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Abstract: In order to benefit from the advantages of localist coding, neural models
that feature winner-take-all representations at the top level of a network hierarchy
must still solve the computational problems inherent in distributed representations at
the lower levels.

By carefully defining terms, demonstrating strong links among a variety of seemingly
disparate formalisms, and debunking purported shortcomings of winner-take-all
systems, Page has made a significant contribution toward the creation of a functional
classification of the growing array of neural and cognitive models. One important
feature of the target article is a clarification of terminology. For example, a model is
here labeled “localist” when the representation at the top level (n) of a network
hierarchy is localist (section 2.6, paragraph 1). This definition is based on the logical
conclusion that, once a code representation has reached the limit of winner-take-all
compression, additional network levels would be redundant. Conversely, any non-
redundant localist system would normally have distributed representations at the
lower levels 1 … n-1. By considering systems in their hierarchical configurations,
Page shows that models and related data previously viewed as “distributed” in fact
derive essential properties from localist mechanisms.

Page’s hierarchical definition of localist networks implies that any such
system with more than two levels could inherit the computational drawbacks, as well
as the benefits, of distributed networks. As Page points out (section 7.1), many
distributed models are subject to catastrophic interference and require slow learning
and multiple interleaved presentations of the training set. One of my research goals in
recent years has been the development of real-time neural network systems that seek
to combine the computational advantages of fully distributed systems such as
multilayer perceptrons (Rosenblatt, 1958, 1962; Rumelhart, Hinton, & Williams,
1986; Werbos, 1974) with the complementary advantages of localist systems such as
adaptive resonance theory (ART) networks (Carpenter & Grossberg, 1987, 1993;
Carpenter, Grossberg, & Reynolds, 1991; Carpenter, Grossberg, Markuzon,
Reynolds, & Rosen, 1992). An initial product of this ongoing project was the
distributed ART (dART) family of neural networks (Carpenter, 1996, 1997;
Carpenter, Milenova, & Noeske, 1998), which permit fast as well as slow learning,
and distributed as well as localist code representations, without catastrophic
forgetting. Where earlier ART models, in order to help stabilize memories, employed
strongly competitive activations to produce winner-take-all coding, dART code
representations may be distributed across any number of nodes. In order to achieve its
computational goals, the dART model includes a new configuration of the network
architecture, and replaces the traditional path weight with a dynamic weight, which is
a joint function of current coding node activation and long-term memory (LTM). The
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dART system also employs new learning rules, which generalize the instar (equation
(10), section 4.4, paragraph 3) to the case where the target node activation patterns at
layer L2  may be fully distributed. The original instar equation implies that, unless
learning is very slow, all weight vectors w j  would converge to the same input pattern

a  at every location where the target L2  node is active aj > 0( ) . With the distributed
instar learning rule, dynamic weights automatically bound the sum of all LTM
changes, even with fast learning. The computational innovations of the dART
network would allow distributed representations to be incorporated at levels 1 … n-1
in a network hierarchy while retaining the benefits of localist representations at level
n.

In contrast to the aim of the dART research program, which is to define a real-
time, stand-alone neural network with specified properties, the primary aim of the
target article is to unify diverse computational and conceptual themes. In the service
of this goal, the corresponding learning module (section 4.1) is, by design, skeletal.
However, such a partially specified model might risk being unduly rejected on the
basis of what it seems not to do, and some of the model’s properties are subject to
misinterpretation if taken at face value. For example, Page’s localist model permits
learning only at an uncommitted node, which then encodes the current input. The
decision whether to activate an uncommitted node depends upon the value of the
threshold q , which is somewhat analogous to the vigilance matching parameter r  in
an ART model. In particular:  “If the threshold is set slightly lower [than 1], then only
activation patterns sufficiently different from previously presented patterns will
provoke learning.” (section 4.1, paragraph 2) Page points out that this construction
would help solve the problem of catastrophic interference, since coding a new pattern
does not affect previous learning at all. On the other hand, this feature might also be
the basis for rejecting this model, and by extension other localist models, since each
category can be represented only as a single exemplar:  there is no opportunity for
new exemplars that correctly activate a given category to refine and abstract the
initial learned representation. In contrast, a more fully specified localist model could
permit controlled learning at committed nodes as well as at uncommitted nodes,
hence creating prototype as well as exemplar memories while still retaining the ability
to resist catastrophic interference. Even though this capability is not part of Page’s
simplified model, the possibility of learning at committed nodes is implied later in the
article (section 4.5, paragraph 3):  “…when at least one of the associates is learned
under low-vigilance (cf. prototype) conditions, remapping of items to alternative
associates can be quickly achieved by rapid reconfiguration of connections to and
from the mapping layer.”

Similarly, a reader may be misled who takes seriously the assertion:  “The
extension [of the learning module in the target article] to continuous activations will
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usually be necessary and is easily achieved.” (section 4.1, paragraph 1) This
statement is true, but defining an extension of the simplified system is not a matter of
straightforward substitution. In particular, the learning module is defined only for the
case of binary inputs, and the validity of its computational properties relies implicitly
on the assumption that a ⋅ a = a = a 2 , which is true only when a is binary.

In summary, the simplified localist learning module defined by Page is a
valuable tool for unifying and clarifying diverse formalisms, but a more complete
computational development is needed to define stand-alone neural network systems
that realize the promise of the localist analysis.



Gail A. Carpenter Behavioral and Brain Sciences CAS/CNS TR-99-028 5

References

Carpenter, G.A. (1996). Distributed activation, search, and learning by ART and
ARTMAP neural networks. Proceedings of the International Conference on
Neural Networks (ICNN’96): Plenary, Panel and Special Sessions
(pp.!244-249). Piscataway, N.J.: IEEE Press.

Carpenter, G.A. (1997). Distributed learning, recognition, and prediction by ART and
ARTMAP neural networks. Neural Networks, 10, 1473-1494.

Carpenter, G.A., & Grossberg, S. (1987). A massively parallel architecture for a
self-organizing neural pattern recognition machine. Computer Vision, Graphics,
and Image Processing, 37, 54-115.

Carpenter, G.A., & Grossberg, S. (1993). Normal and amnesic learning, recognition,
and memory by a neural model of cortico-hippocampal interactions. Trends in
Neuroscience, 16, 131-137.

Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., & Rosen, D.B. (1992).
Fuzzy ARTMAP: A neural network architecture for incremental supervised
learning of analog multidimensional maps. IEEE Transactions on Neural
Networks, 3, 698-713.

Carpenter, G.A., Grossberg, S., & Reynolds, J.H. (1991). ARTMAP: Supervised
real-time learning and classification of nonstationary data by a self-organizing
neural network. Neural Networks, 4, 565-588.

Carpenter, G.A., Milenova, B.L., & Noeske, B.W. (1998). Distributed ARTMAP:  a
neural network for fast distributed supervised learning. Neural Networks, 11,
793-813.

Rosenblatt, F. (1958). The perceptron:  a probabilistic model for information storage
and organization in the brain. Psychological Review, 65, 386-408.

Rosenblatt, F. (1962). Principles of neurodynamics. Washington, D.C.: Spartan
Books.

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning internal
representations by error propagation. In D.E. Rumelhart & J.L. McClelland
(Eds.), Parallel distributed processing:  Explorations in the microstructures of
cognitions, I (pp.!318-362). Cambridge, Mass.: MIT Press.

Werbos, P.J. (1974). Beyond regression:  new tools for prediction and analysis in the
behavioral sciences. Unpublished Ph.D. thesis. Cambridge, Mass.: Harvard
University.


