based encryption scheme we are able to form an encryption key for the time
capsule that depends on the user’s pseudonym within the system, as well as
conditions such as time and payment status. We have shown that due to the
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properties of this and other blinding mechanisms, the secret key for decrypting
the time capsule can only be derived if the user misbehaves.

By contrast with existing anonymity revocation schemes, we do not require a
fully trusted third party, such as a law enforcement agency, or judicial process.
Due to the weaker trust requirements for the TTP it is easier for service
providers to perform the anonymity revocation when a user misbehaves,
relieving what may be a prohibitive expense for routine transactions.

While we have shown that a system with our desired properties can be
constructed from known cryptographic primitives, it remains for future work to
describe an exact implementation. Furthermore we believe that there may be
more than one way to implement a system matching our requirements. Future
work should investigate which implementations might offer the best efficiency,
or the weakest assumptions.
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Abbreviations

BB Bulletin Board
EPB Elbonian Public Broadcasting
IBE Identity Based Encryption
IDP Identity Provider
KGC Key Generation Center
RA Revocation Authority
SA Satisfaction Authority
SP Service Provider
TS Time Service
TTP Trusted Third Party
U User
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