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Abstract

We consider the problem of extending a (complete) order over a
set to its power set. The extension axioms we consider generate or-
derings over sets according to their expected utilities induced by some
assignment of utilities over alternatives and probability distributions
over sets. The model we propose gives a general and uni�ed exposition
of expected utility consistent extensions while it allows to emphasize
various subtleties, the e¤ects of which seem to be underestimated -
particularly in the literature on strategy-proof social choice correspon-
dences.
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1 Introduction

We consider the problem of extending a (complete) order over a set to its
power set. The set under consideration is interpreted as a set of alternatives
and we conceive orders as individual preferences. A central concept of this
analysis is an extension axiom which is a rule that determines how an indi-
vidual with a given preference over alternatives is required to rank certain
sets.1 Given an extension axiom, the compatibility of a preference over sets
with a preference over alternatives is the obedience of the extended order to
the requirements of the extension axiom.2

The choice of extension axioms depends on the intepretations of sets. We
conceive a set as a list of mutually incompatible alternatives, i.e., as a �rst
re�nement of the initial set of alternatives from which the �nal unique choice
will be later made.3 As social choice correspondences are typically social
choice rules which give non-resolute outcomes, the problem we consider is
connected to the analysis of strategy-proof social choice correspondences.4

Our focus is on extension axioms that order sets according to their ex-
pected utilities induced by some assignment of utilities over alternatives and
probability distributions over sets. This approach leads to what is generally
called the expected utility consistent extension of a preference. Nevertheless,
the idea needs to be made more precise by determining which utility func-
tions and probability distributions are admissible. Moreover, whether the
order generated by expected utilities is complete or partial also matters. In
fact, completing a generated partial order and directly generating a complete
order may lead to di¤erent admissible orderings. The literature seems to be
missing a uni�ed exposition of these subtleties - a treatment of which is one of
our aims. So after introducing the basic notation and notions in Section 2, we

1Technically speaking, an extension axiom assigns to each ordering of alternatives, an
antisymmetric and transitive binary relation over sets.

2To be more formal, given an extension axiom �, a complete order R over sets is
compatible with an order � over alternatives if and only if R is a completion of the partial
order �(�) that � assigns to �.

3Of course, there are other interpretations of sets such as being a list of mutually
compatible alternatives or a menu from which the individual whose preference under con-
sideration makes a choice. All these interpretations have their own literature and axioms,
which we leave outside the scope of this paper. A general account of the literature on
extending an order over a set to its power set is given by Barberà, Bossert and Pattanaik
(2004).

4The literature on strategy-proof social choice correspondences contains Fishburn
(1972), Pattanaik (1973), Gärdenfors (1976), Barberà (1977), Kelly (1977), Feldman
(1980), Duggan and Schwarz (2000), Barberà, Dutta and Sen (2001), Benoit (2002), Ching
and Zhou (2002), Ozyurt and Sanver (2006). This list is certainly non-exhaustive. One
can see Taylor (2005) for an excellent account of the literature.
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devote Section 3 to give an account of expected utility consistent extensions
in our uni�ed framework. In Section 4, we discuss the e¤ects of our �ndings
to de�nitions of strategy-proofness. Moreover, we are able to remark that
not all the �nesses of expected utility consistent extensions are incorporated
into the literature on strategy-proof social choice correspondences. Section 5
concludes.

2 Basic Notions

Consider a �nite non-empty set of alternatives A and let A = 2Anf;g. We
denote � for the set of complete, transitive and antisymmetric binary rela-
tions over A and < for the set of complete and transitive binary relations over
A. We write � 2 � and R 2 < for typical orders over A and A, respectively.
We let P stand for the strict counterpart of R 2 <.5 We write U� for the set
of all (real-valued) utility functions over A that represent � 2 �.6
By an extension axiom, we mean a mapping � which assigns to each � 2 �

a strict partial order7 �(�) of A such that for all distinct x; y 2 A we have x �
y () fxg �(�) fyg. Given any extension axiom � and any � 2 �, we write
D�(�) = fR 2 < : X �(�) Y ) X P Y for all distinct X; Y 2 Ag for the
set of complete and transitive binary relations over A which are compatible
with �(�).8

Let 
X be the set of all non-degenerate probability distributions over
X 2 A, i.e., each !X 2 
X is a probability distribution f!X(x)gx2X over X
where !X(x) 2 (0; 1] is interpreted as the (positive) probability that x 2 X
will be chosen from X.9 We call 
 = �

X2A

X the set of priors (over A). So a

prior ! = (!X)X2A 2 
 is a vector which collects a probability distribution
over each element of A. Any given non-empty set � � 
 of admissible
priors over A induces an extension axiom �� which assigns to each � 2 � a
binary relation ��(�) over A as follows: For all distinct X; Y 2 A, we have
X ��(�) Y if and only if

P
x2X

!X(x):u(x) >
P
y2Y

!Y (y):u(y) 8 u 2 U�, 8 !

2 �.10 So D��(�) is the set of orderings which are completions of the partial

5So for any X;Y 2 A, we have X P Y whenever X R Y holds but Y R X does not.
6A utility function u over A represents � 2 � i¤ u(x) � u(y), x � y 8x; y 2 A.
7A strict partial order is a transitive and antisymmetric (but not necessarily complete)

binary relation.
8So every R 2 D�(�) is a completion of the strict partial order �(�) and D�(�) is

non-empty by Spilrajn�s Theorem.
9So we have

P
x2X

!X(x) = 1 for all X 2 A.
10One can immediately check that �� is an extension axiom, i.e., ��(�) is transitive and
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order �� that the set of admissible priors � induces. We call D��(�) the
set of orderings over A which are expected utility consistent with � (under
the set of admissible priors �). Note that for any � 2 � and any R 2 <
we have R 2 D��(�) () 8 X;Y 2 A with X R Y , there exists (u; !)
2 U� � � such that

P
x2X

!X(x):u(x) �
P
y2Y

!Y (y):u(y). One could impose a

stronger expected utility consistency requirement by reversing the order of
the quanti�ers. In other words, one could say that R 2 < is strongly expected
utility consistent with � 2 � (under the set of admissible priors �) i¤ there
exists (u; !) 2 U��� such thatX R Y ()

P
x2X

!X(x):u(x) �
P
y2Y

!Y (y):u(y)

for all X; Y 2 A. We write D�(�) for the set of orderings over A which are
strongly expected utility consistent with � 2 �. In what follows, we say that
a triple (�; u; !) 2 � � U� � � directly generates R 2 < i¤ X R Y ()P
x2X

!X(x):u(x) �
P
y2Y

!Y (y):u(y) for all X; Y 2 A. So D�(�) is the set of

orderings over A which are directly generated by some (�; u; !) 2 ��U���.
Note that D�(�) � D��(�) 8� 2 � follows from the de�nitions. On the other
hand, as we show in Section 3.2, the properness of the set inclusion depends
on the choice of admissible priors �.

3 An Account of Expected Utility Consistent
Extensions

3.1 The choice of admissible priors

The precise meaning of the �expected utility consistency� of an extension
depends on the set of admissible priors and the set of admissible utility
functions. Given a preference � 2 � over alternatives, we let any u 2 U� to
be admissible. On the other hand, we allow the set of admissible priors � to
vary. The literature exhibits three choices of �:

3.1.1 General Expected Utility Consistency (GEUC)

Any prior is allowed, i.e., � = 
. As one can also deduce from Theorem 4.4.1
in Taylor (2005), the extension axiom �
 induced by GEUC is equivalent to
the following extension axiom introduced by Kelly (1977):
The Kelly Principle: For each � 2 �, let �KELLY (�) = f(X; Y ) 2

A� AnfXg : x � y 8 x 2 X 8 y 2 Y g.
antisymmetric, while x � y () fxg ��(�) fyg for all distinct x; y 2 A.
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Theorem 3.1 �
(�) = �KELLY (�) 8� 2 �.

Proof. Take any � 2 �. To see �KELLY (�) � �
(�), pick some (X;Y )
2 �KELLY (�): Let xo 2 X be such that x � xo 8 x 2 X and y0 2 Y be
such that y0 � y 8y 2 Y : As (X; Y ) 2 �KELLY (�) we have x0 � y0. Thus,
for any u 2 U�, any !X 2 
X and any !Y 2 
Y , we have

P
x2X

!x(x):u(x) >

u(x0) > u(y0) >
P
y2Y

!y(y):u(y) . If X \ Y = ?, then u(x0) > u(y0),

implying
P
x2X

!x(x):u(x) >
P
y2Y

!y(y):u(y) . If X \ Y 6= ?, then at least

one of X and Y is not a singleton as otherwise X and Y would coincide.
In case X is not a singleton we have

P
x2X

!x(x):u(x) > u(x0) and in case

Y is not a singleton we have u(y0) >
P
y2Y

!y(y):u(y), both of which impliesP
x2X

!x(x):u(x) >
P
y2Y

!y(y):u(y), showing that (X; Y ) 2 �
(�):

To see �
(�) � �KELLY (�), pick some (X; Y ) =2 �KELLY (�) . So there
exist y0 2 Y and x0 2 X nfy0g with y0 � x0:Now, let x1 2 X be such
that x1 � x 8x 2 X. Take any u 2 U� and any r 2 (0; 1) which satis�es
r:u(x1) + (1� r) :[u(x0)� u(y0)] < 0: So r:u(x1) < (1� r) :[u(y0)� u(x0)].
Let !X(xo) = !Y (yo) = 1� r: So we haveP

x2X
!x(x):u(x) � !X(xo):u(x0) + (1� !X(xo)):u(x1)

= (1� r) :u(x0) + r:u(x1)
< (1� r) :u(x0) + (1� r) :[u(y0)� u(x0)]
= (1� r) :u(y0) = !Y (yo): u(y0)
�
P
y2Y

!y(y):u(y)

which implies (X; Y ) =2 �
(�).

3.1.2 Bayesian Expected Utility Consistency (BEUC)

This is a restriction of GEUC that Barberà, Dutta and Sen (2001) and Ching
and Zhou (2002) use in their analysis of strategy-proof social choice corre-
spondences.11 The set of admissible priors is de�ned as �BEUC = f! 2 
 :
!X(x) =

!A(x)P
y2X

!A(y)
for all X 2 AnfAg and for all x 2 Xg. As one can also de-

duce from Lemma 1 of Ching and Zhou (2002), the extension axiom ��
BEUC

induced by BEUC is equivalent to the following extension axiom introduced
by Gärdenfors (1976):

11Barberà, Dutta and Sen (2001) call it Conditional Expected Utility Consistency.
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The Gärdenfors Principle: For each � 2 �, let �GF (�) = f(X; Y ) 2
A�AnfXg : (x � y 8 x 2 XnY 8 y 2 Y ) and (x � y 8 x 2 X 8 y 2 Y nX)g.
The proof of the equivalence theorem we will state bene�ts from the

following two lemmata which we prove in Appendix A.

Lemma 3.1 For all � 2 � and all (X; Y ) 2 �GF (�) with X \ Y 6= ; and
XnY 6= ;, we have (X;X \ Y ) 2 ��BEUC (�).

Lemma 3.2 For all � 2 � and all (X; Y ) 2 �GF (�) with X \ Y 6= ; and
Y nX 6= ; we have (X \ Y; Y ) 2 ��BEUC (�).

Theorem 3.2 ��BEUC (�) = �GF (�) 8� 2 �.

Proof. Take any � 2 �. We �rst show �GF (�) � ��
BEUC

(�). Take any
(X; Y ) 2 �GF (�). Consider the following 4 exhaustive cases:
CASE 1: X \ Y 6= ;, XnY 6= ;; Y nX = ;. So Y = (X \ Y ) � X and by

Lemma 3.1, we have (X;X \ Y ) 2 ��BEUC (�), thus (X; Y ) 2 ��BEUC (�).
CASE 2: X \ Y 6= ;, Y nX 6= ;; XnY = ;. So X = (X \ Y ) � Y and by
Lemma 3.2, we have (X \ Y; Y ) 2 ��BEUC (�), thus (X; Y ) 2 ��BEUC (�).
CASE 3: X\Y 6= ;, Y nX 6= ;; XnY 6= ;. The conjunction of Lemma 3.1

and Lemma 3.2 implies (X;X \Y ) 2 ��BEUC (�) and (X \Y; Y ) 2 ��BEUC (�)
while by transitivity we have (X; Y ) 2 ��BEUC (�).
CASE 4: X\Y = ;. As (X;Y ) 2 �GF (�), we have x � y 8x 2 X, 8y 2 Y .

So
P
x2X

!X(x)u(x) >
P
y2Y

!Y (y)u(y) holds for all u 2 U� and all ! 2 �BEUC ,

showing (X; Y ) 2 ��BEUC (�).
We now show ��

BEUC
(�) � �GF (�). Take some (X; Y ) 2 A�AnfXg with

(X; Y ) 62 �GF (�). So at least one of the following two conditions holds:
(i) 9x 2 XnY , 9y 2 Y such that y � x

(ii) 9x 2 X, 9y 2 Y nX such that y � x

First let (i) hold. Let a 2 XnY be such that x � a 8x 2 XnY and
b 2 Y be such that b � y 8y 2 Y . As (i) holds, we have b � a. Now �x
some u 2 U�. Take some � 2 (0; 1) and consider the prior ! 2 �BEUC where
!A(a) = !A(b) =

1� �
2

and !A(x) =
�

#A� 2 8x 2 Anfa; bg. Consider �rst
the case where b 2 X. We have

P
x2X

!X(x)u(x) =
1P

x2X
!A(x)

 
1��
2
u(a) + 1��

2
u(b) + (#X � 2) �

#A�2
P

x2Xnfa;bg
u(x)

!
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and
P
y2Y

!Y (y)u(y) =
1P

y2Y
!A(y)

 
1��
2
u(b) + (#Y � 1) �

#A�2
P

y2Y nfbg
u(y)

!
. So

when � is picked arbitrarily small,
P
x2X

!X(x)u(x) approaches to
u(a)+u(b)

2

while
P
y2Y

!Y (y)u(y) approaches to u(b) and as u(b) > u(a), this allowsP
y2Y

!Y (y)u(y) >
P
x2X

!X(x)u(x), showing that (X; Y ) 62 ��
BEUC

(�). Now

consider the case where b =2 X. We have
X
x2X

!X(x)u(x) =
1P

x2X
!A(x) 

1��
2
u(a) + (#X � 1) �

#A�2
P

x2Xnfa;bg
u(x)

!
and

P
y2Y

!Y (y)u(y) =
1P

y2Y
!A(y)0@1� �

2
u(b) + (#Y � 1) �

#A� 2
X

y2Y nfbg

u(y)

1A : So when � is picked arbitrar-
ily small,

P
x2X

!X(x)u(x) approaches to u(a) while
P
y2Y

!Y (y)u(y) approaches

to u(b) and as u(b) > u(a), this allows
P
y2Y

!Y (y)u(y) >
P
x2X

!X(x)u(x), show-

ing (X; Y ) 62 ��BEUC (�). Now let (ii) hold. Let a 2 X be such that x � a
8x 2 X and b 2 Y nX be such that b � y 8y 2 Y nX. As (ii) holds, we
have b � a. Fixing some u 2 U�, taking some � 2 (0; 1) and considering a
prior ! 2 �BEUC as above, one can obtain

P
y2Y

!Y (y)u(y) >
P
x2X

!X(x)u(x),

showing (X; Y ) 62 ��BEUC (�).

3.1.3 Equal-Probability Expected Utility Consistency (EEUC)

This is a restriction of BEUC (hence of GEUC) that Feldman (1980) and
Barberà, Dutta and Sen (2001) use in their analysis of strategy-proof social
choice correspondences.12 Letting !t be de�ned for each X 2 A as !tX(x) =
1
#X

for all x 2 X, we have �EEUC = f!tg. We characterize �EEUC in
terms of an axiom that we call componentwise dominance. We de�ne two
equivalent versions of it.

The Componentwise Dominance Principle 1: For any real number
r, we write dre for the lowest integer no less than r. Let N stand for the
set of natural numbers. Picking any two m;n 2 N , we introduce a mapping
12Barberà, Dutta and Sen (2001) call it Conditional Expected Utility Consistency With

Equal Probabilities.
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fmn : N �! N de�ned for each i 2 N as fmn(i) = d1+n:(i�1)m
e. Note that

fmn is an increasing function on N . Now take any � 2 � and any distinct
X; Y 2 A. Let, without loss of generality,X = fx1; ::; x#Xg with xi�xi+18i 2
f1; ::;#X � 1g and Y = fy1; ::; y#Y g with yj�yj+18j 2 f1; ::;#Y � 1g. The
componentwise dominance principle 1 is de�ned through the strict partial
order �CD1(�) = f(X;Y ) 2 A�AnfXg : xi� yf#X#Y (i) 8 i 2 f1; ::;#Xgg.13

The Componentwise Dominance Principle 2: Take any � 2 �
and any X = fx1; ::; x#Xg 2 A with xi� xi+1 8i 2 f1; ::;#X � 1g. Given
any t 2 N , we de�ne a t:#X dimensional vector ~X t such that given any
i 2 f1; ::; t:#Xg, we have ~X t

i = xd i
t
e.
14 In other words, we can write ~X t =

(x1; :::; x1; :::; x#X ; ::; x#X) where each x 2 X appears t times while given any
xi; xj 2 X with i < j, xi appears at the left of xj. Take also Y = fy1; ::; y#Y g
2 AnfXg with yi� yi+1 8i 2 f1; ::;#Y � 1g and de�ne ~Y t similarly. The
componentwise dominance principle 2 is de�ned through the strict partial
order �CD2(�) = f(X; Y ) 2 A�AnfXg : ~X#Y

i � ~Y #Xi 8i 2 f1; ::;#X:#Y gg.15

Lemma 3.3 For all � 2 �, we have �CD1(�) = �CD2(�):

Proof. Take any � 2 �:To see �CD1(�) � �CD2(�), pick some (X; Y ) 2
�CD1(�). Now take any k 2 f1; ::;#X:#Y g. We have ~X#Y

k = xd k
#Y

e

and ~Y #Xk = yd k
#X

e. As (X;Y ) 2 �CD1(�), we have xd k
#Y

e � yf#X#Y (d k
#Y

e).

Now check that f#X#Y (d t
#Y
e) � d t

#X
e for all t 2 f1; ::;#X:#Y g. As

a result, yf#X#Y (d k
#Y

e) � yd k
#Y

e, which implies xd k
#Y

e � yd k
#Y

e, showing that

(X;Y ) 2 �CD2(�).
To see �CD2(�) � �CD1(�); pick some (X;Y ) 2 �CD2(�). So ~X#Y

i � ~Y #Xi 8i
2 f1; ::;#X:#Y g. Suppose, for a contradiction, that (X; Y ) =2 �CD1(�).
So there exists i 2 f1; ::;#Xg such that xi � yf#X #Y (i) fails. Thus, if xi
� yj for some yj 2 Y then j � f#X #Y (i) + 1. This, combined with the
fact that ~X#Y

i � ~Y #Xi for each i 2 f1; ::;#X:#Y g, implies (i � 1):#Y �
f#X #Y (i):#X, which in turn implies f#X #Y (i) � (i� 1):#Y#X , contradicting
the de�nition of f#X #Y , hence showing �CD2(�) � �CD1(�).
So, for each � 2 �, we write �CD(�) = �CD1(�) = �CD2(�):

Theorem 3.3 �CD(�) = ��EEUC (�) 8� 2 �.
13The fact that �CD1(�) is a strict partial order may not be visible at the �rst glance

and we discuss the matter at the end of the section.
14As usual, ~Xt

i is the i
th entry of ~Xt.

15The fact that �CD2(�) is a strict partial order may not be visible at the �rst glance
and we discuss the matter at the end of the section.
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Proof. Take any � 2 �. To see �CD(�) � ��
EEUC

(�), pick some (X; Y ) 2
�CD(�). So ~X#Y

i � ~Y #Xi 8i 2 f1; ::;#X:#Y g. Thus, for any u 2 U�,

we have
]X:]YP
i=1

u( ~X#Y
i ) >

]X:]YP
i=1

u(~Y #Xi ) , the inequality being strict due

to the fact that X and Y are distinct. This inequality can be rewrit-

ten as
]XP
i=1

]Y:u(xi) >
]YP
j=1

]X:u(yi), which implies

]XP
i=1

u(xi)

]X
>

]YP
j=1

u(yj)

]Y
, thus

showing (X; Y ) 2 ��EEUC (�).

To see ��
EEUC

(�) � �CD(�), pick some (X; Y ) =2 �CD(�). So
there exists j 2 f1; : : : ; ]Xg such that xj � yf#X #Y (j) fails, hence u(xj) <
u(yf#X #Y (j) ) for any u 2 U�. Now, let X [ Y = Z = fz1; ::; z#Zg with zi�
zi+1 8i 2 f1; ::;#Z � 1g and take some � > 0 and some M > 0. Let zk 2 Z
coincide with xj. Consider the following u 2 U� de�ned as u(z#Z) = 0,
u(zi) � u(zi+1) = � for all i 2 fk; :::;#Z � 1g, u(zk�1) � u(zk) = M ,
and u(zi) � u(zi+1) = � for all i 2 f1; :::; k � 2g. Picking M arbitrarily

large and � arbitrarily close to 0, we have

]YP
j=1

u(yj)

]Y
>

]XP
i=1

u(xi)

]X
, showing that

(X;Y ) =2 ��EEUC (�).
We close by noting the straightforwardness of checking that ��

EEUC
(�) is

a strict partial order, thus answering the issue raised by Footnotes 13 and
15.

3.2 Completing partial orders versus direct generation

of complete orderings

Whether an ordering over sets is obtained by completing a partial order
generated through expected utilities (i.e., expected utility consistency) or is
directly generated with reference to expected utilities (i.e., strong expected
utility consistency) matters. In other words, given a set � of admissible
priors, the extension axiom �� induced by � and a preference � 2 �, the sets
D�(�) and D��(�) need not coincide. In fact, as we note in Section 2, D�(�)
being a subset of D��(�) follows from the de�nitions. A formal statement of
this logical relationship is given by the following theorem.

Theorem 3.4 Given any set � of admissible priors over A, we have D�(�) �
D��(�) 8� 2 �.

Proof. Take any set � of admissible priors over A, any � 2 � and any
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R� 2 <nD��(�). So there exist distinct X;Y 2 A with Y R� X whileP
x2X

!X(x):u(x) >
P
y2Y

!Y (y):u(y) 8 u 2 U�, 8 ! 2 �. Thus, there exists no

(�; u; !) 2 �� U� � � that directly generates R�, showing R� =2 D�(�).
Whether the set inclusion announced by Theorem 3.4 is proper or not

depends on the choice of admissible priors �. To explore this, we de�ne the
(strong) leximax extension �+(�) 2 < and the (strong) leximin extension
��(�) 2 < of � 2 �.16 Under the leximax extension, sets are ordered ac-
cording to their best elements. If these are the same, then the ordering is
made according to the second best elements, etc. The elements according
to which the sets are compared will disagree at some step � except pos-
sibly when one set is a subset of the other, in which case the smaller set
is preferred.17 To speak formally, given any � 2 �, the leximax extension
�+(�) 2 < is de�ned as follows: Take any distinct X; Y 2 A. First consider
the case where #X = #Y = k for some k 2 f1; :::;#A � 1g. Let, without
loss of generality, X = fx1; :::; xkg and Y = fy1; :::; ykg such that xj � xj+1
and yj � yj+1 for all j 2 f1; :::; k � 1g. We have X �+(�) Y if and only if xh
� yh for the smallest h 2 f1; :::; kg such that xh 6= yh. Now consider the case
where#X 6= #Y . Let, without loss of generality, X = fx1; :::; x#Xg and Y =
fy1; :::; y#Y gsuch that xj � xj+1 for all j 2 f1; :::;#X�1gand yj � yj+1 for all
j 2 f1; :::;#Y �1g. We have either xh = yh for all h 2 f1; :::;minf#X;#Y gg
or there exists some h 2 f1; :::;minf#X;#Y gg for which xh 6= yh. For the
�rst case, X �+(�) Y if and only if #X < #Y . For the second case, X �+(�)
Y if and only if xh � yh for the smallest h 2 f1; :::;minf#X;#Y gg such that
xh 6= yh.
The concept of a leximin extension is similarly de�ned while it is based

on ordering two sets according to a lexicographic comparison of their worst
elements. Again the elements according to which the sets are compared
will disagree at some step � except possibly when one set is a subset of
the other, in which case the larger set is preferred.18 So given given any
� 2 �, the leximin extension ��(�) 2 < is de�ned as follows: Take any
distinct X;Y 2 A. First consider the case where #X = #Y = k for some
k 2 f1; :::;#A � 1g. Let, without loss of generality, X = fx1; :::; xkg and
Y = fy1; :::; ykg such that xj � xj+1 and yj � yj+1 for all j 2 f1; :::; k � 1g.
16Kaymak and Sanver (2003) show that at each � 2 �, the leximax and leximin exten-

sions determine unique orderings �+(�) and ��(�) over A which are complete, transitive
and antisymmetric.
17This is exactly how words are ordered in a dictionary. For example, given three

alternatives a, b and c, the leximax extension of the ordering a � b � c is fag �+(�) fa; bg
�+(�) fa; b; cg �+(�) fa; cg �+(�) fbg �+(�) fb; cg �+(�) fcg.
18For example, the leximin extension of the ordering a � b � c is fag �+(�) fa; bg �+(�)

fbg �+(�) fa; cg �+(�) fa; b; cg �+(�) fb; cg �+(�) fcg.
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We have X ��(�) Y if and only if xh � yh for the greatest h 2 f1; :::; kg
such that xh 6= yh. Now consider the case where #X 6= #Y . Let, without
loss of generality, X = fx1; :::; x#Xg and Y = fy1; :::; y#Y gsuch that xj �
xj+1 for all j 2 f1; :::;#X � 1gand yj � yj+1 for all j 2 f1; :::;#Y � 1g. We
have either xh = yh for all h 2 f1; :::;minf#X;#Y gg or there exists some
h 2 f1; :::;minf#X;#Y gg for which xh 6= yh. For the �rst case, X ��(�) Y
if and only if #X > #Y . For the second case, X ��(�) Y if and only if xh
� yh for the smallest h 2 f1; :::;minf#X;#Y gg such that xh 6= yh.
The �rst application of Theorem 3.4 is for GEUC, when 
 is taken as

the set of admissible priors. In this case, Theorem 3.4 holds as an equality.
Before establishing this, we state a lemma.

Lemma 3.4 Take any one-to-one and real-valued function u de�ned over
A and any X 2 A with #X > 1. Given any real number r 2 (min

x2X
u(x);

max
x2X

u(x)), there exists wX 2 
X such that
P
x2X

wX(x):u(x) = r.

Proof. Let u, X and r be as in the statement of the lemma. Let x+; x�

2 X be such that x+� x 8x 2 X and x � x� 8x 2 X. We de�ne X+ =
fx 2 X : u(x) � rg and X� = fx 2 X : u(x) < rg. Both X+ and X�

are non-empty, as x+ 2 X+ and x� 2 X�. Take any !X+ 2 
X+ and any
!X� 2 
X�. Let q+ =

P
x2X+

!X+0(x):u(x) and q� =
P
x2X�

!X�(x):u(x). Note

that q� < r < q+. Let � = q+�r
q+�q� 2 (0; 1). Now de�ne the following function

!X over X: For each x 2 X, we have !X(x) = (1� �)!X+(x) if x 2 X+ and
!X(x) = �!X�(x) if x 2 X�. It is clear that !X(x) 2 (0; 1) for all x 2 X.
Moreover,

P
x2X

!X(x) = (1��)
P
x2X+

!X+(x)+�
P
x2X�

!X�(x) = (1��)+� =

1:Thus !X 2 
X . Finally,
P
x2X

!X(x):u(x) = (1 � �)
P
x2X+

!X+(x):u(x) +

�
P
x2X�

!X�(x):u(x) = (1� �):q+ + �q� which, by the choice of �, equals to
r.

Theorem 3.5 D

(�) = D�
(�) 8 � 2 �.

Proof. Take any � 2 �. The inclusion D


(�) � D�
(�) follows from

Theorem 3.4. We now show D�
(�) � D

(�) or by Theorem 3.1 equivalenty

D�KELLY (�) � D


(�). Let A = fa1; :::; amg for some integer m � 2 and

assume, without loss of generality, that ai � ai+1 for each i 2 f1; :::;mg.
Take any R 2 D�KELLY (�). Let C1 = fX 2 A : X R Y 8 Y 2 Ag and de�ne
recursively Ci = fX 2 A : X R Y 8 Y 2 A n

i�1
[
j=1
Cjg. So we express R in

11



terms of a family fC1; :::; Ckg of equivalence classes where k is some integer
that cannot exceed 2m � 1. Note that for all X ; Y 2 A, we have X R Y if
and only if given any X 2 Ci and Y 2 Cj for some i; j 2 f1; :::; kg with i < j.
As R 2 D�KELLY (�), C1 = ffa1gg and Ck = ffamgg. Consider the function
f : f1; :::;mg ! f1; :::; kg where for each i 2 f1; :::;mg we have faig 2 Cf(i).
So f(1) = 1 and f(m) = k. Moreover, as R 2 D�KELLY (�), for any i; j 2
f1; :::;mg with i < j, we have f(i) < f(j). Now we de�ne a real valued utility
function u over A as u(ai) = k�f(i)+1 for each i 2 f1; :::;mg. We complete
the proof by showing the existence of some f!XgX2A 2 
 such that for each
j 2 f1; :::; kg and for each X 2 Cj we have

P
x2X

!X(x):u(x) = k � j + 1, as

this ensures that the triple (�; u; f!XgX2A) directly generates R. So take any
j 2 f1; :::; kg and any X 2 Cj. Consider �rst the case where faig 2 Cj for
some ai 2 A. If X = faig, then

P
x2X

!X(x):u(x) = u(ai) = k�j+1. If X and

faig are distinct, then, as R 2 D�KELLY (�), there exist x; y 2 X n faig such
that x � ai and ai � y. Sominz2X u(z) < u(ai) < maxz2X u(z) and by Lemma
3.4, there exists !X 2 
X such that

P
x2X

!X(x):u(x) = u(ai) = k�j+1. Now

consider the case where fxg 2 Cj for no x 2 A. Let i 2 f1; :::;mg be such that
fadg P X for all i 2 f1; :::; ig and X P fadg for all d 2 fi+1; :::;mg. As R 2
D�KELLY (�), there exists x 2 X n faig such that ai � x and there exists y 2 X
n fai+1g such that y � ai+1. Thus, minz2X u(z) � u(ai+1) = k � f(i+ 1) + 1
and maxz2X u(z) � u(ai) = k � f(i) + 1. Moreover, f(i) < j < f(i + 1)
implying minz2X u(z) < k � j + 1 < maxz2X u(z) which, by Lemma 3.4,
implies the existence of !X 2 
X such that

P
x2X

!X(x):u(x) = k � j + 1.

Remark 3.1 For each � 2 �, we have �+(�); ��(�) 2 D�KELLY (�), hence by
Theorem 3.1, �+(�); ��(�) 2 D


(�).

The next application of Theorem 3.4 is for BEUC and EEUC, which is a
case in point to show that the converse of the inclusion expressed by Theorem
3.4 need not hold.

Theorem 3.6 D�BEUC (�)  D��
BEUC

(�) and D�EEUC (�)  D��
EEUC

(�) 8
� 2 �.

Proof. Take any � 2 �. By Theorem 3.4, we have D�BEUC (�) � D��
BEUC

(�)

and D�EEUC (�) � D��
EEUC

(�). To see that both inclusions are strict, we

check that �+(�) 2 D��
BEUC

(�)\ D��
EEUC

(�) while �+(�) =2 D�BEUC (�) [

12



D�EEUC (�). As D��
EEUC

(�) � D��
BEUC

(�) and D�EEUC (�) � D�BEUC (�), it

su¢ ces to check that �+(�) 2 D��
EEUC

(�) and �+(�) =2 D�BEUC (�). We re-

call that by Theorem 3.3 D��
EEUC

(�) = D�CD(�) and leave checking �+(�) 2
D�CD(�) as an exercice to the reader. To see �+(�) =2 D�BEUC (�), suppose
there exists a triple (�; u; !) 2 � � U� � 
 that directly generates �+(�).
Take any distinct a; b; c 2 A with a � b � c. Note that by de�nition of
the leximax extension, we have fa; b; cg �+(�) fa; cg �+(�) fbg. Therefore,

1P
x2fa;b;cg

!A(x)

P
x2fa;b;cg

!A(x)u(x) >
1P

x2fa;cg
!A(x)

P
x2fa;cg

!A(x)u(x)

) 1P
x2fa;b;cg

!A(x)

 
!A(b)u(b) +

P
x2fa;cg

!A(x)u(x)

!
> 1P

x2fa;cg
!A(x)

P
x2fa;cg

!A(x)u(x)

) !A(b)u(b)P
x2fa;b;cg

!A(x)
>

 
1P

x2fa;cg
!A(x)

� 1P
x2fa;b;cg

!A(x)

! P
x2fa;cg

!A(x)u(x)

) !A(b)u(b)P
x2fa;b;cg

!A(x)
> !A(b)P

x2fa;cg
!A(x)

P
x2fa;b;cg

!A(x)

P
x2fa;cg

!A(x)u(x)

) u(b) > 1P
x2fa;cg

!A(x)

P
x2fa;cg

!A(x)u(x), contradicting that Y �+(�) Z, thus

that (�; u; !) directy generates �+(�).

4 A Remark on Strategy-Proof Social Choice
Correspondences

The �strategy-proofness�of a social choice correspondence depends on how
preferences over alternatives is extended over sets. If this extension is made
through expected utility consistency, then the subtleties discussed in the
previous section a¤ect the de�nition of strategy-proofness.
To argue this formally, let � = (�1; :::; �n) 2 �N stand for a preference

pro�le over A where �i is the preference of i 2 N . A social choice correspon-
dence (SCC) is a mapping f : �N �! A. Consider a set of admissible priors
� inducing the extension axiom ��. We say that a SCC f : �N �! A is

� strategy-proof under � i¤ given any i 2 N and any �; �0 2 �N with �j =
�0j 8 j 2 Nnfig, we have.f(�) R f(�0) for all R 2 D�(�i).

� strongly strategy-proof under � i¤ given any i 2 N and any �; �0 2 �N

with �j = �
0
j 8 j 2 Nnfig, we have.f(�) R f(�0) for all R 2 D��(�i).
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At a �rst glance, the second de�nition deserves to be quali�ed as �strong�,
because, by Theorem 3.4, we have D�(�) � D��(�) for all � 2 �. Neverthe-
less, the two de�nitions coincide, as the following theorem announces:

Theorem 4.1 Take any non-empty � � 
 inducing the extension axiom
��. A SCC f : �N �! A strategy-proof under � if and only if f is strongly
strategy-proof under �.

Proof. Take any non-empty � � 
:The �if�part follows from Theorem 3.4.
To show the �only if� part, consider a SCC f : �N �! A which fails to
be strongly strategy-proof. So there exist i 2 N and �; �0 2 �N with �j =
�0j 8 j 2 Nnfig such that f(�0) P f(�) for some R 2 D��(�i). Thus (f(�);
f(�0)) =2 ��(�i), implying the existence of some eu 2 U�i and some e! 2 �
such that

P
x2f(�0)

e!f(�0)(x):eu(x) > P
x2f(�)

e!f(�)(x):eu(x). Therefore, letting eR 2
< be directly by (�i; eu; e!), there exist i 2 N and �; �0 2 �N with �j = �0j 8
j 2 Nnfig such that f(�0) eP f(�) for eR 2 D�(�i), showing that f fails to be
strategy-proof.
Thus, in analyzing the strategy-proofness of SCCs, it does not matter

whether orderings over sets are obtained by completing a partial order gen-
erated through expected utilities or are directly generated with reference to
expected utilities. The literature on strategy-proof SCCs exhibits both de�n-
itions of strategy-proofness. For example, Ching and Zhou (2002) use strong
strategy-proofness while Barberà, Dutta and Sen (2001) adopt the �weaker�
version. We know by Theorem 4.1 that this choice, everything else being
equal, does not a¤ect the analysis.19

On the other hand, it would be no surprise that the choice of the set of ad-
missible priors � matters. In fact, it immediately follows from the de�nitions
that expanding � can only strenghten strategy-proofness. As a case in point,
we have Barberà, Dutta and Sen (2001) who consider strategy-proofness un-
der �EEUC and �BEUC . They show that under �EEUC strategy-proof SCCs
are either dictatorial or bidictatorial20 while �BEUC admits only dictatorial
rules. Hence the fact that �EEUC � �BEUC matters and strategy-proofness
under �BEUC is e¤ectively stronger than it is under �EEUC . On the other

19It is worth noting that the analysis of Barberà, Dutta and Sen (2001) is for social
choice rules that map preference pro�les over sets into sets. These being more general
than standard social choice correspondences, their impossibility under �BEUC implies the
impossibility that Ching and Zhou (2002) establish under �BEUC .
20A SCC f : �N �! A is dictatorial i¤ 9i 2 N such that f(�) = fargmax �ig 8� 2 �N .

A SCC f : �N �! A is bidictatorial i¤9i; j 2 N such that f(�) = fargmax �i; argmax �jg
8� 2 �N .
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hand, Ozyurt and Sanver (2006) pick �GEUC as the set of admissible pri-
ors and show the equivalence between strategy-proofness and dictatoriality.
Thus expanding �EEUC to �GEUC leaves the de�nition of strategy-proofness
intact.

5 Conclusion

We explore the problem of extending a complete order over a set to its power
set by the assignment of utilities over alternatives and probability distribu-
tions over sets - hence the idea of expected utility consistent extensions. We
express three well-known expected utility consistent extensions of the liter-
ature as a function of admissible priors and we characterize them in terms
of extension axioms which do not refer to the concept of expected utility.
Moreover, we display that

� assigning utilities and probabilities which end-up ordering sets accord-
ing to their expected utilities

and

� completing the partial order determined by the pairs of sets whose
ordering is independent of the utility and probability assignment

are di¤erent approaches. This di¤erence has an immediate re�ection to the
analysis of strategy-proof social choice correspondences which we also discuss
and clarify. In brief, we present a framework which allows a general and
uni�ed exposition of expected utility consistent extensions while it allows to
emphasize various subtleties, the e¤ects of which seem to be underestimated -
particularly in the literature on strategy-proof social choice correspondences.

6 Appendix A

Lemma 6.1 For all � 2 � and all (X; Y ) 2 �GF (�) with X \ Y 6= ; and
XnY 6= ;, we have (X;X \ Y ) 2 ��BEUC (�).

Proof. Take any � 2 � and let (X; Y ) be as in the statement of the lemma.
As (X; Y ) 2 �GF (�), we have x � y 8 x 2 XnY 8 y 2 Y , thus x � y
8 x 2 XnY 8 y 2 X \ Y . Therefore, given any u 2 U� and any ! 2
�BEUC , we have

P
x2XnY

!XnY (x)u(x) >
P

x2X\Y
!X\Y (x)u(x), which implies
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1P
x2XnY

!A(x)

P
x2XnY

!A(x)u(x) >
1P

x2X\Y
!A(x)

P
x2X\Y

!A(x)u(x). Multiplying both

sides by

P
x2XnY

!A(x)P
x2X

!A(x)
gives

1P
x2X

!A(x)

P
x2XnY

!A(x)u(x) >

 P
x2XnY

!A(x)P
x2X

!A(x)

!
1P

x2X\Y
!A(x)

P
x2X\Y

!A(x)u(x)

) 1P
x2X

!A(x)

P
x2XnY

!A(x)u(x) >

P
x2X

!A(x)�
P

x2X\Y
!A(x)P

x2X
!A(x)

P
x2X\Y

!A(x)

P
x2X\Y

!A(x)u(x)

) 1P
x2X

!A(x)

 P
x2XnY

!A(x)u(x) +
P

x2X\Y
!A(x)u(x)

!

> 1P
x2X\Y

!A(x)

P
x2X\Y

!A(x)u(x)

) 1P
x2X

!A(x)

P
x2X

!A(x)u(x) >
1P

x2X\Y
!A(x)

P
x2X\Y

!A(x)u(x)

)
P
x2X

!X(x)u(x) >
P

x2X\Y
!X\Y (x)u(x)

) (X;X \ Y ) 2 ��BEUC (�).

Lemma 6.2 For all � 2 � and all (X; Y ) 2 �GF (�) with X \ Y 6= ; and
Y nX 6= ; we have (X \ Y; Y ) 2 ��BEUC (�).

Proof. Take any � 2 � and let (X; Y ) be as in the statement of the lemma.
As (X; Y ) 2 �GF (�), we have x � y 8 x 2 X 8 y 2 Y nX, thus x � y 8
x 2 X \ Y 8 y 2 Y nX. Therefore, given any u 2 U� and any ! 2 �BEUC ,
we have

P
x2X\Y

!X\Y (x)u(x) >
P

x2Y nX
!Y nX(x)u(x), which implies

1P
x2X\Y

!A(x)

P
x2X\Y

!A(x)u(x) >
1P

x2Y nX
!A(x)

P
x2Y nX

!A(x)u(x). Multiplying both

sides by

P
x2Y nX

!A(x)P
x2Y

!A(x)
givesP

x2Y nX
!A(x)P

x2Y
!A(x)

P
x2X\Y

!A(x)

P
x2X\Y

!A(x)u(x) >
1P

x2Y
!A(x)

P
x2Y nX

!A(x)u(x)
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)
P
x2Y

!A(x)�
P

x2X\Y
!A(x)P

x2Y
!A(x)

P
x2X\Y

!A(x)

P
x2X\Y

!A(x)u(x) >
1P

x2Y
!A(x)

P
x2Y nX

!A(x)u(x)

) 1P
x2X\Y

!A(x)

P
x2X\Y

!A(x)u(x)

> 1P
x2Y

!A(x)

 P
x2Y nX

!A(x)u(x) +
P

x2X\Y
!A(x)u(x)

!

) 1P
x2X\Y

!A(x)

P
x2X\Y

!A(x)u(x) >
1P

x2Y
!A(x)

P
x2Y

!A(x)u(x)

) (X \ Y; Y ) 2 ��BEUC (�).

7 References

Barberà, S. (1977), The Manipulability of Social Choice Mechanisms that
do not Leave Too Much to Chance, Econometrica, 45: 1572-1588
Barberà, S., W. Bossert, and P.K. Pattanaik (2004), Ranking Sets of

Objects, in S. Barberà, P. J. Hammond and C. Seidl (Eds.), Handbook of
Utility Theory. Volume II Extensions, Kluwer Academic Publishers, Dor-
drecht. 893�977, 2004.
Barberà, S., B. Dutta, and A. Sen (2001), �Strategy-Proof Social Choice

Correspondences�, Journal of Economic Theory, 101: 374-394.
Benoit, J. P. (2002), Strategic Manipulation in Voting Games When Lot-

teries and Ties are Permitted, Journal of Economic Theory, 102, 421-436.
Fishburn, P.C. (1972), Even-chance Lotteries in Social Choice Theory,

Theory and Decision, 3: 18-40
Ching, S. and L. Zhou (2002), Multi-Valued Strategy-Proof Social Choice

Rules, Social Choice and Welfare, 19: 569-580.
Feldman, A. M. (1980), Strongly Nonmanipulable Multi-Valued Collec-

tive Choice Rules, Public Choice, 35: 503-509
Gärdenfors, P. (1976), Manipulation of Social Choice Functions, Journal

of Economic Theory, 13: 217-228
Pattanaik, P.K. (1973), On the Stability of Sincere Voting Situations,

Journal of Economic Theory, 6: 558-574.
Kaymak, B. and M. R. Sanver (2003), Sets of Alternatives as Condorcet

Winners, Social Choice and Welfare, 20 (3), 477-494.

17



Kelly, J. (1977), Strategy-Proofness and Social Choice Functions without
Single-Valuedness, Econometrica, 45: 439-446
Ozyurt, S. and M.R. Sanver (2006), A General Impossibility Result on

Strategy-Proof Social Choice Hyperfunctions, Istanbul Bilgi University, un-
published manuscript
Taylor, A.D. (2005), Social Choice and the Mathematics of Manipulation,

Cambridge England: Cambridge University Press.

18


