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Abstract 

 
 
 

In this paper, we will introduce a brief history of Quantum Entanglement (QE) 

with reference to important works:  1) Jaeger (Jaeger 2010) and 2) Emerson 

(Emerson, 2009). 
 

 

1 Non-locality: background 
 

Quantum Mechanics has posed philosophical problems from its beginnings. Main 

discussions deals with the notion of quantum state. Some philosophers of science 

argue that quantum states represent potential, not reality. but, quantum nonlocal 

entanglement, one of these problematic states, is a demonstrated fact and it is not 

a potentiality. Quantum entangled systems are probabilistically correlated across 

distances. 

The entanglement phenomenon is as an extraordinary degree of correlation between 

states of quantum systems. This correlation cannot be given an explanation in 

terms of common cause. QE (quantum entanglment) can occur between two or more 

quantum systems. Most interesting is the case when the correlations occur between  

systems that are space-like separated. This means that changes made 

to one system are immediately correlated with changes in a distant system (even 
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though there is no time for a signal to travel between them). We speak in this 

case of non-local correlations. From mathematical point of view, two particles, 1 

and 2, whose states (pure) can be represented by the state vectors and . We 

can represent the composite two-particle system by wave-function . Now, if the 

particles are unentangled, the composite state is the tensor product of the states of 

the components, 

= (1.1) 
 

This state is said to be factorable or separable. The state is entangled if an only if 

it cannot be factored: 

= (1.2) 
 

For mixed states, which must be represented by density operators rather than state 

vectors, the definition of entanglement is generalized: an entangled mixed state is 

one that cannot be written as a convex combination of products: 
 

= ( ) (1.3) 
 

where the sum of the is equal to unity. This definition is for a bipartite sys- 

tem, that is, a composite system of only two parts, 1 and 2. For multipartite mixed 

quantum systems the situation is more complicated; there is no single acceptable 

entanglement measure applicable to the full set of possible states of systems 

having a greater number of parts. The search for a fully general definition and 

measure of entanglement remains an active area of research. As we know, 

despite the fact that the phenomenon of entanglement was recognized very early on 

in the development of QM, it remains one of the least understood aspects of quan- 

tum theory. A few philosophers of science and theoretical physicists explain these 

apparently counterintuitive phenomena as evidence of an acausal relational rather 

than causal dynamic world. Others approaches propose an atemporal models, su- 

perluminal models. Physics has struggled with non-locality for centuries. In 

its current guise, QE poses fundamental questions. Several contemporary philoso- 

phers, physicists, and mathematicians suggest that quantum non-locality requires 

us to revise many of our basic notions. 

In Western science, the philosophical problem of action-at-a-distance or non-locality 

is at least four hundred years old. In the 17th century, Newton had introduced non- 

local action at a distance by suggesting that gravity is exerted between masses 

according to an inverse square law instantaneously at any distance. 

Almost two hundred years later, studying rotational motion, Mach restated the 

problem, hypothesizing that each particle in the universe is instantaneously affected
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by every other particle. 

In 1916, Einstein sought to remove action-at-a-distance in General Relativity (GR). 

In that formulation, local effects expressed as gravity (space-time curvature) were 

propagated at the speed of light. But the statistical nature of QM required 

the reemergence of non-locality. In the 20th century, non-locality appeared as 

a necessary corollary of the probabilistic nature of QM. As we know, in 1927, Max 

Born reemphasized the probabilistic nature of QM. He argued that the Schrödinger 

equation did not represent an electron (or other particle) as spread out over an area 

of space, but was instead a probabilistic estimate of its location. Following Born’s 

interpretation, the entanglement (after Bell Theorem) is not only probabilistic cor- 

relation, but a real phenomenon. Although QM is the widely accepted probabilistic 

view of the world, some theorists continue to wonder if we could describe reality 

more concretely (i.e E PR argument, see Bohm’s Interpretation)1 In fact, EPR pa- 

per was the first that drew attention to the phenomenon of entanglement. As we 

have seen, in the introduction of thesis, the phenomenon of entanglement in MQ 

was taken by EPR as reductio ad absurdum. They show that there is a funda- 

mental flaw with the theory: "since at the time of measurement the two systems 

no longer interact, no real change can take place in the second system in conse- 

quence of anything that may be done to the first system". Since QM implies such 

an "absurd" situation, QM must be incomplete at best. QE, however, precisely is 

such a non-classical relationship between quantum particles whereby changes made 

to one particle of an entangled pair can lead to changes in the other particle even 

though they no longer interact. Shortly after the appearance of the EPR paper, 

Schrödinger coined the term "entanglement" (Verschränkung) to describe this phe- 

nomenon. The first published occurrence of the term is in an article of his, written 

in English, which appeared in October of 1935. In this article, Schrödinger places 

the phenomenon of entanglement at the center of quantum theory: 

When two systems, of which we know the states by their respective represen- 

tatives, enter into temporary physical interaction due to known forces between 

them, and when after a time of mutual influence the systems separate again, 

then they can no longer be described in the same way as before, viz. by endow- 
 
 
1In the Bohmian Mechanics (BM) interpretation of QM, particles maintain a specific position and 

velocity but they cannot be detected. Any measurement destroys the pilot wave (and information) 

associated with the particle. Like orthodox QM, Bohmian mechanics is in many respects, nonlocal. 

The "hidden variables" supplies information shared by entangled particles. A change in any state 

(for example "up spin") of one particle of an entangled pair is immediately made in the corresponding 

state of the other (for example, "down spin").
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ing each of them with a representative of its own. I  would not call that one but 

rather the characteristic trait of QM, the one that enforces its entire departure 

from classical lines of thought. By the interaction the two representatives (or  

-functions) have become entangled (Schrödinger 1935). 
 
 

Despite this early recognition of the importance of the phenomenon, very little 

effort or progress was made over the next thirty years in developing a theory of en- 

tanglement or in answering Schrödinger’s concerns regarding how this phenomenon 

could be consistent with relativity. It would be almost thirty years before another 

significant step toward a theory of entanglement would be made with John Bell’s 

seminal (1964) paper on quantum non-locality. In that paper Bell considered a pair 

of particles in the singlet state that had interacted in the past, had become entan- 

gled, and then had separated. He derived an inequality involving the probabilities 

of various outcomes of measurements performed on these entangled particles that 

any local definite (i.e., hidden-variable) theory must satisfy. He then showed that 

QM violates this inequality; that is, the experimentally well-confirmed quantum 

correlations among entangled particles cannot be locally explained. BellŠs theorem 

does not rule out the possibility of hidden-variable theories in general, only those 

hidden-variable theories that are local. Indeed, Bell took the lesson of his theorem 

to be that any theory that reproduces the experimentally well-confirmed predictions 

of QM must be non-local. He writes: 
 
 
It is the requirement of locality, or more precisely that the result of a mea- 

surement on one system be unaffected by operations on a distant system with 

which it has interacted in the past, that creates the essential difficulty . . .  

This [non-locality] is characteristic, according to the result to be proved here, of 

any theory which reproduces exactly the quantum mechanical predictions (Bell  

1964). 
 
 
Bell (Bell, 1964) showed that no physical theory of local hidden variables could 

produce the results of QM. Bell showed that either QM must be reconciled with 

nonlocality (not necessarily contravening SR) or the objective reality of particle 

properties (e.g., quantum states) had to be denied. Modifying the EPR thought 

experiment, Bell proposed a two measurement experiment of a pair of distant, en- 

tangled particles. The first would test predictions of "quantum theory", the second 

would test "local reality" predictions, espoused by the EPR paper Bell’s predictions 

were so explicit that they were later tested and verified. Although his theory has
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been interpreted that way, Bell did not totally dismiss "hidden variables.’" His in- 

equalities (only) demonstrate that "local" hidden variables contradict predictions 

of QM. Bell affirming that causality at the quantum level must be nonlocal. 
 
 
What is remarkable about Bell’s theorem is that it is a general result arising from 

an analysis of the relevant probabilities of various joint measurement outcomes, and 

does not depend on the details of any hidden-variable theory or even on the 

details of QM itself. Since then a number of different Bell-type inequalities have been 

derived, such as the Clauser, Horne, Shimony, and Holt (CHSH, 1969) inequality, 

which has proven particularly useful for experimental tests of non-locality. Follow- 

ing Bell, a number of experiments demonstrated not only that non-locality is a 

genuine physical phenomenon characteristic of our world (e.g., Aspect et al. 

1982), but also that non-locality can be experimentally produced,controlled, 

and harnessed for various applications. 

Another theoretical development came with Jarrett’s (Jarrett, 1984) analysis show- 

ing that Bell’s locality condition can be viewed as the conjunction of two logically in- 

dependent conditions: a "controllable" locality, which if violated would conflict with 

special relativity, and an "uncontrollable" locality whose violation might "peacefully 

coexist" with relativity (Shimony,1984 and an opposing point of view see Maudlin 

(2002)). Hence, the violation of Bell’s inequality could logically be due to a viola- 

tion of one, the other, or both of these locality conditions. Jarrett’s analysis has 

been taken by some to provide the solution to Schrödinger’s worries about a conflict 

between quantum theory and relativity, as long as one assumes that the violation 

is in fact solely a violation of the uncontrollable locality. 
 
 
 

2 Quantum Nonlocality After Bell: Not only does God 

play dice, but he plays with nonlocal dice. 
 

From experimental point of view until 1990 no one paid much attention to quantum 

nonlocality. But in the 1990’s two things changed. First, a conceptual breakthrough 

happened thanks to Ekert and to his adviser Deutsch (Deutsch, 1985). They showed 

that quantum nonlocality could be exploited to establish a cryptographic key be- 

tween two distant partners and that the confidentiality of the key could be tested 

by means of BellŠs inequality. This was the first time that someone suggested that 

quantum nonlocality is not only real, but that it could even be of some use. Today, 

according Gisin (Gisin,2005), we can say that "not only does God play dice,
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but he plays with nonlocal dice!". According Gisin, QM predicts the existence 

of a totally new kind of correlation that will never have any kind of mechanical 

explanation. And experiments confirm this: Nature is able to produce the same 

randomness at several locations, possibly space-like separated. The standard expla- 

nation is "entanglement", but this is just a word, with a precise technical definition. 

Still words are useful to name objects and concepts. However, it remains to under- 

stand the concept. Entanglement is a new explanation for correlations. Quantum 

correlations simply happen. Entanglement appears at the same conceptual level 

as local causes and effects. It is a primitive concept, not reducible to local causes 

and effects. Entanglement describes "correlations without "correlata" in a holistic 

view. In other worlds, quantum correlation is not a correlation between 2 

events, but a single event that manifests itself at 2 locations. Historically 

this was part of the suspicion that entanglement was not really real, nothing more 

than some exotic particles that live for merely a tiny fraction of a second. But 

today we see a growing number of remarkable experiments mastering entanglement. 

In few words, entanglement exists and is going to affect future technology. It is a 

radically new concept, requiring new words and a new conceptual category. 
 
 
From foundational point of view, years after Bell demonstrated the need for quan- 

tum nonlocality, theoreticians continued to ask about a relationship between the 

structures described by QM and local reality. Zukowski (Zukowski et al 2008)and 

Brukner (Brukner et.al 2004)(Institute for Experimental Physics, Vienna) notes, 

"No local realistic theory agrees with all predictions of QM as quantitatively ex- 

pressed by violation of Bell’s inequalities. Local realism [...] is based on everyday 

experience and classical physics [...] and supposes that measurement results are 

predetermined by the properties the particles carry prior to and independent of 

observations. Locality supposes that these results are independent of any action at 

"spacelike separations". After Bell, quantum nonlocality was the practical basis for 

quantum computing and quantum cryptography. In 1967, Simon Kochen and Ernst 

Specker ( Kochen et al 1968) developed a strong position against Bohmian and sim- 

ilar hidden variable arguments for interpreting QM as deterministic. Kochen and 

Specker showed that the apparently QM equivalent statistical results of Bohmian 

hidden variables "do not take into account the algebraic structure of quantum ob- 

servables. Kochen-Specker advanced the position that QM mathematics represented 

probabilities instead of physical reality. The Kochen-Specker proof demonstrates the 

impossibility of Einstein’s assumption, made in the famous EPR  paper, that quan- 

tum mechanical observables represent "elements of physical reality". More generally
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does the theorem exclude hidden variable theories requiring elements of physical re- 

ality to be noncontextual (i.e. independent of the measurement arrangement). 

In 1982, Aspect (at the Institut d’Optique in Paris) and co-workers verified Bell’s 

theory of inequalities. A pair of photons created as a single decay event was emit- 

ted by the source. They traveled in opposite directions for a distance until they hit 

variable polarizers, the results of their interaction with the polarizers was recorded 

at each end. When the outcome was analyzed, the results verified QM nonlocality 

and showed a correlation that could not be supported by hidden variables A few 

years later (1986), Ghiraldi, Rimini, and Weber (Ghirardi et al 2005) proposed a 

solution to the collapse and nonlocality problem by changing QM. Their approach 

allows the quantum state of a QS to develop according to Schrodinger’s equation. At 

random instants, development stops and the quantum state spontaneously collapses 

into a single local state. But like Bohm’s formulation, GRW assumes instantaneity. 

Random collapses occurs faster superluminally, violating Special Relativity (SR).  

In 1997, Zeilinger (at the University of Innsbruck in Austria) and collaborators con- 

ducted a "quantum teleportation." The essential information contained within one 

of two entangled photons was transmitted instantaneously over a distance, materi- 

alizing in the form of a third photon identical to the first. At the same instant, the 

first photon disappeared. Again, the influence causing the nonlocal change occurred 

at a superluminal speed. Quantum nonlocality is now empirically verified. 
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