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Introduction

As has been widely discussed [1], the presence of extra dimen-
sions may provide a possible explanation not only for the hierar-
chy problem of the fundamental interactions, but also for the late
time cosmic acceleration, with no need to invoke either a cosmo-
logical constant Λ or a quintessence field Φ. In this paper we use a
model independent formulation of the so-called brane-world pro-
gram [2, 3]. Although the extrinsic curvature must be taken into
account are well known and have been studied at length in the lit-
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erature, nonetheless it is still ignored by using junctions conditions
and the embedding process is commonly neglected. Rather than
just reflecting the discontinuity of the bulk geometry across the
brane-world, the extrinsic curvature assumes the important role
of driving the propagation of gravitation along the extra dimen-
sions of the bulk space. In the following, we present a mathemat-
ically correct structure of space-time embedding based on Nash’s
theorem. Secondly, we derive the dynamical equation required to
determine the extrinsic curvature and analyzing the cosmological
constant problem which does not hold in our model. The objec-
tive of our paper is to present a more general theory of embedded
space-times, which is more general than the usual brane-world
setting present in most current models.

Embedded spaces

To start with, instead of assuming the string inspired embedding
of a 3-dimensional hypersurface generating a four-dimensional em-
bedded volume, we must first look at the conditions for the exis-
tence of the embedding of the space-time itself. The embedding of
a manifold into another is a non-trivial problem and the resulting
embedded geometry resulting from of an evolving 3-surface must
comply with these conditions. For instance, the astronomical ob-
servations of our Universe are made as if the objects, stars galaxies,
clusters are located in a 3-space with Euclidean geometry. How-
ever, when it comes to theorise these observations, say to describe
the shapes of the observed objects, another concept of curvature is
used namely that of Riemannian geometry as applied to General
relativity. These are not equivalent geometrical representations
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of the observations, because Riemannian geometry lacks some de-
tail in the description of the local shape of objects. Indeed, the
Riemannian curvature can describe shapes that are different from
those we observe on astronomy. Reviewing the concept, given a
basis {eµ} the the Riemann tensor describes the curvature of a
manifold by displacing a vector field eρ along a closed parallelo-
gram defined by eµ and eν and comparing the result with the origi-
nal vector obtaining: R(eµ, eν)eρ = Rµνρσe

σ = [∇µ,∇ρ]e
σ. When

the difference is zero, the manifold is said to be flat. Such Rieman-
nian flat space is not necessarily equal to a flat space in Euclidean
geometry. It could likewise be a cylinder or a helicoid. After Rie-
mann conceptualized a manifold intrinsically, the question if the
geometry of a Riemannian manifold has the same geometry of a
manifold embedded in an Euclidean space soon arose. Today we
know that every Riemannian manifold defined intrinsically can be
embedded isometrically, locally or globally, in a Euclidean space
with appropriate dimensions. Schlaefli in 1851 [4] was the first
to conjecture that a flat Riemannian manifold with analytic and
positive defined metric can be locally and isometrically embed-
ded in an Euclidean Em of dimensions m = n(n + 1)/2. This
means that a 4-dimensional Riemannian manifold is embedded in
m = 4(4 + 1)/2 = 10-dimensional Euclidean space [5].

In the particular case of General relativity the arbitrariness of the
tangent space was resolved by use of an additional assumption out-
side Riemannian geometry, the Poincaré symmetry of Maxwell’s
equations, applied to the tangent space. This is a well know prob-
lem and we do not intend to indulge an such philosophical discus-
sion on this theme, so that we jump directly to our point: Rieman-
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nian geometry has proven quite satisfactory to compare with the
observations at the level of the classical tests. However, the new
physical problems today, like supernovae Ia observations indicate
for the dark energy problem [6], seem to be telling us that some-
thing is missing in the geometrical side of Einstein’s equations.

The analytic methods and Nash’s theorem

Since Schlaefli’s conjecture, the embedding problem was regarded
as an open question. Only in the first half of the 1900’s some ef-
forts were proposed by using the analytic methods. In 1926, a
perturbative embedding mechanism was made by J.E. Campbell
based on the analytic methods[7]. In the subsequent years, an-
other studies using analytical methods were made by M. Janet[8],
Cartan [9] and Burstin [10].

The general solution for this problem was given by J. Nash [11]
in 1956. Nash showed how any Riemannian geometry can be
generated by metric perturbations against a bulk space (which he
assumed to be Euclidean, but it was soon extended to a pseudo
Riemannian bulk by R. Greene [12]). As it happens, any embedded
metric geometry can be generated by a continuous sequence of
small metric perturbations of a given geometry with a metric of
the embedded manifold defined by the extrinsic curvature as

gµν = ḡµν + δy k̄µν + (δy)2 ḡρσk̄µρk̄νσ · · · . (1)

The embedding apparently introduces fixed background geome-
try as opposed to a completely intrinsic and self contained geom-
etry in General relativity. One way out of the necessity of having
a fixed background is to transfer the dynamical structure to the
embedding space. As it happens, Nash’s theorem is based on a
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smooth (differentiable) manifold structure. For that purpose Nash
introduced a theory of smoothing operators to guarantee that dif-
ferentiable embeddings are sufficient. Here we suggest that the
geometry of the bulk is given by the Einstein-Hilbert action prin-
ciple. This has the meaning that the embedding space has the
smoothest possible curvature. Together with the Gauss-Codazzi
and Ricci equations this implies that the embedding is necessarily
differentiable. With this definition the embedding space becomes
the main dynamical structure.

Nash’s perturbation method innovates in two basic aspects: first,
there is no need to apply the restrictive convergent series power
of analytical function hypothesis to make an embedding between
manifolds. Second, in a physical sense, the perturbational nature
of the process can be obtained in the same fashion as Cauchy’s
problem in Mechanics: by dynamical equations; besides, it also
gives a prescription on how to construct geometrical structures by
deforming simpler ones. It seems that this geometric perturbation
process may have to do with the formation of structures in the
early universe.

When Nash’s theorem is applied to physics, it provides a gen-
eral mathematical tool appropriated to the brane-world program.
The covariant formulation of the brane-world uses basically three
essential postulates: (a) The D-dimensional bulk is a solution of
Einstein’s equations; (b) The brane-world is a differentiable sub-
manifold embedded in that bulk; (c) Gauge fields and ordinary
matter are confined to the brane-world, whereas gravity prop-
agates along the extra-dimensions. The most general covariant
equations of motion are derived from the former conditions and
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can be reviewed in [2, 13, 14] and can be applied to specific mod-
els, as long as the particularities of the model are set after the
formal development of the theory. On the other hand, on a model
independent of a covariant formulation, the extrinsic curvature
appears as an independent symmetric tensor field which evolves
together with the brane-world dynamics. This is an important
result due to Nash’s theorem because the extrinsic curvature be-
comes independent of the matter content on the locally embedded
brane-world. Thus, any junction condition imposed on the brane-
world can be dispensed. Interestingly, the presence of the inde-
pendent symmetric rank-two tensor field has been considered long
before the observation of the accelerated expansion of the universe
under different motivations and circumstances as a possible repul-
sive gravitational field [15]. As we shall see, brane-world gravity
presents one such field in the form of the extrinsic curvature.

Einstein’s equations for the bulk geometry can be written as

RAB −
1

2
RGAB + Λ∗GAB = α∗T

∗
AB , (2)

where α∗ denotes the fundamental energy scale (Tev) and T ∗AB is
the stress energy-momentum tensor of all possible sources, which
we assume here to be made of ordinary matter and gauge fields,
which means that it is essentially a confined source. In order to
introduce the 4-dimensional cosmological constant to those equa-
tions we have to consider a constant D-dimensional, generic cur-
vature to the bulk, where the Riemann curvature is given by

RABCD = K∗(GACGBD − GADGBC), A..D = 4 + N ,

where the constant curvature K∗ can be positive, in a deSitter
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bulk, or negative, in a anti-deSitter bulk, and is related to the
cosmological constant Λ∗ of the bulk byK∗ = 2

(2+N)(3+N)Λ∗, where

N is the number of extra dimensions. The local embedding is
defined by an embedding map Z : V̄n → VD (n < D) admitting
that Zµ is a regular and differentiable map. The components
ZA = fA(x1, ..., xn) associate to each point of Vn a point in VD
with coordinates ZA. As it happens, the isometric condition given
by the direct relation between the manifolds, that is, the bulk and
the embedded manifold can be written as

gαβ = GABZA
,αZB

,β , (3)

where ZA
,α are the components of the tangent vectors of Vn, gαβ is

the metric of the embedded manifold and GAB is the metric of the
bulk. It is important to notice that we must have D − n vectors
normal to Vn. If ηA are the components of these vectors, then they
satisfy the conditions of orthogonality

GABZA
,µη

B
b = 0 . (4)

Finally choosing the vectors ηAa to be mutually orthogonal and of
norm ±1, we can also write the following condition

GABηAa ηBb = gab = εaδab, (5)

where εa = ±1 are the signs associated to the two possible signa-
tures of the extra dimensions. So under the supposition that ZA

defines a new Riemannian geometry Vn embedded in VD. Con-
cerning notation µ, ν = 1...4 ; a, b = 5...D.

Taking the tangent, vector and scalar components of eq.(2), the
components of the Riemann tensor of the bulk RABCD defined
in the Gaussian frame embedding veilbein {ZA

,µ, η
A}, we can find
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the integrability equations of the embedding given by the Gauss,
Codazzi and Ricci equations:

Rαβγσ = gab(kaαγkbσβ − kaασkbβγ) +RABCDZA
,αZB

,βZC
,γZD

,σ , (6)

kaαδ;γ−kaαγ;δ = gcd(Acdγkcαδ−Acdδkcαγ)+RABCDZA
,αη

B
b ZC

,γZD
,δ ,
(7)

Abaγ;δ − Abaδ;γ = gcd(AcbδAdaγ − AdaγAcbδ) + gcd(kcγδkdδγ (8)

−kcδγkdγδ) +RABCDη
A
a η

B
b ZC

,γZD
,δ ,

whereAµba is the “torsion” vector and is given byAµba = ηAa,µη
B
b GAB.

In contrast with the extra dimensional perturbative behaviour
of the gravitational field, all gauge fields of the standard model
remain confined to the four-dimensional space-time. This is a
direct consequence of the gauge field structure. Just as a re-
minder, the Yang- Mills equations can be written as D ∧ F = 0,
D ∧ F ∗ = 4πJ∗, where F = Fµνdx

µ ∧ dxν, Fρσ = [Dρ, Dσ],
Dµ = I∂µ + Aµ, F ∗ = F ∗µνdx

µ ∧ dxν and F ∗µν = εµνρσF
∗ ρσ. The

duality operation F → F ∗ requires the existence of an isomor-
phism between 3-forms and 1-forms, which can only be realized
only in a four dimensional space-time manifold. Therefore, the
confinement of gauge fields, matter and vacuum states is a prop-
erty that is independent of the perturbation of the brane-world
geometry. There are two relevant consequences of the confine-
ment. In the first place, it implies that all ordinary matter which
interacts with the gauge fields, and also the vacuum states and its
energy-momentum tensor associated with the confined fields also
remain confined to the four-dimensional brane-world. Secondly,
the diffeomorphism invariance of General relativity cannot apply
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to the bulk manifold VD, for it would imply in breaking the con-
finement. Of course, such limitation could be fixed by applying a
coordinate gauge, but then we will be imposing a modification to
Nash’s theorem.

Nash’s theorem demands the embedding to be differentiable and
regular, so that there is a 4× 4 non-singular sub-matrix of the Ja-
cobian determinant of the embedding map, thus guaranteeing the
diffeomorphism invariance in the four-dimensional embedded sub-
manifold only. Admitting that the original (on-embedded) space-
time is a solution of Einstein’s equations, the gauge fields, matter
and its vacuum states keep a 1:1 correspondence with the source
fields in the embedded space-time structure. Consequently, the
confinement can be generally set as a condition on the embedding
map such that

α∗T
∗
µν = 8πGTµν; T ∗µ5 = T ∗55 = 0; µ, ν = 1...4

The gravitational field equations for the brane-world are necessar-
ily more complicated than Einstein’s equations in General relativ-
ity, because they involve the extrinsic geometry.

Added to the confinement condition and the Einstein-Hilbert ac-
tion for the bulk geometry, we can obtain the equations of motion
for a generic brane-world written as

Rµν−
1

2
Rgµν+Λgµν− Qµν−gabRABη

A
a η

B
b gµν = −8πGTµν , (9)

k ρ
µ a;ρ − ha;µ + Aρcak

ρ c
µ − Aµcah

c − 1

2

[
R− (K2 − h2)

]
gµa(10)

−gabRABη
A
a η

B
b gµa = 0 ,

R− (K2 − h2) = R− 2gabRABη
A
a η

B
b , (11)
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which are referred respectively as gravitational tensor, vector and
scalar equations of the brane-world, where we have denoted

Qµν = gcd (gρσkµρckνσd − kµνdhc)−
1

2

(
K2 − h2

)
gµν . (12)

The effective 4-dimensional cosmological constant Λ is a property
of the bulk and is related to Λ∗ by Λ = 2+3N

2+N Λ∗. Here kµν denotes

the extrinsic curvature and h = gµνkµν, K
2 = kµνkµν and h2 =

gabhahb. The term Qµν is a conserved quantity (which does not
exist in a pure Riemannian geometry) in the sense that Qµν

;ν =
0 and Q = gµνQµν. In the next section, we derive the Gupta
equations in order to solve the arbitrary of the extrinsic curvature
due to the homogeneity of Codazzi’s equations.

Dynamical equation for the extrinsic curvature

The study of a linear massless spin-2 fields in Minkowski space-
time originated from Fierz and Pauli in 1939 [16]. In 1954 S.
Gupta noted that the Fierz-Pauli equation has a remarkable re-
semblance with the linear approximation of Einstein’s equations
for the gravitational field, suggesting that such equation could be
just the linear approximation of a more general, non-linear equa-
tion for a massless spin-two fields. Gupta found that indeed any
spin-2 field in Minkowski space-time must satisfy an equation that
has the same formal structure as Einstein’s equations: In short,
in the same way as Einstein’s equations, can be obtained by an
infinite sequence of infinitesimal perturbations of the linear gravi-
tational equation, it possible to obtain the full non-linear equation
for any spin-2 field by an infinite sequence of infinitesimal pertur-
bations of the Fierz-Pauli equations. The result is an Einstein-like
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system of equations called the Gupta equations [17].
As it happens the extrinsic curvature which appear in any em-

bedded geometry is a symmetric tensor of order two and by the
spin-statistics theorem qualifies as a spin-two field, which promotes
the propagation of the gravitational field along the extra dimen-
sion, according to Nash’s theorem. This spin-2 interpretation of
the extrinsic curvature together with Nash’s theorem represents a
profound innovation in the theory of gravitation, based on a his-
torical development on the physics of gravitation. Of course, the
Israel condition does away with the extrinsic curvature when the
mirror symmetry is applied.

Therefore, the extrinsic curvature can be seen as an independent
rank-2 field in Vn, acting as the generator of the gravitational per-
turbations along the extra dimensions of the bulk. Consequently,
kµν must satisfy Gupta’s equation defined on the embedded brane-
world Vn (instead of Minkowski’s space-time as in the original the-
orem of Gupta).

To obtain Gupta’s equation in a brane-world, we can make use of
an analogy with Riemannian’s geometry, defining a “connection”
associated with kµν and consequently the corresponding Riemann
tensor, keeping in mind that the geometry of the embedded space-
time has been already defined by the metric gµν.

Since kµνk
µν = K2 6= 4, kµν is not the inverse of kµν. However,

we may re-scale kµν, by defining

fµν =
2

K
kµν, and fµν =

2

K
kµν, so that fµρfρν = δµν (13)

Next we construct the “Levi-civita connection” associated with
fµν, based on a similarity with the “metricity condition”. Let us
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denote by || the covariant derivative with respect to fµν (while
keeping the usual (; ) notation for the covariant derivative with
respect to gµν) so that fµν||ρ = 0. Therefore, the f -connection is

Υµνσ =
1

2
(∂µ fσν + ∂ν fσµ − ∂σ fµν) and andΥµν

λ = fλσ Υµνσ

The Riemann-like curvature tensor for fµν is

Fναλµ = ∂αΥµλν − ∂λΥµαγ + ΥασµΥσ
λν − ΥλσµΥσ

αν

Likewise the the Ricci-like tensor and the Ricci-like scalar curva-
ture, respectively are consistently defined as

Fµν = fαλFναλµ and F = fµνFµν
Finally, the contracted Bianchi identities for fµν gives Gupta’s
equations

Fµν −
1

2
Ffµν + Λf fµν = αfτµν (14)

where τµν stands for the “source” of the fµν-field, with coupling
constant αf . For generality we have included Λf as the equivalent
to the cosmological constant (remembering that the contracted
Bianchi identity allows for such constant).

Since kµν are the coefficients of Nash’s perturbations of the grav-
itational field according to (1), the source of Gupta’s equations
must be the quantum fluctuations of the vacuum represented by
a plasma fluid with constant density with energy-momentum ten-
sor [19, 20] τµν = 8πG < ρv > fµν. Replacing this in (1) and
comparing the constant terms we find that

Λf
def
= 8πG < ρv >

Where we notice that Λf is not the same observed cosmological
constant associated with Einstein’s equations. In fact we may
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take the above expression as the definition of Λf . With this choice
Gupta’s equations for fµν becomes simply

Fµν = 0 (15)

With this definition the cosmological constant problem does ap-
pear and the vacuum energy density is indeed a source of gravita-
tional perturbations, but only through kµν. Thus, the cosmological
constant problem does not propagate in the bulk due to the lack
of either extrinsic Casimir effect or extrinsic Cosmological Con-
stant observational data. The underlying physical idea is that the
gravity can be produced by self-interaction field with non-massive
gravitons.

After analyzing the structure of the mixing term Qµν, it can be
separated into two parts in the sense that

Qµν = qpureµν + qmixµν ,

where qpureµν = kρµkρν is the pure extrinsic term and fully propa-

gates in the bulk and qmixµν = −kµνH − 1
2

(
K2 −H2

)
gµν is the

truly mixing term which oscillates on the brane-world and also
propagates in the bulk. In fact, we have two manifolds which are
communicated by the mixing term Qµν. As we have shown, Qµν

is a conserved quantity with respect to the covariant derivative (;)
but it does not hold true when using (13) and expressing Qµν in
terms of fµν. As it happens, we obtain

Qf
µν = f ρµfρν − fµνhf −

1

2

(
4−H2

f

)
gµν ,

and

Qf
µν =

4

K2
Qµν ,
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where hf = gµνfµν and H2
f = hf .hf . It can be directly verified

that Qf
µν||ν 6= 0.

In addition to the Einstein-Gupta’s equation, the conservation of
Qµν suggests that it works as an effective gravitational energy flux
in the sense that propagates from the brane-world into the bulk.
Thus, it appears that there is some exchange of energy-momentum
between the bulk and the brane-world. This energy flux is gener-
ated by the intrinsic perturbations on the brane-world geometry. It
follows that the cosmological constant problem does not hold true
in the brane-world theory because in a four-dimensional observer
confined to the brane-world interprets the difference Λgµν − Qµν

in (9) as being the vacuum energy of the confined fields

< ρv >confined
= Λ−Q/4 ,

showing that the extrinsic curvature composing Q compensates
the difference between the observed cosmological constant and the
general relativistic (intrinsic) vacuum.

Final Remarks

The existence of a background geometry is necessary to fix the
ambiguity of the Riemann curvature of a given manifold, without a
reference structure. General relativity solves this ambiguity prob-
lem by specifying that the tangent Minkowski space is a flat plane,
as decided by the Poincaré symmetry, and not by the Riemann
geometry itself. Such difficulty was known by Riemann himself,
when he acknowledged that his curvature tensor defines a class of
objects and not just one [18]. Unlike the case of string theory the
bulk geometry is a solution of Einstein’s equations, acting as a
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dynamic reference of shape for all embedded Riemann geometries.
This generality follows from the remarkable accomplishment of
Nash’s theorem on embedded geometries. Nash showed that any
Riemannian geometry can be generated by continuous sequence
of infinitesimal perturbations defined by the extrinsic curvature.
It seems natural that this result provides the required geometri-
cal structure to describe a dynamically changing universe. The
four-dimensionality of the embedded space-times is determined by
the dualities of the gauge fields, which corresponds to the equiv-
alent concept of confinement gauge fields and ordinary matter in
the brane-world program. However, this confinement implies that
the extrinsic curvature cannot be completely determined, simply
because Codazzi’s equations becomes homogeneous. Since the ex-
trinsic curvature assumes a fundamental role in Nash’s theorem,
an additional equation is required. We have noted that the extrin-
sic curvature is an independent rank-2 symmetric tensor, which
corresponds to a spin-2 field defined on the embedded space-time.
However, as it was demonstrated by Gupta, any spin-2 field satisfy
an Einstein-like equation.

Such comfortable situation between particle physics and Ein-
stein’s gravity was shaken by the observations of a small cosmo-
logical constant Λ, and the emergence of the cosmological constant
problem. Our paper calls to the attention to the fact that unless
this problem is solved, the definition of the gravitational ground
state becomes again dubious: Either we have Minkowski or else
we have deSitter. This leads us back to the necessity of the em-
bedding of space-times as the only known solution of the Riemann
curvature ambiguity. The general solution of the embedding prob-
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lem is shown in the paper to be given by Nash’s theorem on the
differentiable embedding. The applications of Nash’s theorem to
gravitation is a landmark of our paper, providing an exciting new
tool to the gravitational perturbation issue. We have explained
the necessity of these embedding conditions, and explained the
meaning of the Gauss-Codazzi-Ricci equations as well as the ne-
cessity of a dynamical equation for extrinsic curvature in order to
obtain a correct mathematical tool which can help us in the search
for a new quantum gravity theory.
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